Vol. 162 No. 1 (2021)

1 #k Journal de la Société Francaise de Statistique
®
[ ]

SOCIETE FRANCAISE
DE STATISTIQUE

Cluster or co-cluster the nodes of oriented graphs?

Titre: Classification non supervisée de graphes orientés : faut-il distinguer les nceuds origines des
noeuds terminaux ?

Christine Keribin!

Abstract: When clustering the nodes of a graph, a unique partition of the nodes is usually built, either the graph
is undirected or directed. While this choice is pertinent for undirected graphs, it should be discussed for directed
graphs because it implies that no difference is made between the clusters of source and target nodes. We examine
this question in the context of probabilistic models with latent variables and compare the use of the Stochastic Block
Model (SBM) and of the Latent Block Model (LBM). We analyze and discuss this comparison through simulated and
real data sets and suggest some recommendation.

Résumé : Lors de la classification non supervisée des nceuds d’un graphe, une partition unique des nceuds est
généralement construite, que le graphe soit orienté ou non. Bien que ce choix soit pertinent pour les graphes non
orientés, il devrait étre discuté pour les graphes orientés car il implique qu’aucune différence n’est faite entre les clus-
ters de nceuds source et cible. Nous examinons cette question dans le contexte des modeles de clustering probabilistes
a variables latentes et comparons 1’utilisation du modele de blocs stochastiques (SBM) et du modele de blocs latents
(LBM). Nous analysons et discutons cette comparaison a travers des jeux de données simulées et réelles.
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1. Introduction

Graphs are powerful tools to model complex phenomena arising with structured network data as
they take into account the interactions between individuals or entities: the network is defined as
a graph whose nodes (or vertices) are the individuals and edges represent the links between the
individuals. The origin of graph theory dates back to Euler’s solution of the Konigsberg’s bridges
in 1736 (Euler, 1741). Graphs have been continuously studied since (Bollobas, 1998, 2013)
as well as their use in applications arising in many fields such as social science (detection of
social or scientific communities), biology (protein-protein interactions, genes networks), ecology
(pollination network, food webs), telecommunication (cell phone calls networks) or transport
(rental bike sharing stations network).

Graphs can be regular such as lattices, but with data coming from the real life, a natural way
is to model the presence of an edge according to a random process, leading to random graphs.
The archetype of random graph was introduced by Erdds and Rényi (1960) where the probability
of having an edge between a pair of vertices is equal for all possible pairs. The availability of
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large network data drives the development of models and algorithms to handle random graphs,
see Kolaczyk (2009) for an introduction to graph tools, modelling and inference.

Clustering is of major importance in unsupervised learning as it aims to group observations
or individuals that are similar inside a group and dissimilar between groups. The stochastic be-
haviour of nodes in a network is usually heterogeneous, and clustering a graph, i.e. partitioning
its nodes into classes sharing the same connection behaviours, is of great interest to describe the
graph heterogeneity, as it sums up the network through groups with different behaviours. For
example in community detection, one wants to find groups of people that are highly connected
between them, and less connected to people from other groups, such as for internet web com-
munities (Flake et al., 2002). There are many other applications in molecular biology (to study
protein coregulation (Airoldi et al., 2005) and gene co-expression (Vasseur, 2017)), ecology (Gir-
van and Newman, 2002) or transport (Etienne and Latifa, 2014). This field is very active, as can
be seen from the flourishing number of surveys to provide updated overviews (Fortunato, 2010;
Goldenberg et al., 2010; Matias and Robin, 2014; Abbe, 2017). Leger et al. (2014) introduces the
difference between community detection where nodes are highly connected inside the clusters
and less connected between clusters from structurally homogeneous subsets detection, where
nodes of a cluster share a similar interaction profile. This latter definition is more general and
includes the case of community detection.

Graphs can also connect two different sets of nodes that can be very different: for example,
interactions between customers and products to study the purchase relationship. The objective
is to segment the clients simultaneously with the products, helping to set up an efficient rec-
ommendation system (Reddy et al., 2002; Bennett and Lanning, 2007). Such graphs are called
bipartite, and the simultaneous clustering of the two sets is called co-clustering. Note that it
is sometimes named biclustering, although this denomination can also refer to the search of a
subset of nodes having a common behavior, rather than a partition (Madeira and Oliveira, 2004;
Brault and Lomet, 2015). Bipartite graph coclustering is used in many other applications such
as text mining (Dhillon, 2001), ecology (Vacher et al., 2008; Thébault and Fontaine, 2010) or
marketing (Shan and Banerjee, 2008).

A graph is directed when the direction of the interaction between two nodes matters, i.e. when
the edges i — j and j — i between nodes i and j are different, undirected otherwise. The clus-
tering of directed graphs is adapted from the clustering of undirected graphs to take into account
the direction of the connection and provide a partition of the nodes (Mariadassou et al., 2010).
However, as pointed out by Celeux and Vasseur (2018), nodes of a directed graph intrinsically
own different roles (source or emitter nodes in one hand, target or receiver nodes in another hand)
and an interesting question is whether source and target nodes should be similarly clustered.

For example, the corpus of emails exchanged by employees within a corporation, such as in the
Enron email dataset !, defines a directed graph on the employees. Its clustering provides a unique
partition of the employees according to their connection profiles. However, as the direction of
the sending matters, one could find more appropriate to define two partitions, one to reflect the
emission behavior, the other to reflect the reception behavior: hence, to perform a co-clustering
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of the bipartite graph where each employee belongs to two distinct sets, that of emitters and that
of receivers, instead of a simple node clustering, thus giving a higher level dual insight.

