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Abstract: In the binary classification framework, a closed form expression of the cross-validation Leave-p-Out (LpO)
risk estimator for the k Nearest Neighbor algorithm (kKNN) is derived. It is first used to study the LpO risk minimization
strategy for choosing k in the passive learning setting. The impact of p on the choice of k and the LpO estimation of
the risk are inferred. In the active learning setting, a procedure is proposed that selects new examples using a LpO
committee of kNN classifiers. The influence of p on the choice of new examples and the tuning of & at each step is
investigated. The behavior of k chosen by LpO is shown to be different from what is observed in passive learning.

Résumé : Pour I’algorithme de classification des k plus proches voisins (kNN), une expression explicite de I’estimateur
du taux d’erreur de classification par validation croisée Leave p Out (LpO) est proposée. Cette expression explicite est
d’abord utilisée dans le cadre de 1’apprentissage passif pour étudier I'impact du choix du parametre p du LpO sur le
choix de k dans I’algorithme KNN. On s’intéresse ensuite au probleme de 1’apprentissage actif (active learning). Une
procédure de sélection des exemples basée sur la recommandation du comité des classificateurs LpO est considérée.
L’influence du parametre p sur le choix des nouveaux exemples et sur le choix du parametre £ a chaque étape de
I’apprentissage actif est étudiée. En particulier, il est montré que I’évolution de la valeur du parametre k choisie par
LpO en apprentissage actif est différente de celle observée en apprentissage passif.
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1. Introduction

Classification We consider the binary classification framework, where the goal is to predict the
unknown label Y € {0, 1} of an observation X. In the following, Z represents a random variable
and z its realization. To this purpose, one aims at building from data D = (X;,Y}),...,(X,,Y,) a
classifier f: 2" — {0,1} whose classification error rate

L(f) = P(f(X) #Y|D)

is as low as possible, where P(- | D) denotes the probability with respect to (X,Y) given D. The
risk of a classifier f is defined as R(f) = Ep [P(f(X) #Y | D)].
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84 Celisse and Mary-Huard

kNN The k Nearest Neighbor algorithm (kKNN, [4, 5]) is a very popular algorithm designed for
this problem, that has been successfully applied to many difficult classification tasks [6, 12]. The
principle of the kNN classifier is simple: first, for a given observation x to classify, find X1y, ...X()
the k closest points to x in the training set, then classify x according to a majority vote decision
rule among these k neighbors. A variant is the Weighted kNN classifier (WkNN), where the weight
of each neighbor in the majority vote decision rule depends on its proximity to x (the closer to x,
the higher the weight).

Cross-validation Cross-validation (CV, [13]) is a widespread strategy to assess the performance
(in term of classification error rate) of a classifier, or to tune the inner parameters of a classification
algorithm. The idea behind CV is to split data: part of data (the training sample) is used for
training the algorithm, and the remaining part (the validation sample) is used for estimating
the classification error rate of the algorithm. Then, CV selects the algorithm with the smallest
averaged classification error rate. There are several ways to implement the CV strategy, but we
only consider two of them:
*x K-fold CV (KCV): the complete dataset is divided into K subsamples with equal size n/K,
and each subsample is successively used for validation,
* Leave-p-out (LpO): every possible subset of p observations is successively left out of the
sample and used for validation.
In practice, because of its prohibitive computational cost, the LpO procedure is almost never
applied except with p = 1 where it amounts to the well known leave-one-out. As an alternative,
the KCV procedure is used as a surrogate of LpO, at the cost of a higher variability due to the
arbitrary splitting of the complete dataset into K independent subsamples. Applied to kNN, CV
can be used to select the value of parameter k, or to evaluate the performance of the final kNN
classifier.

Active Learning In active learning, the learning algorithm is allowed to select the data from
which it learns, in order to speed up its performance [9]. In the pool-based sampling scenario, a
pool of unlabeled observations is available, along with a small sample of labeled data. The goal is
to identify which observations of the pool should be added to the training set to achieve optimal
performance. Among many strategies to select unlabeled observations, the query-by committee
(QbC) approach is quite popular and has shown promizing results ([8, 10]). QbC consists in
consulting a committee of classifiers (experts) to predict the label of the unlabeled observations,
and to select the observations for which the committee classifiers most disagree. The committee
can be constituted of classifiers obtained by applying the same classification algorithm to different
training sets.

