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Titre: Imputation par régression PLS dans les modèles linéaires mixtes
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Abstract: The problem of handling missing data in linear mixed models with correlated covariates is considered
when the missing mechanism concerns both the dependent variable and the design matrix. We propose an imputation
algorithm combining multiple imputation and Partial Least Squares (PLS) regression. The method relies on two steps:
removing random effects, fixed effects are first imputed and PLS components are constructed on the corresponding
complete case. The dependent variable is then imputed inside the linear mixed model obtained by adding the random
effects to PLS components. The method is applied on simulations and on real data.

Résumé : Nous considérons le problème du traitement des données manquantes dans le cadre d’un modèle linéaire
mixte, en présence de dépendance linéaire entre les covariables. Le mécanisme de valeurs manquantes concerne à la
fois la variable dépendante et les covariables. Nous proposons un algorithme d’imputation combinant l’imputation
multiple et la régression PLS. Notre méthode se décompose en différentes étapes. Tout d’abord en omettant les effets
aléatoires, les effets fixes sont imputés et les composantes PLS sont construites sur le modèle complet correspondant.
On réintroduit alors les effets aléatoires du modèle et la variable dépendante est imputée à l’intérieur du modèle linéaire
mixte avec composantes PLS. La méthode est appliquée sur des simulations et sur des données réelles.

Mots-clés : Multiple Imputation, Missing Data, Linear Mixed Regression Model
AMS 2000 subject classifications: 62J12

1. Introduction

The problem of handling missing data has been extensively studied in the statistical literature.
The best general reference here is [7], where three non-response mechanisms are described:
missing completely at random (MCAR), missing at random (MAR) and missing not at random
(MNAR). Suppose that the data consist of an incomplete variable YK and a set of fully observed
variables Y1, ...,YK−1. The data are MCAR if the probability P(YK is missing) is a constant that
does not depend on the variables. The data are MAR if the probability of missingness may depend
on the fully observed variables Y1, ...,YK−1 but does not depend on the incomplete variable YK .
The MNAR mechanism assumes that the probability of missingness depends on the variable that
contains missing values.

This work will be concerned with the MAR mechanism. When the missing data are MAR,
multiple imputation (MI) was first proposed in [8] in the context of a non-response mechanism
which concerns both the response variable and covariates. This method of imputation consists
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PLS for linear mixed models 31

of replacing each missing value by a vector of M ≥ 2 imputed values. It is shown that MI is
efficient in the sense that "When the M sets of imputations are repeated random draws from the
predictive distribution of the missing values under a particular model for nonresponse, the M
complete-data inferences can be combined to form one inference that properly reflects uncertainty
due to nonresponse under that model", ([7]).

This technique has been adapted to imputation in linear models and in generalized linear
models by [9] and [6] respectively. Recently, [1] studied the problem of missing data imputation in
generalized linear models when covariates are correlated. This author combined the Partial Least
Squares (PLS) regression technique (see [15]) with the multiple imputation method, obtaining a
successfull method, called Multiple Imputation with Partial Least Squares (MI-PLS). It consists
of imputing the missing data on the variable of interest by a PLS regression after imputation
of missing values on each explicative variable. The problem of missing data in linear mixed
models has also been investigated by [10], who proposed a method denoted by MI-L2M (Multiple
Imputation in Linear Mixed Models) using multiple imputation on covariates. However, this
method can break down when covariates are linearly dependent, due to the singularity of the
design matrix.

In this paper, we consider the problem of missing data in the case of a linear mixed model when
the covariates are highly correlated. An algorithm is proposed which combines the PLS approach
defined in [1] with the multiple imputation method proposed by [10]. This method will be denoted
by MI-PLS-L2M (Multiple Imputation with Partial Least Squares in Linear Mixed Models). It
consists in several steps. First, omitting the random effect, a linear model with dependent errors is
considered. Missing data on covariates are imputed following the method of [7]. Several complete
dataset of covariates are obtained and transformed into PLS components. Second, random effects
are reintroduced in the model and a linear mixed model is obtained in which the fixed PLS
components are constructed by linear combinations of the observed regressors.The Henderson
method (see Appendix) is used to estimate the parameters of the model. Finally, the predictions of
the final model based on the PLS components and the random components are used to reconstruct
the dependent variables. Moreover, following [2], a bootstrap validation procedure allowed to test
the significance of the fixed effects.

The MI-PLS-L2M method is applied on simulations and compared to two alternative proce-
dures: the first one is the MI-PLS proposed by [1], restricted to the linear model. The second one
is the MI-L2M introduced by [10]. This algorithm was then applied on a real dataset, namely
coffee dataset from [13]: 17 samples of coffee were evaluated by 7 judges. In [13], for each judge,
characteristics of the coffee were explained by physico-chemical properties. Here, we have chosen
to model the perception of the coffee by a score associated to a linear mixed model where the
fixed effects are physico-chemical variables which are correlated and with a 7-level random effect
corresponding to the 7 judges.

