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Abstract: We consider the estimation of the effect of a binary treatment on a binary endpoint conditional on a post-
randomization quantity in a counterfactual world where all individuals received treatment. It is generally difficult to identify
this effect without strong, untestable assumptions. It has been shown that identifiability assumptions become weaker under
a crossover design where individuals not receiving treatment are later provided treatment. Under the assumption that the
post-treatment biomarker observed in these crossover individuals is the same as would have been observed had they received
treatment at the start of the study, the treatment effect can be identified with only mild additional assumptions. This remains
true if the endpoint is absorbent, that is, if the post-crossover treatment biomarker is not meaningful if the endpoint has already
occurred. Examples of absorbent endpoints include death and HIV infection. We provide identifiability conditions for the prin-
cipally stratified treatment effect of interest when the data arise from a crossover design and describe situations where these
conditions would be falsifiable given a large sample from the observed data distribution. We then introduce a nonparametric
estimator for this effect. When the biomarker is discrete, this estimator is efficient among all regular and asymptotically linear
estimators.
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1. Introduction

Suppose one wishes to assess the effect of a binary treatment on a binary endpoint. For simplicity, we
refer to the levels of the treatment as “treated” and “untreated”, but one could alternatively study a con-
trast between two active treatments. The objective is to develop a biomarker that explains much of the
treatment effect variation, i.e. a variable for which the stratified treatment effect is highly variable. Some-
times, the most predictive biomarkers are defined using the counterfactual values that a post-treatment
biomarker would take had an individual been treated or untreated. Conditioning on these biomarkers
was termed principal stratification by Frangakis and Rubin (2002). Principally stratified analyses are es-
pecially interesting in situations where one wishes to bridge a treatment’s efficacy from one population
to another, and so treats a small subset of the new population and observes their biomarkers in order to
predict what the treatment effect would be in this population (Gilbert et al., 2011). Though additional
transportability assumptions (Bareinboim and Pearl, 2012) are needed to be able to bridge a treatment
effect, these assumptions become more plausible if a strong effect modifier is available. In this paper, we
focus only on counterfactual post-randomization biomarkers that occur under treatment. This ensures
that one could observe the counterfactual biomarker under an appropriate intervention – this is in con-
trast to stratifying on the biomarker’s counterfactual value both after treatment and after a lack of treat-
ment. Furthermore, in vaccine studies, which represent an important application area, the post-treatment
biomarkers of most interest are immune responses, and in many settings untreated individuals who have
not experienced the endpoint will have no immune response, so that studying treatment effects condi-
tional on unvaccinated immune responses is uninteresting. We assume that the endpoint is absorbent
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(Nason and Follmann, 2010), so that the biomarker has no substantive meaning once the endpoint has
occurred. For example, if the treatment is vaccination, the biomarker is vaccine-induced immune re-
sponse, and the endpoint is HIV infection, then a measured immune response is only of interest if it
precedes HIV infection. For most biomarkers of interest, death is also an absorbent endpoint.

Under most study designs, identifying principally stratified treatment effects requires strong,
untestable assumptions. In the context of vaccine trials, Follmann (2006) demonstrated the utility of
crossover designs (e.g., Woods et al., 1989) for dramatically weakening these needed assumptions, where
here the designs were referred to as closeout placebo vaccination designs and featured a crossover of un-
infected placebos to the vaccine. There have since been numerous works that study closeout designs
(Gilbert and Hudgens, 2008; Wolfson and Gilbert, 2010; Gabriel and Gilbert, 2013; Huang et al., 2013).
Others have demonstrated that crossover designs are also of interest for estimating principally stratified
treatment effects for treatments other than vaccines (Wolfson and Henn, 2014; Gabriel and Follmann,
2016). All of these earlier works either relied on baseline covariates being discrete or on correctly spec-
ified (semi)parametric models. In this work, we provide an estimator of principally stratified treatment
effects that is efficient within the nonparametric model that at most makes assumptions on the prob-
ability of receiving treatment given covariates. The efficiency of this estimator relies on the biomarker
being discrete, since otherwise the semiparametric efficiency bound (Pfanzagl, 1990; Bickel et al., 1993)
will not be defined. We then generalize this nonparametric estimator to the case that the biomarker is
continuous.