QOutline Our main goal is to address the general question of clustering versus co-clustering the
nodes of an oriented graph in the context of blocks models, a family of probabilistic models for
simultaneous clustering of rows and columns of a data matrix. Section 2 introduces the main
concepts and methods. Section 3 defines the framework of probabilistic block models LBM and
SBM, presents their estimation and discusses model selection criteria. Section 4 is devoted to the
comparison of both models on simulated data and section 5 on two real data sets. A discussion
ends the article.

2. Concepts and methods

Let us deeper enlighten the general problematic and introduce oriented graphs and their cluster-
ing.

Graphs A graph ¥ is defined by a couple of two sets 4 = (V,E), where V is a set of vertices,
also called nodes, representing the individuals or entities, and E is a set of edges, pairs of ver-
tices representing the connections between these vertices. A graph is characterized by its binary
adjacency matrix A where A;; = 1 if there is an edge between the nodes i and j, and 0 otherwise.
The edges may be directed (or oriented) or not. The edges are said to be directed if edge
(i,j) and edge (j,i) (with i,j € V, i # j ) are different, and the considered graph is called a
directed graph. If the edges are not directed, (i, ;) and (j,i) represent the same edge and the
graph is called undirected. For example, in case of mail exchanges, considering an oriented
graph between people allows not only to model the range of the relationship, but also to take into
account which is the sender and which is the receiver. Figure 1 gives an example of an undirected
graph of five nodes A, B,C, D and E while Figure 2 depicts an oriented graph on these nodes.

A ¢ A C
B D E B D E
Figure 1: Undirected graph. Figure 2: Directed graph.

The adjacency matrix is symmetric for an undirected graph and is in general non symmetric
for a directed graph, see for example the adjacency matrix A, (resp. Ay) for the undirected (resp.
directed) graph of Figure 1 (resp. 2):

01 1 0 0 01 1 0 0
1 00 1 0 1 00 1 0
Ay=11 0 0 0 1 |5 A=|0 0 0 0 1
01 0 0 1 0 0 0 0 1
0 0 1L 1 0 0 0 01 0
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Graph clustering Clustering the nodes of a graph aims to find groups of nodes having a similar
profile of connection, different from the connection profile of the nodes of the other groups. In
case of the directed graph on Figure 2, nodes C and D have a similar sending behavior (similar
rows), while B and C have a similar receiving behavior (similar columns).

Imposing a unique clustering as it is usually done (Girvan and Newman, 2002; Golden-
berg et al., 2010; Matias and Robin, 2014) can lead to Figure 3 (a) with the two groups
{(A,B),(C,D,E)} to take into the source behavior or to Figure 3 (b) with the two groups
{(A,B,C),(D,E)} to take into account the target behavior. None of them seems to be well suited
in this case. In fact, C is a special node: its behavior as a source node is close to the sending
behavior of nodes D and E (similar rows C, D and E), but its behavior as a target node is close
to the receiving behavior of nodes A and B (similar columns A, B and C). Considering the clus-
tering with the three groups {(A,B), (C), (D,E)} depicted in 3 (c) seems to better suit, by adding
a specific cluster for this special node. But in this case, information is lost, namely the similar
behavior of C with A and B as target node and with D and E as emitter node. Hence considering
two different clusterings to qualify source and target node behaviors as in Figure 3 (d) seems to
be the best way, but does not fulfill the single node clustering constraint anymore.

A BJC DE A B CIDE A B|c|D E A B CIDE
A A A A
B B B B
¢ C C [
D D D D
E E E E
(@ () (c) (d)

Figure 3: Different clusterings of the directed graph of Figure 2: with the same partition for
source and target nodes (a) with the two groups {(A,B),(C,D,E)} as emitter view, (b) with the
two groups {(A,B,C),(D,E)} as receiver view, (¢) with the three groups {(A,B),(C),(D,E)};
(d) with different partitions {(A,B), (C,D,E)} for source nodes and {(A,B,C),(D,E)} for tar-
get nodes. The connection matrices are represented as 2D arrays where black squares indicate
connections while white squares stand for no connection.

Bipartite graph It is interesting to note that Figure 3 (d) can be seen as the result of a co-
clustering of a so called bipartite graph. Bipartite graphs are undirected graphs containing two
subsets of nodes, say sets . and .7. Nodes in . may be linked to nodes in .7, but links between
two nodes of the same set are not considered (cf. for instance Holme et al. (2003); Wyse et al.
(2018)). Figure 4 (a) gives a very simple example with the two sets . = {(A,B),(C,D)} and
T ={(a,b,c),(d,e)}, and its adjacency matrix is:

4x5 _
Ad =

oS o = O
_— = O O

1
0
0
0

(= -
=l
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A a A A

B b B B

c c C

D d D D

e E E

Set . Set 7 Set . Set 7
(a) (b)

Figure 4: (a) a bipartite graph between two different sets. (b) the directed graph of Figure 2
represented as a bipartite network, same sets of nodes, but considered with two different roles,
source and target. Its adjacency matrix is A,.

Notice that a bipartite graph can also have a representation as a particular undirected graph,
considering the set of nodes V = .U .7

s T
P S 0 1 1 0 O
1 00 1 0
Ap = ithA; = 1
b 0 Ay }y wi d 00 0 0 1 (1)
‘Aq 0 1% 000 0 1

In fact, when the graph is a priori known to be bipartite, the submatrix A, is sufficient to define
it, the full adjacency matrix A, is not used and only being displayed here to see the link between
both.

As seen in the introduction, there are many real life networks that can be naturally viewed in
this way, often used with different sets (set of customers and products for example). Our goal is
to study whether it is worth considering a directed graph as a bipartite graph: in this case, the
sets . and .7 are the same but the role of a node is different according it is regarded as a node
in . or a node in 7. Figures 3 (d) and 4 (b) express the same situation: (i) The graph is not
symmetric: node C in .7 is linked to node A in .7 but the node C in .¥ is not linked to node
A in 7 (ii) the clustering of the nodes . = {(A,B),(C,D,E)} viewed as source is different
from clustering of the nodes .7 = {(A,B,C),(D,E)} viewed as target nodes are different, and
amounts to co-cluster the two sets.