Contribution The rest of the paper is organized as follows. Section 2 describes a new efficient
calculation strategy of the LpO estimator for kNN and WkNN (weighted kNN) classifiers. These
closed-form expressions enable the practical use of LpO for kNN classifier at almost the same
algorithmic cost as standard empirical risk minimization as long as p remains not too large with
respect to n. Section 3 is devoted to passive learning. The behavior of the minimizer k, of the
LpO estimator is investigated with respect to the sample size n and parameter p. In particular, it
is shown that the choice of p is crucial for choosing k, unlike what happens for estimating the
risk of a given kNN classifier. Finally, in Section 4, a procedure called LpO-QbC is proposed in
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Cross-validation for kNN 85

the active learning setting. The influence of p is also experimentally analyzed at each step of the
LpO-QbC procedure. In particular, the optimality of L10 is empirically shown for selecting the
examples to request from the pool.

2. Exhaustive cross-validation for ANN

In this section, we show how the computational burden of the LpO procedure for kNN and
WENN can be drastically reduced in the binary classification framework. The derivation is split
into two parts. First, a conditioning trick is used to reduce the computational time from &((},)) to

O (np x (k,j ”)). Second, weighted and non-weighted kNN classifiers are successively considered.

2.1. Conditioning

Let (x1,y1), ..., (xn,ys) denote the complete set of data. Each step of the LpO procedure splits
this set into a training sample e of size n — p and a validation sample ¢ of size p. Let f¢ denote
the kNN classifier built from e and & the set of all possible training samples. Set R ,0(k) the
estimation of the kNN performance based on LpO:

1
RLPO(k) = (Z)il Z <p Zﬂ{fe(xi)#yi}> : M

ecé i¢e

For a given point i in the validation set e, let Vk" denote the rank of its associated k' neighbor in
training set e. We have

Proposition 1. Let (E,E) represent a random splitting of the complete set of data into 2 subsam-
ples of size n— p and p, respectively. Then,

| <
Ripo(k) = ;ZP(zeE) Y P(Vi=jlicE)P(ff(x)#ylicE, Vi=j) (2
=1 j=k
Al A2 A3

Note that Vk" is a random variable since it depends on the random splitting (E, E).
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Proof.

Ripo(k) = ()7'Y = Zﬂ{ff ()i}

143 Dicz
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O
Let us successively specify Al, A2, and A3. Since E is uniformly distributed over &, it comes
Vie[l,n], PicE)="L .
n

For A2, one also has

vie[l,n], P(Vi=jlieE) =

where U — J€(j,n— j—1,p—1) and 5€(a,b,c) denotes the hypergeometric distribution with

a the number of white balls, k the number of black balls and ¢ the number of balls to draw. An

important feature is that neither A1 nor A2 actually depend on i. Actually, i only arises from As.
To evaluate the computation cost of A3, let us consider the ordered sequence X( 1y ,X(’n_l)

where X(’k) is the k" neighbor of i in the complete sample. Since p observations (including i) are re-

moved at a given step of the LpO procedure, the first k neighbors of i belong to {X{l), ...,X(ik +p_1)}.
Once this list is obtained (by applying the (k+ p — 1)NN classifier to the complete data), one only
needs to compute the number of times (over all splittings) the majority label is that of observation

i, for each value of j. Therefore, the computational cost to compute A3 for a given observation is

of order
s (“ﬁl (;!J)) <o(p(i))

Jj=k
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Cross-validation for kNN 87

that does not depend on n. As a consequence, the computation of Ry 0 is linear in n. Let us now
specify A3 for weighted and non-weighted kNN classifiers.

2.2. Weighted kNN

The weighted kNN rule is defined as

1 if le:lW)(C[)H{Y(g):l} > Z]ec':l W@)H{YMFO}
0 otherwise ,

Swinn (x) = {

where w’(‘g) is the weight associated with the £ neighbor of x. Usually, the weight depends on the

distance between x and its ¢/ neighbor. The previous classifier can be rewritten as

1 if ZIEC:I W)(CK)H{YM):I} - Z]lle W)(CE)H{Y(@:O} > s
0 otherwise ,

fWkNN(X) = {

where threshold s is chosen to be 0.