From a practical standpoint, closeout placebo vaccinations are easy to perform in a vaccine clinical
trial setting because uninfected placebo recipients are still under follow-up at the end of the trial and
are thus able to be vaccinated. Nonetheless, a downside to performing a vaccinating uninfected placebo
recipients at the end of the study is that they are no longer available for additional follow-up as placebo
recipients, making it difficult to assess the long-term efficacy of the vaccine. One option is to only
vaccinate a (random) subset of uninfected placebo recipients at the end of a trial so that some placebo
recipients are still available for longer-term follow-up.

We note that studying principally stratified treatment effects answers fundamentally different ques-
tions than does studying direct effects (Robins and Greenland, 1992; Pearl, 2001; VanderWeele, 2015),
which would aim to study the effect of treatment on the outcome if the post-treatment biomarker were
set to some fixed value or to the value it would have taken had the individual been untreated. This is
in contrast to principal stratification analyses, which are useful for bridging vaccine efficacy from one
population to another, provided one collects the post-treatment biomarker on a small subset of individu-
als in the new population and certain transportability assumptions hold. Identifying counterfactual direct
effect estimands with the observed data distribution requires strong assumptions, including that there
are no unmeasured confounders of the effect of the biomarker on the outcome (Cole and Hernán, 2002).
In crossover studies, this no-unmeasured-confounders assumption does not need to hold to obtain valid
inference for the principally stratified parameters that we study in this work. Nonetheless, we emphasize
that estimation should be focused on the quantity that best reflects the scientific question. Furthermore,
we note that, though principally stratified analyses focus on a different quantity than direct effect anal-
yses, it has been shown that the presence of a nonzero principally stratified effect, conditional equality
of the counterfactual biomarker under treatment and the counterfactual biomarker under a lack of treat-
ment, implies the presence of a nonzero direct effect (VanderWeele, 2008); the reverse implication does
not hold. In this work, we study effects stratified only on the counterfactual biomarker under treatment,
so the result of VanderWeele (2008) does not generally apply. Nonetheless, in settings in which the
counterfactual biomarker under a lack of treatment is degenerate at some value s0, e.g. in HIV vaccine
studies where the biomarker is an immune response and there is no immune response if the vaccine is
not administered, the presence of a nonzero treatment effect conditional on the counterfactual biomarker
value under treatment equal to s0 indicates the presence of a direct effect, i.e. an effect in a counterfactual
world where treatment was administered and the biomarker had been set to s0.
Organization of Manuscript. Section 2 introduces the notation, parameters of the counterfactual dis-
tribution, identifiability of these parameters with parameters of the observed data distribution, and the
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statistical estimation problem. Section 3 describes our proposed estimator when the biomarker is dis-
crete. Section 4 presents an extension of this estimation scheme to two-phase sampling studies. Section 5
presents an estimator that can be used when the biomarker is continuous. For simplicity, this estimator is
presented in a single-phase sampling setup, but the extension to two-phase sampling is straightforward.
Section 6 presents a simulation study. Section 7 closes with a discussion.

Appendix B provides proofs of the results from the main text. Appendix C presents theorems and
proofs for the validity of the estimator for continuous biomarkers presented in Section 5. Appendix D
gives a brief review of the derivation of efficient influence functions, which are used to define our es-
timators. Appendix E presents a TMLE that can be used when the data was derived from a two-phase
sampling design. Appendix F gives additional simulation results.

2. Notation and Identifiability

Consider the counterfactual data structure (W,A,S1,Y0,Y1,Sc
0) drawn from a distribution PF , where W is

a baseline covariate, A is a treatment indicator, S1 is a post-treatment biomarker, Ya is a counterfactual
outcome of interest under treatment a that takes on values zero and one, and Sc

0 is the counterfactual post-
crossover biomarker had the individual not been treated at baseline and subsequently been crossed over
to treatment. In a closeout placebo vaccination study, S1 represents a post-vaccination immune response,
and Sc

0 denotes the closeout biomarker measurements for placebos with Y = 0, and Sc
0 = 0 for all other

individuals. To simplify presentation, we assume that S1 and Sc
0 are measured immediately following

treatment. One could alternatively assume that no events occur before the time at which S1 is measured
(Follmann, 2006), or could assume some form of equal clinical risk, which roughly states that the risk
of the event occurring before this time point is equal between treated and untreated individuals (Wolfson
and Gilbert, 2010).