Methods There are many methods to cluster the nodes of a graph, from heuristics or insights
on communities networks (such as modularity measure (Newman, 2006)) to representation learn-
ing (such as spectral analysis (Von Luxburg, 2007)) and probabilistic or generative models. We
focus here on the latter, see Matias and Robin (Matias and Robin, 2014) for a review. A refer-
ence model is the Stochastic Block Model (SBM). This model introduced by Frank and Harary
(1982) and Holland et al. (1983) has been conceived for the clustering of undirected graphs and
works on the adjacency matrix. SBM has been extended to the clustering of weighted graphs
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and directed graphs (Mariadassou et al., 2010). This extension of SBM to directed graphs means
that this model can be applied to non symmetric adjacency matrices, but it only provides a single
clustering of the nodes and, for this very reason, could not take fully into account the different
roles of the nodes in a directed graph. However, it could also be used to define two partitions
using the full A, matrix, but at the cost of a huge augmentation of the data size as the number of
nodes is doubled and of an increase of the number of parameters.

In the perspective to particularize the behavior of source and target nodes, Celeux and Vasseur
(2018) advocates to use the Latent Block Model (LBM) for co-clustering a directed graph. LBM
(Govaert and Nadif, 2007) is devoted to the simultaneous clustering of the rows and columns
of a rectangular matrix where rows and columns can represent different entities, see Brault and
Mariadassou (2015) for a review. In fact, it can be applied on the square adjacency matrix of a
graph as a special case, hence considering source nodes (in rows) and target nodes (in columns)
to be distinct. So LBM not only takes into account the non symmetry of the relationships, but
also naturally provides a distinct clustering for the source and target nodes.

In other words, LBM can be regarded as a co-clustering model for directed graphs (Figure 3
(d)) while SBM ofters a simple clustering model (Figure 3 (c)).

Summary This section has developed and deeper enlightened the general problematic after
presenting the context of directed graph clustering. In particular, it shows that defining two dif-
ferent clusters to capture different source and target behaviors remains to cluster a bipartite graph.
In the context of block models, the question is: should we use a simple clustering (SBM) or a
bipartite or co-clustering (LBM) for oriented graphs?

Remark Worth notice that the diagonal terms of the adjacency matrices of graphs are deter-
ministic and always assumed to be zero as no self loop is admitted, and this is neglected.

3. Block models

Block models are probabilistic generative models to cluster data arrays where the membership
of the entities (nodes for SBM, rows and columns for LBM) are defined as latent variables. Once
the parameters have been estimated, a Maximum A Posteriory rule is used to assign each entity to
its most probable cluster. The estimation of both LBM and SBM follows the same principles and
encounter similar difficulties and possible drawbacks, these being more challenging for LBM
with its double latent structure. We sketch here the inference of these models and then discuss
model selection criteria.

3.1. The latent block model (LBM)

LBM introduced by Govaert and Nadif (2007) is a co-clustering model of a matrix A, where
the rows and columns can represent two different sets of individuals or entities. For example,
rows can be considered as n individuals and columns as d variables. In text mining, rows are
documents and columns are words, and an observation A;; is a count. In recommendation sys-
tems, rows are consumers and columns are products and an observation A;; is binary or a note.
In general, the two sets are different and of different sizes.
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As expressed in the book Govaert and Nadif (2013), the main idea of co-clustering is to sum-
marize the matrix A with a matrix of smaller dimension (H,L) having the same structure than A.
This smaller matrix is associated with a couple of partitions (v, w), with H (resp. L) clusters on
the rows (resp. columns) of A.

LBM assumes that blocks form a Cartesian product of a row-partition v in H row-clusters by
a column-partition w in L column-clusters. The latent categorical variables v = (vy,...,v,) and
w = (wy,...,wy) are supposed to be independent, and each component independently assigned
with multinomial distributions:

vi= ity Virr) ~ A (1, p = (Pu)h=1,..1), i=1,...,n
wi=Wjt,...,wjq) ~ A (1,T=(T)e=1,.1), j=1,....d

For example, v;; = 1 if the row i is in the cluster &, O otherwise. Then, knowing the latent
variables v and w, the model assumes that random variables A;; are independent with conditional
density ¢ whose the parameter matrix o only depends on the block (h,f). Thus the marginal
density of A is the (generalized) mixture density (Keribin et al., 2015)

pLBM(A;0) = Y, p(v:0)p(w:0)p(Alv,w: )
(vw)e¥' x W

= Z H pl‘;ih H T;’j[ H 0 ( Aij§ Othg)Vi”W~f€, )

(vyw)e¥' xW ih Jl hi,j,¢

where 7" and # represent the set of all possible partitions respectively for the n rows and the d
columns, p and 7 the mixing weights and 6 = (p, T, a) gathers the parameters.

As a special case, LBM can be used to co-cluster square binary matrices of adjacency graphs
such as A;, where the rows represent the source nodes and the columns the target nodes, i.e.
n =d, but in this case row nodes and column nodes are considered as disconnected. Hence,
two partitions are provided. Then, defining oy as the probability link in the block (k,¢), the
conditional density ¢ (A;;; 0¢) of random variable A;; knowing v, = 1 and wj; = 1 is assumed
to be a Bernoulli distribution %(oy) :

A A
O (Aiji o) = 0, x (1= age) .

where a can be seen as the H X L summary matrix of probability connections, see Figure 5 (b)
where H = L. The number of parameters to estimate in this case is (H — 1)+ (L—1) + HL.

