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Bayesian Markov model for cooperative clustering:
application to robust MRI brain scan segmentation

Titre: Approche bayesienne et markovienne pour des classifications couplées coopératives : application à
la segmentation d’IRM du cerveau
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Abstract: Clustering is a fundamental data analysis step that consists of producing a partition of the observations to
account for the groups existing in the observed data. In this paper, we introduce an additional cooperative aspect. We
address cases in which the goal is to produce not a single partition but two or more possibly related partitions using
cooperation between them. Cooperation is expressed by assuming the existence of two sets of labels (group assignments)
which are not independent. We also model additional interactions by considering dependencies between labels within
each label set. We propose then a cooperative setting formulated in terms of conditional Markov Random Field
models for which we provide alternating and cooperative estimation procedures based on variants of the Expectation
Maximization (EM) algorithm for inference. We illustrate the advantages of our approach by showing its ability to deal
successfully with the complex task of segmenting simultaneously and cooperatively tissues and structures from MRI
brain scans.

Résumé : La classification est une étape clef de l’analyse de données qui consiste à produire une partition des données
qui traduise l’existence de groupes dans celles-ci. Dans cet article, nous introduisons la notion de classifications
coopératives. Nous considérons le cas où l’objectif est de produire deux (ou plus) partitions des données de manière non
indépendante mais en prenant en compte les informations que l’une des partitions apporte sur l’autre et réciproquement.
Pour ce faire, nous considérons deux (ou plus) jeux d’étiquettes non indépendants. Des interactions supplémentaires
entre étiquettes au sein d’un même jeu sont également modélisées pour prendre en compte par exemple des dépendances
spatiales. Ce cadre coopératif est formulé à l’aide de modèles de champs de Markov conditionnels dont les paramètres
sont estimés par une variante de l’algorithme EM. Nous illustrons les performances de notre approche sur un problème
réel difficile de segmentation simultanée des tissus et des structures du cerveau à partir d’images de résonnance
magnétique artefactées.
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1. Introduction

Clustering or segmentation of data is a fundamental data analysis step that has received
increasing interest in recent years due to the emergence of several new areas of application.
Attention has been focused on clustering various data type, regular vector data, curve data or
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Bayesian Markov model for cooperative clustering 117

more heterogeneous data [8]. In these cases, the goal is to produce a single partition of the
observations (eg. via a labelling of each data point) that accounts for the groups existing in the
observed data. The issue we consider in this paper is that of producing more than one partition
using the same data. Examples of applications in which this is relevant include tissue and structure
segmentation in Magnetic Resonance (MR) brain scan analysis [26], simultaneous estimation
of motion discontinuities and optical flow in motion analysis [17], consistent depth estimation
and boundary [22] or depth discontinuity [28] detection, etc. To address this goal, we consider a
probabilistic missing data framework and assume the existence of two (or more) sets of missing
variables. These sets represent two (or more) sets of labels which are related in the sense that
information on one of them can help in finding the other. It follows that there is a clear gain
in considering the two sets of labels in a single cooperative modelling. Beyond the need for
modelling cooperation, in many applications, data points are not independent and require models
that account for dependencies. For this purpose, we use Markov random field (MRF) models to
further specify our missing data framework. In most non trivial cases, this results in complex
systems that include processes interacting on a wide variety of scales. One approach to complex
processes in the presence of data is hierarchical modelling. Hierarchical modelling is based on a
decomposition of the problem that corresponds to a factorization of the joint distribution

p(y,z,θ) = p(y|z,θ)p(z|θ)p(θ), (1)

where Y, Z, Θ are random variables denoting respectively the data, the labels and the parameters.
We use capital letters to indicate random variables while their realizations are denoted with small
letters.

In our cooperative setting, we focus more particularly on situations where the p(z|θ) part is
made of different sub-processes which are linked and provide complementary information. We
propose an approach different from the standard hierarchical modelling. Our approach consists of
accounting for the joint model through a series of conditional models but which not necessarily
correspond to the factors in the standard factorized decomposition (1). We refer to this alterna-
tive decomposition as the cooperative approach because the focus is on capturing interactions
(cooperations) between the unknown quantities namely, sub-processes and parameters. More
specifically, we derive a class of Bayesian joint Markov models based on the specification of a
coherently linked system of conditional models that capture several level of interactions. They
incorporate 1) dependencies between variables within each label sets, which is usually referred to
as spatial interactions in spatial data (eg. image analysis); 2) relationships between label sets for
cooperative aspects (eg. between brain tissues and structures in a brain MRI analysis as illustrated
in Section 5) and 3) a priori information for consistency with expert knowledge and to encode
additional constraints on the parameters via a specific conditional model. Another strength of
our approach is that the whole consistent treatment of the model is made possible using the
framework of Generalized Alternating Minimization procedures [7] that generalizes the standard
EM framework. The decomposition we propose is particularly well adapted to such inference
techniques which are based on alternating optimization procedures in which variables of interest
are examined in turn and that conditionally on the other variables. It follows a procedure made of
steps that are easy to interpret and that can be enriched with additional information.

The paper is organized as follows. In the next section, we present our inference framework
and more specifically how the EM algorithm can be used in a Bayesian setting. We show that for
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estimation purposes, a joint formulation of the model needs not to be explicit and that inference
can be performed on the basis of some conditional models only. In Section 3, we present our
modelling of cooperation and develop the corresponding EM framework. We show that such a
setting can adapt well to our conditional models formulation and simplifies into alternating and
cooperative estimation procedures. In Section 4, we further specify our missing data models by
considering MRF models and show that inference reduces easily to the standard Hidden MRF
models case. Eventually, we illustrate in Section 5 the advantages of this general setting by
applying it to the analysis of Magnetic Resonance Imaging (MRI) brain scans. A discussion ends
the paper with an appendix containing additional detailed developments.

2. Bayesian analysis of missing data models

The clustering task is addressed via a missing data model that includes a set y = {y1, . . . ,yN} of
observed variables and a set z = {z1, . . . ,zN} of missing (also called hidden) variables whose joint
distribution p(y,z|θ) is governed by a set of parameters denoted θ and possibly by additional
hyperparameters not specified in the notation. The latter are usually fixed and not considered at
first (see Section 5 for examples of such hyperparameters). Typically, the zi’s corresponding to
group memberships (or equivalently label assignments), take their values in {e1, . . . ,eK} where
ek is a K-dimensional binary vector whose kth component is 1, all other components being 0.
We will denote by Z = {e1, . . . ,eK}N the set in which z takes its values and by Θ the parameter
space. The clustering task consists primarily of estimating the unknown z. However to perform
good estimation, the parameters θ values have to be available. A natural approach to estimate
the parameters is based on maximum likelihood, θ is estimated as θ̂ = argmaxθ∈Θ p(y|θ). Then
an estimate of z can be found by maximizing p(z|y, θ̂). Note, p(y|θ) is a marginal distribution
over the unknown z variables, so that direct maximum likelihood is not in general possible. The
Expectation-Maximization (EM) algorithm [21] is a general technique for finding maximum
likelihood solutions in the presence of missing data. It consists of two steps usually described as
the E-step in which the expectation of the so-called complete log-likelihood is computed and the
M-step in which this expectation is maximized over θ . An equivalent way to define EM is the
following. Let D be the set of all probability distributions on Z . As discussed in [7], EM can
be viewed as an alternating maximization procedure of a function F defined, for any probability
distribution q ∈D , by

F(q,θ) = ∑
z∈Z

q(z) log p(y,z | θ)+ I[q], (2)

where I[q] =−Eq[logq(Z)] is the entropy of q (Eq denotes the expectation with regard to q).
When prior knowledge on the parameters is available, an alternative approach is based on a

Bayesian setting. It consists of replacing the maximum likelihood estimation by a maximum a
posteriori (MAP) estimation of θ using the prior knowledge encoded in a distribution p(θ). The
maximum likelihood estimate of θ is replaced by θ̂ = argmaxθ∈Θ p(θ |y). The EM algorithm
can be used to maximize this posterior distribution. Indeed, the likelihood p(y|θ) and F(q,θ)
are linked through log p(y|θ) = F(q,θ)+KL(q, p) where KL(q, p) is the Kullback-Leibler di-
vergence between q and the conditional distribution p(z|y,θ) and is non-negative, KL(q, p) =

∑z∈Z q(z) log
(

q(z)
p(z|y,θ)

)
. Using the equality log p(θ |y) = log p(y|θ)+ log p(θ)− log p(y), it
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Bayesian Markov model for cooperative clustering 119

follows log p(θ |y) = F(q,θ)+KL(q, p)+ log p(θ)− log p(y) from which, we get a lower bound
L (q,θ) on log p(θ |y) given by L (q,θ) = F(q,θ)+ log p(θ)− log p(y) . Maximizing this lower
bound alternatively over q and θ leads to a sequence of estimations {q(r),θ (r)}r∈N satisfying
L (q(r+1),θ (r+1))≥L (q(r),θ (r)). The maximization over q corresponds to the standard E-step
and leads to q(r)(z) = p(z|y,θ (r)). It follows that L (q(r),θ (r)) = log p(θ (r)|y) which means that
the lower bound reaches the objective function in θ (r) and that the sequence {θ (r)}r∈N increases
p(θ |y) at each step. It then appears that when considering our MAP problem, we can replace (see
eg. [12]) the function F(q,θ) by F(q,θ)+ log p(θ). The corresponding alternating procedure is:
starting from a current value θ (r) ∈Θ, set alternatively

q(r) = argmax
q∈D

F(q,θ (r)) = argmax
q∈D ∑

z∈Z
log p(z|y,θ (r)) q(z)+ I[q] (3)

