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 This work highlights aspects of the R lmer function for a case where the dataset is nested, highly unbalanced, involves 

mixed effects and repeated measurements. The lmer function is part of the lme4 package of the statistical software R. 
The dataset used in the study is simulated from a survey of cow milk off takes from a group of Herds in Uganda, Africa. 
The purpose of the survey was to identify quality breeds of African Indigenous cattle for purposes of genetic breeding 
following the difficulties involved in implantation of foreign breeds of cattle in Africa. The work highlights the use of 
mixed model analysis in the context of animal breed selection. The exposition is accessible to readers with an 
intermediate background in statistics. Some previous exposure to R is helpful as well as some familiarity with mixed 
models.   

 
 Key Words: Mixed Models, Repeated Measures, lmer function in the R Statistical Software, Best Linear Unbiased 

Predictor (BLUP) 
 
 
 
1. INTRODUCTION 
 
Multilevel data structure is often associated with many 
studies from medical, agricultural and social sciences, as 
scientists can capture a variety of factors at different 
levels of aggregation. Progress is being made day by day to 
capture complicated data structures. In mixed modeling, 
complications that arise include unbalanced structures, 
nesting vs. crossed structure, size of data and negativity of 
variance, residual analysis and diagnostics due to 
assumptions on the residuals and random 
effects(normality assumption), among others. 
Restricted/Residual Maximum Likelihood Estimation 
(REML) is well suited to handle the negativity of 
variance estimates, unlike ANOVA or Maximum 
Likelihood Estimation (MLE). 
 
The data used in the study are simulated using 

information from data originally collected from a survey 
of cow Milk Off-takes from a group of herds in Uganda, 
Africa. For a comprehensive literature review of some of 
the key contributions to the area of mixed modeling, 
some suitable literature include Searle, Casella and 
McCulloch (1992), and Khuri and Sahai (1985). 
Computers have played an even a bigger role in mixed-
model estimation, enabling easy handling of the large 
sample dispersion matrices involved. A key advance in 
mixed-model analysis in the R statistical software is the 
work of Pinheiro and Bates (2000). Thanks to their work, 
we use the lmer function in the lme4 package here in 
detail. The purpose of the survey was to identify quality 
breeds of African indigenous cattle for the purposes of 
genetic breeding following the difficulties involved in the 
implantation of the foreign breeds of cattle in Africa.  
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The data are collected from three main regions, herein 
referred to as clusters. The clusters, just like herd groups, 
represent different ecological regions and vegetation 
types. Since the herd groups represent exhaustively the 
ecological differences between the regions studied, they 
are considered as fixed effects in the models at the 
analysis stage.  
 
A fixed effect factor is a factor whose levels are the only 
possible levels in the population being studied. This is 
opposed to a random effect factor whose levels in the 
study are just a sample of all the other possible choices.  
 
For example, in each herd group, a few herds were 
randomly chosen, out of many other herds that were 
present in the herd group. In the analysis, we therefore 
model herd as a random effect factor. Any cow studied 
was either in lactation number 1 or 2. Thus, Lactation 
Number is considered a fixed effect at the modeling stage. 
Then, due to repeated measurements, we have Subject 
and Time factors that come into play. They are 
considered as random effect factors, as their levels in the 
data are also samples of the whole population. Thus 
Cluster, herd group and Lactation Number are 
considered fixed effects while herd, Subject and Time as 
random effects. 

 
The multilevel structure in which some factors are 
considered fixed and others random defines the mixed 
model scenario. The key steps of mixed model analysis 
involves estimating variance component parameters using 
Restricted Maximum Likelihood (REML), then 
estimating fixed effects parameters using Generalized 
Least Squares(GLS).  
 
Best Linear Unbiased Predictors (BLUPs) of random 
effects are obtained using the obtained REML and GLS 
estimates. For animal breed selection, BLUPs play a very 
significant role. We will also refer to the GLS estimates of 
fixed effects as Best Linear Unbiased Estimators (BLUEs). 
Note that BLUP and BLUE are sufficient initials but we 
add small “s” to make it plural. 

 
The R statistical software is gaining popularity among 
many data analysts (students and researchers). It is 
similar in many features to S-Plus and any experience 
with S-Plus is more than sufficient for using R. One can 
download R from the site (http://www.r-project.org). It is 
mainly a command language software with option for pull 
down menus in R-Commander, a separate package that 
could be downloaded alongside. 
 
The paper is organized as follows: section 2 considers the 
study design and elicits the main multi-level data 

structures. In section three, an exploratory data analysis 
including a discussion on model selection is done to 
justify our model selection. This is followed by model 
specification. Section four addresses some of the 
theoretical technicalities involved in parameter 
estimation for the unbalanced multi-level nested data 
structure, before we fit the data to the selected model in 
section five to obtain the results. Most of these 
complications are already handled in software algorithms. 
We end with a discussion, highlighting the lmer function 
and its potential in comparison to lme function. 

 
2. STUDY DESIGN 
 
The primary survey dataset was collected with the aim of 
identifying quality breeds (high milk producers) of 
African indigenous cattle, for purposes of genetic 
breeding. Such cattle from Europe and other temperate 
regions have been introduced in Africa without much 
success due to relatively harsh climatic conditions. 

 
The survey was conducted in Mbarara district, Uganda 
for a period of 12 months, among 40 cattle keepers. The 
eight regions studied represent different production 
systems and vegetation types (see Table 1). Milk off take 
data (amount of milk obtained at a milking moment), as 
opposed to Milk intake by Calves (MC) was collected 
from 467 Subjects (cows). Two stage cluster sampling was 
used to collect the data, with purposive sampling (where 
subjects are selected because of some characteristic) 
conducted at each stage. The first stage selected the eight 
herd groups, each representing a certain ecological 
environment and the second stage selected the herds 
within the herd groups. 

 
The herds represented different herd management 
activities, for instance how the cows are fed, treated for 
illnesses or even milked. The Lactation Number was also 
recorded for each cow studied, cows in lactation 1 were 
undergoing their first lactation (milking) in life while 
those in lactation 2 were in their second or later lactation 
in life. The clusters in Table 2 represented main 
vegetation types and ecological regions that were thought 
to be a possible source of variation in milk production. 
herd groups were chosen from the clusters in such a way 
that they represented all the specific 
ecological/vegetation-type differences.   
  