3.2. The Stochastic Block Model (SBM)

SBM is a generative model for graphs that can be viewed as a LBM where rows ans columns are
constraint to be the same entities in the same order, namely the nodes of a graph. Hence, there is
only one set of latent categorical variables z defining the memberships of the nodes inside a parti-
tion of K clusters, which are independently drawn with a multinomial distribution of probability
vector T = (M = P(zi = 1) )x=1,... k- Conditionally to the latent variables z, the random variables
A;; are independent binary variables with conditional density ¢ whose parameter matrix b only
depends on the block (k,k'): by =P(A;j = 1|z = 1,z = 1). The marginal density of A is the
mixture density of the following form for directed graphs (Mariadassou et al., 2010)
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Figure 5: Different models for graph of Figure 2 with their parameter matrix in blue: (a) as a
bipartite SBM graph with partition {. = (A,B),(C,D,E)} on rows (seen as source nodes) and
partition .7 = {(A,B,C), (D, E)} on columns (seen as target nodes); (b) as a co-clustering LBM
with rows as source nodes and column as target nodes; (c) with a non symmetric simple node
clustering SBM with the same partition {(A,B),(C),(D,E)} in rows and columns. Models (a)
and (b) have the same likelihood.

rspm@:0)= Y [T=m* TI o(ibw)™, 3)
€% ik ki ki)
where 2 represents the set of all possible partitions for the nodes, same for the rows and the
columns, and 6 = (7,b) is the vector of parameters.
In case of a symmetric graph, the likelihood is (Daudin et al., 2008)

psym(4:0) =} [Tm* TI o(Aibw)™ . (4)

€% ik ki, j k' i<j

Thus, the number of parameter to be estimated for SBM is (K — 1) + K? for a directed graph
and (K — 1)+ K(K+1)/2 for an undirected graph as the matrix b is symmetrical in this case.

3.3. SBM, bipartite SBM, LBM

Equations 1 make the correspondence between the bipartite graph with adjacency matrix Ay
and the undirected graph with twice the nodes represented by adjacency matrix A, to take into
account the nodes behaviors as source . and target .7, knowing that there is no link between
. and 7. In the same manner, it is possible to define a specific symmetric SBM that we could
call bipartite SBM as a simple undirected SBM on A, with K + L clusters (Figure 5 (a)) with null
connection probability between source . and target .7 and no cluster mixing together nodes of
% and .7, which is an equivalent model to a LBM on A, with K x L blocks (Figure 5 (b)). In
fact the likelihood of such defined bipartite SBM is
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n K . 2n K+L W{ n K 2n K+L
posn@-0)= X TTI= T TT &7 T 1T 1T et )
(yw)e? x¥ i=1k=1 Jj=n+1{=K+1 i=1k=1 j=n+1(=K+1

using the fact that by ¢ = 0 for (k,¢) € {1,...,K}?U{K+1,....,K+L}?* and A;; = 0 for (i, j) €
{1,...,n}*U{n+1,...,2n}?. This expression is equivalent to pgg. see equation 2. Hence the
likelihood of a LBM with K x L blocs observed on A, is equal to bipartite SBM (A; on Figure
5) with K + L clusters and known information of . and .7, but using the latter increases the
data size. Notice that a backside question could be the ability for a symmetric SBM to recover a
bipartite SBM from an adjacency matrix which is not known a priori to be bipartite while it is.

We rather focus here on graphs that are not a priori bipartite, but whose source and target
nodes are allowed to belong to different clusters. We will see in section 4 that asymptotically, the
best way SBM fits data generated with a model with different clusters on source and target nodes
such as on Figure 5 (b) is to add a new class to take into account the specific behavior of node
C, as sketched in Figure 5 (c). This increases the model size. In fact, to build a non symmetric
SBM equivalent to LBM would impose in this example the following set of constraints on the
non symmetric SBM

¢ = {b11 = bi2; by = by = b3 = bz2; b3 = b33}.

Figure 6 displays these constraints directly on the SBM graph and how they matches the corre-
sponding LBM model. Unfortunately, these constraints cannot be used for the SBM estimation
as the clusters likely to be grouped are unknown and this could penalize SBM in case of small
size graphs.

In fact, it is difficult to compare the complexity of LBM Figure 5 (b) and SBM Figure 5 (c): (b)
is more parsimonious with L — 1+ H — 1 + HL = 6 parameters while (¢c) has L' — 1 + L'L' = 11
parameters, but (b) is also more complex as it needs to define two sets of latent membership
variables (2n = 10) instead of one (n = 10) for SBM.

To precise a little more the way SBM follows to add new clusters when dealing with two
different source and target clusterings, we introduce the source (resp. target) profile of a node as
the row (resp.column) vector of parameter matrix ¢ it refers to. For example, source profile of
node C is (a1, az;) for co-clustering (b) and (b1, b2, b13) for simple clustering (c).

As mentioned above, the way SBM deals with nodes sharing the same source (resp. target)
profile with another group of nodes, but with a different target (resp. source) profile is to cre-
ate a new node cluster, adding (a number of two times the current number k of clusters) new
connection coefficients. In fact, SBM always defines a clustering where diagonal blocks of the
adjacency matrix are squares, see red segments on Figure 5 (c) depicting the split. Using LBM
can help to retrieve a higher level of clustering by gathering together nodes with the same source
profile, independently of their target profile in one hand, and nodes with the same target profile,
independently of their source profile in one hand on the other: it aims at finding which rows (resp.
columns) of the parameter matrix & of SBM are identical. Several cases can be considered:

— the generating model is a SBM where parameter matrix & has no identical rows neither

identical columns. In this case, LBM has no interest and should lead to the same row and
column clustering as SBM, K = H = L;
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Figure 6: (a) A graph with a target node clustering (green dotted line) different from source
node clustering (red dotted lines), only four connection coefficients are needed for LBM; (b) the
equivalent SBM graph with a unique node clustering and related constraints on the parameters.