The paper is organized as follows: in Section 2 we review some standard facts on PLS and
multiple imputation methods. In Section 3 we derive the imputation algorithm by combining these
two former methods. Section 4 is devoted to the simulation study and Section 5 presents the study
of the coffee dataset. Section 6 contains a short discussion.
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32 Guyon and Pommeret

2. Multiple imputation and PLS background

Let Y = (Y1, . . . ,Yn) be a vector of n observations. We denote by X the (n× p)-matrix of the p
covariate vectors X j, j = 1, ..., p, referred to as the fixed effects. The random effect is a vector
u ∈ Rq. Given u, we consider the linear mixed model

Yi = x′iβ + z′iu+ εi,∀i ∈ {1, ...,n}, (1)

where x′i and z′i are row vectors of X and Z respectively, β ∈Rp is an unknown vector of regression
coefficients and Z is a known matrix associated to the random effects, and the εi are independent
random variables. We will denote by Nd(a,b) the d-dimensional normal distribution with mean a
and variance b. It is assumed that

u∼Nq(0,D), εi ∼N1(0,R), Cov(u,εi) = 0,∀i = {1, ...,n},

where D = σ2
q A, and A is a positive-definite matrix.

2.1. Multiple Imputation

When the data are Missing At Random, [8] (see also [9]) introduced the multiple imputation
(MI) as the most reliable method both from accuracy and efficiency point of view. The standard
scheme of the MI-algorithm consists of three steps:

– Imputation: m > 1 samples of possible values for the missing data are created.
– Analysis: each of the m complete dataset is analyzed using the standard statistical method

that would be used in the absence of non-response.
– Pooling: the results of the m analysis are combined to get a single complete dataset.

In the Analysis step, we follow [5] who proposed an Expectation-Maximization (EM) algorithm
([3, 16]) to estimate and replace the missing values. The EM part of the algorithm can be described
as follows. Assume that the missing values only concern the response variable Y = (Yobs,Ymis).
We denote by θ the vector of parameters of the model for the complete dataset. The EM algorithm
can be summarized in the following way:

– (1) Complete the missing data Ymis using the first estimation of θ .
– (2) Using Yobs and Ymis completed, re-estimate θ .
– (3) Using θ estimated, re-estimate Ymis.
– (4) Iterate until convergence of θ .

2.2. PLS Regression

From now on, we assume that the vectors Y , X1, .., Xp are centered.
In presence of correlation between covariates, PLS regression can replace the classical linear
regression model. The idea is to take over the matrix X by a matrix T = (t1, . . . , th), for h < p,
iteratively obtained by linear transformation of the columns of X (see [12]) according to the
following algorithm:
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– Determination of the first component t1

Compute the linear regression of Y on each X j, for j ∈ {1, ..., p},

Y = a1 jX j + ε.

Normalize the estimator â1 j

w1 j =
â1 j

||â1||
,∀ j ∈ {1, ..., p},

and so

t1 =
p

∑
j=1

w1 jX j.

Compute the linear regression of Y on t1

Y = c1t1 + εY1 ,

where the residuals εY1 express the deviation between the observed and the first PLS com-
ponent. Then, for j ∈ {1, ..., p}, compute the linear regression of each covariate X j on
t1,

X j = p1 jt1 +X1 j,

where p1 j is the loading vector associated to t1 and the residuals X1 j express the deviation
between the covariates and the first PLS component.

– Determination of the components th

For h = 2, ...,H, H < p, and for j ∈ {1, ..., p}, compute the linear regression of Y on each
X j as well as on the other PLS components th−1,

Y = ah jX(h−1) j + c1t1 + ...+ ch−1t(h−1)+ εY(h−1) ,

where ah j and ch are the parameters associated to X(h−1) j and th respectively, both of them
being estimated by the model.

Normalizing the estimator âh j

wh j =
âh j

||âh||
,∀ j ∈ {1, ..., p},

and using a linear regression of the matrix X on the h PLS components

X j = p1 jt1 + ...+ p(h−1) jt(h−1)+X(h) j,∀ j ∈ {1, ..., p}

where ph j is the loading vector associated to th and X(h) j is the residual term of the model,

th =
p

∑
j=1

wh jX(h) j.
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34 Guyon and Pommeret

– Number of PLS components

The number h of PLS components to be retained is estimated by cross-validation. For that
task, consider the regression model of Y on the h PLS components:

Y = c1t1 + ...+ chth︸ ︷︷ ︸
Ŷh

+Yh. (2)

At each step h, a criterion is calculated for each new component th:

Q2
h = 1− PRESSh

RSSh−1
,

where RSSh (Residual Sum of Squares) and PRESSh (PRediction Error Sum of Squares) are
defined as:

RSSh =
n

∑
i=1

(Yi− Ŷhi)
2 and PRESSh =

n

∑
i=1

(Yi− Ŷh(−i))
2

where Ŷh(−i) is the prediction of Yi obtained by (2) without the observation i.
For h = 1,

RSS0 =
n

∑
i=1

(Yi−Yi)
2

Referring to [12], a new component is considered as significant as soon as Q2
h ≥ 0.0975.

3. Adapting MI-PLS to the linear mixed model

3.1. Description of the method

Let Yobs and Ymis denote the vectors of observed and missing values of Y , respectively. The
proposed method can be decomposed into six consecutive steps that we describe below.