θ
(r+1) = argmax

θ∈Θ

F(q(r),θ)+ log p(θ) = argmax
θ∈Θ

∑
z∈Z

log p(θ |y,z) q(r)(z) . (4)

More generally, if prior knowledge is available only for a subpart of the parameters, say
w ∈ W where θ = (ψ,w) ∈ Ψ×W , then for a constant non-informative prior p(ψ) (see [12]
for a justification of using improper prior), it follows from p(w,y|ψ) = p(w,ψ|y) p(y) p(ψ)−1

that arg max
(w,ψ)

p(w,ψ|y) = arg max
(w,ψ)

p(w,y|ψ) . Carrying out developments similar as before with

conditioning on ψ , we can show that a lower bound on log p(w|y,ψ) is given by
L (q,w,ψ)=F(q,w,ψ)+log p(w|ψ)−log p(y|ψ) . It follows that a lower bound on log p(w,y|ψ)
is F(q,w,ψ) + log p(w|ψ). When w is assumed in addition to be independent of ψ so that
p(w|ψ) = p(w), maximizing this lower bound alternatively over q,w and ψ leads to

q(r) = argmax
q∈D

F(q,w(r),ψ(r)) (5)

w(r+1) = arg max
w∈W

F(q(r),w,ψ(r))+ log p(w) (6)

ψ
(r+1) = argmax

ψ∈Ψ

F(q(r),w(r+1),ψ) , (7)

where (5) and (7) are respectively regular E and M steps.
Going back to the general case, the last equalities in (3) and (4) come from straightforward

probabilistic rules and show that inference can be described in terms of the conditional models
p(z|y,θ) and p(θ |y,z). Defining these conditional models is equivalent to defining the conditional
distribution p(z,θ |y). The former distributions can be deduced from the later using the product
rule and the later is uniquely defined when the former distributions are given using for instance
the following equality,

p(z,θ |y) = p(z|y,θ)

(
∑

z∈Z

p(z|y,θ)
p(θ |y,z)

)−1

.

It follows that for classification (or segmentation) purposes, there is no need to define a joint
model p(y,z,θ), the conditional distribution p(z,θ |y) contains all useful information. Equiva-
lently, there is no need to specify p(y). This point of view is also the one adopted in Conditional
random fields (CRF) [20] which have been widely and successfully used in applications including
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text processing, bioinformatics and computer vision. CRF’s are discriminative models in the
sense that they model directly the posterior or conditional distribution of the labels given the
observations. Explicit models of the joint distribution of the labels and observations or of the
observational process p(y|z,θ) distribution are not required. In classification issues, the posterior
distribution is the one needed and it can appear as a waste of time and computational resources
to deal with the joint distribution or with complex observational processes. However, even in
classification contexts, approaches that model the joint distribution of the labels and observations
are considered. They are known as generative models. Such generative models are certainly more
demanding in term of modelling but they have other advantages that we will not discuss further in
this paper.

3. Cooperative clustering framework

As mentioned in the introduction, the particularity of our clustering task is to include two (or
possibly more) label sets of interest which are linked and that we would like to estimate coopera-
tively using one to gain information on the other. In this section, we particularize the framework
described in Section 2. The two label sets under consideration are denoted by t = {t1, . . . , tN} and
s = {s1, . . . ,sN}. We will denoted respectively by T and S the spaces in which they take their
values. Each observation yi is now associated to two labels denoted by ti and si. Denoting z = (t,s),
we can apply the EM framework introduced in the previous section to find a MAP estimate θ̂ of θ

using the procedure given by (3) and (4) and then generate t and s that maximize the conditional
distribution p(t,s|y, θ̂). Note that this is however not equivalent to maximizing over t,s and θ the
posterior distribution p(t,s,θ |y). Indeed p(t,s,θ | y) = p(t,s|y,θ) p(θ |y) and in the modified
EM setting (eq. (3) and (4)), θ is found by maximizing the second factor only. The problem is
greatly simplified when the solution is determined within the EM algorithm framework.

However, solving the optimization (3) over the set D of probability distributions q(T,S) on (T,S)
leads for the optimal q(T,S) to p(t,s|y,θ (r)) which may remain intractable for complex models. In
our cooperative context, we therefore propose an EM variant in which the E-step is not performed
exactly. The optimization (3) is solved instead over a restricted class of probability distributions D̃
which is chosen as the set of distributions that factorize as q(T,S)(t,s) = qT (t) qS(s) where qT (resp.
qS) belongs to the set DT (resp. DS) of probability distributions on T (resp. on S). This variant
is usually referred to as Variational EM [19]. It follows that the E-step becomes an approximate
E-step,

(q(r)T ,q(r)S ) = arg max
(qT ,qS)

F(qT qS,θ
(r)) .

This step can be further generalized by decomposing it into two stages. At iteration r, with current
estimates denoted by q(r−1)

T ,q(r−1)
S and θ (r), we consider the following updating,

E-T-step: q(r)T = arg max
qT∈DT

F(qT q(r−1)
S ,θ (r))

E-S-step: q(r)S = arg max
qS∈DS

F(q(r)T qS,θ
(r)).

The effect of these iterations is to generate sequences of paired distributions and parameters
{q(r)T ,q(r)S ,θ (r)}r∈N that satisfy F(q(r+1)

T q(r+1)
S ,θ (r+1))≥ F(q(r)T q(r)S ,θ (r)). This variant falls in the

modified Generalized Alternating Minimization (GAM) procedures family for which convergence
results are available [7].
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Bayesian Markov model for cooperative clustering 121

We then derive two equivalent expressions of F when q factorizes as in D̃ . Expression (2) of F
can be rewritten as F(q,θ) = Eq[log p(T|S,y,θ)]+Eq[log p(S,y|θ)]+ I[q]. Then,

F(qT qS,θ) = EqT [EqS [log p(T|S,y,θ)]]+EqS [log p(S,y|θ)]+ I[qT qS]

= EqT [EqS [log p(T|S,y,θ)]]+ I[qT ]+G[qS] ,

where G[qS] = EqS [log p(S,y|θ)]+ I[qS] is an expression that does not depend on qT . Using the
symmetry in T and S, it is easy to show that similarly,

F(qT qS,θ) = EqS [EqT [log p(S|T,y,θ)]]+EqT [log p(T,y|θ)]+ I[qT qS]

= EqS [EqT [log p(S|T,y,θ)]]+ I[qS]+G′[qT ] ,

where G′[qT ] = EqT [log p(T,y|θ)]+ I[qT ] is an expression that does not depend on qS. It follows
that the E-T and E-S steps reduce to,

E-T-step: q(r)T = arg max
qT∈DT

EqT [Eq(r−1)
S

[log p(T|S,y,θ (r))]]+ I[qT ] (8)

E-S-step: q(r)S = arg max
qS∈DS

EqS [Eq(r)T
[log p(S|T,y,θ (r))]]+ I[qS] (9)

and the M-step

θ
(r+1) = argmax

θ∈Θ

E
q(r)T q(r)S

[log p(θ |y,T,S)] . (10)

More generally, we can adopt in addition, an incremental EM approach [7] which allows
re-estimation of the parameters (here θ ) to be performed based only on a sub-part of the hidden
variables. This means that we can incorporate an M-step (4) in between the updating of qT and qS.
Similarly, hyperparameters could be updated there too.

It appears in equations (8), (9) and (10) that for inference the specification of the three
conditional distributions p(t|s,y,θ), p(s|t,y,θ) and p(θ |t,s,y) is necessary and sufficient. In
practice, the advantage of writing things in terms of the conditional distributions p(t|s,y,θ)
and p(s|t,y,θ) is that it allows to capture cooperations between t and s as will be illustrated in
Section 5. Then, steps E-T and E-S have to be further specified by computing the expectations with
regards to q(r−1)

S and q(r)T . In the following section, we specify a way to design such conditional
distributions in a Markov modelling context.