— the generating model is a SBM with a square matrix o and with constraints similar to
%: using LBM can give an insight on similar source (resp. target) profiles. The estimated
LBM can be such that H = L or H # L. In any cases, K > max(H,L);

— the generating model is a LBM. In this case, as the row and column memberships u and v
are not constrained to be the same, all combinations of row and column profiles are likely
to appear, leading to K = LH groups, number of groups of the corresponding SBM with H
identical rows, and L identical columns. This induces a very special configuration of the
graph. If this case is theoretically interesting, it could be however doubtful do encounter it
in real data sets.

3.4. Estimation and selection in both models

The parameters to be estimated for the LBM are the proportions py,h = 1,...,H and 7y, =
1,...,L and the Bernoulli block parameters o, h = 1,...,H;¢ =1,...,L. The parameters to be
estimated for the SBM are the proportions 7,k = 1,...,K and the Bernoulli block parameters
Otkk/,kz 1,...,K;k/ = 1,...,K.

Estimation Estimating the parameters of the LBM or the SBM is not an easy task since neither
the likelihood, nor the expectation of the logarithm of the complete likelihood (observation A, la-
tent labels Z, V, W) conditionally to the observations are available due to the complex dependency
of the observations induced by the block structure. Hence strategies must be defined to perform
the E step of the Expectation-Maximization algorithm of Dempster et al. (1977). Usually, a vari-
ational approximation of the conditional distribution is proposed with the so called Variational
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EM (VEM) algorithm. But this algorithm is often highly dependent of its initial position.

Otherwise, maximizing the likelihood with a stochastic version of the EM algorithm is
tractable, but could lead to degenerate solutions with empty clusters (see for instance Keribin
et al. (2015) for a discussion about these issues). In order to circumvent these issues, the esti-
mation problem can be considered in a non informative Bayesian framework, as advocated in
Keribin et al. (2015). Once the number of classes fixed and using non informative priors, the
model parameters are estimated through Gibbs sampling followed by a variational approxima-
tion of the posterior modes. Several runs based on different initializations are performed and the
best result is kept.

An alternative way is to initialize with absolute eigenvalues spectral clustering. This variant
of spectral clustering seems to give a very good first approximation of a clustering for the SBM
case. Furthermore, it can be shown to be consistent for binary SBM without covariate (Rohe
etal., 2011). It can be adapted for LBM (Leger, 2016; Frisch et al., 2020), using a double spectral
clustering (using absolute eigenvalues of the Laplacian (Rohe et al., 2011)) on rows and columns
on similarity matrices.

At last, it is important to note that variational and maximum likelihood estimators are consis-
tent for SBM (Bickel et al., 2013) and LBM (Brault et al., 2020).

Selection As so far, the estimation was performed with a given number of clusters. Selection
of an adequate number of clusters is of major importance and is usually done with information
criteria. The use of BIC (Schwarz et al., 1978) is here questionable as an exact value of the
maximum likelihood is not tractable, and conditions to perform the Laplace approximation not
fulfilled. In another hand, ICL (Integrated Completed Likelihood) (Biernacki et al., 2000) is a
good candidate as it involves the complete likelihood which expression is tractable in SBM or
LBM models. Moreover, the binary case allows to have access to an exact expression of ICL
when non informative conjugate priors are used (Keribin et al., 2015); hence there is no need
of an asymptotic approximation as usual, but an asymptotic development can be done to get rid
of the influence of the priors, see Keribin et al. (2015) for more details. These criteria are also
available for SBM (Daudin et al., 2008; Mariadassou et al., 2010). Hence, the cluster (for SBM)
or the couple of clusters (for LBM) providing the best ICL value is selected.

It remains to study the strategy to run through the models. As it is easy for SBM as the number
of clusters in row and column is the same, it is trickier for LBM as two sets of clusters must be
selected. To reduce the number of pairs of clusters to be considered, Robert et al. (2020) designed
the bi-km1 algorithm, an upward method which allows to reduce dramatically the number of
considered pairs of clusters. Initialization for a model of an upper (resp. lower) dimension can be
soundly performed by splitting (resp. merging) the estimated partition of a model of lower (resp.
upper) dimension.

4. Comparison on simulated data

We now compare with simulations the behaviours of the two strategies, simple node clustering
with SBM and co-clustering with LBM, in case of directed graphs with the same or with different
partitions for source and target nodes. We define three connection parameter matrices 04 x4, G4 x4,
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054, where € = 0.1 stands for a mixture separation index:

l1—¢ € € € 1-2¢ € € €
l—-¢ 1-¢ € € . 1-2¢ 1-2¢ € 2¢e
Ha = l-¢ 1—-¢ 1-—¢ € B 1-3¢ 1—-¢ 1-4¢ 2¢e
l-¢ 1—-¢ 1l—¢ 1-¢ 1—4e 1-7¢ 1-2¢ 1-¢
€ € € €
1—¢ € € €
A5x4 = l—-¢ 1-¢ € €
l—-e 1-¢ 1-¢ €
l—-¢ 1—-¢ 1l—-¢ 1-¢

and consider the following cases to illustrate the section 3.3:

Case 1: Directed graph with same partition for source and target nodes Graphs are sam-
pled according to a non symmetric generative SBM with K = 4 clusters, groups proportions
7w =(0.1,0.2,0.3,0.4) and connection matrix O4x4.

Figure 7 (right) gives an incisive representation of the model parameters with segment lengths
proportional to the cluster weights and fill color set according to the connection probability. Here,
the diagonal is formed by square blocks.

Figure 7: Case 1 example: a dataset (on the left) generated according to parameters on the right
(summary representation with segment lengths proportional to cluster weights and colors to the
connection probability), reordered according to the clusters (on the middle).