A3 corresponds to the frequency at which observation i is misclassified given that its j
neighbor in the complete sample is its k'* neighbor in training set E. Once this conditioning is
done, the k neighbors of i belong to the list {X(il), ...,X(ij) }. Let us define Wy and W as follows:

(

Wi = {wiy | X € {X(;),-X{j} and Yy =1} .
One has
N(Wo,Wi,k,s)
()
where N (WO, Wi, k,s) is the number of combinations of k elements selected in list {Wo, W1} such

that Y pew, Wiy — Xoew, W (0 > 5 Assume without loss of generality that w( 3 belongs to set Wj.
Then,

A3=P(fE(x)#yli€E, Vi=j)=

)

N(Wo, Wi, k,s) =N (WO\{wél)},Wl,k— Ls—w'@) N (Wo\{wél)},Wl,k,s)

The computation of N(Wy, W}, k,s) can be obtained using recursive programming. An algorithm
based on this strategy is proposed in the Appendix. In the case of inequal weights, the computa-

tional cost to compute Ry o is & (np (HP ) )

2.3. Non-weighted kNN

In the case where all neighbors receive the same weight in the majority vote classification rule,
the computation of A3 is straightforward. Let n'; be the number of 1s among the j neighbors of i
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88 Celisse and Mary-Huard

in the complete sample. The quantity n’J can be obtained for all i and j € [1,k+ p — 1] by running
the (k+ p — 1)NN classifier. We have:

P(fE(xi) 7éyi|iEE7 Vkl:.]) :H{inO}P(fE(xi) = I‘IEE_v Vkl:.])
+ Iy P (fF () =0li € E, Vi = j) .

Let N be the number of 1s among the k nearest neighbors of i in sub-sample E, and Nij the
number of 1s among the j nearest neighbors of i in the complete training set. Assuming k is odd
for sake of simplicity, one obtains:

P(ff(x)=1li€E, Vi=j)=P(NF >k/2li € E, Vi =)

k+1 k—1
(o () ()

3)

where H — %”(N,-j,j—N,-j —1,k—1),H < ,%”(Nl] - l,j—Nij,k— 1), and Fy stands for the
cumulative distribution function of variable H.

Similar formulas can be derived for P (f%(x;) = 0i € E, V} = j).
This shows that in the case of equal weights, the computational cost to compute Ry ,0 is

O (np) instead of & (np (if’f ) ), i.e. LpO for the kNN classifier can be performed at the same
computational cost as L10 for the (k+ p — 1)NN classifier, whatever p.

2.4. Computation time

Figure 1 displays the computation time of the exact LpO procedure for the non-weighted
kNN classifier, for k = 50 and p = 100,200, 300,400. The complete distance matrix between
observations is calculated beforehand. For each observation, the label is drawn in a Bernoulli
distribution Z(q), results are presented for ¢ = 0.1. One can observe that the computation time is
linear in n and p. As an example, exact LpO for a training sample of size n = 5000 and p = 200
is run within a minute.

Table 1 provides the average computational time of the weighted procedure, on a sample of
500 observations. Results are presented for ¢ = 0.1 and 0.3. Weights in the majority voting rule
are all equal to 1. Interestingly, the computational burden associated with the proposed algorithm
decreases with the noise level g. As a comparison, for k =9, p =25 and n = 500 the exact LpO
procedure for non-weighted kNN is run within one second.
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FIGURE 1. Computational time (in seconds) of LpO procedure for the non-weighted kNN classifier, with k = 50. The 4
curves correspond to p = 100,200,300,400 (from bottom to top).

k/lp| 5 10 15 20 25
3 10400 09(0.0) 1.5 (0.0) 2.3 (0.0) 3.2(0.1)
5 108(0.0 3.0(0.2) 7.6 (0.4) 16.1 (1.1) 30.6 (2.3)
7 | 1200 7004 30826 111.6(112)  334.9 (30.6)
9 | 1.7(0.1) 18.1(1.6) 1543(18.7) 817.6(69.8) 3009.3 (151.2)
g=0.1
kip| 5 10 15 20 25
3 10500 1.3(0.1) 2.4(0.2) 3.8(0.3) 5.4 (0.4)
5 | 150.1) 7606  221(1.6) 50.9 (3.4) 101.7 (6.1)
7 | 28(0.1) 244(1.8) 1245(10.0) 473.1 (34.0) 1417.0 (69.7)
9 | 46(0.4) 73.1(5.1) 6769(49.4) 4238.8(233.7) 19009.4 (846.6)

q=03

TABLE 1. Average computational time in seconds (and standard deviation) of LpO procedure for the weighted kNN
classifier, for different values of k, p and q. Average and SD are computed on 6 replicate samples.