A comparison of the herd groups was therefore a 
comparison of milk productions in these diverse set ups.  
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Table 1. Milk production environments and their 
characteristics 

Herd groups Prod. 
system  

Veg. type  No. 
Cows 

 Herds  

 Kanyanya  Pastoral  Cymbo' 
Afronadus  

 89  6  

Kashongi  Pastoral, 
Agro-
Pastoral 

Cleared 
thickets  

 75  7 

Kikaatsi  Pastoral  Cymbo' 
Afronadus  

 55  5  

Ruhengere  Pastoral  Acacia 
thickets  

 52 5  

Rushere Pastoral Shrub anthills, 
Acacia thickets 

26 2 

Masha Pastoral Acacia thickets 13 2 
Mutonto Agro-

Pastoral 
Cleared 
thickets 

62 5 

Kanyaryeru Pastoral Cleared 
thickets 

95 5 

 
Table  2. The Study Design 

Clusters  Herd groups   Herds   no. of Cows  
Nyabus
-hozi  

 Kanyanya  
  

 Bek, Bwe, Kab,  
Kaf, Kir, Rub  

16, 10, 12,  18, 
14, 19  

    Kashongi   Bih, Bir, BukC, 
Gan, Kah, Mug, 
Tum 

 10, 10, 13, 18, 
4, 13, 7 

    Kikaatsi   Aga, Bar, Kav, 
Mor, Uka  

 10, 10, 7, 16, 
12  

    Ruhengere   KAC, Kam, 
Mpo, Rug, Tin  

 13, 10, 14, 9, 6  

    Rushere   Rute, Tume   13, 13  
Isingiro 
North  

 Masha   Kak, Bat   4, 9  

 Kahsari   Mutonto   Bahw, Bak, Kan, 
Mas, Muh  

 12, 8, 4, 16, 12  

    Kanyaryeru   Bah, BukY, Kat, 
Man, Nab  

 21, 13, 11, 20, 
30  

 
The dataset of this case study is hierarchical with nesting 
since the random effects (herds) are nested in their herd 
group. The lmer function in lme4 package can easily 
handle both nested and crossed cases without model 
modification (Bates 2005, Quiné and Berg 2008). A 
simple illustration of crossed versus nested data is given 
in Table 3. In the crossed case, all levels of one factor 
(Fertilizer) appear in each level of the other factor 
(Farm). In the nested case however, we see that levels of 
one factor (Teacher) occur in only one of the levels of 
the other factor (School), e.g., John is employed and 
teaches only in school A  but not in school  .B
 
Similarly, in the present case study, one notices that 
herds are nested in herd group where each herd is studied 

in only one particular herd group, as illustrated in 
Table(2). For example, herd Bek is only studied in herd 
group Kanyana. This is in contrast with the crossed data 
case where one or more levels of herd would be studied in 
more than one herd group.  
 
Table  3. Nested versus Crossed Datasets 

Crossed case Nested  case 
Farm Fertiliser School Teacher 

A S1 A John 
A S2 A Jack 
A S3 A Tom 
B S1 B Mary 
B S2 B Mat 
B S3 B Rose 

 
The xtabs command in R helps to observe the data 
structure.  

 
>xtabs(~herdgroup + herd, AnkoleRepeated) 
Herd 
Herd group Aga Bah BahW  Bak  Bar Bat Bek Bih  Bir   BukC  BukY  
Kanyanya     0      0      0         0      0    0    16    0      0      0        0     ... 
Kashongi      0      0      0         0      0    0      0   10   10    13       0     ... 
Kikaatsi      10      0      0         0    10    0      0     0     0      0        0     ... 

 
3. EXPLORATORY DATA ANALYSIS AND 

MODEL SELECTION 
 
The dataset is imported from an excel spreadsheet using 
the read.table command and the first 5-rows of the 
AnkoleRepeated dataset are displayed below. The 
AnkoleRepeated dataset has four weeks of milk yield 
recorded per cow (longitudinal/repeated measurements).  

 
>AnkoleRepeated[1:5, ]  
   id cluster       herdgroup  herd lacno yield.1wk y.2wk y.3wk y.4wk  
1 1 Nyabushozi Kanyanya   Bek  1         379.82  377     376    377  
2 2 Nyabushozi Kanyanya   Bek  2         394.90  391     391    390  
3 3 Nyabushozi Kanyanya   Bek  2         385.22  386     382    378  
4 4 Nyabushozi Kanyanya   Bek  2         381.68  381     379    376  
5 5 Nyabushozi Kanyanya   Bek  2         390.53  389     386    382  

 
The data occurs in its “wide form”, having 467 rows, each 
row representing a Subject (cow) observed. Each cow has 
4 milk offtake values recorded in 4-different columns. For 
analysis, we ought to transform the data to its “long 
form”. 

 
The long form of the data has 1868 rows (467 by 4), 
where each unit of observation (cow) has information in 
four different rows. All the 467 week one(yield.1wk) yield 
observations are lined up first in the data 
AnkoleRepeatedLong depicted here below, all yield values 
fall in only one column (see the R-code in the appendix 
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for achieving this). 
 

>AnkoleRepeatedLong[1:10,]  
         id cluster        herdgroup herd lacno_f subject time yield  
1.1wk 1 Nyabushozi Kanyanya   Bek  1         1         1      379.8200  
2.1wk 2 Nyabushozi Kanyanya   Bek  2         2         1      394.9000  
3.1wk 3 Nyabushozi Kanyanya   Bek  2         3         1      385.2200  
4.1wk 4 Nyabushozi Kanyanya   Bek  2         4         1      381.6800  
5.1wk 5 Nyabushozi Kanyanya   Bek  2         5         1      390.5300  

 
We now observe that in the long form, Subject and Time 
factors come into play. 