Case 2: Directed graph with some overlap or split between source and target partitions
This can happen whether both partitions have the same number of clusters or not and we consider
both:
(2a) H = L = 4: connection matrix @4, row groups proportions 7 = (0.3,0.2,0.3,0.2), col-
umn groups proportions p = (0.3,0.1,0.3,0.3)
(2b) H = 5, L = 4, connection matrix 54, rOW groups proportions 7T =
(0.1,0.1,0.3,0.3,0.2), column groups proportions p = (0.1,0.2,0.3,0.4)
In these cases, graphs are generated according to the corresponding refined and constraint
generative SBM: proportions 7 and p are fused into a single 7%, resulting of the refinement of
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Figure 8: Model parameters: Case (2a) with H = 4 source clusters and L = 4 target clusters on
the left, Case (2b) with H =5 source clusters and L = 4 target clusters on the right. Dashed pink
lines represent splits to define identical proportion vectors on rows and columns.

both source and target node clusters (see Figure 8). Each new parameter of a block resulting of
the split keeps the value of the original block parameter. It leads to K = 6 refined clusters for Case
(2a) and K = 7 for Case (2b). The resulting SBM model is then used to generate the samples.

Case 3: Directed graph with complete overlap between source and target partitions They
are generated with the LBM generative model and the model parameters of Case (2a) and Case
(2b). Hence, all the combinations of rows and columns profiles are possible because groups are
sampled independently on rows and columns. This leads to a corresponding SBM with K = HL
clusters.

Case 4: Bipartite graph The objective is to illustrate the backside question of section 3.3, and
compare both methods on a bipartite graph with no a priori knowledge of this characteristic. A
n X d binary matrix Ay is generated according to a LBM generative model with parameter matrix
o, t=p=1(0.1,0.2,0.3,0.4) and d = 1.2 n. The corresponding full bipartite matrix A is then
created, and rows and columns are reordered according to the same shuffling.

Results We first comment the choice of the software: among R packages, blockcluster
(Singh Bhatia et al., 2017) is dedicated to co-clustering with a wide range of algorithms and
data types, it offers ICL values but does not directly implement model selection; bikm1 (Robert,
2020) performs co-clustering for binary and Poisson latent block models and provides the bi-
km1 procedure to investigate more efficiently the grid of numbers of clusters with exact ICL
or approximate BIC. In another hand, blockmodels (Leger, 2015, 2016) provides VEM esti-
mation with absolute eigenvalues spectral clustering initialization for binary LBM and SBM.
A forward method for model selection is implemented using the asymptotic ICL criteria. All
these packages are available on available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org. We decide to use this latter as it allows to compare both
models with the same software tool, hence setting them in the same experimental conditions,
despite the fact that it would have been better to consider an exact ICL criterion.
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TABLE 1. The frequency of the models selected by the ICL criterion in the three cases, for different number of nodes
n, and according to estimation with SBM (K) or with LBM (H\L). The generative model selection is framed.
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For different sizes (number of nodes n = 50, 100,500, 1000) and for each case, B = 50 graphs
are generated and estimation and selection are performed for both models. The results are gath-
ered in Table 1. Case 1 (directed graph with a single partition for rows and columns) is without
surprise favorable to SBM as the generative model. However, when the number of nodes #n in-
creases, LBM also recovers the right block structure and it can be checked that the estimated
partitions are similar to the SBM estimated single partition.

Case 4 (results not displayed) shows exactly the same behaviour for SBM and LBM on the
Ap graph. As soon as n = 100, they perfectly retrieves the attended number (K + L) x (K + L))
of blocks, with the correct null blocks, but the execution time is two to three times longer with
LBM than with SBM. In fact, they recover the same target and source partitions as a K x L LBM
on the A; matrix, and this latter is without surprise much more time efficient and must be used
in a known bipartite situation. Hence the strength of the signal of the unknown bipartite situation
(strictly no connection between two subsets) is large enough to counterbalance the increased size
of data and parameters of SBM.

When dealing with different partitions with some overlap for target and source nodes (Case
2), LBM performs very well as soon as n > 100, for both cases H = L or H # L, while number
of clusters K chosen by SBM increases with the number of nodes, even for a model generated
with the same number of clusters for source and target nodes (H = L).

This behavior is exacerbated in Case 3, where the graph is generated according to a binary
LBM: the number of clusters K chosen by SBM dramatically increases with the number of
nodes, even for a model generated with the same number of clusters for source and target nodes
(H = L). LBM on his side rapidly retrieves to generating model.

In both Case 2 and 3, we can moreover observe for sufficiently large n that SBM chooses K =
HL, H being equal to L or not. Hence as expected, SBM clusters asymptotically, or at least with
a sufficiently large number observations, the nodes according to their cross behavior between
source and target profiles. Remember that constraints like 4" cannot be taken into account into
the SBM estimation, as there is no way to know on which clusters to apply them. Hence, adding
a new class (in row and then column) for SBM amounts to add 2k parameters if k is the current
number of groups instead of only one if the constraints were taken into account, corresponding
to the proportion of this new class. The increase of likelihood is then not sufficient with smaller
n, there is not enough information and SBM loses its capacity to subdivide the clusters. Hence,
it is stuck between the fact of subdividing the columns (resp. the rows) to improve the partitions
while not subdividing the rows (resp. the columns) too much so as not to break homogeneous
groups.