3. Passive Learning

Using kNN classifiers in passive learning requires to choose k. This can be done using LpO.
Forevery 1 < p <n,

k, = arg lr<nki£1nRLp0(k) .

In the specific case p = 1, some theoretical results exist on the asymptotic behavior of k; with
respect to n [3]. Having access to exact LpO enables to further infer the relationship between p
and k,, at least to a practical point of view.
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90 Celisse and Mary-Huard

3.1. Influence of n on k, (p fixed)

Calculations of Section 2 on the LpO estimator allow to study &, with respect to n for various

values of p. A simulation study has been carried out to infer the behavior of k,, following the
simulation scheme described in Section 4.3.
Figure 2 (left) displays k, with respect to n for a level of noise g = 0.2, and gives a representative
picture of the results. It shows that k,, is sub-linear with respect to 7 as long as p is kept independent
of n. Since it is known that kNN estimators are consistent as long as k = o(n) [3], it leads us to
conjecture that the kNN classifier computed from k, neighbors (with p fixed) is consistent.

3.2. Influence of p on k, (n fixed)

When several estimators are available, choosing the best one is a classical issue in statistics.
Model selection is a typical strategy aiming at addressing this question. Choosing the number k of
neighbors involved in the definition of the kNN estimator enters into this setting.

In the regression and density estimation framework, is has been shown that the choice of p can
be crucial to perform efficient parameter tuning [1]. A similar conclusion is supported by our
simulation experiments.

We first observe that increasing p entails a smaller choice of k, (see Figure 2 (right) and
Table 2), which can be desirable as shown in the following. This phenomenon is observed with
several noise levels from ¢ = 0.1 up to g = 0.4 (not shown).

Second, it is necessary to choose p larger than 1 as soon as the noise is not null. Indeed, LpO
with small values of p leads to choose too large values of k when the noise is not null. This
observation is supported by Figure 2 (right) and Table 2, where the minimum locations of red
curves (small values of p) are larger than that of the black curves (which displays the true risk
computed on a large validation set). This is also observed with a noise level 0.1 < g <0.4. A
growing noise reduces the influence of the bias in the fitting of the kNN classifier, leading to a
larger optimal k (compare black curves of Figure 2 between center and right panels). LpO with
small values of p exhibits a higher sensitivity to this phenomenon than with larger values of p
(Figure 2 right panel).

Therefore, this trend can be balanced by using larger values of p (since higher p yield lower k).
Indeed, we observe on Figure 2 that for some values of p larger than 1 (blue curves), the minimum
location is close (or equal) to the best possible k.

This suggests that (7) using L10 can be misleading, (if) a convenient choice of p > 1 is required
to provide a reliable k,.

1<p<10 | 11<p<30 | 40<p<80 | p>80 | Test
k 21 19 17-15 13-9 17

TABLE 2. Choice of parameter k by LpO for different values of p, or by test sample, when g = 0.3.
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FIGURE 2. Left: Evolution of k (in ordinates) with respect to sample size n, g = 0.2. Black points correspond to k,, red
points correspond to the optimal choice of k (based on a large test sample). Center: Plot of the average classification
error rate (in ordinates) evaluated by LpO with different p (colored curves) or on test samples (black curves), for
different values of k (x-axis) and for noise level ¢ = 0. Red curves correspond to values of p lower than 20, green
curves to values of p between 20 and 80, and blue curves to values higher than 80. Right: Same representation as
previous, for noise level g = 0.2.

3.3. Risk estimation

In many applications, one is also interested in a sharp estimation of the performance of a given
classifier. Due to the computational cost of LpO, this performance is often estimated with p = 1.
One can wonder whether higher values of p should yield better results.

First, Figure 2 shows that large values of p (blue curves) lead to biased estimations of the true
risk (black curve). In other frameworks ([1, 2]), CV is known to be all the more biased as p is
large.

Second, these theoretical considerations entail that the least biased LpO estimator is obtained
with p = 1. Figure 2 supports this conclusion since, for a fixed &, small values of p remain close
to the black curve. Note that, depending on the noise level, larger values of p can also lead to
reliable estimates of the true performance (not shown here).