Multiple imputation on fixed effects We first impute X1, ...,Xp by the multiple imputation
method described in 2.1. We obtain m complete dataset.

PLS regression without random effects Temporarily eliminating the random effect and ac-
cording to 2.2, we compute the PLS components T of the heteroscedastic linear model:

Yobs = βX + ε̃,

where ε̃ = ε +Zu. Clearly, ε̃ is a vector of dependent random variable such that ε̃ ∼Nn(0,Σ),
with Σ = ZDZ′+R. But this transformation of ε does not modify the PLS components, since they
are completely specified by the correlation between X and Y . The selection of the appropriate
number of components h is based on the cross-validation criterion Q2

h.
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PLS for linear mixed models 35

Estimation of fixed and random parameters In order to take into account the random effects,
let us consider the new linear mixed model

Yobs = TC+Zu+ ε. (3)

The fixed parameters C and the random parameter u are estimated using Henderson’s method
(see Appendix) and we denote by Ĉ and û their respective estimators. Then, we reformulate β̂

according to W and Ĉ, using the recovery formulas given in [2] (see Appendix).

Selection of the fixed effects We use a bootstrap validation procedure to assess the statistical
significance of explanatory variables. This selection method is inspired from the jacknife technique
introduced by [14]. More precisely, the bootstrap procedure consists in sampling with replacement
from Yobs with their associated components T and Z. Applying (3) to the B (B fixed) bootstrap
samples, we finally obtain a vector β ∗ of B estimators of β . It allows us to calculate a bootstrapped
confidence interval of the regressors and Student tests are used to retain the significant variables
at a prescribed level (arbitrarily 5%).

Pooling The last step consists of pooling the m estimations into a single one which equals
the estimated parameters mean, as it is done in [7]. If θ̂1, ..., θ̂m denote the m estimators of the
parameter θ = (β ,u), the global estimator of θ is given by

θ = (β ,u) =
1
m

m

∑
k=1

θ̂k.

Moreover the pooling method takes into account the variability of the m estimations as follows:
Let D̂1, ..., D̂m denote the m estimators of Var(u). The variability between the m dataset is the
empirical mean of the estimated variance

V =
1
m

m

∑
k=1

D̂k,

while the variability within every dataset is given by

W =
1

m−1

m

∑
k=1

(ûk−u)(ûk−u)′.

Therefore, the global variance of u is given by

F̂ =V +(1+
1
m
)W .

Finally, we simulate N1 ∼Nn(Zu, F̂) and N2 ∼Nn(0,V̂ε), with V̂ε the mean of the m estimators
of R =Var(ε). We replace the ith missing value of Y by the corresponding ith value of

Ŷmis = Xβ +N1 +N2.
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36 Guyon and Pommeret

3.2. Summary of the algorithm

Hereafter, we summarize the steps of the MI-PLS-L2M algorithm.
– Step 1. Imputation of covariates to get m complete dataset.
– Step 2. PLS procedure without random effect.
– Step 3. Consideration of random effect to estimate C and u.
– Step 4. Bootstrap selection.
– Step 5. Pooling.

4. Simulation study

In order to evaluate the performance of the proposed algorithm, simulations were performed
on several sample sizes (N = 100 and N = 500) and for different variances of the random effects
(Var(u) = 0.5 and Var(u) = 2). For each simulation, we have computed the algorithm and the
results presented were the mean of 10 simulations. The performance criterion used is the Mean
Square Error for missing values defined by

MSE =
∑

Nmis
i=1 (Ŷi−Yi)

2

Var(Y )
,

where Nmis denotes the number of missing values.

4.1. The model

In our simulations, the design matrix X consists of a N-sample of a 15-dimensional covariate
vector such that the last 10 components of the covariate vector are highly correlated with the first
5 ones, as it is shown in Table 4.1. The covariates are constructed as follows: five independent
normal variables X1 ∼N1(2,1), X2 ∼N1(0,1), X3 ∼N1(0,1), X4 ∼N1(0,1), X5 ∼N1(0,1),
and ten linearly dependent variables

X6 = X1 +4X2−X3 +2X4 +3X5, X7 = 2X1−X2 +5X3−3X4−2X5,

X8 = X1 +4X2−X3 +4X4 +0.5X5, X9 = 2X1−X2 +5X3 +X4−3X5,

X10 = 3X1 +3X2 +4X3 +5X4 +0.5X5, X11 = 3X1−2X2−5X3 +0.5X4 +X5,

X12 =−X1 +X2−X3 +X4−X5, X13 = X1−4X2 +4X3 +0.5X4 +0.5X5,

X14 = X1 +X2−2X3−2X4−2X5, X15 = 0.5X1−0.5X2 +X3 +X4 +2X5.

We consider an independent error term ε ∼NN(0, I), where I denotes the identity matrix. In a
first case, for N = 100 observations, the random effect was a 3-level vector u ∼N3(0,2I). In
other cases, for N = 500 observations, the random effect was first a 3-level vector u∼N3(0,2I),
and second a 3-level vector u∼N3(0,0.5I).