4. Markov model clustering

We further specify our missing data model to account for dependencies between data points
and propose an appropriate way to build conditional distributions for the model inference. Let
V be a finite set of N sites indexed by i with a neighborhood system defined on it. A set of sites
c is called a clique if it contains sites that are all neighbors. We define a Markov random field
(MRF) as a collection of random variables defined on V whose joint probability distribution is a
Gibbs distribution [14]. More specifically, we assume that y,z and θ are all defined on V (more
general cases are easy to derive). The specification of θ as a possibly data point specific parameter,
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θ = {θ1 . . .θN}, may seem awkward as parameters at each site is likely to yield intense problems.
However, note that we are in a bayesian setting so that a prior can be defined on θ . An example is
given in Section 5.3.2. We then assume in addition that the conditional distribution p(z,θ |y) is a
Markov random field with energy function H(z,θ |y), ie.

p(z,θ |y) ∝ exp(H(z,θ |y)), (11)

with H(z,θ |y) = ∑c∈Γ

(
Uc

Z,Θ(zc,θc|y)+Uc
Z(zc|y)+Uc

Θ
(θc|y)

)
, where the sum is over the set of

cliques Γ and zc and θc denote realizations restricted to clique c. The Uc’s are the clique potentials
that may depend on additional parameters, not specified in the notation. In addition, in the formula
above, terms that depend only on z, resp. θ , are written explicitly and are distinguished from the
first term in the sum in which z and θ cannot be separated. Conditions ensuring the existence of
such a distribution can be found in [15].

From the Markovianity of the joint distribution it follows that any conditional distribution is also
Markovian. Note that this is not true for marginals of a joint Markov field which are not necessarily
Markovian [3]. For instance, p(z|y,θ) and p(θ |y,z) are Markov random fields with energy
functions given respectively by H(z|y,θ) = ∑c∈ΓUc

Z,Θ(zc,θc|y) +Uc
Z(zc|y), and H(θ |y,z) =

∑c∈ΓUc
Z,Θ(zc,θc|y)+Uc

Θ
(θc|y), where terms depending only on θ , resp. on z, disappear because

they cancel out between the numerator and denominator of the Gibbs form (11).
Natural examples of Markovian distributions p(z,θ |y) are given by the standard Hidden

Markov random fields referred to as HMF-IN for Hidden Markov Field with Independent Noise
in [3]. HMF-IN, considering the couple of variables (Z,Θ) as the unknown couple variable, are
defined through two assumptions:

(i) p(y|z,θ) = ∏i∈V p(yi|zi,θi) = ∏i∈V
g(yi|zi,θi)

Wi(zi,θi)
where in the last equality the g(yi|zi,θi)

′s

are positive functions of yi that can be normalized and the Wi(zi,θi)’s are normalizing constants
that do not depend on yi. We write explicitly the possibility to start with unnormalized quantities
as this would be useful later.

(ii) p(z,θ) is a Markov random field with energy function H(z,θ).
It follows from (i) and (ii) that p(z,θ |y) is a Markov random field too with energy function

H(z,θ |y) = H(z,θ)+ ∑
i∈V

logg(yi|zi,θi)−∑
i∈V

logWi(zi,θi)

= H ′(z,θ)+ ∑
i∈V

logg(yi|zi,θi) .

where it is easy to see that H ′ still corresponds to a Markovian energy on (z,θ).
Conversely, given such an energy function it is always possible to find the corresponding

HMF-IN as defined by (i) and (ii), by normalizing the g’s and defining H(z,θ) = H ′(z,θ)+
∑i∈V logWi(zi,θi). Therefore equivalently, we will call HMF-IN any Markov field whose energy
function is H(z,θ)+∑i∈V logg(yi|zi,θi) where H(z,θ) is the energy of a MRF on (z,θ) and the
g’s are positive functions of yi that can be normalized. We will see in our cooperative context
the advantage of using unnormalized data terms. Let us then consider MRF p(z,θ |y) that are
HMF-IN, ie. whose energy function can be written as

H(z,θ |y) = HZ(z)+HΘ(θ)+HZ,Θ(z,θ)+ ∑
i∈V

logg(yi|zi,θi) . (12)
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Bayesian Markov model for cooperative clustering 123

The Markovian energy is separated into terms HZ, HΘ, HZ,Θ that involve respectively only z, only
θ and interactions between θ and z.

In a cooperative framework, we assume that z = (t,s) so that we can further specify

HZ(z) = HT(t)+HS(s)+ H̃T,S(t,s) (13)

and HZ,Θ(z,θ) = HT,Θ(t,θ)+HS,Θ(s,θ)+ H̃T,S,Θ(t,s,θ) , (14)

where we used a different notation H̃ to make clearer the difference between the energy terms
involving interactions only (resp. H̃T,S and H̃T,S,Θ) and the global energy terms (resp. HZ and
HZ,Θ). We will provide examples of these different terms in Section 5.2.2.

HΘ(θ) and HZ(z) can be interpreted as priors resp. on Θ and Z. In a cooperative framework,
the prior on Z can be itself decomposed into an a priori cooperation term H̃T,S(t,s) and individual
terms which represent a priori information on T and S separately. HT,S,Θ(t,s,θ) specifies the
process, ie. the underlying model, that can also be decomposed into parts involving t and s
separately or together. In what follows, we will assume that t and s are both defined on the set
of sites V so that writing zi = (ti,si) makes sense. With additional care, a more general situation
could be considered if necessary. Eventually ∑i∈V logg(yi|ti,si,θi) corresponds to the data-term.
An example is given in Section 5.2.1.

From such a definition of p(z,θ |y), it follows expressions of the conditional distributions
required for inference in steps (8) to (10). As already mentioned, the Markovianity of p(z,θ |y)
implies that the conditional distributions p(t|y,s,θ) and p(s|y, t,θ) are also Markovian with
respective energy

H(t|s,y,θ) = HT(t)+ H̃T,S(t,s)+HT,Θ(t,θ)+ H̃T,S,Θ(t,s,θ)+

∑
i∈V

logg(yi|ti,si,θi) (15)

and H(s|t,y,θ) = HS(s)+ H̃T,S(t,s)+HS,Θ(s,θ)+ H̃T,S,Θ(t,s,θ)
+∑

i∈V
logg(yi|ti,si,θi), (16)

omitting the terms that do not depend on t (resp. s). Similarly,

H(θ |t,s,y) = HΘ(θ)+HT,S,Θ(t,s,θ)+ ∑
i∈V

logg(yi|ti,si,θi).

4.1. Inference

In (8), (9) and (10) the respective normalizing constant terms can be ignored because they are
respectively independent of T, S and Θ. It comes that the E-steps are equivalent to

E-T-step: q(r)T = arg max
qT∈DT

EqT [Eq(r−1)
S

[H(T|S,y,θ (r))]]+ I[qT ] (17)

E-S-step: q(r)S = arg max
qS∈DS

EqS [Eq(r)T
[H(S|T,y,θ (r))]]+ I[qS] (18)
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Then, steps E-T and E-S can be further specified by computing the expectations with regards
to q(r−1)

S and q(r)T . An interesting property is that if H(z,θ |y) defines an HMF-IN of the form (12),
then E

q(r−1)
S

[H(t|S,y,θ (r))] and E
q(r)T

[H(s|T,y,θ (r))] are also HMF-IN energies. Indeed denoting

H(r)
T (t) = E

q(r−1)
S

[H(t|S,y,θ (r))], it follows from expression (15) that

H(r)
T (t) = HT(t)+HT,Θ(t,θ (r))+

∑
s∈S

q(r−1)
S (s)

(
H̃T,S(t,s)+ H̃T,S,Θ(t,s,θ (r))+ ∑

i∈V
logg(yi|ti,si,θ

(r)
i )

)
,

which can be viewed as an HMF-IN energy on t. It appears then that step E-T is equivalent to
the E-step one would get when applying EM to a standard Hidden MRF in t. Equivalently, the
same conclusion holds for H(r)

S (s) = E
q(r+1)

T
[H(s|T,y,θ (r))] when exchanging S and T. Examples

of such derived MRF’s are given in Section 5.3.1.
The M-step (10) is then equivalent to

θ
(r+1) = argmax

θ∈Θ

E
q(r)T q(r)S

[H(θ |y,T,S)] (19)

which can be further specified as

θ
(r+1) = argmax

θ∈Θ

HΘ(θ)+E
q(r)T q(r)S

[HT,S,Θ(T,S,θ)]+ ∑
i∈V

E
q(r)Ti

q(r)Si

[logg(yi|Ti,Si,θi)] (20)

The key-point emphasized by these last derivations of our E and M steps is that it is possible
to go from a joint cooperative model to an alternating procedure in which each step reduces
to an intuitive well identified task. The goal of the above developments was to propose a well
based strategy to reach such derivations. When cooperation exists, intuition is that it should be
possible to specify stages where each variable of interest is considered in turn but in a way that
uses the other variables current information. Interpretation is easier because in each such stage
the central part is played by one of the variable at a time. Inference is facilitated because each
step can be recast into a well identified (Hidden MRF) setting for which a number of estimation
techniques are available. However, the rather general formulation we chose to present may fail in
really emphasizing all the advantages of this technique. The goal of the following section is to
further point out the good features of our approach by addressing a challenging practical issue
and showing that original and very promising results can be obtained. To this end, Figure 1 shows
in advance the graphical model representation of the model developed in the next section.