Third, an important conclusion arising from the case g = 0 (center of Figure 2) is that model
selection and risk estimation can be contradictory objectives. All values of p lead to choose k =1
from a model selection point of view. However, only p = 1 yields a (nearly) unbiased estimation
of the risk.

4. Active Learning

Active learning differs from passive learning by the possibility for the algorithm to select
the data (examples) from which it learns. The goal is to learn a classification rule from as few
examples as possible.

4.1. LpO-0bC active learning

We consider the pool based sampling scenario, where a small training set of size n(?) and a
large pool of unlabeled examples are available. At each round ¢, one can select m examples from
the pool. These example are added to the training set after disclosure of their label, the training set
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growing to size n¥). Therefore, active learning crucially depends on the strategy used to choose
the “best” m examples to add.

Since the work of [11], the query by committee strategy (QbC) has been widely investigated.
From a large committee of classifiers (also called experts), each expert predicts the label of every
example of the pool. The “best” m examples are those for which the committee experts most
disagree.

In the present work, the LpO-QbC algorithm is proposed. At round ¢, this active learning
algorithm alternates two steps:

— Point selection step: a LpO committee of (”(:1)) kNN classifiers is constituted from the n(‘~1)
training examples. Then, m examples are selected from the computation of the agreement
Appo(x) (see Section 4.2), computed for each point x of the pool.

— Tuning step: a new set of kNN classifiers { fiyn }« is computed from the n) =pl=0 4 m
training examples. Since the training set grows at each round, the choice of & is tuned by
minimizing the LpO estimator over k.

Note that LpO is used twice. At step 2, LpO is used for choosing k, that is to perform model
selection (see Section 2 for an efficient computation, and Section 3 about the influence of p on
the tuning of k). At step 1, LpO is used to build the committee and select the examples on the
basis of their agreements, which amounts to risk estimation (Section 3.3). Since these purposes
are different, the optimal choice of p at these two steps could be different.

4.2. Agreement of the kNN LpO-committee at a new point

The present section defines the agreement Az, (x) at example x, and its efficient computation
using the same trick as in Section 2.

For any committee € of classifiers {f!,..., N}, let us define the agreement A« (x) at any
(unlabeled) example x

1

1 N
Acl) = 2x| G Y Tz 3

)

where the label of x is fixed to 0, without any incidence on the agreement between the classifiers.
If half of the ¥’-committee classified x as 0, then the average misclassification rate at point x is

close to 0.5, and agreement A4 (x) is close to 0.
At round /, the LpO committee is the set of kNN classifiers f¢ built from a subsample e of

n)—p examples drawn from the n®) training examples. The agreement of the LpO committee at
point x is denoted by A7 0 (x). It can be efficiently computed with the same trick as in Section 2:

MON Kk ) k+1
( > LIy = Y SPU=j—k)x {H{y_f—()} (1 — Fi <2>>

p =
k—1
o (180 (7))

where U < #(j,n") — j, p), H — (N}, j—N{,k—1), and H' < J(N],j—NJ,k—1). N}
denotes the number of 1s among the j nearest neighbors of x in the training set.
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3]

1]

L

FIGURE 3. Example of pool sample P° (left), starting training set E° (center), and final training set E®° after 60 steps
of active learning (right) for ¢ = 0.2. Red and black colors indicate the label.

4.3. A short illustration of the LpO-QbC strategy

The goal of the present section is to assess the performance of LpO-QbC as an active learning,
compared with a passive learning algorithm based on LpO. In particular, as an active learning
algorithm, LpO-QbC should mainly select examples in regions where the classification task is
difficult. LpO-QbC is also expected to improve on passive learning in terms of final error rate.
These two aspects of LpO-QbC are inferred on simulated and real data.

For both types of data, one starts with a training set E° and a pool set P°. At each round ¢,
m = 5 new examples are selected from the pool using LpO-QbC with p = 10 (point selection).
Then a kNN classifier is trained on E(Y), with k chosen by LpO minimization with p = 10 (tuning
step). The classifier performance is evaluated on P\). This process (point selection and tuning
step) is repeated 60 times, that is 0 < £ < 60.