The output variable Y belongs to RN and the MI-PLS-L2M algorithm (as well as competitors
MI-PLS and MI-L2M) was run with various percentage p of missing value on Y and X . We have
chosen p ∈ {8%,10%,15%,20%,25%}.
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TABLE 1. Correlation matrix between the covariates (Pearson correlation coefficients, N = 500)
Y X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

X1 0.336 1
X2 0.797 0.051 1
X3 -0.014 -0.076 -0.018 1
X4 0.354 0.032 -0.024 -0.021 1
X5 0.383 -0.002 0.013 -0.076 0.028 1
X6 0.940 0.234 0.706 -0.253 0.336 0.574 1
X7 -0.298 0.224 -0.142 0.784 -0.436 -0.385 -0.553 1
X8 0.880 0.245 0.691 -0.225 0.650 0.130 0.848 -0.520 1
X9 -0.160 0.247 -0.161 0.797 0.128 -0.535 -0.460 0.827 -0.175 1
X10 0.701 0.406 0.399 0.495 0.627 0.050 0.493 0.164 0.674 0.520 1
X11 0.010 0.507 -0.265 -0.824 0.115 0.217 0.207 -0.558 0.147 -0.536 -0.268 1
X12 0.191 -0.399 0.438 -0.429 0.414 -0.434 -0.211 -0.558 0.542 -0.260 0.009 -0.021 1
X13 -0.437 0.087 -0.694 0.700 0.091 0.029 -0.547 0.623 -0.529 0.682 0.203 -0.285 -0.681 1
X14 0.183 0.489 0.475 -0.451 -0.414 -0.431 0.127 0.040 0.185 -0.130 -0.151 0.336 0.235 -0.634 1
X15 0.350 0.168 -0.192 0.323 0.396 0.795 0.400 -0.088 0.170 0.012 0.476 0.038 -0.540 0.494 -0.685

The number of multiple imputation was fixed to m = 5 following Rubin (1987).

4.2. Study of the MI-PLS-L2M performance

Using the algorithm without missing data In order to evaluate the efficiency of the algorithm,
we have first calculated estimators based on the original simulated data without missing value for
the three considered scenarios. Table 2 shows the estimates of the vector β based on five retained
PLS components. We can observe a bias due to the high correlation between covariates. This bias
is compensated on all the components of β . Finally a certain stability through the sample size and
the variance of the random effect u is observed.

TABLE 2. Values of β and its estimators for N = 100,500 and Var(u) = 0.5,2

β β̂ (N = 100;Var(u) = 2) β̂ (N = 500;Var(u) = 0.5) β̂ (N = 500;Var(u) = 2)

1 1.05 1.06 1.05
2 1.28 1.13 1.28
-1 -0.97 -0.85 -0.97
-2 -1.64 -1.15 -1.64
3 3.35 -2.68 3.35
1 1.15 0.49 1.15
2 2.29 1.7 2.29
-1 -0.53 -0.4 -0.53
-2 -2.27 -1.99 -2.27
3 2.64 2.43 2.64
1 1.05 1.07 1.05
2 2.27 2.17 2.27
-1 -1 -0.88 -1
-2 -1.47 -1.87 -1.47
-3 -2.82 -2.56 -2.82

Analysis of MI-PLS-L2M performance We have studied estimations of C, the coefficient vec-
tor associated to the PLS components, and estimations of the standard errors of u and ε when using
MI-PLS-L2M. The different estimations were obtained with p = {0%,8%,10%,15%,20%,25%}.
Tables 3-5 contain estimates for the significant PLS components at the risk level α = 0.05. The
test of significance was based on B = 200 bootstrap samples. Only five components were retained
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38 Guyon and Pommeret

for all models. It can be seen that the estimate of Var(ε) was increasing with the percentage of
missing data while the estimates of Var(u) was more stable. The MSE clearly increased with the
number of missing values. Tables 3 and 5 illustrate the gain of precision due to the sample size.

TABLE 3. Estimates associated to significant PLS component t1, t2, t3, t4, t5. Brackets give the standard deviations
obtained by bootstrap, N = 100 and Var(u) = 2

Missing (%) 0% 8% 10% 15% 20% 25%
C (sd) 7.16 (0.05) 7.37 (0.06) 7.54 (0.06) 7.48 (0.06) 7.45 (0.07) 7.35 (0.09)

2.29 (0.06) 2.13 (0.07) 1.96 (0.07) 2.06 (0.08) 2.13 (0.09) 2.02 (0.01)
1.12 (0.07) 0.82 (0.07) 0.79 (0.07) 0.82 (0.07) 0.83 (0.09) 0.88 (0.1)
0.30 (0.06) 0.26 (0.07) 0.21 (0.07) 0.25 (0.08) 0.22 (0.09) 0.28 (0.12)
0.14 (0.08) 0.09 (0.12) 0.08 (0.13) 0.11 (0.14) 0.89 (0.47) 0.15 (0.37)

sd(u) 1.57 1.23 1.22 1.36 1.29 1.71
sd(ε) 1 1.07 1.04 1.11 1.3 1.48
MSE 0 0.21 0.19 0.36 0.4 0.51
N observed 100 92 90 85 80 75