 
It is customary to obtain summary details such as means 
and counts as in Table 4. For instance, for herd groups 
and herds, we have  

 
> attach(AnkoleRepeated)  
>meanHG<-tapply(yield, herdgroup, mean)  
> sigmaHG<-tapply(yield, herdgroup, sd)  
> summary(herdgroup)  
> plot(yield~herdgroup, data=AnkoleRepeatedLong) # Box 
plot 
> meansH<-tapply(yield, herd, mean) #means for Herd  
> sigmaH<-tapply(yield, herd, sd) #standard errors, Herds  
> detach(AnkoleRepeated)  

 
Table  4. Summary, herd groups 

  Clusters  Herd 
groups  

mean 
yield(kg)  

Units (no. 
cows) 

Observ-
ations  

Nyabus-
hozi  

 Kanyanya  383.4068  89   356  

    Kashongi  317.439  75   300  
    Kikaatsi  242.6298  55   220 
    Ruhengere  215.9975  52   208 
    Rushere  266.6886  26   104  
Isingiro-
North  

 Masha  275.1479  13   52 

 Kahsari   Mutonto  260.8632  62   248 
   Kanyaryeru  323.4036  95   380 

 
We consider a box plot for the herd groups. Except for 
two herd groups, all the others seem to have a median 
yield in the range of 250-350 kg. We also notice that the 
Kanyanya herd group has a higher median milk 
production, followed by Ryeru (last herd group on the 
right on Figure 1). This position is later confirmed by the 
mixed model analysis estimates of fixed effects. Some 
values appear as outliers and could be easily identified 
and removed. The analysis however is performed with 
these outliers as they may represent possible quality milk 
producers and we cannot afford to do away with them in 
this case (see Figures 1 and 2).  

 
 
 

>plot(yield.1wk~herdgroup, data=AnkoleRepeated)  
> plot(yield~herdgroup, data= AnkoleRepeated)  

 

 
Figure  1. Box plots for herd groups, week 1 yield 

  

 
Figure  2. Box plots for herd groups, whole data 

   
To ascertain the independence of the residuals and the 
homoskedasticity in a typical model to be considered later 
in the paper (model sm2 defined later in the paper), we 
use a plot of the observed yield values versus residuals, 
noting that one could also use a plot of residuals versus 
predicted yield values. The points should be randomly 
scattered with constant spread if independence and 
homoskedasticity hold. 
 
The normality assumption does not quite hold for the 
residuals. A qq-plot of the residuals versus a normal 
distribution shows some deviation from the normality 
assumption. This is due to values in the qq-plot that 
deviate from the qq-line at the extreme ends of the 
graph, see Figure 4. Neither the logarithm transformation 
on the data nor the square root transformation rectifies 
this situation. The removal of the outliers identified in 
the box plot does not help either (R-Code for 
transformations and qq-plot construction is included in 
the appendix).   
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Figure  3. Observed versus residuals in model sm2.  
 

 
Figure  4. A qq-plot of the residuals versus a normal 
distribution.  
Note: Although observations do not lie outside the 95% confidence 
interval, the normality assumption is not met in the strict sense. We assume 
robustness to this violation in the mixed modeling context. 

  
Nobre and Singer (2007, pg 867] undertake an elaborate 
discussion about residual analysis in mixed models and 
how it helps to verify homoscedasticity, linearity of 
effects, presence of outliers, normality and independence 
of the errors. They note that the estimates of the 
parameters of the model  = εαβ ++ ZXY obtained 
under normality assumptions are asymptotically 
consistent even when the distribution of α  is not 
normal but has third finite absolute moment, and only 
requires a correction in the covariance matrix of the fixed 
effects estimators. The assumption about normality of the 
errors (random effects and residual error) is violated 
(since observations on the extreme end of the qq-plot 
deviate from the diagonal qq-line).  The BLUEs of fixed 
effects are robust to non-normality in the random error 
distribution but may influence BLUPs of random effects 
and tests of hypothesis on parameters (Nobre and Singer 
2007). The normality assumptions on errors is addressed 
already in the lme4 package of R (Pinheiro and Bates 
2000, Chapter 4. 

 

The model selection is informed by the multilevel mixed 
data structure and the aim which is to conduct a breed 
selection, which requires BLUPs of random effect factors. 
The linear relationship in the data is also confirmed and 
hence fitting a linear model is in order.  
 
3.1 Model Selection 
 
We entertain a series of models. We begin with the 
complete model  but eliminate it since the matrix  1, sm

XX ′  is not positive definite, and poses an analysis 
problem(X is the design matrix discussed ahead). This 
problem is removed when we fit  which ignores 
fixed effect due to Cluster.  

 2 sm

 
>sm1<-lmer(yield~cluster+herdgroup+lacno  
+(1|herd)+(1|subject)+(1|time), AnkoleRepeatedLong)  
Error in mer_finalize(ans):Downdated X'X not positive 
definite.  

 
>sm2<-lmer(yield ~ herdgroup + lacno + 
(1|herd)+(1|subject)  
+(1|time), AnkoleRepeatedLong)  

 
>(sm3<-lmer(yield ~ herdgroup + lacno +(1|subject)  
+(1|time), AnkoleRepeatedLong))  

 
Since herd is a random effect nested in herd group, we 
consider other model formulations with that fact in mind, 
before we do an ANOVA comparison of the models to be 
able to chose the optimal one.  

  
>(sm4<-lmer(yield ~ herdgroup + lacno  
+(herdgroup|herd), AnkoleRepeatedLong))  
>(sm5<-lmer(yield~herdgroup+lacno+(herdgroup|herd)  
+(1|subject)+(1|time), AnkoleRepeatedLong))  
>(sm6<-lmer(yield~herdgroup+lacno+(herdgroup|herd) 
+(1|subject), data=AnkoleRepeatedLong))  
 
The Akaike Information Criterion(AIC) and Bayesian 
Information Criterion(BIC)  information for model sm2 
are AIC=9907, BIC=9979.6 and the Log Likelihood 
equals -4940.8. This is a fairly good model comparing its 
criterion values to those of models sma4, sm5, sm6. We 
cannot compare sm2 directly with the other models since 
BIC for instance, requires that we compare nested 
models. Model sm5 is significantly different and has a 
lower AIC value compared to model sm4 and sm6. See for 
example Burnham and Anderson (2002) for a useful 
reference in model selection. We note that smaller values 
for AIC, BIC define the better model.  
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>anova(sm4, sm5, sm6)  
 

 sm4 sm6 sm5 
Df 46 47 48 
AIC 14,403.1 11,573.3 9,971.7 
BIC 14,658 11,833 10,237 
logLik -7,155.5 -5,739.7 -4,937.9 
Chisq  2,831.8 1,603.6 
Chi Df  1 1 
Pr(>Chisq)  <2.2e-16** -2.2e-16*** 
Signif. Codes: 0.001 ***. 
 
We recall here that the AIC is given by
 = 2 2 , AIC logL k− + where logL is the maximum log-
likelihood and k is the number of parameters in the 
model. The BIC is given by  )( )(2= nlogkLlogBIC +−
and for normally distributed errors, we have 

)()(= 2 nlog
n
klogBIC +εσ , where logL is the maximum log-

likelihood, k is the number of parameters in the model, n 
is the number of observations and  is the error 

variance. BIC is thus an increasing function of error 
variance and the number of parameters. 