The objective is to estimate a contrast between the principally stratified mean outcome on treatment
and in the absence of treatment, i.e. between EF [Y1|S1 = s?1] and EF [Y0|S1 = s?1], where here and through-
out we let EF denote an expectation under PF and we define s?1 as a particularly interesting value of the
biomarker S1. For example, we may be interested in estimating the principally stratified relative risk

RRF(s?1)≡
EF [Y1|S1 = s?1]
EF [Y0|S1 = s?1]

or vaccine efficacy

VEF(s∗1)≡ 1− EF [Y1|S1 = s?1]
EF [Y0|S1 = s?1]

(1)

One may also be interested in RRF or VEF as a curve, across all values of s?1. The developments in this
work can also be used to estimate an additive contrast, thereby giving the conditional additive treatment
effect.

In practice, we observe (W,A,S,Y,Sc) ∼ P. We wish to identify the principally stratified mean out-
comes with a parameter of this observed data distribution P. We make the following identifiability as-
sumptions, where we note that here and throughout we use E to denote an expectation under P:

(A1) A draw of O = (W,A,S,Y,Sc) from P has the same distribution as a draw of
(W,A,1A=1 S1,YA,1A=0 Sc

0) from PF .

The above is implied by the consistency assumption, which states that S1 = S if A = 1, Y = YA, and
Sc = Sc

0 if A = 0. We also make the following assumptions:

(A2) Ignorable treatment assignment: A⊥⊥ (S1,Y0,Y1)|W , and

(A3) Crossover assumption: for PF almost all w, S1|Y0 = 0,W = w under PF has the same distribution
as Sc

0|Y0 = 0,W = w under PF .
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This assumption is ill-defined when PF(Y0 = 0|W = w) = 0, but we note that it could be replaced by
equality of the conditional subdistribution functions S1,Y0 = 0|W = w and Sc

0,Y0 = 0|W = w under PF .
If only the effect at a single s?1 is of interest, then the final assumption above could be replaced by the
weaker assumption that, for PF almost all w, PF(S1 = s?1|Y0 = 0,W = w) = PF(Sc

0 = s?1|Y0 = 0,W = w).
Note that, in either case, the third assumption above is implied by Sc

0 = S1 almost surely, but does
not require this. As an example of the greater generality of the above assumption, it allows for a true
underlying biomarker to be measured with error, where the conditional probability statement is then
interpreted for the noised measurement of the underlying biomarker. Note also that this assumption
becomes weaker as the baseline covariate W become more predictive of S1 and Sc

0. Therefore, using the
richest possible baseline covariate by including all available individual-level information is expected to
yield the most plausible crossover assumption.

Throughout we also require the strong positivity assumption that, for some δ > 0, the treatment
mechanism P(A = 1|W ) falls between δ and 1− δ with probability one over W ∼ P. We will also
assume that there exists some fixed δ > 0 so that any estimate of the treatment mechanism discussed in
this paper satisfies the strong positivity assumption with probability approaching one. In Appendix B.1,
we prove the following identifiability result.

Theorem 1. If A1, A2, and A3 hold, then:

1. PF(S1 = s?1) = E[P(S = s?1|A = 1,W )],

2. PF(Y1 = 1,S1 = s?1) = E [P(Y = 1,S = s?1|A = 1,W )], and

3. PF(Y0 = 0,S1 = s?1) = E [P(Y = 0,Sc = s?1|A = 0,W )].

These identifiability results enable the identification of PF(Y1 = 1|S1 = s?1) =
PF (Y1=1,S1=s?1)

PF (S1=s?1)
and of

PF(Y0 = 1|S1 = s?1) = 1− PF (Y0=0,S1=s?1)
PF (S1=s?1)

, and therefore also enable the identification of the principally
stratified relative risk or any other contrast of these two quantities.