TABLE 4. Estimates associated to significant PLS component t1, t2, t3, t4, t5. Brackets give the standard deviations
obtained by bootstrap, N = 500 and Var(u) = 0.5

Missing (%) 0% 8% 10% 15% 20% 25%
C (sd) 7.76 (0.02) 7.66 (0.02) 7.62 (0.02) 7.63 (0.03) 7.58 (0.03) 7.61 (0.04)

2.25 (0.03) 2.04 (0.03) 2.04 (0.03) 2.07 (0.03) 2.11 (0.03) 2.02 (0.04)
0.93 (0.03) 0.88 (0.03) 0.91 (0.04) 0.9 (0.03) 0.93 (0.03) 0.96 (0.04)
0.26 (0.04) 0.22 (0.03) 0.22 (0.03) 0.21 (0.04) 0.22 (0.04) 0.23 (0.05)
0.04 (0.03) 0.04 (0.03) 0.03 (0.03) 0.03 (0.04) 0.04 (0.04) 0.08 (0.07)

sd(u) 0.60 0.58 0.53 0.56 0.54 0.69
sd(ε) 0.98 0.99 0.99 1.07 1.11 1.34
MSE 0 0.18 0.25 0.33 0.47 0.57
N observed 500 460 450 425 400 375

TABLE 5. Estimates associated to significant PLS component t1, t2, t3, t4, t5. Brackets give the standard deviations
obtained by bootstrap, N = 500 and Var(u) = 2

Missing (%) 0% 8% 10% 15% 20% 25%
C (sd) 7.47 (0.04) 7.30 (0.03) 7.48 (0.04) 7.60 (0.04) 7.36 (0.05) 7.25 (0.04)

2.25 (0.04) 2.46 (0.04) 2.26 (0.04) 2.17 (0.05) 2.44 (0.06) 2.48 (0.05)
1.05 (0.05) 1.12 (0.05) 1.03 (0.05) 0.86 (0.05) 1.10 (0.07) 1.12 (0.07)
0.19 (0.04) 0.21 (0.05) 0.16 (0.05) 0.23 (0.05) 0.17 (0.07) 0.14 (0.06)
0.10 (0.05) 0.11 (0.05) 0.11 (0.05) 0.12 (0.06) 0.13 (0.08) 0.09 (0.07)

sd(u) 1.71 1.73 1.71 1.79 1.90 1.94
sd(ε) 1.02 1.01 1.03 1.03 1.05 1.12
MSE 0 0.15 0.22 0.31 0.46 0.83
N observed 500 460 450 425 400 375

Figure 1 illustrates the stability of the distribution of Y after multiple imputation as showed by
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PLS for linear mixed models 39

the boxplot of Y after imputation using MI-PLS-L2M, with respect to the percentages of missing
values. The sample size was N = 500 and the variance of the random effect was Var(u) = 2. A
general remark is that the distribution of the predicted data seems to be relatively close to the
initial dataset with no missing values.

0% 08% 08%(IM) 10% 10%(IM) 15% 15%(IM) 20% 20%(IM) 25% 25%(IM)

-4
0

-2
0

0
20

40
60

Missing%

FIGURE 1. From the left to the right : Boxplot with 0%, 8% (before and after imputation), 10% (before and after
imputation), 15% (before and after imputation), 20% (before and after imputation), 25% (before and after imputation)
of missing values

4.3. Comparing with MI-PLS and MI-L2M methods

There is no known method to deal with the problem of missing data for a linear mixed model in
presence of correlation between covariates. However, to assess the contribution of the method we
have confronted the result of MI-PLS-L2M with the results obtained with MI-PLS and MI-L2M.
By construction, the method MI-PLS proposed by [1] will not take into account the random effect
and then for assessing the contribution of our method we have considered different variances of
the random effects: it was expected that with large variance of u (Var(u) = 2) the MI-PLS-L2M
will be better, although with a small variance of u (Var(u) = 0.5) the results obtained with the two
algorithms will be similar. Concerning the MI-L2M method proposed by [10], it was not adapted
to the case of collinearity because of singularity of the design matrix, but we proposed to make
the regression of Yobs on each vector of the design matrix and each component of β was obtained
from a one-dimensional model. On each model, a parameter of the random effect was estimated
and for the final model, the mean of the estimated parameters was calculated. The MI-PLS-L2M
method took into account all variables simultaneously and we have therefore expected to obtain
better results. We have used the ratio of the MSE to quantify the difference between the three
methods.

Journal de la Société Française de Statistique, Vol. 152 No. 4 30-46
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2011) ISSN: 2102-6238



40 Guyon and Pommeret

The first step imputation of covariates was the same for the three algorithms. We used the
method of [5], that is a multiple imputation by EM algorithm of X , as defined in 2.1 and using the
R package Amelia.

Table 6 presents ratio between MSE obtained for the three methods of imputation according
to the proportion of missing values for N = 100 and for Var(u) = 2. Clearly, the variance of
the random effects was large but the sample size was too small to detect this effect. Then, the
variability of random effect was spread within the random errors and the estimated model was
close to a linear one. Hence, MI-PLS and MI-PLS-L2M gave very close results in terms of MSE.
For all cases MI-L2M gave larger MSE since it was used as consecutive univariate methods.