  2
εσ

 
By the “principle of parsimony” we choose the model   

 
>(sm5<lmer(yield~herdgroup+lacno+(herdgroup|herd)+
(1|subject)+(1|time), AnkoleRepeatedLong))  

 
as the preferred model as it has a lower AIC value (9971) 
and contains most information required. The model 
considers herd group and Lactation numbers as fixed 
effects while herd is considered as a random effect in herd 
group. Subject and Time are considered random effects. 

 
A linear mixed effects model is fitted of the form 

 

ijklmmlkijiijklm tsrqpY εμ ++++++=                        (1) 

 
where  is the mth milk off take of animal l in the jth 

herd (j=1,2,...,36), ith herd group (1=1,2,...8) and in the 
kth Lactation number (k=1,2). We have

  ijklmY

 μ as the overall 

mean, is the fixed effect of the ith herd group,  is 

the random effect of the jth herd in the ith herd group,
is the fixed effect of the kth Lactation number is 

the random effect due to subject (l=1,2,...,467)  is the 

random effect due to Time (m=1,2,3,4) and  

  ip   ijq

  ls
 m

 

  kr
t

ijklmε is the 

random error. 
 

A model with crossed effects only would have been stated 
as ijklmmlkjiijklm tsrqpY εμ ++++++= .  

The matrix form for the mixed model is  
 

 

εαβ ++ ZXY =                                                         (2) 
 

where the vector   β represents the fixed effect 
parameters, usually estimated by Generalized Least 
Squares (GLS) approach, the vector   α represents the 
random effects and are estimated as BLUPs.  
dimensions of the vectors and matrices in (2) are, ,1nXY  

for n=1868 observations, ,nXpX  for p=11 fixed effects 

parameters (8 levels of herd gr up, 
Number, plus the overall mean 

The

o 2 for Lactation 
μ ), 1 ,pXβ  , nXhZ for h 

levels of random effects. In the case of model sm5 we 
have h=10 (ee Secti . hon 5)  Finally we ave .1nXε  
 
Assume ε  and α  are normally distributed with  
 

and  

The assumption 
 The vector 
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is that  ),,ˆ( VXNY β~  where 

= 2
ασ ZZV +′ d effects in this 

case reads ,{=
 .2

εεσ I of fixe

},, 218 rrp,...,, 21 ppμβ whereμ is the 

grand mean 1,2,...,8}=: ith, ip is the {i −  herd group 

effect and =:{ krk

ffect. 
1,2} is the kth lactation number 

e
 
The vector for random effects reads },...,,{= 21 aqqqα
where α represents the number 

 the model of choice. 

ign matrices 

of random factors defined 
in
 
The des X  and   Z  are of the form given 
below. 
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4. CONCEPTUAL RE-EXAMINATION OF 

PARAMETER ESTIMATION 
 
The mathematical theory of Mixed Model Analysis based 
on model (2) and well illustrated in literature such as 
Searle, Casella and McColloch (1992) requires that we 
estimate the parameters β  and .α  To estimate ,β  the 
fixed effects parameters, we use the method of GLS that 
maximizes the log-likelihood function with respect to . β  
As detailed in the appendix, we obtain BLUEs   β via,  
 

βXVXYVX 11 = −− ′′                                                      (3) 
 
The GLS function (3) depends on the variance 
components via the matrix V and one has to obtain an 
estimate of matrix V as a first step. This is done by REML 
(Restricted or Residual Maximum Likelihood) 
estimation. Then one needs the estimates of random 
effects. The estimates are referred to as “Predictors” to 
distinguish them from fixed effects for which the word 
“Estimates” has been used. The BLUPs of α  are 
obtained from the equation,  

 

).ˆ()ˆ(=)( 11 βα XYZZZBLUP −′Γ+′ −−                   (4) 
 
In (4), the parameters to be estimated include Γ  and .β  
The BLUE of   β and the REML estimate of the variance 
components contained now in are substituted in the 
equation to finally obtain the BLUPs. 

 , Γ

 
 
 
 

4.1  Restricted Maximum Likelihood Estimation 
 

The variance components are two main parameters  

and  contained in the matrix Note that  
may have sub-variances, for each of the levels of random 
factors included in the model. The variance components 
can be estimated by a number of methods, including, 
ANOVA, Maximum Likelihood, Bayesian Estimation 
and Method of Moments. But REML, developed by 
Patterson and Thompson (1971) is more attractive since 
it offers unbiased and non-negative estimates of variance 
components. Maximum likelihood estimates (MLE) of 
variance components may turn out to be negative (see for 
example Duchateaux et al. 1998). Searle et al. 
(1992)mentions that such variance components can be 
set to zero.  

  2
ασ
  2

ασ  2
εσ  . V

 
The REML procedure maximizes the part of the 
likelihood function that is location invariant. Location 
parameters are fixed effect parameters, and one has to 
split the likelihood function into a part that depends on 
fixed effects and another that is independent. This is 
possible for balanced datasets, and is not straightforward 
for unbalanced cases. 
 
Verbyla (1990) gives a clear interpretation of the REML 
method as follows: partition the likelihood into two 
independent parts, splitting the vector of observations Y 
into )=( 11 YKY ′  relating to the fixed effects and 

)2YK=( 2Y ′  relating to the residual contrasts (zero 
expectation) with,   
•  an n by p matrix of full column rank   1K
•  an n by (n-p) matrix of full column rank   2K
•  0=,= 21 XKIXK ′′ , where X is the design matrix 
for fixed effects.  

 
The residual contrast 2 is used in the estimation of the 
variance components for general cases, by maximizing a 
linear combination

K

 2YK ′  of the vector of observed 
values Y  with the properties: 

2 2 2( ) = 0, (0,E K Y K Y N K VK′ 2 ).′ ′ ∼  
 
Take  for simplicity. Replacing KK =2 YKbyY ′  
translates to replacing    Z by K Z′ ,     X by = 0K X′ and 

  V by  .K VK′   
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Note that if then 0=)( YKE ′  ( ) = = 0K E Y K X β′ ′
so  = 0K X′ .
 