5. Application to MR brain scan segmentation

The framework proposed in the previous sections can apply to a number of areas. However, its
description would be somewhat incomplete without some further specifications on how to set such
a model in practice. In this section, we address the task of segmenting both tissues and structures
in MR brain scans and illustrate our model ability to capture and integrate very naturally the
desired cooperative features, and that at several levels.
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Bayesian Markov model for cooperative clustering 125

FIGURE 1. Graphical model representation for the cooperative clustering model developed for the MRI application in
section 5: two label sets are considered, resp. {s1, . . .sN} and {t1, . . . tN}. The dashed lines show a zoom that specifies
the interactions at the {si, ti} level: 1) within each label set with two MRFs with respective interaction parameter ηS
and ηT and 2) between label sets with the intervention of a common parameter R specific to the MRI application. MRF
regularization also occurs at the parameters level via smoothing of the means {µk

1 . . .µ
k
N} that appear in the data

model (Section 5.2.1). See also Section 5.3.2 for details on the hyperparameters mk,λ 0k and ηk.

MR brain scans consist of 3D-data referred to as volumes and composed of voxels (volume
elements). We generally consider the segmentation of the brain in three tissues: cephalo-spinal-
fluid (CSF), grey matter (GM) and white matter (WM) (see Figure 2 (b)). Statistical based
approaches usually aim at modelling probability distributions of voxel intensities with the idea
that such distributions are tissue-dependent. The segmentation of subcortical structures is another
fundamental task. Subcortical structures are regions in the brain (see top of Figure 2 (c)) known
to be involved in various brain functions. Their segmentation and volume computation are of
interest in various neuroanatomical studies such as brain development or disease stages follow-up.
Difficulties in automatic MR brain scan segmentation arise from various sources ( see Figure 2 (a)
and (c)). The automatic segmentation of subcortical structures usually requires the introduction of
a priori knowledge via an atlas describing anatomical structures. This atlas has to be first registered
to the image to be used in the subsequent segmentation. Most of the proposed approaches share
three main characteristics. First, tissue and subcortical structure segmentations are considered
as two successive tasks and treated independently although they are clearly linked: a structure
is composed of a specific known tissue, and knowledge about structures locations provides
valuable information about local intensity distribution for a given tissue. Second, tissue models
are estimated globally through the entire volume and then suffer from imperfections at a local
level as illustrated in Figure 2 (a). Recently, good results have been reported using an innovative
local and cooperative approach called LOCUS [25]. It performs tissue and subcortical structure
segmentation by distributing through the volume a set of local Markov random field (MRF)
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models which better reflect local intensity distributions. Local MRF models are used alternatively
for tissue and structure segmentations. Although satisfying in practice, these tissue and structure
MRF’s do not correspond to a valid joint probabilistic model and are not compatible in that
sense. As a consequence, important issues such as convergence or other theoretical properties
of the resulting local procedure cannot be addressed. In addition, a major difficulty inherent to
local approaches is to ensure consistency of local models. Although satisfying in practice, the
cooperation mechanisms between local models proposed in [25] are somewhat arbitrary and
independent of the MRF models themselves. Third, with notable exceptions like [23], most atlas-
based algorithms perform registration and segmentation sequentially, committing to the initial
aligned information obtained in a pre-processing registration step. This is necessarily sub-optimal
in the sense that it does not exploit complementary aspects of both problems.

In this section we show how we can use our Bayesian cooperative framework to define a joint
model that links local tissue and structure segmentations but also the model parameters so that
both types of cooperations, between tissues and structures and between local models, are deduced
from the joint model and optimal in that sense. Our model has the following main features:
1) cooperative segmentation of both tissues and structures is encoded via a joint probabilistic
model which captures the relations between tissues and structures; 2) this model specification
also integrates external a priori knowledge in a natural way and allows to combine registration
and segmentation; 3) intensity nonuniformity is handled by using a specific parametrization of
tissue intensity distributions which induces local estimations on subvolumes of the entire volume
and 4) global consistency between local estimations is automatically ensured by using a MRF
spatial prior for the intensity distributions parameters.

We will refer to our joint model as LOCUSB, for LOcal Cooperative Unified Segmentation in
a Bayesian framework. It is based on ideas partly analyzed previously in the so-called LOCUS
method [25] with the addition of a powerful and elegant formalization provided by the extra
Bayesian perspective.

5.1. A priori knowledge on brain tissues and structures

In this section, V is a set of N voxels on a regular 3D grid. The observations y = {y1, . . . ,yN}
are intensity values observed respectively at each voxel and t = {t1, . . . , tN} represents the hidden
tissue classes. The ti’s take their values in {e1,e2,e3} that represents the three tissues cephalo-
spinal-fluid, grey matter and white matter. In addition, we consider L subcortical structures and
denote by s = {s1, . . . ,sN} the hidden structure classes at each voxel. Similarly, the si’s take
their values in {e′1, . . . ,e′L,e′L+1} where e′L+1 corresponds to an additional background class. Our
approach aims at taking advantage of the relationships existing between tissues and structures.
In particular, a structure is composed of an a priori known, single and specific tissue. We will
therefore denote by T si this tissue for structure si at voxel i. If si = e′L+1, ie. voxel i does not belong
to any structure, then we will use the convention that eT si = 0 the 3-dimensional null vector.

As parameters θ , we will consider θ = {ψ,R} where ψ are the parameters describing the
intensity distributions for the K = 3 tissue classes and R denotes registration parameters described
below. The corresponding parameter spaces are denoted by Ψ and R. Intensity distribution
parameters are more specifically denoted by ψ = {ψk

i , i ∈ V,k = 1, . . . ,K}. We will write ( t

means transpose) for all k = 1, . . . ,K, ψk = {ψk
i , i ∈V} and for all i ∈V , ψi =

t(ψk
i ,k = 1, . . . ,K).
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Bayesian Markov model for cooperative clustering 127

FIGURE 2. Obstacles to accurate segmentation of MR brain scans. Image (a) illustrates spatial intensity variations: two
local intensity histograms (bottom) in two different subvolumes (top) are shown with their corresponding Gaussians
fitted using 3-component mixture models for the 3 brain tissues considered. The vertical line corresponds to some
intensity value labelled as grey matter or white matter depending on the subvolume. Image (b) illustrates a segmentation
in 3 tissues, white matter, grey matter and cephalo spinal fluid. Image (c) shows the largely overlapping intensity
histograms (bottom) of 3 grey matter structures segmented manually (top), the putamen (green), the thalamus (yellow)
and the caudate nuclei (red).
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Standard approaches usually consider that intensity distributions are Gaussian distributions with
parameters that depend only on the tissue class. A priori knowledge is incorporated through
fields fT and fS representing a priori information respectively on tissues and on structures. In our
study, these fields correspond to prior probabilities provided by a registered probabilistic atlas
on structures. They depend on the registration parameters R. We will write fT (R) = { fT (R, i), i ∈
V} (resp. fS(R) = { fS(R, i), i ∈ V}) where fT (R, i) = t( f k

T (R, i),k = 1, . . . ,K) (resp. fS(R, i) =
t( f l

S(R, i), l = 1, . . . ,L+1)) and f k
T (R, i) (resp. f l

S(R, i)) represents some prior probability that voxel
i belongs to tissue k (resp. structure l). As already discussed, most approaches first register the
atlas to the medical image and then segment the medical image based on that aligned information.
This may induce biases caused by commitment to the initial registration. In our approach we
will perform registration and segmentation simultaneously by considering that the information
provided by the atlas depends on the registration parameters R that have to be estimated as well
as other model parameters and whose successive values will adaptively modify the registration.
More specifically, we consider a local affine non rigid registration model as in [23]. We use a
hierarchical registration framework which distinguishes between global- and structure-dependent
deformations. The mapping of the atlas to the image space is performed by an interpolation
function r(R, i) which maps voxel i into the coordinate system defined by R. We model dependency
across structures by decomposing R into R = {RG,RS}. RG are the global registration parameters,
which describe the nonstructure-dependent deformations between atlas and image. The structure-
dependent parameters RS = {R1, . . . ,RL,RL+1} are defined in relation to RG and capture the
residual structure-specific deformations that are not adequately explained by RG. We refer to Rl ,
the lth entry of RS, as the registration parameters specific to structure l with l ∈ {1, . . . ,L+1}.
The atlas is denoted by φ = {φl, l = 1, . . . ,L+1} where the atlas spatial distribution for a single
structure l is represented in our model by φl . The function φl is defined in the coordinate system
of the atlas space, which is in general different from the image space. We align the atlas to
the image space by making use of the interpolation function r(RG,Rl, i) where RG and the
Rl’s correspond to affine non rigid transformations determined through 12 parameters each,
capturing the displacement, rotation, scaling and shear 3D vectors. It follows the definition of fS,

f l
S(R, i) =

φl(r(RG,Rl , i))
L+1
∑

l′=1
φl′(r(RG,Rl′ , i))

. The normalization across all structures is necessary as the coordinate

system of each structure is characterized by the structure-dependent registration parameters Rl .
Unlike global affine registration methods, this results in structure-dependent coordinate systems
that are not aligned with each other. In other words, multiple voxels in the atlas space can be
mapped to one location in the image space. Although the same kind of information (atlas) is
potentially available independently for tissues, in our setting we then build fT from fS. The quantity
f k
T (R, i) is interpreted as a prior probability that voxel i belongs to tissue k. This event occurs

when either voxel i belongs to a structure made of tissue k or when voxel i does not belong to any
structure but in this later case we assume that, without any further information, the probability of
a particular tissue k is 1/3. It follows the expression, f k

T (R, i) = ∑
l st. T l=k

f l
S(R, i)+

1
3 f L+1

S (R, i) , with

the convention that the sum is null when the set {l st. T l = k} = /0 which means that there are
no structure made of tissue k. This is always the case for the value of k corresponding to white
matter. In practice, the global RG transformation is estimated in a pre-processing step using some
standard method such as FLIRT [18]. The other structure specific registration parameters are
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estimated using our joint modelling and updated as specified in Section 5.3.2.