Simulations 2-dimension data are simulated. X = (X!, X?) is generated using a mixture of 3
Gaussian distributions, with proportions (0.2,0.2,0.6), means (0.25,0.25), (0.5,0.75), (0.75,0.75),
and common covariance matrix I>. The label Y is generated conditionally to X: if (X' < 0.2 and
X% <0.2) or (X! > 0.8 and X? > 0.8) then P(Y = 1|X) = g, otherwise P(Y = 1|X) =1 —q.
Several noise levels are considered: g = 0,0.1,0.2,0.3, and 0.4. 100 repetitions of each condition
have been performed. The initial sizes of training and pool sets are 50 and 10.000, respectively.

Figure 3 shows these 2 sets for a round simulated with ¢ = 0.2, and the final training set £
after 60 steps of LpO-QbC active learning. This confirms the good behavior of LpO-QbC that
mainly focuses on examples lying on the boundary between the 2 classes. This was also observed
for other values of p and g (not shown).

According to Figure 4 (left), after 60 rounds, LpO-QbC achieves an averaged misclassification
rate of 21.5%, whereas the LpO-based passive (p-LpO) learning algorithm achieves 23%. Clearly,
LpO-QbC outperforms p-LpO.

Spam data The Spam data consists of 4601 observations and 16 variables (see [7], p.264, for
a complete description and the list of variables). At each round, 50 observations are randomly
selected to form the training set E°. Remaining examples form the pool P°.

On these data, LpO-QbC and p-LpO achieve an average performance of 20.2% and 16.2%
respectively, for a final training set of size 350 (Figure 4 (right)). As for simulated data, LpO-QbC
focuses on examples close to the border between the two classes (not shown) and outperforms
p-LpO.
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FIGURE 4. Performance of LpO-QbC (o) and passive kNN (+) on simulated data (left), and Spam data (right).

4.4. A deeper analysis of LpO-QbC

In this section, we investigate the influence of p on each of the two steps of LpO-QbC. The
following results come from the data simulated in Section 4.3.

Point selection step To evaluate the influence of p at step 1, i.e. the influence of the committee
size, k is fixed at 7 during the tuning step, so that LpO is only used for point selection. Different
values of p are considered, from 1 to n¥) /2. For instance, note that p = 1 corresponds to the
smallest committee with only n¥) kNN classifiers.

According to Figure 5 (left and center), the size of the LpO committee has no or little impact: the
smallest committee (p = 1) performs as well as larger ones (p = 2,5, 10 or 20), whatever the level
of noise. However, when the size is raised to p = n() /2, the performance strongly deteriorates.
Quantifying agreement A7 ,0(x) at every example x of the pool amounts to accurately estimate
P(Y = 1|X = x). This is strongly related to the risk estimation issue discussed in Section 3.3,
where it is known that small values of p provide the best estimators in terms of bias-variance
trade-off. These theoretical considerations explain the behavior observed in Figure 5 (left).

Tuning step At step 2, LpO is used for choosing k, which amounts to model selection. In the
present experiments, p is fixed at 10.

From Figure 5, one can see that the evolution of k, as a function of n is completely different from
that of Figure 2: k,, remains constant or decreases.

Let us introduce the conditional oracle (dashed line), which is the best possible choice of k
knowing the truth and given the training set E¢. Two stages are observed in the evolution of
the conditional oracle. First, the conditional oracle explores the complete space to identify the
boundaries: kor,cle increases. Second, once the boundaries are found, it focuses on examples close
to the boundary: smaller values of k are then selected. Compared with Figure 2, this illustrates the
specificity of the model selection problem in the context of active learning.

The evolution of ky,cle sheds light on the evolution of kj, and the reason why it does not grow
with n. However, for a fixed p, the choice of k by LpO leads to overfitting: values smaller than
koracle are always selected.
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FIGURE 5. Left: Performance of the committees for k = 1 (cyan), 5 (black), 10 (green), n<£)/2 (blue) and passive
learning (pink), ¢ = 0.2. Center: Performance of the committees and passive learning, g = 0.4. Right: Evolution of k
at each step of the active learning, for the LpO-QbC strategy (solid) and the conditional oracle (dashed), with g = 0.1
(black), 0.2 (red) and 0.3 (green).