Evaluating (14) of the appendix with these replacements, 
one obtains 
 

,][=)]([ ,=,= εαεα iiiiii PYZPZYZPZtr ′′′                            (5) 

  
where  
 

.)(=)(= 11111 KVKKKVXXVXXVVP ′′′′− −−−−−−  
This is similar to the Maximum Likelihood equations but 
with  replaced by  These equations are usually 
a complex non-linear function of the variance 
components through P and cannot be solved (by setting 
equal to zero) directly. Note that balanced designs are a 
special case. Iterative computer algorithms are thus used 
to solve them. These are already written as programs in 
software toolboxes such as  in this case. 

  1−V  . P

  lmer
 

4.2 Hypothesis Testing on the Parameters 
 

In the context of a fixed effects model, there is only one 
source of random variation, and the test of hypothesis 
relies on the ratio  

.
)(

)(
residualms
factorms                  (6) 

 
The ratio follows an F-distribution with degrees of 
freedom due to fixed effect factors in the numerator and 
the degrees of freedom due to residual in the 
denominator. If the null hypothesis is true, then this ratio 
simplifies to one. 
 
In the case of a mixed effects model, the denominator is 
often (not always) a linear combination of the different 
sources of random variation. The degrees of freedom due 
to the denominator is therefore derived using Welch-
Satterthwaite equation which is used to calculate an 
approximation to the effective degrees of freedom of a 
linear combination of sample variances (Satterthwaite 
1946). Then the challenge of computing the mean square 
errors for the factors in the model arises due to imbalance 
in data. Suppose we had the same number of herds in 
each herd group and some number of observations (cows) 
in each herd, we could use the following computations: 
 
Herd group:     ,=  222

hhHG bgams σσσε ++

Herds:  and the residual mean square 

by  Here  is the residual mean square 

error at unit (cow) level,  is at herd level and  at 
herd group level. A hypothesis test on effect of herd 
groups could be conducted using the ratio  

22=  hH cms σσε +

.= 2
εσRms 2

εσ  

2
hσ

2
hgσ

.
)(

)(
HerdgroupwithinHerdsms

ms Herdgroup  

 
The test statistic does not follow an F distribution under 
the null hypothesis. Moreover, we have an unbalanced 
data set which does not allow for this sort of 
computation. It makes no sense to obtain the F test for 
levels of factors in this study, and correctly so, the lmer 
function does not offer F-test results in its output. The 
imbalance in the dataset makes it inappropriate to use 
the F-test, and often, the Wald test is used instead. 
 
5. DATA ANALYSIS 
 
5.1 Results of Fitting the Linear Mixed Model 

Using lmer 
 
We consider the output for model sm5. The output shows 
that REML was the tool that produced the variance 
estimates. REML is the default tool under the lmer 
function, and if specified to be false, them the MLE is 
then used instead. The other information includes 
criterion for model choice, including AIC, BIC and the 
other criteria.  

 
Linear mixed model fit by REML Formula:  

 
yield~herdgroup+lacno+(herdgroup|herd)+(1|subject)+(
1 | time)  
Data: AnkoleRepeatedLong  

 
AIC    BIC    logLik deviance REMLdev  
9941 10207  -4923   9876       9845  

 
Random effects:  
 

Groups Name           Variance     Std.Dev. 
subject (Intercept)   118.7943    10.8993 
herd (Intercept)        3.5525      1.8848 
herdgroupKashongi      2.3110      1.5202 
herdgroupKikaatsi      13.5369      3.6792 
herdgroupMasha         3.5486      1.8838 
herdgroupMutonto        2.5166      1.5864 
herdgroupRuhengere     6.8931      2.6255 
herdgroupRushere       28.7822    5.3649 
herdgroupRyeru          3.5526      1.8848 
time (Intercept)        7.1735      2.6783
Residual              3.2725      1.8090 
Number of obs: 1868, groups: subject, 467; 
herd, 37; time, 4  
 
The output includes estimates of the variance 
components, including which has ten sub-  2

ασ
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components while  Most variance 
components have a standard deviation above that of the 
residual error, hence justifying their inclusion as random 
effects in the model. Subject contributes the most 
variation in the data, with a variance estimate of 
118.7943. These variance estimates which are elements 
of matrix V are then used to compute the fixed effect 
parameters via the formula .  

3.2725.= 2
εσ

=1YVX −′ 1 βXVX −′
 

Fixed effects:   
                     Estimate    SE     t-val  
(Intercept)          384.335   2.328  165.11  
herdgroupKashongi    -66.003   2.016  -32.74  
herdgroupKikaatsi   -140.103   3.118  -44.93  
herdgroupMasha      -108.322   3.342  -32.41  
herdgroupMutonto    -122.787   2.046  -60.02  
herdgroupRuhengere  -168.036   2.787  -60.29  
herdgroupRushere    -116.781   5.421  -21.54  
herdgroupRyeru       -60.038   1.795  -33.45  
lacno2                -1.022   1.387   -0.74  
 
Note that Kanyanya is the baseline herd group. All the 
others are compared to Kanyanya, and 384.335kg is the 
average performance in Kanyanya. The estimate -66.003 
represents the difference between performance in the 
Kanyanya and Kashongi herd groups. The average 
performance in Kashongi is thus (384.335-66.003) kg. 
The p-values for the t-test are not given. We could 
however infer that since the absolute values of the t-
values for herd groups are very large (greater that 
approximately 2 is a sign of significant difference), all the 
fixed effect factors are significant in the model. Lactation 
number two has a poor performance compared to 
Lactation number one, its performance being one unit 
below that of Lactation one. However, the effect of 
Lactation number is probably not significant given its low 
t-value. The best performing herd groups are Kanyanya, 
followed by Ryeru and the Kashongi. Milk offtake in 
Lactation one is also averagely higher than that of 
Lactation 2. 

 
Correlation coefficients for the estimates are provided in 
the lmer output. Low values of correlation are preferred. 
High correlation is an indication of some high 
relationship among the groups which is often not true. 

 
One notices that the degrees of freedom and the p-value 
for the t-tests and the F-tests done using the lmer 
function are not provided, because the “F-statistics” used 
in the nested mixed effects model with unbalanced 
groups (such as in this case study) do not exactly follow 
an F distribution. The degrees of freedom used are not 
statistical reliable. The Markov Chain Monte Carlo 

(MCMC) approach, and Parametric bootstrap techniques 
provide alternatives in dealing with this problems 
(Faraway 2009). 