5.2. Tissue and structure cooperative model

For our brain scan segmentation purpose, we propose to define an HMF-IN of the form (12).
The specification of the energy in (12) is decomposed into three parts described below.

5.2.1. Data term

With zi = (ti,si), the data term refers to the term ∑
i∈V

logg(yi|ti,si,θi) in (12). For brain data, this

data term corresponds to the modelling of tissue dependent intensity distributions and therefore
does not depend on the registration parameters R. The data term reduces then to the definition
of function g(yi|ti,si,ψi). We denote by G (y|µ,λ ) the Gaussian distribution with mean µ and
precision λ (the precision is the inverse of the variance). Notation < ti,ψi > stands for the scalar
product between ti and ψi seen as K-dimensional vectors, so that when ti = ek then < ti,ψi >= ψk

i .
Note that we extend this convention to multi-component ψk

i such as ψk
i = {µk

i ,λ
k
i }. Therefore

when ti = ek, G (yi|< ti,ψi >) denotes the Gaussian distribution with mean µk
i and precision λ k

i .
We will say that both structure and tissue segmentations agree at voxel i, when either the tissue of
structure si is ti or when si corresponds to the background class so that any value of ti is compatible
with si. Using our notation, agreement corresponds then to ti = eT si or si = e′L+1. In this case, it is
natural to consider that the intensity distribution should be G (yi|< ti,ψi >). Whereas, when this is
not the case, a compromise such as G (yi|< ti,ψi >)1/2 G (yi|< eT si ,ψi >)1/2 is more appropriate.
It is easy to see that the following definition unifies these two cases in a single expression:

g(yi|ti,si,ψi) = G (yi|< ti,ψi >)
(1+<si,e

′
L+1>)

2 G (yi|< eT si ,ψi >)
(1−<si,e

′
L+1>)

2 .

Note that g as defined above is not in general normalized and would require normalization to be
seen as a proper probability distribution. However, as already mentioned in Section 4 it is not
required in our framework.

5.2.2. Missing data term

We refer to the terms HZ(z) and HZ,Θ(z,θ) involving z = (t,s) in (12) as the missing data term.
We will first describe the more general case involving unknown registration parameters R. We will
show then for illustration how this case simplifies when registration is done beforehand as a prepro-
cessing. Denoting by UT

i j (ti, t j;ηT ) and US
i j(si,s j;ηS) pairwise potential functions with interaction

parameters ηT and ηS, HZ(z) decomposes as in (13) in three terms which are set for the MRI ap-
plication as HT(t) = ∑i∈V ∑ j∈N (i)UT

i j (ti, t j;ηT ) and similarly HS(s) = ∑i∈V ∑ j∈N (i)US
i j(si,s j;ηS)

and then, H̃T,S(t,s) = ∑i∈V < ti,eT si > . Simple examples for UT
i j (ti, t j;ηT ) and US

i j(si,s j;ηS) are
provided by adopting a Potts model which corresponds to

UT
i j (ti, t j;ηT ) = ηT < ti, t j > and US

i j(si,s j;ηS) = ηS < si,s j > (21)

The first two terms HT(t) and HS(s) capture, within each label set t and s, interactions between
neighboring voxels. They imply spatial interaction within each label set. Interaction between
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label sets is captured in the third term but in the definition above this interaction is not spatial
since only singleton terms, involving one voxel at a time, appear in the sum. The expression for
H̃T,S(t,s) could be augmented with a line process term [13] to account for between label sets
spatial interactions. An example of what would be the resulting energy functions is given in the
Appendix.

The following terms define HZ,Θ in (14). They are specified to integrate our a priori knowledge
and to account for the fact that the registration parameters are estimated along the segmentation
process. We set, HT,Θ(t,θ) = ∑i∈V < ti, log( fT (R, i)+1)> and similarly
HS,Θ(s,θ) = ∑i∈V < si, log( fS(R, i)+1)> . The logarithm is added because fT (R, i) and fS(R, i),
as defined in Section 5.1, are probability distributions whereas an energy H is homogeneous to
the logarithm of a probability up to a constant. An additional 1 is added inside the logarithm to
overcome the problem of its non existence at 0. The overall method does not seem to be sensitive
to the exact value of the positive quantity added. It follows that at this stage the dependence on θ

is only through the registration parameter R. The dependence on ψ has been already specified in
the data term and no additional dependence exists in our model. In addition, as regards interactions
between labels and parameters, we consider that they exist only separately for t and s so that we
set H̃T,S,Θ(t,s,θ) = 0.

Pre-registering the atlas beforehand is equivalent not to estimate the registration parameters
but to fix them in a pre-processing step, say to R0. Then our model is modified by setting
HZ,Θ(z,θ)= 0 and by adding singleton terms in HT(t) and HS(s) to account for pre-registered atlas
anatomical information. The terms to be added would be respectively ∑

i∈V
< ti, log( fT (R0, i)+1)>

and ∑
i∈V

< si, log( fS(R0, i)+1)>.

5.2.3. Parameter prior term

The last term in (12) to be specified is HΘ(θ). The Gaussian distribution parameters and the
registration parameters are supposed to be independent and we set HΘ(θ) = HΨ(ψ)+HR(R).
The specific form of HΨ(ψ) will be specified later. It will actually be guided by our inference
procedure (see Section 5.3.2). In practice however, in the general setting of Section 5.1 which
allows different values ψi at each i, there are too many parameters and estimating them accurately
is not possible. As regards estimation then, we adopt a local approach as in [25]. The idea is to
consider the parameters as constant over subvolumes of the entire volume. Let C be a regular
cubic partionning of the volume V in a number of non-overlapping subvolumes {Vc,c ∈ C }. We
assume that for all c ∈ C and all i ∈Vc, ψi = ψc and consider an energy function on C denoted by
HC

Ψ
(ψ) where by extension ψ now denotes the set of distinct values ψ = {ψc,c ∈ C }. Outside

the issue of estimating ψ in the M-step, having parameters ψi’s depending on i is not a problem.
As specified in Section 5.3.1 for the E-steps we will go back to this general setting using an
interpolation step specified in Section 5.3.2. As regards HR(R), it could be specified as in [23]
to favor estimation of R close to some average registration parameters computed from a training
data set if available. In our case, no such data set is available and we will simply set HR(R) = 0.
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5.3. Generalized Alternating Maximization

We now derive the inference steps of Section 4.1 for the model defined above.

5.3.1. Structure and tissue conditional E-steps

The two-stage E-step given by (17) and (18) can be further specified by computing H(r)
T (t) =

E
q(r−1)

S
[H(t|S,y,θ (r))] and H(r)

S (s) =E
q(r)T

[H(s|T,y,θ (r))]. For the expressions given in Section 5.2,
it comes, omitting the terms that do not depend on t,

H(r)
T (t) = ∑

i∈V
( ∑

j∈N (i)
UT

i j (ti, t j;ηT )+< ti, log( fT (R(r), i)+1)>+

< ti,
L

∑
l=1

q(r−1)
Si

(e′l) eT l >+

(
1+q(r−1)

Si
(e′L+1)

2

)
logG (yi|< ti,ψ

(r)
i >)) , (22)

where
L
∑

l=1
q(r−1)

Si
(e′l)eT l is a 3-component vector whose kth component is ∑

l st.T l=k
q(r−1)

Si
(e′l) that is

the probability, as given by the current distribution q(r−1)
Si

, that voxel i is in a structure whose
tissue is k. The higher this probability the more favored is tissue k. If we modified then the
expression of fT into f̃ (r)T defined by f̃ (r)T = t( f̃ k(r)

T ,k = 1, . . . ,K) with log f̃ k(r)
T (R, i) = log( f k

T (R, i)+

1)+∑l st.T l=k q(r−1)
Si

(e′l) , (22) can be written as

H(r)
T (t) = ∑

i∈V

(
∑

j∈N (i)
UT

i j (ti, t j;ηT )+< ti, log( f̃ (r)T (R(r), i))>+

log

G (yi|< ti,ψ
(r)
i >)

1+q(r−1)
Si

(e′L+1)

2

 (23)

Then, for the E-S-step (18) we can derive a similar expression. Note that for si ∈ {1, . . . ,L},

qTi(eT si ) =< si,
L
∑

l=1
qTi(eT l ) e′l > so that if we modify the expression of fS into f̃ (r)S defined by

f̃ (r)S = t( f̃ l(r)
S , l = 1 . . .L+ 1) with log f̃ l(r)

S (R, i) = log( f l
S(R, i)+ 1)+ q(r+1)

Ti
(eT l )(1− < e′l ,e

′
L+1 >) we

get,

H(r)
S (s) = ∑

i∈V
∑

j∈N (i)
US

i j(si,s j;ηS)+< si, log( f̃ (r)S (R(r), i))>+ (24)

log

(
(

3

∏
k=1

G (yi|ψ(r)k
i )

q(r)Ti
(ek))

(
1+<si,e

′
L+1>

2

)
G (yi|< eT si ,ψ

(r)
i >)

(
1−<si,e

′
L+1>

2

))
.