We illustrate this phenomenon on Case (2b) with n = 500. Model selection with ICL fully re-
trieves the two partitions (H = 5,L = 4) for LBM co-clustering while leads to a SBM clustering
with K = 18 clusters, see Figure 9 where the estimated groups have be reordered to let the struc-
ture appear. SBM replicates the structure of rows and column profile to manage the constraint
of a single partition. Vertical pink dashed lines delimit five blocks of columns: the first two are
similar with three different column profiles, the last three are also similar but with four different
column profiles; horizontal pink dashed lines delimit five blocks of similar rows: the two from
above gathering three clusters, the three from below gathering four clusters. Clusters 1 and 4 are
not well separated (Figure 10 center and right): split of one them would also split too similar
rows. Moreover, this would have required 76 additional coefficients for little improvement in the
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likelihood. Notice that in this example, SBM with K = 20 clusters splits cluster 1 in two, and
another cluster rather than cluster 4 (figure not shown).

Figure 9: A graph Case (2b), n = 500, co-clustered by LBM with 4 x 5 blocks (left), clustered by
SBM with 18 classes (hence 18 x 18 blocks) (center). Zoom to the place where SBM struggles
to cluster the columns (right).

Figure 10: Clustering with SBM for Case (2b), n = 500. ICL against the number K of clusters
form model selection (left); Clustering with K = 12 node clusters (middle) and corresponding
LBM summary parameter matrix (right)

It is interesting to notice that the ICL curve for SBM against the number K of clusters (Figure
10 left) grows rapidly until K = 12 to reach a relative plateau in K = 18 before decreasing more
rapidly after K = 20. K = 12 corresponds to a LBM model with H = 4, L = 3 as gathering
the two first row classes in rows and the two column classes, connection parameters being the
weighted mean of the coefficients concerned by the merge. We can see here the trade-off between
the refinement of the columns without splitting homogeneous rows.

5. Comparison on real datasets
We compare now the two models on two real datasets, the Arabidopsis and Enron email datasets.
Journal de la Société Frangaise de Statistique, Vol. 162 No. 1 46-69
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5.1. Enron email dataset

We first study a version of the Enron email dataset 2, corpus of emails sent by employees of the
Enron corporation. The version analyzed here is described in Priebe et al. (2019) and provided
by Passino and Heard (2020) 3. It consists of n = 184 nodes and 3 010 directed edges. A directed
edge i to j is drawn if the employee i (in row) sent an email to the employee j (in column), see
Figure 11.

Model selection leads to SBM clustering (ICL=-7836) with K = 10 node clusters and LBM
co-clustering (ICL=-8118) with H = 10 emitter clusters and L = 7 emitter clusters. It is here
relatively easy to map the single SBM partition and the two LBM partitions in row and columns.
The resulting clustering and co-clustering are represented Figure 11, according to this correspon-
dence. We can see that LBM column cluster 4 (resp. 5) are approximately split in SBM clusters 4
and 5 (resp. 6 and 7). In that sense, LBM reveals a situation like Case 2, that can be interpreted as
employees from cluster 4 and 5 receiving equivalently mails from other employees (equivalent
column coefficients), but with different sending profiles: group 4 sends more emails to the other
groups than group 5 (different row coefficients). Figure 13 allows to compare the estimated SBM
parameters after this merge to the corresponding estimated LBM parameters.

We can check that LBM column cluster 6 also results from the merge of SBM clusters 8
and 9 although these two latter do not have the column profile, see Figure 12. A further co-
clustering with 10 x 10 blocks does not really change the situation. Moreover, we can also check
that SBM node groups 8 and 9 and LBM row clusters 8 and 9 refer approximately to the same
employees, but the sub-clustering is different depending on the method: co-clustering defines
a row cluster 9 with employees never sending mails regardless what they receive while SBM
prefers to distinguish two sub communities differing mainly by mail exchange inside the group.
This difference is inherent to the intrinsic structure of each model.

Figure 11: Enron dataset: original data (left), reorganized according to SBM with K = 10 node
clusters (middle); co-clustering with H = 10 classes of emitters (rows) and 7 classes of receivers
(columns).

2 Enron email dataset available at the following URL: https://www.cs.cmu.edu/~./enron/
3 https://www.github.com/fraspass/sbm
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Figure 12: Proportion of row (left) and column (right) LBM clusters in each SBM class for Enron
dataset.
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Figure 13: Enron dataset: estimated parameters for SBM after merging the following pairs of
column clusters (4,5), (6,7), (8,9) on the left; for LBM on the right.

5.2. Arabidopsis dataset

This dataset comes from a genomics network study where the biological setting is the Chloro-
phyllian plant Arabidopsis thaliana (At) (Swarbreck et al., 2007; Castrillo et al., 2011), composed
of about 25,000 genes. Using gene expression, the objective is to model the interactions between
genes, namely which genes called transcription factors are to target other genes to activate or in-
hibit them. From DNA chips experiments, Vasseur (2017) sets up a directed graph with n = 1937
genes (nodes) modeling the gene network. The adjacency matrix of this graph is such that A;; = 1
if gene i is regulated by gene j and O otherwise. This graph was produced using variable selection
procedures based on penalized linear regressions and resampling methods.

In fact, transcription factors work in groups and the simultaneous action of several transcrip-
tion factors is necessary to activate or inhibit groups of target genes (Wolpert, 1971):

— active genes having an effect on the same regulated gene are called co-regulators
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— target genes being activate or deactivate by the same co-regulators are called co-regulated

genes.

The objective is to cluster the regulatory network regarding these two behaviors. As a di-
rected graph, it is interesting to study whether a co-clustering view to group simultaneously
co-regulators (in rows) in one hand and co-regulated (in columns) in another hand could be help-
ful or better suited. Vasseur (2017) already performed this comparison and found that the chosen
number of regulator and regulated clusters are almost the same (resp. H = 30 co-regulator clus-
ters and L = 29 co-regulated clusters) with LBM co-clustering while SBM clustering chooses
K = 22 node clusters. This result is surprising because we saw in section 3.3 that K is in gen-
eral greater than min(H,L). This could mean that the solution is not the optimal one for one or
both results, regarding the known difficulties of local optima. Another explanation is that these
authors used two different block model softwares, namely bikm1 for LBM and blockmodels
for SBM which do not have the same procedures, and especially for model selection: the former
uses the exact ICL whereas the latter the asymptotic ICL. We run again the LBM co-clustering
with blockmodels and find H = 19 and L = 17 which is now consistent with K = 22.