 
5.2 Residual Analysis 

 
In addition to the information on the exploratory data 
analysis, it is as useful to consider the residual plots and 
analysis for purposes of diagnostics. Normal QQ-plots, 
factor versus residual plots, residual versus fitted value 
plots are some of the common tools in understanding the 
residual structure in the data. Using the model sm5, we 
obtain the residual plots (Figure 5). A more liberal test of 
normality done on the residuals of model  is given 
by the Shapiro Wilk test, 

 5 sm

 
>shapiro.test(residuals(sm5))  
Shapiro-Wilk normality test data:  
residuals(sm5) W = 0.9982, p-value = 0.0404  

 
The normality assumption is violated by the results of 
Shapiro-Wilk test, i.e., the null hypothesis of normally 
distributed data is rejected as the p-value is significant at 
5% level, (p-value = 0.04). The stem and leaf diagram 
obtained by  “> stem(residuals(sm5))” has a skew to the 
left, also confirming the non-normality assumption. 

 
5.3 BLUPs and Selection 

 
The ranef() commands returns the BLUP for both 
Subject and herd random factors. The command is given 
by BLUPS<-ranef(sm5) which could also be modified to 
obtain BLUP for either herd using  BLUPS<-
ranef(sm5)[[“herd"]] and BLUPS<-ranef(sm5)[[“subject"]] 
for Subjects.  

 
Once the BLUP for Subjects are obtained, we sorted the 
data to obtain the ranking of the first 40 cattle, starting 
with largest BLUP values to the lowest. The first 40 cows 
were chosen as the quality breeds, out of the 467 cows 
studied. Examining the BLUP for selected cows, we 
notice that the average milk off take from the selected 
herd groups was higher than from the non-selected herd 
groups in all four weeks.  
 
Among the production systems, the Pastoral system was 
more suited for quality milk production while the Cleared 
Thickets provided the most suitable Vegetation type. The 
results of the exploratory analysis, fixed effects estimates 
and the selected group obtained from BLUPs all concur 
in terms of the best herd groups. 
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Figure  5. Residual plots of AnkoleRepeated dataset 
Notes: The QQ-plot has plotted points lying along the qqline, except at extreme regions. This difficulty indicates non-normality hence other tests such as the Shapiro Wilk 
test need to be run. 
 
Table 5: Performance among the 40 selected versus the 427 
non-selected groups 

In kg. yield.1wk yield.1wk yield.1wk yield.1wk 
Selected  313.712 311.775 309.575 307.75 
Non-
selected  

301.635 299.611 297.482 295.48 

 
Table 6: Percentages of selected cows across herd groups 

  herd group  No. selected   % out of 40. 
 Kanyanya   6   15 
Kashongi   4   10 
Kikaatsi   5   12.5 
Masha   4   10 
Mutonto   4   10 
Ruhengere   4   10 
Rushere   7   17.5 
Ryeru   6   15 
 Total   40   100 

 
To demonstrate that BLUP results are fairly accurate, we 
compare the best to the worst cow, by BLUP ranking. 
Cow ID number 220 from Isingiro North, a pastoral 
region with Acacia-thickets, belonged to the Masha herd 
group, Bat herd, and was in Lactation 1. It recorded a 
BLUP value of 42.17 and weekly milk offtakes of 

324.90kg, 320kg, 318kg and 317kg. Incidentally, the 
cow(ID 223) with the least BLUP value comes from the 
same herd group and herd, but in its second Lactation. It 
had a BLUP value of -41.797 and weekly milk yield of 
234.62kg, 231kg, 232kg and 232kg. 
 
6.   DISCUSSION 

 
This study aimed at identifying and characterizing quality 
breeds of cattle for milk production. Mixed modeling 
played a very important role in the analysis and 
specifically BLUP is a key tool in a selection study of this 
kind. Though we used BLUPs for the selection of quality 
cows in this case, there are however other ways of 
selection based on Yield values(Y) or even Residuals(ε ). 

 
We notice that the assumption of normality of residuals 
in our model is violated, as evidenced from qq-plots of 
yields and the outcome of the residual analysis. However 
we assume robustness in the parameter estimation and 
proceed with the modeling based on normality 
assumption. 
 

−3 −2 −1 0 1 2 3

−4
−2

0
2

4
Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le 
Qu

an
tile

s

200 250 300 350 400

−4
−2

0
2

4

Fitted Values vs Residuals

Fitted Values

Re
sid

ua
ls

Kanyanya Masha Rushere

−4
−2

0
2

4

Herdgroups vs Residuals

Herdgroups

Re
sid

ua
ls

200 250 300 350 400

−4
−2

0
2

4

Observed vs Residuals

Observed values

Re
sid

ua
ls



~ 54 ~ Linear Mixed Effects Regression (lmer) in R / Onyango 
 
 

 

 
Figure  6: Number of selected cows by production systems 
and vegetation types  
 

 
Figure  7: Performance among herd groups across weeks for 
selected cows.  
 
We note that the lme and lmer functions both have their 
advantages and disadvantages. The function lmer 
provides an improvement over lme and is obviously 
stronger in some aspects; it is faster even for large 
datasets, can handle both crossed and nested data using 
the same model specification and is obviously more user 
friendly in terms of specifying models for fixed and 
random effects. However, it provides no p-values for t-
tests and F-tests within its output. This is because the p-
values even if given are not so useful or appropriate due 

to the problem of computation of degrees of freedom 
involved especially for nested cases. It is hard to observe 
which effects are significant directly from the output, 
though the absolute values of t-statistics can be a pointer 
in this direction. The lme model for repeated cases can 
handle covariance structures as opposed to lmer function 
explicitly. Depending on situations, one can switch from 
lmer to lme to achieve certain targets. 

 
It is expected that data from an individual cow taken 
repeatedly over time has some correlation. Since it is 
expected that there is a gradual decrease of milk yield 
from the first week of lactation to the successive weeks, 
the first order autoregressive covariance structure would 
be more appropriate for analyzing the AnkoleRepeated  
dataset. First order covariance structure takes the form: 
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where  is the number of repeated observations per 
cow and 

4=h
Φ  is the correlation between any two adjacent 

observations in time. Hence observations four weeks 
apart have a lower correlation of  Taking this 
correlation into account makes the variance estimates 
more reliable as well as the parameter estimates and tests 
of hypotheses that follow. 

.4Φ

 
The function lme has an option of including a given 
covariance structure, whether simple, unstructured, 
compound or first order autoregressive, among others. 
The command line in lme  for incorporating the first 
order autoregressive structure would be   
> AnkoleRepeated_lmer4<- update(AnkoleRepeated_lmer1, 
+ correlation = corCAR1(form = ~ time |subject)).  This 
is however not so straightforward with the lmer function. 