It will be convenient to define parameters mapping from our statistical model M , i.e. the nonparamet-
ric model that at most places restrictions on the probability of receiving treatment A = 1 given covariates
W , to the real line. In particular, for an arbitrary distribution P′ ∈M , we define parameters correspond-
ing to each of the above identifiability results, where to ease notation we omit the dependence of these
parameters on the choice of s?1:

1. Ψ1(P′)≡ EP′ [P′(S = s?1|A = 1,W )],

2. Ψ2(P′)≡ EP′ [EP′ [Y |A = 1,S = s?1,W ]P′(S = s?1|A = 1,W )], and

3. Ψ3(P′)≡ EP′ [P′ (Sc = s?1|A = 0,Y = 0,W )P′(Y = 0|A = 0,W )].

Note that, under our identifiability conditions, the principally stratified relative risk is equal to

RRP(s?1)≡
Ψ2(P′)

Ψ1(P′)−Ψ3(P′)
. (2)

While the numerator above is bounded between 0 and 1, the denominator may be negative. Therefore, it
is possible that the above, which is supposedly identified with a counterfactual relative risk, is negative.
This is of course impossible, and therefore indicates a failure of our identifiability assumptions. In The-
orem A.1 of Appendix B.1.2 we show that, under A1 and A2, the assumption A3 is not falsifiable from
the observed data distribution if Ψ4(P) = 0, where

Ψ4(P′)≡
∫ ∫ (

P′ (Sc = s1,Y = 0|A = 0,w)−P′(S = s1|A = 1,w)
)+

dP′(S = s1|A = 1,w)dP′(w).

Above x+ denotes the positive part of x. If, on the other hand, A1 and A2 hold and ΨF
4 (P

F) > 0, then
it is easy to show that A3 cannot hold. Our statistical inference for the principally stratified relative risk
will hinge on A3. The fact that Ψ4(P) > 0 implies that A3 is false suggests that one could provide a
test of A3, and perform this test as a sanity check before proceeding with inference for the principally
stratified relative risk. We do not further consider such a test here.
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3. Estimation for discrete biomarker

Until otherwise stated, we work at fixed s?1. Suppose we observe n i.i.d. samples O1, . . . ,On ∼ P, where
Oi = (Wi,Ai,Si,Yi,Sc

i ). The notational overload on subscripts (indexing individual i and counterfactuals)
will not be problematic because the remainder of this work focuses only on observed data quantities.

We will present an estimator of Ψ(P) ≡ (Ψk(P) : k = 1,2,3) ≡ (ψk : k = 1,2,3) and show that it
has a normal limiting distribution. This will enable both a test of A3 and the construction of confidence
intervals for the quantity RRP(s?1) that is, under conditions discussed in the previous section, identified
with the principally stratified relative risk. Before the presentation of this estimator, whose construction
is somewhat involved, Section 3.1 motivates the theoretical development needed to define the estimator.
Section 3.2 presents the estimator.

3.1. Motivation

We will derive the efficient influence function DP′ : O → R3 of the parameter Ψ, where we note that,
as the notation suggests, the influence function depends on the distribution P′ at which Ψ is evaluated.
While a more thorough review of the definition of efficient influence functions is given in Appendix D,
the key result is that they yield a first-order expansion of the form:

Ψ(P′)−Ψ(P) =−EP

[
DP′(O)

]
+Rem(P,P′), (3)

where above Rem(P,P′) ∈ R3 is small (in Euclidean norm) relative to the leading term on the right
whenever P′ is close to P. In our setting, P′ will denote an estimate of P, where one really only needs
to estimate the conditional expectations and probabilities under P needed to evaluate Ψ and D, rather
than the entire distribution. Once this result has been established, we will use it to develop a targeted
minimum loss-based estimator (TMLE) of the three-dimensional estimand ψ . We can then estimate any
smooth function of this quantity, e.g. a relative risk.