TABLE 6. Ratio between MSE for MI-PLS and MI-L2M versus MI-PLS-L2M, Nmis denoting the number of missing
values, for N = 100 and var(u) = 2

Missing values (%) Nmis
MSE(MI−PLS)

MSE(MI−PLS−L2M)

MSE(MI−L2M)

MSE(MI−PLS−L2M)

8 8 1.1 4.1
10 10 1.11 5.47
15 15 1.14 4.61
20 20 1.08 5.05
25 25 1.16 5.75

In Table 7 ratio for MSE are presented for N = 500 and Var(u) = 2. This larger sample size
allowed to well estimate the random effect and then the MI-PLS-L2M method took into account
this variable. Moreover, it gave better results than MI-PLS where the random effect was omitted.
Concerning MI-L2M, the conclusion was the same than in the first situation because of the
collinearity.

TABLE 7. Ratio between MSE for MI-PLS and MI-L2M versus MI-PLS-L2M, Nmis denoting the number of missing
values, for N = 500 and var(u) = 0.5

Missing values (%) Nmis
MSE(MI−PLS)

MSE(MI−PLS−L2M)

MSE(MI−L2M)

MSE(MI−PLS−L2M)

8 40 1 4.06
10 50 1 4.82
15 75 1.03 4.84
20 100 1 4.60
25 125 1.04 5.09

In Table 8 the ratio of MSE were obtained for N = 100 and Var(u) = 0.5. The variance of
the random effect was too small to get significant estimations with MI-PLS-L2M. Then, this
situation concords with the first one where the random effect was not detected and MI-PLS-L2M
gave the same results than MI-PLS. Concerning MI-L2M, the conclusion is the same as previously.
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TABLE 8. Ratio between MSE for MI-PLS and MI-L2M versus MI-PLS-L2M, Nmis denoting the number of missing
values, for N = 500 and var(u) = 2

Missing values (%) Nmis
MSE(MI−PLS)

MSE(MI−PLS−L2M)

MSE(MI−L2M)

MSE(MI−PLS−L2M)

8 40 3.54 2.74
10 50 3.49 4.72
15 75 3.18 5.16
20 100 3.19 5.18
25 125 2.22 3.63

In conclusion, MI-PLS-L2M performed better than the two other methods when the random
effect is significantly estimated; that is, when the sample size allows to estimate its variability.
When random effect was not significant (too small variance, or too small sample size), MI-PLS-
L2M and MI-PLS gave similar results and they were better than MI-L2M as soon as there was
a collinearity between covariates. Figure 2 summarizes this analysis by showing the associated
MSE, respectively for N = 100 and Var(u) = 2, N = 500 and Var(u) = 0.5, and N = 500 and
Var(u) = 2. The three methods have a term of error increasing with the number of missing values.
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FIGURE 2. MSE associated to the three methods with respect to the % of missing data

5. The coffee example

5.1. The data

We used the data presented in [13]: 17 coffee samples were prepared with 3 parameters which
are temperature, proportion grinding-water and size, with 3, 3 and 2 modalities, respectively.
4 samples, with similar physico-chemical properties were chosen as reference sample for a
comparison with the other 13 samples. In order to evaluate the different samples, 7 judges from
the ENSBANA (Dijon, France) have compared 3 times each of the 13 samples to a reference
sample and have answered 6 questions: Which both is the more characteristic in flavor, the more
intense in flavor, the most bitter, the more acid, the most characteristic in aroma ans the most
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intense in aroma ? by specifying if the difference was very easy, easy, complicated, hard, or
almost impossible to evaluate. In order to summary these judgements, a scale, from 1 to 5 was
created where:

– 1: The reference sample is strictly greater than the sample.
– 2: The reference sample is greater than the sample.
– 3: The judge has perceived no difference.
– 4: The sample is greater than the reference sample.
– 5: The sample is strictly greater than the reference sample.

Here, we have chosen to create a mean score of these marks, called Y , which constitutes our
variable of interest. The judges were considered as a random effect of 7 levels and X is a design
matrix associated to 10 fixed effects corresponding to the 10 physico-chemical properties and we
simulate 15% of missing values on Y and X, by random resampling without replacement. Table 9
presents the fixed effects and Table 10 provides an extract of the data.

TABLE 9. The fixed effects

Dry extract EXS
Extraction rate TEE
PH PHH
Acidity CID
Optical density to 430n. m DO4
Optical density to 510n. m DO5
Conductance CDT
Caffeine CAF
Viscosity VIS
Retention of water in the milling CPR