In the simplified expressions (23) and (24), we can recognize the standard decomposition of
hidden Markov random field models into three terms, from left to right, a regularizing spatial
term, an external field or singleton term and a data term. This shows that at each iteration of
our cooperative algorithm, solving the current E-T and E-S steps is equivalent to solving the
segmentation task for standard hidden Markov models whose definition depends on the results of
the previous iteration. We are not giving further details here but in our application we will use
mean field like algorithms as described in [9] to actually compute q(r)T and q(r)S .
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5.3.2. M-step: Updating the parameters

We now turn to the resolution of step (20), θ (r+1) = argmax
θ∈Θ

E
q(r)T q(r)S

[H(θ |y,T,S)] .

The independence of ψ and R leads to an M-step that separates into two updating stages:

ψ
(r+1) = argmax

ψ∈Ψ

HΨ(ψ)+ ∑
i∈V

E
q(r)Ti

q(r)Si

[logg(yi|Ti,Si,ψi)] (25)

and R(r+1) = argmax
R∈R

HR(R)+E
q(r)T

[HT,Θ(T,θ)]+E
q(r)S

[HS,Θ(S,θ)] . (26)

Updating the intensity distributions parameters. We first focus on the computation of the last
sum in (25). Omitting, the (r) superscript, after some straightforward algebra, it comes

EqTi qSi
[logg(yi|Ti,Si,ψi)] = log

(
K

∏
k=1

G (yi|ψk
i )

aik

)
,

where aik =
1
2

(
qTi(ek)+qTi(ek)qSi(e

′
L+1)+∑l st.T l=k qSi(e

′
l)
)
.

The first term in aik is the probability for voxel i to belong to tissue k without any additional
knowledge on structures. The sum over k of the two other terms is one and they can be interpreted
as the probability for voxel i to belong to the tissue class k when information on structure
segmentation is available. In particular, the third term in aik is the probability that voxel i belongs
to a structure made of tissue k while the second term is the probability to be in tissue k when no
structure is present at voxel i. Then the sum of the aik’s is also one and aik can be interpreted as the
probability for voxel i to belong to the tissue class k when both tissue and structure segmentations
information are combined.

As mentioned in Section 5.2.3, we will now consider that the ψi’s are constant over subvolumes
of a given partition of the entire volume so that, denoting by p(ψ) the MRF prior on ψ = {ψc,c ∈
C }, ie. p(ψ) ∝ exp(HC

Ψ
(ψ)), (25) can be written as,

ψ
(r+1) = argmax

ψ∈Ψ

p(ψ) ∏
i∈V

K

∏
k=1

G (yi|ψk
i )

aik = argmax
ψ∈Ψ

p(ψ) ∏
c∈C

K

∏
k=1

∏
i∈Vc

G (yi|ψk
c )

aik .

Using the additional natural assumption that p(ψ) =
K
∏

k=1
p(ψk), it is equivalent to solve for each

k = 1, . . . ,K,

ψ
k (r+1) = arg max

ψk∈Ψ
k
p(ψk) ∏

c∈C
∏
i∈Vc

G (yi|ψk
c )

aik . (27)

However, when p(ψk) is chosen as a Markov field on C , the maximization is still intractable. We
therefore replace p(ψk) by a product form given by its modal-field approximation [9]. This is
actually equivalent to use the ICM [5] algorithm to maximize (27). Assuming a current estimation
of ψk at iteration ν , we consider in turn the following updating,

∀c ∈ C , ψ
k (ν+1)
c = arg max

ψk
c∈Ψ

k
p(ψk

c | ψ
k (ν)
N (c)) ∏

i∈Vc

G (yi|ψk
c )

aik , (28)
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where N (c) denotes the indices of the subvolumes that are neighbors of subvolume c and
ψk

N (c) = {ψ
k
c′ ,c
′ ∈ N (c)}. At convergence, the obtained values give the updated estimation

ψk (r+1). The particular form (28) above somewhat dictates the specification of the prior for ψ .
Indeed Bayesian analysis indicates that a natural choice for p(ψk

c | ψk
N (c)) has to be among

conjugate or semi-conjugate priors for the Gaussian distribution G (yi|ψk
c ) [12]. We choose to

consider here the latter case. In addition, we assume that the Markovian dependence applies only to
the mean parameters and consider that p(ψk

c | ψk
N (c)) = p(µk

c | µk
N (c)) p(λ k

c ) with p(µk
c | µk

N (c))

set to a Gaussian distribution with mean mk
c +∑c′∈N (c) ηk

cc′(µ
k
c′ −mk

c′) and precision λ 0k
c , and

p(λ k
c ) set to a Gamma distribution with shape parameter αk

c and scale parameter bk
c. The quantities

{mk
c,λ

0k
c ,αk

c ,b
k
c,c ∈ C } and {ηk

cc′ ,c
′ ∈ N (c)} are hyperparameters to be specified. For this

choice, we get valid joint Markov models for the µk’s (and therefore for the ψk’s) which are
known as auto-normal models [4]. Whereas for the standard Normal-Gamma conjugate prior the
resulting conditional densities fail in defining a proper joint model and caution must be exercised.

Standard Bayesian computations lead to a decomposition of (28) into two maximizations: for
µc

k , the product in (28) has a Gaussian form and the mode is given by its mean. For λ c
k , the product

turns into a Gamma distribution and its mode is given by the ratio of its shape parameter over its
scale parameter. After some straightforward algebra, we get the following updating formulas:

µ
(ν+1) k
c =

λ
(ν) k
c ∑i∈Vc aikyi +λ 0k

c (mk
c +∑c′∈N (c) ηk

cc′(µ
(ν) k
c′ −mk

c′))

λ
(ν) k
c ∑i∈Vc aik +λ 0k

c

(29)

and λ
(ν+1) k
c =

αk
c +∑i∈Vc aik/2−1

bk
c +1/2[∑i∈Vc aik(yi−µ

(ν+1) k
c )2]

. (30)

In these equations, quantities similar to the ones computed in standard EM for the mean and
variance parameters appear weighted with other terms due to neighbors information. Namely,
standard EM on voxels of Vc would estimate µk

c as ∑i∈Vc aikyi/∑i∈Vc aik and λ k
c as

∑i∈Vc aik/∑i∈Vc aik(yi−µk
c )

2. In that sense formulas (29) and (30) intrinsically encode cooperation
between local models.

From these parameters values constant over subvolumes we compute parameter values per voxel
by using cubic splines interpolation between θc and θc′ for all c′ ∈N (c). We go back this way
to our general setting which has the advantage to ensure smooth variation between neighboring
subvolumes and to intrinsically handle nonuniformity of intensity inside each subvolume.

Updating the registration parameters. From (26), it follows that

R(r+1) = argmax
R∈R

HR(R)+ ∑
i∈V

3

∑
k=1

q(r)Ti
(ek) log( f k

T (R, i)+1)

+∑
i∈V

L+1

∑
l=1

q(r)Si
(e′l) log( f l

S(R, i)+1) (31)

which further simplifies when HR(R) = 0. It appears that the registration parameters are refined
using information on structures as in [23] but also using information on tissues through the second
term above. In practice, the optimization is carried out using a relaxation approach decomposing
the maximization into searches for the different structure specific deformations {Rl, l = 1 . . .L+1}.
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There exists no simple expression and the optimization is performed numerically using a variant
of the Powell algorithm [24]. We therefore update the 12 parameters defining each local affine
transformation Rl by maximizing in turn:

R(r+1)
l = arg max

Rl∈Rl

HR(R)+ ∑
i∈V

3

∑
k=1

q(r)Ti
(ek) log( f k

T (R, i)+1)

+∑
i∈V

L+1

∑
l=1

q(r)Si
(e′l) log( f l

S(R, i)+1) . (32)

5.4. Results

Regarding hyperparameters, we choose not to estimate the parameters ηT and ηS but fix them
to the inverse of a decreasing temperature as proposed in [5]. In expressions (29) and (30), we
wrote a general case but it is natural and common to simplify the derivations by setting the mk

c’s
to zero and ηk

cc′ to |N (c)|−1 where |N (c)| is the number of subvolumes in N (c). This means
that the distribution p(µk

c |µk
N (c)) is a Gaussian centered at ∑c′∈N (c) µk

c′/|N (c)| and therefore
that all neighbors c′ of c act with the same weight. The precision parameters λ 0k

c is set to Ncλ k
g

where λ k
g is a rough precision estimation for class k obtained for instance using some standard

EM algorithm run globally on the entire volume and Nc is the number of voxels in c that accounts
for the effect of the sample size on precisions. The αk

c ’s are set to |N (c)| and bk
c to |N (c)|/λ k

g

so that the mean of the corresponding Gamma distribution is λ k
g and the shape parameter αk

c
somewhat accounts for the contribution of the |N (c)| neighbors. Then, the size of subvolumes
is set to 20× 20× 20 voxels. The subvolume size is a mildly sensitive parameter. In practice,
subvolume sizes from 20×20×20 to 30×30×30 give similar good results on high resolution
images (1 mm3). On low resolution images, a size of 25×25×25 may be preferred.