Before presenting the TMLE, which is somewhat complex, we provide intuition as to its strong theo-
retical properties. Suppose we have estimated the components of P needed to evaluate Ψ and D. Denote
the estimate by P̂. Further suppose that this initial estimate is close to P in the sense that Rem(P, P̂)≈ 0,
where we later give an explicit expression for this remainder and also give an exact rate requirement
to make the approximation symbol precise. Then, by (3), one has that Ψ(P̂)−Ψ(P) ≈ −EP[DP̂(O)].
Because DP is mean zero when applied to draws of O ∼ P, if P̂ is close to the true data generating dis-
tribution then it is expected that the right-hand side is close to zero. Nonetheless, when W is continuous
it is difficult to quantify how close to zero this expectation is. The TMLE overcomes this challenge by
obtaining an estimate P̂∗ that is a slight fluctuation of P̂, where this fluctuated estimate now satisfies

1
n

n

∑
i=1

DP̂∗(Oi) = 0. (4)

In fact, it would suffice for the left-hand side to converge to zero in probability faster than the inverse of
the square root of the sample size. Arguments from M-estimation can be used to show that the fluctu-
ation step does not destroy the convergence properties of the initial estimate P̂, so that Rem(P, P̂∗) ≈ 0
whenever this statement holds for the initial, unfluctuated estimator. Combining the above with (3), we
have that

Ψ(P̂∗)−Ψ(P)≈ 1
n

n

∑
i=1

{
DP̂∗(Oi)−EP

[
DP̂∗(O)

]}
.

Multiplying both sides by the square root of sample size, and noting that, under some minor regularity
conditions, DP̂∗ can be replaced by its mean-square limit (often, though not always, this will be DP),
we obtain the convergence in distribution result n1/2 [Ψ(P′)−Ψ(P)] d−→ N(0,Σ), where the covariance
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matrix Σ can be estimated using the empirical covariance of DP̂∗(O). Confidence intervals for (2) can be
derived via the delta method.

Having presented the high-level arguments for our TMLE, we devote the remainder of this section to
formally establishing the validity of this estimator. First, we derive the efficient influence functions of the
three parameters of interest. Next, we present a TMLE that fluctuates an initial estimate of P so that (4)
is satisfied. We then present a theorem giving regularity conditions for the convergence in distribution
to a multivariate normal, and we also observe that these regularity conditions can be weakened via
cross-validation. Finally, we combine a log transformation with the delta method to demonstrate how to
construct confidence intervals for contrasts between the treatment-specific principally stratified risks.

3.2. Presentation of estimator

Per the above Motivation section, the efficient influence function of Ψ should play a major role in esti-
mation. Therefore, the following result, which presents an expression for the efficient influence function,
will be useful. Before presenting the result, we note that throughout we will use the following conven-
tions for any distribution P′, function f , and realizations (a,w) of (A,W ): EP′ [ f (O)|a,w] =EP′ [ f (O)|A=
a,W = w] and P′(a|w) = P′(A = a|W = w).

Theorem 2. Within the model M that at most places restrictions on the probability of receiving treat-
ment given baseline covariates, the parameter Ψ has efficient influence function DP′ ≡ (DP′

k : k = 1,2,3)
at P′, where, for k = 1,2,3,

DP′
k (o)≡ 1{a = ak}

P′(a|w)
{ fk(o)−EP′ [ fk(O)|ak,w]}+EP′ [ fk(o)|ak,w]−Ψk(P′).

Above, f1(o)≡ 1S=s?1 and a1 = 1; f2(o)≡ 1Y=1,S=s?1 and a2 = 1; and f3(o)≡ 1Y=0,Sc=s?1 and a3 = 0.

The proof of this result is in Appendix B.2. It easy to verify that the remainder Rem(P,P′) ≡
(Remk(P,P′) : k = 1,2,3) in (3) takes the following form:

Remk(P,P′) = EP

[(
1− P(ak|W )

P′(ak|W )

)
(EP′ [ fk(O)|ak,W ]−EP[ fk(O)|ak,W ])

]
. (5)

Using this efficient influence function, it remains to develop an estimator satisfying (4). This estimator
is given in Algorithm 1, which independently estimates each parameter Ψk(P), k = 1,2,3, by invoking
a TMLE for estimating EE[ f (O)|A = a,W ] for an arbitrary function f and treatment a. Many variants
of this k-specific TMLE have been presented elsewhere (e.g., van der Laan and Rose, 2011). We note
here that we are in fact implementing three separate TMLEs, and so it is not immediately obvious that
there exists a single distribution P̂∗ such that our estimator is equal to Ψ(P̂∗). We can show that a unique
distribution exists if P̂∗2 ( f2(O) = 1|a2,w)≤ P̂∗1 ( f1(O) = 1|a1,w) for all w.