 
We finally note that since the data of this case study are 
simulated, we do not stress on the values reported in this 
paper, but rather, on the methods and stages of mixed 
modeling analysis and animal breed selection. 

 
 
 
 
 
 
 

0

5

10

15

20

25

30

35

Agro-pastoral Pastoral Pastoral, Agro-pastoral

Production system

C
ou

nt
s

0

2

4

6

8

10

12

14

16

Acacia-thickets Acacia-thickets, Shrub-anthills Cleared-thickets Cymbo-afronadus

Vegetation types

C
ou

nt
s

0

50

100

150

200

250

300

350

400

450

Average of yield.1wk Average of yield.2wk Average of yield.3wk Average of yield.4wk

Weekly data

Y
ie

ld

Kanyanya
Kashongi
Kikaatsi
Masha
Mutonto
Ruhengere
Rushere
Ryeru



~ 55 ~ Linear Mixed Effects Regression (lmer) in R / Onyango 
 
 
REFERENCES 

 
Bates, D. 2005. Fitting linear mixed models in R. R News, 5 no. 

1: 27-30.  

Burnham. K.P. and  Anderson, D.R. 2002.  Model Selection 
and Multimodel Inference: A Practical Information-
Theoretic Approach. Second ed. New York: Springer-
Verlag. 

Duchateau, L. P.  Janssen and Rowlands, J. 1998. Linear 
Mixed Models. An Introduction with Applications in 
Veterinary Research,Kenya: ILRI. 

Faraway, J. 2009. Linear Models with R. Chapman and Hall. 
London.  

Khuri, A.I. and Sahai, H., 1985. Variance components 
analysis: A selective literature survey, International 
Statistical Review, 53 no. 3: 279-300.  

Ndumu,D. B. 2000. Identification and Characterization of Elite 
Performing Ankole Longhorn Cattle for Milk Production, 
M. Sc. Thesis, Uganda: Makerere University.  

Nobre, J.S. and  Singer, J.M. 2007.  Residual Analysis for 
Linear Mixed Models. Biometrical Journal, 49 no. 6: 863-
875  

Patterson, H. D. and Thompson, R. 1971. Recovery of 
interblock information when block sizes are unequal. 
Biometrika, 58 no. 3: 545-554.  

Pinheiro, J. and Bates, D. M. 2000. Mixed Effects Models in S 
and S-Plus, New York: Springer-Verlag. 

Quené, H. and Berg, H. Examples of mixed-effects modeling 
with crossed random effects and with binomial data. 
Journal of Memory and Language 59: 413-425.  

Satterthwaite, F.E. 1946. An approximate distribution of 
estimates of variance components. Biometrics Bulletin 2: 
110-114.  

Searle, S.R.,Casella, G. and McCulloch, C.E. 1992. Variance 
Components, New York: J.W. Wiley. 

Verbyla, A.P. 1990. A conditional derivation of residual 
maximum likelihood, Australian Journal of Statistics, 32: 
227-230. 

 
 
 
 
 
 
 
 
 
 
 
 
Acknowledgements 

 
The original dataset which we refer to in this case study 
was collected by Ndumu D.B.(Makerere 
University,Uganda, year 2000 as part of research towards 
his Masters thesis). I analyzed a subset of the original 
dataset using GENSTAT for my M.Sc thesis, during an 
internship position at the International Livestock 
Research Institute (ILRI-Kenya), 2003 under supervision 
of Dr. John Rowlands and Dr. Thomas Achia at the 
institute of Biometry-ILRI-Kenya. We use the names in 
Ndumu’s dataset, however simulated the current dataset 
of this case study using averages and standard deviations 
from the original dataset. I therefore acknowledge ILRI 
and the support from staff of the Biometry institute 
during my research internship (2003).  

 
Correspondence: nelsonowuor@gmail.com 
 



~ 56 ~ Linear Mixed Effects Regression (lmer) in R / Onyango 
 
 
Appendix 

 
A:  Fixed effect parameters 
 
 The mathematical theory of Mixed Model Analysis is well illustrated in e.g.,[12]. We note key steps that are useful for the 
context of data analysis. The model (2) requires that we estimate the parameters ߚ and ן. To estimate ߚ, the fixed effects 
parameters, we solve the equation set,  

 0=]),[( VlY β
β∂
∂

 where in this case,  ܸ ൌ ܼᇱߪఈ
ଶ  ఌߪ

ଶܫఌ with two variance components (ߪఈ
ଶ  and ߪఌ

ଶ) and ݈ is the likelihood function for the 
model, given by  

  (7) 

 ).()(
2
1..= 1 βββ XYVXYtrwconstantlY −′−− −  

From (7) one obtains,  
   (8) βXVXYVX 11 = −− ′′

The GLS function (8) depends on the variance components, and one has to obtain an estimate of matrix V as a first step. 
 

B:  Random Effects-BLUP 

In the linear model (2), ܧሺܻሻ ൌ መߚܺ  and Varሺܻሻ ൌ ܸ, where,  
 

 nIvarZZCovV )()(= εα +′  (9) 

    ,  (10) )(= 22

1=
niii

a

i
IZZ εσσ +′∑

 where  a=36 denotes the number of parameters in α. It is possible(this is often done for simplification) to re-parameterize V 
as follows. 

  (11) ,=][ 2

1=
HIZZ niii

s

i
εσ⎟

⎠

⎞
+′Φ∑= 2V εσ ⎜

⎝

⎛

where Φ ൌ ߪ
ଶ/ߪఌ

ଶ, ܪ ൌ ܼΓܼ  ߪ  and Γ is a variance-covariance matrix having entriesܫ
ଶ/ߪఌ

ଶ along its main diagonals and 
ߪ ൌ ݅  0 ് ݆. 
 
The BLUP of α is a solution to the equation,  

  (12) ).ˆ()ˆ(=)( 11 βα XYZZZBLUP −′Γ+′ −−

In (12), the parameters to be estimated include Γ and β.  The BLUE of β and the REML estimate of the variance components 
contained now in Γ are substituted in the equation to finally obtain the BLUPs. 