Evaluation is then performed following the two main aspects of our model. The first aspect
is the decomposition of the global clustering task into a set of local clustering tasks using local
MRF models. The advantage of our approach is that, in addition, a way to ensure consistency
between all these local models is dictated by the model itself. The second aspect is the cooperative
setting which is relevant when two global clustering tasks are considered simultaneously. It
follows that we first assess the performance of our model considering the local aspect only. We
compare (Section 5.4.2) the results obtained with our method, restricted to tissue segmentation
only, with other recent or state-of-the-art methods for tissue segmentation. We then illustrate
more of the modelling ability of our approach by showing results for the joint tissue and structure
segmentation (Section 5.4.3).

5.4.1. Data

We consider both phantoms and real 3T brain scans. We use the normal 1 mm3 BrainWeb
phantoms database from the McConnell Brain Imaging Center [10]. These phantoms are gener-
ated from a realistic brain anatomical model and a MRI simulator that simulates MR acquisition
physics, in which different values of nonuniformity and noise can be added. Because these images
are simulated we can quantitatively compare our tissue segmentation to the underlying tissue
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generative model to evaluate the segmentation performance. As in [2, 27, 29] we perform a quan-
titative evaluation using the Dice similarity metric [11]. This metric measures the overlap between
a segmentation result and the gold standard. By denoting by TPk the number of true positives
for class k, FPk the number of false positives and FNk the number of false negatives the Dice
metric is given by: dk =

2TPk
2TPk+FNk+FPk

and dk takes its value in [0,1] where 1 represents the perfect
agreement. Since BrainWeb phantoms contain only tissue information, three subcortical structures
were manually segmented by three experts: the left caudate nucleus, the left putamen and the left
thalamus. We then computed our structure gold standard using STAPLE [30], which computes a
probabilistic estimate of a true segmentation from a set of different manual segmentations. The
results we report are for eight BrainWeb phantoms, for 3%, 5%, 7% and 9% of noise with 20%
and 40% of nonuniformity for each noise level. Regarding real data, we then evaluate our method
on real 3T MR brain scans (T1 weighted sequence, TR/TE/Flip = 12ms/4.6ms/8 ◦, Recovery
Time=2500ms, Acquisition Matrix=256×256×176, voxel isotropic resolution 1 mm3) coming
from the Grenoble Institut of Neuroscience (GIN).

5.4.2. A local method for segmenting tissues

Considering tissue segmentation only, we quantitatively compare our method denoted by
LOCUSB-T to the recently proposed method LOCUS-T [25] and to two well known tissue
segmentation tools, FAST [31] from FSL and SPM5 [2]. The table in Figure 3 (a) shows the
results of the evaluation performed on the eight BrainWeb phantoms. The mean Dice metric
over all eight experiments and for all tissues is 86% for SPM5, 88% for FAST and 89% for
LOCUS-T and LOCUSB-T. The mean computation times for the full 3-D segmentation were
4min for LOCUS-T and LOCUSB-T, 8min for FAST and more than 10min for SPM5. Figure 3
(b) to (f) shows the results on a real image.

Our method shows very satisfying robustness to noise and intensity nonuniformity. On Brain-
Web images, it performs better than SPM5 and similarly than LOCUS-T and FAST, for a low
computational time. On real 3T scans, LOCUS-T and SPM5 also give in general satisfying results.

5.4.3. Joint tissue and structure segmentation

We then evaluate the performance of the joint tissue and structure segmentation. We con-
sider two cases: our combined approach with fixed registration parameters (LOCUSB-TS) and
with estimated registration parameters (LOCUSB-TSR). For the joint tissue and structure model
(LOCUSB-TS) we introduce a priori knowledge based on the Harvard-Oxford subcortical proba-
bilistic atlas. FLIRT was used to affine-register the atlas. For LOCUSB-TSR, the global registration
parameters RG are computed as in LOCUSB-TS as a pre-processing step. The other local regis-
tration parameters are updated at each iteration of the algorithm. Table 1 shows the evaluation
on BrainWeb images using our reference segmentation of three structures. The table shows the
means and standard deviations of the Dice coefficient values obtained for the eight BrainWeb
images. It also shows the means and standard deviations of the relative improvements between
the two models LOCUSB-TS and LOCUSB-TSR. In particular, a significant improvement of
23% is observed for the caudate nucleus. For LOCUSB-TSR, the mean computational time is of
10min for our three structures (45min for 17 structures) including the initial global registration
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(RG) step using FLIRT. For comparison, on one of the brainweb phantoms, the 5% noise, 40%
nonuniformity image, Freesurfer leads respectively to 88%, 86%, 90%, with a computational time
larger than 20 hours for 37 structures, while the results with LOCUSB-TSR on this phantom were
91%, 95% and 94%.

The BrainWeb database evaluation shows that the segmentation quality is very stable when the
noise and inhomogeneity levels vary and this is one of the major difference with the algorithm in
[25]. The three structures segmentations improve when registration is combined. In particular,
in LOCUSB-TS the initial global registration of the caudate is largely sub-optimal but it is then
corrected in LOCUSB-TSR. More generally, for the three structures we observe a stable gain for
all noise and inhomogeneity levels.

Figure 4 shows the results obtained with LOCUSB-T, and LOCUSB-TSR on a real 3T brain
scan. The structures emphasized in image (c) are the two lateral ventriculars (blue), the caudate
nuclei (red) , the putamens (green) and the thalamus (yellow). Figure 4 (e) shows in addition a 3D
reconstruction of 17 structures segmented with LOCUSB-TSR. The results with LOCUSB-TS are
not shown because the differences with LOCUSB-TSR were not visible using this paper graphical
resolution.

We observe therefore the gain in combining tissue and structure segmentation in particular
through the improvement of tissue segmentation for areas corresponding to structures such as the
putamens and thalamus. The additional integration of a registration parameter estimation step
also provides some significant improvement. It allows an adaptive correction of the initial global
registration parameters and a better registration of the atlas locally. These results could be however
certainly further improved if a priori knowledge (through H(R)) on the typical deformations for
each structure was used to guide these local deformations more precisely.

CSF GM WM M.C.T.
LOCUSB-T 80 % (2) 92% (1) 94% (1) ≈ 4min
LOCUS-T 80% (2) 92% (1) 94% (1) ≈ 4min
SPM5 79% (3) 89% (4) 90% (3) ≈ 12min
FAST 80% (1) 91% (1) 94% (1) ≈ 8min

(a)

(b) (c) (d) (e) (f)

FIGURE 3. Tissue segmentation only. Table (a): mean Dice metric and mean computational time (M.C.T) values
on BrainWeb over 8 experiments for different values of noise (3%, 5%, 7%, 9%) and nonuniformity (20%, 40%).
The corresponding standard deviations are shown in parenthesis. Images (c) to (f): segmentations respectively by
LOCUSB-T (our approach), LOCUS-T, SPM5 and FAST of a highly nonuniform real 3T image (b). The circle in (d)
points out a segmentation error which does not appear in (c).
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Structure LOCUSB-TS LOCUSB-TSR Relative Improvement
Left Thalamus 91% (0) 94% (1) 4% (1)
Left Putamen 90% (1) 95% (0) 6% (1)
Left Caudate 74% (0) 91% (1) 23% (1)

TABLE 1. Mean Dice coefficient values obtained on three structures using LOCUSB-TS and LOCUSB-TSR for
BrainWeb images, over 8 experiments for different values of noise (3%, 5%, 7%, 9%) and nonuniformity (20%, 40%).
The corresponding standard deviations are shown in parenthesis. The second column shows the results when
registration is done as a pre-processing step (LOCUSB-TS ). The third columns shows the results with our full model
including iterative estimation of the registration parameters (LOCUSB-TSR). The last column shows the relative Dice
coefficient improvement for each structure.