TABLE 10. Fixed effects for each coffee sample

Cof. EXS TEE PHH CID DO4 DO5 CDT CAF VIS CPR
1 2.5 -1.18 -0.02 1.02 0.72 0.31 3.09 0.95 0.32 0.13
2 -1.44 -4.62 0.27 -0.66 -0.42 -0.17 -2.42 -0.2 -0.11 -0.34
3 0.18 1.42 -0.10 0.10 0.09 0.04 -0.25 0.25 -0.09 -0.70
4 0.85 6.59 0.05 0.35 0.56 0.28 0.69 -0.05 -0.04 -0.42
5 0.49 4.76 0.00 0.22 0.33 0.11 0.44 0.32 -0.04 -0.07
6 -0.08 -0.15 0.05 0.00 -0.10 -0.06 -0.06 -0.20 -0.19 0.07
7 0.18 2.56 0.10 0.01 0.01 -0.01 0.32 0.00 -0.13 0.01
8 -1.16 -4.12 0.05 -0.57 -0.26 -0.10 0.32 0.00 -0.13 0.01
9 -1.07 -2.76 0.00 -0.22 -0.12 -0.04 -0.64 -0.27 -0.16 -0.09
10 -0.45 4.76 0.00 -0.50 -0.22 -0.08 -1.68 -0.50 -0.22 0.08
11 -1.06 -2.85 -0.05 -0.63 -0.17 -0.05 -2.08 -0.60 0.09 0.00
12 1.89 -5.82 0.15 0.78 0.28 0.12 2.30 1.05 0.05 -0.27
13 1.45 -6.97 0.20 0.58 0.18 0.08 2.42 .50 0.05 -0.21

Table 11 provides the correlation values of the fixed effects and the response variable. It justifies
clearly the use of the PLS method.
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TABLE 11. Correlation between the response variable and the fixed effects

Cor Y EXS TEE PHH CID DO4 DO5 CDT CAF VIS CPR
EXS 0.624 1
TEE 0.254 0.021 1
PHH -0.163 0.030 -0.492 1
CID 0.578 0.974 -0.019 0.030 1
DO4 0.519 0.779 0.194 0.085 0.752 1
DO5 0.644 0.859 0.283 -0.212 0.863 0.838 1
CDT 0.400 0.755 -0.119 0.409 0.731 0.824 0.669 1
CAF 0.401 0.862 -0.272 0.175 0.881 0.753 0.662 0.778 1
VIS 0.429 0.681 -0.275 -0.071 0.645 0.635 0.691 0.555 0.639 1
CPR 0.021 -0.044 -0.016 -0.087 -0.106 -0.305 -0.128 0.016 -0.158 0.084 1

5.2. Competitor methods

As in the simulations study, we have confronted the results of the MI-PLS-L2M method with
those of MI-PLS and MI-L2M, obtained after ten compilations of the algorithm. We used the
MSE to quantify the difference between the imputation of Y and its true value.

5.3. Results

Table 12 presents ratio between MSE obtained for the three methods of imputation according
to the 15% of missing values.

TABLE 12. Ratio between Mean Square Errors for MI-PLS and MI-L2M versus MI-PLS-L2M, with 15% of missing
values

MSE(MI−PLS)
MSE(MI−PLS−L2M)

MSE(MI−L2M)

MSE(MI−PLS−L2M)
10.516 15.671

On this example, MI-PLS-L2M seems to perform better than the two other methods. We have
compared the different estimations obtained with MI-PLS-L2M without missing values and with
p = 15%. We estimated C, the coefficient parameter associated to the PLS components, and the
standard errors of u and ε . Table 13 contains estimates for the significant PLS components at the
risk level α = 0.05. The test of significance was based on B = 200 bootstrap samples. As expected
only six components were retained for the model, as in [13]. The loss of accuracy obtained
under the missing mechanism did not appear significant. The random effect u was estimated
significantly with a variance close to that of the errors ε . It might explain the advantage of the use
of MI-PLS-L2M on this dataset.
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TABLE 13. Estimates associated to significant PLS component t1, t2, t3, t4, t5, t6. Brackets give the standard deviations
obtained by bootstrap.

Missing (%) 0 15
C (sd) 0.375 (0.001) 0.366 (0.002)

0.132 (0.097) 0.158 (0.162)
0.066 (0.079) 0.075 (0.047)
0.031 (0.148) 0.057 (0.158)
0.884 (0.787) 0.629 (0.741)
-1.283 (1.175) -1.909 (1.968)

sd(u) 0.045 0.042
sd(ε) 0.086 0.096
MSE 0 0.221

N observed 91 77

Table 14 presents estimates for the random effect. It appears that the two first judges overestimate
the coffee score while the effect of the third judge seems to make decrease the score. The other
judges seem to estimate in the same way the coffee score.

TABLE 14. Estimates associated to the significant random effect.

Judge 1 2 3 4 5 6 7
û 0.42 0.49 -0.72 0.30 0.33 0.33 0.36

As observed in the simulation study, the boxplots before and after imputation associated to
p = 15% of missing values were very close to the initial dataset and we have omitted their
representation.

6. Discussion

The algorithm MI-PLS-L2M was proposed to deal with the problem of missing data in a
linear mixed model when covariates are correlated. It combines the multiple imputation theory
developed by [8] adapted to the linear mixed models with the PLS method introduced by [15]
(see also [12]). It is also an adaptation of the MI-PLS algorithm proposed by [1] and the MI-L2M
initiated by [10], since it is dedicated to the problem of missing data in the presence of both
collinearity and random effect.