Figure 14: Reorganized adjacency matrices for Arabidopsis data: standard clustering with K = 22
node clusters (left); co-clustering with H = 17 classes of regulated genes (rows) and 19 classes
of regulator genes (columns).

It remains to compare the two partitions. The Adjusted Rand Index (Hubert and Arabie, 1985;
Rand, 1971; Youness and Saporta, 2004) is poor between the LBM row partition and the SBM
node partitions (0.26), and between the LBM column partition and the SBM node partition
(0.37). CARI (Robert et al., 2020), which an adaptation of ARI to the block classification frame-
work can be used to compare the couple of row and column partitions of LBM to the couple of
same SBM partitions. Its value here is 0.12. These scores indicate poor fits between these clus-
terings. Hence, it is difficult to compare or map them as they are largely entangled, see Figure 15:
no SBM class is mainly composed by a unique row or column LBM class as it could be attended.
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Figure 15: Proportion of row (left) and column (right) LBM clusters in each SBM class.

In this case, it is difficult to say which representation must be preferred. First, LBM provides
a slightly smaller ICL value than SBM (SBM : -669 030, LBM : -671 234), but we lack of the-
oretical ground to assess the use of ICL for this comparison. Secondly, the LBM blocks seems
less contrasted and small clusters (which are of special interest for the biologists) are rare. More-
over, the LBM representation on Figure 14 could be misleading for a user of SBM adjacency
graph, as nodes are no longer represented in the same order in row and column. Hence, in this
case, LBM does not seem to deeper enlighten the dataset, except to propose outsider clusters.
In other words, SBM and LBM induce different links between regulated and regulator genes. In
this cas, an expert view would be necessary to propose a definite choice if any between these two
representations.

6. Discussion

The aim of this article is to question the use of simple clustering versus co-clustering for directed
graphs, in order to fully take into account the non symmetry of such situation, namely not only
the non symmetry of the connection parameter matrix, but also to the two specific roles (source,
target) of a node: indeed, if node clustering such as SBM is largely used for directed graphs,
could it be more relevant to perform a co-clustering LBM in some situations?

— Clustering a directed graph with a single partition could be restrictive since this model
enforces source and target nodes to be in the same cluster.

— However we show, at least when the graph is sufficiently large, that if nodes have the same
row (resp. column) profile, but different column (resp. row) profiles, SBM is able to handle
by creating a new node cluster. But this is done at the cost of adding two times the current
number of parameters for one split even if many different coefficients are unnecessary.
Moreover, if data is not sufficiently large with regards to the number of clusters, single
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SBM clustering is stuck between the fact of subdividing the columns (resp. the rows) to
improve the partitions while not subdividing the rows (resp. the columns) too much so as
not to break homogeneous groups. Co-clustering has here advantage as it allows naturally
a more synthetic representation of this situation. It induces a specific set of connection
constraints on the refined node clusters of the SBM clustering.

— In another hand, inference with LBM is more complex and numerical difficulties are more
important. Hence, if no merge of row or column profiles can be defined, SBM has advan-
tage.

— If the question is whether a graph is bipartite as a not known a priori property, SBM and
LBM retrieves similarly the partitions and hence the bipartite property, but SBM outper-
forms LBM regarding the execution time.

— On real datasets, LBM co-clustering can help to give a higher level of representation for
the SBM clustering, but the two methods can give also very different results with no clear
cross interpretation, even if the number of blocks are of the same order. With its propensity
to give a greater number of small clusters, SBM clustering could be preferred for some
applications where small clusters are of special interest.

As a general recommendation, (single) clustering still remains the first method to use with real
datasets, whether the graph is oriented or not. However, performing an additional co-clustering
for oriented graphs can give a higher insight on the dataset. If co-clustering gives much less
blocks than the single node clustering, it brings a valuable information on the presence of (a
lot of) identical row or column profiles, and reveals some specific constraints on the connection
parameters between the SBM clusters. If number of blocks have around the same order, it could
be more difficult to have a precise interpretation especially when the partitions poorly matches.
It can be hence seen as another view of the data. If LBM provides more blocks than SBM, both
results should be questioned.

The choice between the two models can be done with a pragmatic view based on an expert
interpretation of the blocks in each case. Assessing the use of ICL or some penalized selection
criteria offers here interesting theoretical developments. First, the question of their consistency
inside each model (either SBM, or LBM) is linked to the study of their asymptotic behaviour
which is not, as far as we now, solved, see however some steps on penalized likelihood criteria
in Wang et al. (2017); secondly, their use to compare the two approaches could be based on the
link done through bipartite SBM. Anyway, the comparison of the blocks exhibited by the two
methods could lead to interesting remarks, even if doing such comparisons properly is not easy
and more heuristics than theoretically set.

It should be noted that the co-clustering representation can be misleading for users who are
used to SBM clustering, as nodes in rows and columns can be differently sorted. To make easier
the understanding, it could be interesting to transcript it in a SBM clustering representation with
an identical node order in rows and columns, by creating as many new node clusters as needed.
As a more general comment, it is always interesting to compare methods and give methodolog-
ical guidelines to their applications on real data. Hence, this study could be enlarged to more
methods, and especially of the representation learning category. Finally, this study also shows
the need to have a unified software framework on block models, providing the wide range of ex-
isting estimation methods, as well as the different model selection strategies and model selection
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criteria.
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