 
C:  Maximum Likelihood Estimation 

 
We illustrate the maximum likelihood estimation theory as a preamble to REML, due to similarity in approach. Consider the 
data  ܻ~ܰሺܺߚ, ܸሻ, such that the log likelihood function of Y is,  

 ).()(
2
1..= 1 βββ XYVXYtrwconstantlY −′−− −  

Differentiating the log likelihood with respect to the variance components ߪఈ
ଶ  and ߪఌ

ଶ we get a summarized expression of the 
maximum likelihood equation as,  

 ),()(
2
1)(

2
1=),( 111

2 βββ
σ

XYVZZVXYZZVVl iiiiY
i

−′′−+′
−

∂
∂ −−−  (13) 

where we have only two components, i=α,ε.  We note that  
 .=2 ii

i

To obtain ߪ
ଶ that maximizes the likelihood function, we equate (13) to zero and solve for each ߪ

ଶ.  We consider the 
following useful results on matrix differentiation: 

ZZV ′
∂
∂
σ

 

 
For a general matrix ܣሺߠሻ, 
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Also,  
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For a matrix  

with matrix ܪ ൌ   ,ሻߠሺܪ
  ,)(= 1111 −−−−− ′′− HXXHXXHHP

 .= PHPP
θθ ∂

∂
−

∂
∂  

 
The resultant maximum likelihood equations can be represented in the form below(see e.g.,Searle [12]), using the matrix 
differentiation results.  

 [ ] [ ] .=)( ,=,=
1

εαεα iiiiii PYZPZYZZVtr ′′′−  (14) 

 Closed form solutions for (14) cannot be obtained as the equations are usually a complex non-linear function of ߪ
ଶ (through 

V and P) and cannot be solved directly(just by setting (13) equal to zero), unless we are dealing with balanced designs(e.g., a 
case where each Herdgroup has equal number of Herds, and each Herd, equal number of cattle selected, also each 
Heardgroup/Herd has equal number of cows in each Lactation group). 
 
Numerical solutions of (13) are therefore used. However, the Maximum Likelihood estimates of the variance components are 
often negative, which is not in the required parameter space for variance parameters. When this occurs, the Maximum 
Likelihood(ML) estimate is taken to be zero, and the residual variance component is re-estimated from data, dropping the 
corresponding random factor from the data. Note that assuming that a given variance component is zero is tantamount to 
dropping the corresponding random factor(in this case, the corresponding Herd) from the data. 

 
D:  Welch-Satterthwaite procedure 

 
According to the Welch-Satterthwaite procedure, we have a situation in which we are creating a composite variable  ܩ ൌ
∑ ݇ ܸ


ୀଵ , where ݇ are arbitrary constants and each ܸ is a sample variance that is proportional to a chi-square variable with 

known degrees of freedom ߴ, i.e., ܸ~χణ
ଶ .  Then G is assumed to be approximately proportional to a chi-square variable with 

ρ degrees of freedom, where  

 }.)({/)(=
2

1=

2

1= i

ii
n

i
ii

n

i

VkVk
ϑ

ρ ∑∑  

In practice, ρ  is being estimated by substituting the observed ܸ by its expected value.It can be shown that  
  .iϑ

ρ  will attain its upper bound when each ܸ is proportional to its degrees of freedom. In fact, if each ܸ is proportional to ߴ, 
then G is exactly, not approximately, proportional to a chi-square variable with  ߩ ൌ ∑  .  The other extreme occur whenߴ
any one ܸ,  say ܸ,  is so much larger than all the others that the sample G effectively is ܸ,  regardless of the other ܸ values. 
Then ρ approaches ߴ, its minimum. 

 imin ρϑ ∑≤≤

 
E:  R-codes 

 
E.1:  qq-plots and data transformation 
 
#.................................................................................................. 
#a simple qq-plot 

1wk, + dist= "norm",  >qq.plot(AnkoleRepeated$yield.
 labels=FALSE, col="BLACK")  +

 
...................................................................... #............................

#log(base-e) transformation  
>logyield.1wk<- log(AnkoleRepeated$yield.1wk) ;     

logyield.1wk);  >AnkoleRepeatedLog<-cbind(AnkoleRepeated, 
peatedLog$logyield.1wk,  >qq.plot(AnkoleRe

+ dist= "norm",  
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),]  
,  

.................................................. 

2:  Residual plots 

ues vs Residuals");  

c(1,2,3,4), rep(nobs,4))  
AnkoleRepeatedLong[1:10,]  

+ labels=FALSE, col="BLACK") 
 

................................................... #...............................................
ated rows removed.  #removal of outliers, indic

>AnkoleRepeatedLogSample<- 
+AnkoleRepeatedLog[-c(123,236,313,323,332,355,462
>qq.plot(AnkoleRepeatedLogSample$logyield.1wk
+ dist= "norm", labels=FALSE, col="BLACK")  
 
#................................................
#squareroot transformation.  

k)  >sqrtyield.1wk<- sqrt(AnkoleRepeated$yield.1w
>AnkoleRepeatedSqrt<-cbind(AnkoleRepeated,  
+sqrtyield.1wk); 
>
+ 
qq.plot(AnkoleRepeatedSqrt$sqrtyield.1wk,  
dist= "norm", labels=FALSE, col="BLACK")  

 
E.
  
> (sm2<-lmer(yield ~ herdgroup + lacno +  

|time), AnkoleRepeatedLong))  + (1| herd)+(1|subject)+(1
> op<-par(mfrow=c(2,2))  
> qqnorm(residuals(sm2)); qqline(residuals(sm2))  
> plot(fitted(sm2), residuals(sm2), xlab="Fitted Values",  
+ ylab="Residuals", + main="Fitted Val
+ abline(a=0, b=0, lty=2)  
> plot(AnkoleRepeatedLong$herdgroup,  
+ residuals(sm2), xlab="Herdgroups",  

);  + ylab="Residuals",  main="Herdgroups vs Residuals"
+ abline(a=0, b=0, lty=2)  
> plot(AnkoleRepeatedLong$yield, residuals(sm2),   
+ xlab="Observed values", ylab="Residuals",  

, b=0, lty=2)  + main="Observed vs Residuals"); abline(a=0
par(op) > shapiro.test(residuals(sm2))  > 

 
.3:  Transforming repeated measures data into "long form" from "wide form" E

 
>AnkoleRepeated<-read.table("clipboard",  
+ header=TRUE, sep="\t")  

r(rownames(AnkoleRepeated))  >AnkoleRepeated$subject<-facto
>nobs<-nrow(AnkoleRepeated)  
>AnkoleRepeatedLong<-reshape(AnkoleRepeated, idvar="subject",  

", "yield.2wk", "yield.3wk", "yield.4wk"),  + varying=c("yield.1wk
+ direction="long")  
>AnkoleRepeatedLong$time<-rep(
> 

 
 