5. Discussion

In applications of kNN to real data, LpO is used either to assess the performance of a kNN

classifier (risk estimation), or to choose k (model selection). In both cases, p is fixed at 1 in
most cases for computational reasons. In the model selection setting, there is no guideline for
practitioners about the relationship between p and k,, or about the relevance of the selected value
k1. From a theoretical point of view, relating the optimal p to the signal-to-noise ratio and the size
of the training set is of great interest.
The closed-form expressions derived for the LpO estimator associated with kNN and WANN
classifiers yield an efficient and practical tool to study the behavior of k,, both for theoretical and
practical purposes. Exact LpO should be preferred to its classical surrogate KCV, since LpO is
less variable (with K = n/p).

In passive learning, some theoretical results already exist about the application of L10 to kNN
[3]. But to the best of our knowledge, there is no such result for the general LpO procedure.
The present simulation study is a preliminary work before the theoretical analysis of LpO in the
passive learning setting. Some further work is required to get more insight toward a data-driven
calibration of p.

In active learning, LpO can be used for point selection (when considering the QbC strategy)
or for parameter tuning. We showed that point selection does not exhibit any strong dependence
on p, which validates the use of L10 for this step. Conversely, p can be crucial for choosing
k conveniently, as for passive learning. At each step, since requested points are not randomly
chosen, the classical theory of model selection provides very few guidelines toward an effective
selection of k. In this context, data driven procedures such as LpO are all the more attractive.
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Appendix: Algorithms for WkNN Leave-p-out

Positive weights First, the following problem is considered: assuming that m objects have
positive values w; < ... < wy,, how many combinations (without replacement) of k of these objects
among m lead to a total value higher than s, with s > 0 ? Denote W = (wy,...,w,,), and N(W,s,k)
the number of combinations for which the condition is fulfilled, and (W, s) the breakpoint index
of W. The breakpoint index is the smallest j such that }; jw; > § (if for all j };<;w; < § then
I(W,s) = m+ 1 by convention).

There are several convenient settings where N(W,s,k) can be computed:
-if k=1, then N(W,s,k) = m —max{j/w; < s},
- if W is of length k, then N(W,s,k) =0 or 1,
-if I(W,s) < k then N(W,s,k) = ('),
-if I(W,s) =m+ 1 then N(W,s,k) = 0.

Based on these remarks, the proposed algorithm is:

Require: W, s, k
L < length(W)
BI < breakpoint_index(W ,s,k)
BoolCond < check_conv_settings(W ,s,k,L,BI)
if BoolCond = 1 then
NumbComb <+ compute_numb_comb(W ,s,k,L)
else
NumbComb =0
for i = Bl to L do
NumbComb < NumbComb + Pos_Weights(W [l : i —1],s — W[i],K — 1)
end for
end if
return NumbComb

In practice, this algorithm is faster than the naive algorithm based on recursive programming
only (i.e. where the breakpoint index is not computed).

Positive and negative weights We now assume that mg objects have negative values w(l) <...<
w%o, and m; objects have positive values w} <..< w,l,1 i and we wonder how many combinations
(without replacement) of k of objects among mg + m; lead to a total value higher than s. We
note W; = (wh,...,wi, ) for i = 0,1, W = (Wp,W;), and denote N(Wo,W,,s,k) the number of
combinations for which the condition is satisfied.
The convenient settings where N(Wy, W), s,k) can be computed are the following ones:

-if k=1, then N(Wo,Wi,s,k) =m—max{j |w; <s, w; € W},

- if W is of length k, then N(Wy,W;,s,k) =0 or 1,

Besides, if either Wy or W; is empty we can use algorithm 5 proposed in the previous paragraph.
The new algorithm is then:
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Require: Wy, Wy, s, k
L < length(Wy)
Ly < length(W,)
BoolCond < check_conv_settings(W;,W,s,k.L1,L>)
if BoolCond = 1 then

NumbComb < compute_numb_comb(W; ,W,,s,k,L{,L>)

else if is_empty(Wp) then

NumbComb < Pos_Weights(Wy,s,K)

else if is_empty(W) then

NumbComb <+ (,f

) - Pos_Weights(—Wp, —s,K)

my

else

NumbComb < PosNeg_Weights(Wo, Wi [1: Ly —1],K —1,s —w} )
+ PosNeg_Weights(Wy, Wi [1: L} — 1],K,s)

end if
return NumbComb

Notice that the recursive call of the algorithm can be refined by reducing either Wy or W)
(depending on which one has the smallest number of items) instead of W; only. In this case, the
"worst" cases are the one where Wy and W) are of equal size, i.e. intuitively cases where the noise
level is high.
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