(a) (b)

(c) (d)

(e)

FIGURE 4. Evaluation of LOCUSB-TSR on a real 3T brain scan (a). For comparison the tissue segmentation obtained
with LOCUSB-T is given in (b). The results obtained with LOCUSB-TSR are shown in the second line. Major
differences between tissue segmentations (images (b) and (d)) are pointed out using arrows. Image (e) shows the
corresponding 3D reconstruction of 17 structures segmented using LOCUSB-TSR. The names of the left structures
(use symmetry for the right structures) are indicated in the image.
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6. Discussion

The strength of our Bayesian joint model comes from its specification via a coherently linked
system of conditional models. The whole consistent treatment and tractability of the resulting
coupled clustering tasks is made possible using Generalized Alternating Minimization procedures
that generalize the standard EM framework. It follows an approach made of steps that are easy to
interpret and that could be enriched with additional information. These modelling abilities are
illustrated on a challenging real data issue of segmenting both tissues and structures from MRI
brain scans. The results obtained with our cooperative clustering approach are very satisfying
and compare favorably with other existing methods. The possibility to add a conditional MRF
model for the intensity distribution parameters allows to handle local estimations for robustness
to nonuniformities. However, further possible investigations relate to the interpolation step that
we add to increase robustness to nonuniformities at a voxel level. We believe this stage could be
generalized and incorporated in the model by considering successively various degrees of locality,
mimicking a multiresolution approach and refining from coarse partitions of the entire volume
to finer ones. Also, our choice of prior for the intensity distribution parameters was guided by
the need to define appropriate conditional specifications p(ψk

c |ψ
k(ν)
N (c)) in (28) that lead to a valid

Markov model for the ψk’s. Nevertheless, incompatible conditional specifications can still be
used for inference, eg. in a Gibbs sampler or ICM algorithm with some valid justification (see
[16] or the discussion in [1]). In applications, one may found that having a joint distribution is
less important than incorporating information from other variables such as typical interactions. In
that sense, conditional modeling allows interesting flexibility in dealing with practical problems.
However, it is not clear when incompatibility of conditional distributions is an issue in practice
and the theoretical properties of the procedures in this case are largely unknown and should be
investigated. The tissue and structure models are also conditional MRF’s that are linked and
capture several level of interactions. They incorporate 1) spatial dependencies between voxels for
robustness to noise, 2) relationships between tissue and structure labels for cooperative aspects
and 3) a priori anatomical information (atlas). In most approaches, atlas registration is performed
globally on the entire brain resulting in structure segmentation performance that depends crucially
on the accuracy of this global registration step. Our method has the advantage of providing a way
to incorporate atlas registration and to refine it locally.

More generally, the framework we propose can be adapted to other applications. It provides a
strategy and guidelines to deal with complex joint processes involving more than one identified sub-
processes. It is based on the idea that defining conditional models is usually more straightforward
and captures more explicitly cooperative aspects, including cooperation with external knowledge.
The Bayesian formulation provides additional flexibility such as the possibility to deal, in a
well based manner, with some sort of non-stationarity in the parameters (as the one due to
intensity nonuniformities in our MRI example). Of course, depending on the application in mind,
more complex energy functions than the one given in our MRI illustration may be necessary. In
particular, for our example it was enough to consider separately cooperation between label sets
and spatial interactions. However, one useful extension to be investigated in future work, would
be to add a spatial component in the cooperation mechanisms themselves. We describe in the
Appendix a possible way to perform that.
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Appendix A: Spatial cooperative interactions

In segmentation tasks, spatial regularization between neighboring labels is usually desirable
and encoded via a smoothness or regularization term. We mentioned in Section 5.2.2 the use of a
Potts model term (21) with a regularization parameter that we simply write here η (previously ηT

or ηS). This parameter is positive when regularization is desired. A negative value of η would
have the opposite effect by favoring neighboring labels to be different. Images to be segmented
are however usually only locally smooth and contain discontinuities for which regularization
is not necessarily appropriate. The modelling of such spatial discontinuities has been intensely
studied and in particular via Line process models (see for instance [6, 13]). The idea we want to
use here is similar to that of Line processes. It consists of keeping the regularizing term as the
original one when no discontinuity is present while discarding the regularization term when a
discontinuity is introduced or detected. The particularity in our cooperative approach is that the
presence of discontinuities in one of the label sets (say t) is detected by considering the labels
values of the other label set (say s) and reciprocally. As regards tissues and structures in brain
MRI analysis, the key-point is then to determine for which instances of structure (resp. tissue)
segmentations, neighboring tissue labels (resp. structure labels) should not be regularized.

Let i and j be two neighboring voxels. When si and s j are in {e′1, . . . ,e′L} and T si 6= T s j , then a
compatible tissue segmentation should be so that ti 6= t j. Conversely, if ti 6= t j then si 6= s j should
be favored and no regularization applied between i and j when segmenting structures. More than
that, in both these cases, we may want to enforce repulsive interactions. Regarding the feedback
of tissues on structures, note that ti = t j does not necessarily imply si = s j but only T si = T s j .
However it is not clear whether the later condition provides enough regularization in s.

We first focus on structure segmentation, considering that a current tissue segmentation is
available. Let US+

i j (si,s j,ηS) denote a regularizing local energy term between voxel i and j.
Let US−

i j (si,s j,ηS) be the corresponding repulsive energy term. For instance if US+
i j (si,s j,ηS) =

ηS < si,s j >, the corresponding repulsive term can simply be US−
i j (si,s j,ηS) = −ηS < si,s j >.

Note that this is not the same as taking US−
i j = 0 as an alternative to regularization. Then, tissue

discontinuities can be defined by a binary function δ T
reg(ti, t j) =< ti, t j >. A tissue discontinuity

corresponds to δ T
reg(ti, t j) = 0 while no discontinuity corresponds to δ T

reg(ti, t j) = 1. A tissue
discontinuity implies that si 6= s j and then an appropriate interaction term would be the repulsive
energy US−

i j (si,s j,ηS). On the other hand, ti = t j does not necessarily imply that si = s j but only
T si = T s j so that an appropriate interaction term would be US+

i j (eT si ,eT s j ,ηS). It follows that to
account for the effect of t on s, an appropriate energy term would be

US
i j(si,s j, ti, t j,ηS) = δ

T
reg(ti, t j)US+

i j (eT si ,eT s j ,ηS)+(1−δ
T
reg(ti, t j))US−

i j (si,s j,ηS) ,

which in the Potts model case simplifies into

US
i j(si,s j, ti, t j,ηS) = δ

T
reg(ti, t j) ηS < eT si ,eT s j >−(1−δ

T
reg(ti, t j)) ηS < si,s j > .

Regarding the effect of structures on tissues, the situation is slightly different since a disconti-
nuity si 6= s j does not provide information on ti and t j in the sense that both ti = t j and ti 6= t j are
compatible solutions in this case. A more informative choice is to consider T si and T s j and to look
for discontinuities in T s. Let us assume that si and s j are not in the background (ie. both different
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from e′L+1). In this case, T si = T s j implies ti = t j and a regularizing term can be UT+
i j (ti, t j,ηT ). If

then si = e′L+1 or s j = e′L+1, it means that no information is available on ti and t j and we may also
choose to regularize using UT+

i j (ti, t j,ηT ). It is more convenient then to define δ S
reg(si,s j) as

δ
S
reg(si,s j) = < eT si ,eT s j >+

(1−< eT si ,eT s j >)(< si,e′L+1 >+< s j,e′L+1 >−< si,e′L+1 >< s j,e′L+1 >) ,

which is one when tissues can be regularized and 0 otherwise. Indeed, the first term < eT si ,eT s j >
is one when si and s j are structures made of the same tissue. When this is not the case, δ S

reg(si,s j)
is equal to the last term (< si,e′L+1 >+< s j,e′L+1 >−< si,e′L+1 >< s j,e′L+1 >) which is one if
and only if at least one of the voxels i or j does not belong to any structure. It follows then in the
energy, the spatial interaction term below

UT
i j (ti, t j,si,s j,ηT ) = δ

S
reg(si,s j)UT+

i j (ti, t j,ηT )+(1−δ
S
reg(si,s j))UT−

i j (ti, t j,ηT ) ,

which for the Potts like term above leads to
UT

i j (ti, t j,si,s j,ηT ) = (2δ S
reg(si,s j)−1) ηT < ti, t j > .

Eventually, one way to encode all that using the energy decomposition of Section 5.2.2, is to
set, HT (t) = ∑

i∈V
∑

j∈N (i)
UT−

i j (ti, t j,ηT ), HS(s) = ∑
i∈V

∑
j∈N (i)

US−
i j (si,s j,ηS) and

H̃T,S(t,s) = ∑
i∈V

< ti,eT si >

+∑
i∈V

∑
j∈N (i)

δ
S
reg(si,s j) (UT+

i j (ti, t j,ηT )−UT−
i j (ti, t j,ηT ))

+∑
i∈V

∑
j∈N (i)

δ
T
reg(ti, t j) (US+

i j (eT si ,eT s j ,ηS)−US−
i j (si,s j,ηS)) .

For the Potts model case, it simplifies into HT (t) =−ηT ∑
i∈V

∑
j∈N (i)

< ti, t j >,

HS(s) =−ηS ∑
i∈V

∑
j∈N (i)

< si,s j > and

H̃T,S(t,s) = ∑
i∈V

< ti,eT si >

+∑
i∈V

∑
j∈N (i)

2δ
S
reg(si,s j) ηT < ti, t j >+δ

T
reg(ti, t j) ηS(< eT si ,eT s j >+< si,s j >) .
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