Simulation studies are carried out which suggest that the proposed method is advocated as soon
as a random effect is significant. When the random effect is detected, MI-PLS-L2M provides good
estimates of the parameters and keeps the distribution shape of the original data before imputation.
It is also shown that the MSE increases slowly with the percentage of missing values.

Moreover, the gain provided by our algorithm compared to the method used in [1] and the
method proposed in [10] was studied. Because of the singularity of the design matrix due to
the collinearity, the MSE calculated for MI-PLS-L2M was better than that of MI-L2M. The
ratio between MSE shown better performances of MI-PLS-L2M other MI-PLS when the random
effects are significant. When the variance of the random effect is small, or for sample size too
small to detect it, MI-PLS and MI-PLS-L2M gave similar results.
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The application of our method to a real dataset showed good performance through the MSE
and the estimation of the parameters. In addition, the method detected a significant random effect
and then a new interpretation of the analysis of the coffe dataset.

Future research will be to adapt the MI-PLS-L2M to the generalized linear mixed models. The
way is to use a step of linearization of the model, adapting for instance the algorithm of [11].

Aknowledgements We are very grateful to the reviewers for their helpful comments and sugges-
tions. We also thank the Editor and an Associate Editor for their careful readings. This work has
been supported by Région Provence Alpes Côte d’Azur.

References

[1] P. Bastien. Régression PLS et données censurées. PhD thesis, Conservatoire National des Arts et Métiers, Paris.,
2008.

[2] P. Bastien, V. Esposito Vinzi, and M. Tenenhaus. Pls generalised linear regression. Computational Statistics &
Data Analysis, 48(1):17–46, 2005.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society, series B, 39(1):1–38, 1977.

[4] C.R. Henderson, O. Kempthorne, S.R. Searle, and C.M. von Krosigk. The estimation of environmental and
genetic trends from records subject to culling. Biometrics, 15:192–218, 1959.

[5] J. Honaker and G. King. What to Do about Missing Values in Time-Series Cross-Section Data. American
Journal of Political Science, 54(2):561–581, 2010.

[6] J.G. Ibrahim. Incomplete data in generalized linear models. Journal of the American Statistical Association,
85:765–769, 1990.

[7] R.J.A. Little and D.B. Rubin. Statistical analysis with missing data. Wiley series in probability and mathematical
statistics: Applied probability and statistics. Wiley, 1987.

[8] D.B. Rubin. Multiple Imputation for Non-response in Survey. J. Wiley and Sons, New York. Wiley, 1987.
[9] J.L. Schafer. Analysis of Incomplete Multivariate Data.

[10] J.L. Schafer and R.M. Yucel. Fitting multivariate linear mixed models with incomplete data. In Proceedings of
the Statistical Computing Section of the American Statistical Association., volume 8, pages 177–182, 1998.

[11] R. Schall. Estimation in generalized linear models with random effects. Biometrika, 78:719–727, 1991.
[12] M. Tenenhaus. La régression PLS: théorie et pratique. 1998.
[13] M. Vivien and R. Sabatier. Une extension multi-tabeaux de la régression pls. Revue de Statistique Appliquée,

49:31–54, 2001.
[14] F. Westad and H. Martens. Variable selection in nir based on the significance testing in partial least squares

regression. Journal of Near Infrared Spectroscopy, 8:117–124, 1999.
[15] S. Wold. Path models with latent variables: the non-linear iterative partial least squares (NIPALS) approach.
[16] C. F. J. Wu. On the convergence properties of the EM algorithm. The Annals of Statistics, 11(1):95–103, 1983.

Appendix

The Henderson method (1959)

Given the random effects, we assume that Y , X and u satisfy (1).
The Henderson method (see [4]) defines an equation system

β̂ = (
n

∑
i=1

X ′i V
−1
i Xi)

−1
n

∑
i=1

X ′i V
−1
i yi,
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û = (
n

∑
i=1

D′iZ
′
iV
−1
i )−1

n

∑
i=1

yi−Xiβ̂i,

where β̃ and ũ are solution of the GLS (Generalized Least Squares) and the BLUP (Best Linear
Unbiased Predictor). Writing:

X ′R−1X β̃ = X ′R−1(y−Zũ), (4)

(Z′R−1Z +D−1)ũ = Z′R−1(y−X β̃ ), (5)

we obtain the following system:
[

X ′R−1X X ′R−1Z
Z′R−1T Z′R−1Z +D−1

] [
β̂

û

]
=

[
X ′R−1y
Z′R−1y

]

Expression of PLS components in terms of the original explanatory variables (from [2])

All variables Y,X1, ...,X j, ...,Xp are assumed to be centered. The PLS regression model with h
components is written as

Y =
h

∑
H=1

cH(
p

∑
j=1

w∗H jX j)+ residual, (6)

with the constraint that the PLS components tH = ∑
p
j=1 w∗H jX j are orthogonal and the parameters

cH and w∗H j in (6) are to be estimated.
The estimated regression equation may be then expressed in terms of the original variables

X j’s:

Ŷ =
h

∑
H=1

cH(
p

∑
j=1

w∗H jX j) =
p

∑
j=1

(
h

∑
H=1

cHw∗H j)X j =
p

∑
j=1

β jX j.
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