We now present the limiting distribution of the proposed estimator. This result relies on the following
conditions:

— D̂ belongs to a fixed Donsker class (van der Vaart and Wellner, 1996) with probability approaching
one;

—
∫
[D̂(o)−D(o)]2dP(o) converges to zero in probability as n→ ∞;

— all remainders are negligible: maxk Remk(P, P̂∗k ) = oP(n−1/2).

Theorem 3. Under the above listed conditions, there exists a covariance matrix Σ such that

n1/2
[
ψ̂−ψ

]
= n−1/2

n

∑
i=1

DP(Oi)+oP(1)
d−→ Normal(0,Σ),

The proof of this result is omitted because very similar proofs have already appeared in the literature
many times (e.g., van der Laan and Rose, 2011; Kennedy, 2016, for overviews). The limiting covariance
matrix Σ can be consistently estimated using the empirical covariance of DP̂∗k (O).
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Algorithm 1 TMLE for Estimating Ψ1(P), Ψ2(P), and Ψ3(P)
Takes as input n observations Obs≡ {Oi : i = 1, . . . ,n}.
function TMLE(Obs)

Initial Estimates: Define an initial estimator P̂ of P:

— The marginal distribution of W under P̂ should be the empirical.

— Only the estimates of the components of P(O|W ) needed to evaluate Ψk and Dk, k = 1,2,3, are needed: P̂(A =
1|W = ·), P̂(Y = 1|S = s?1,A = 1,W = ·), P̂(S = s?1|A = 1,W = ·), and P̂(Y = 0,Sc = s?1|A = 0,W = ·).

. Conditional probability estimates should fall in (0,1).
for k = 1,2,3 do . Recall the definitions of fk and ak from Theorem 2.

Fluctuation for Targeting Step: Using observations i = 1, . . . ,n, fit the intercept ε̂k using an intercept-only logistic
regression with outcome fk(Oi), offset logit P̂{ fk(O) = 1|a,w}, and weights

1Ai=ak
P̂(Ai|Wi)

.

Targeting Step: We now define a fluctuation of P̂∗k of P̂, targeted towards estimation of ψk. Define

P̂∗k { fk(O) = 1|ak,w} ≡ expit
{

logit P̂{ fk(O) = 1|ak,w}+ ε̂k
}
.

The marginal distribution of W ∼ P̂ does not need to be fluctuated.
Plug-In Estimator: The estimator of ψk is ψ̂k ≡ Ψk(P̂∗k ), and the estimate of the corresponding component of the

influence function is D̂k ≡ DP̂∗k
k .

return Estimate ψ̂ ≡ (ψ̂k : k = 1,2,3) and estimated influence function D̂≡ (D̂k : k = 1,2,3).

To develop sufficient conditions for maxk Remk(P, P̂∗k ) to be negligible, one can use that each
Remk(P, P̂∗k ) is upper bounded by a constant times the product of the root-mean-square distance between
P̂∗k (ak|W = ·) and P(ak|W = ·) and the root-mean-square distance between P̂∗k ( fk(O) = 1|ak,W = ·) and
P( fk(O) = 1|ak,W = ·). In a parametric model, each of these root-mean-square distances is OP(n−1/2),
and outside of a parametric model sufficient smoothness will enable several estimators to ensure that
the product of these two rates is oP(n−1/2). Examples include generalized additive models (Hastie and
Tibshirani, 1990; Horowitz, 2009) and the highly adaptive lasso estimator (van der Laan, 2017). If the
data are generated from a randomized clinical trial, and the known treatment assignment probabilities
are used, then each Remk(P, P̂∗k ) is exactly zero.

The Donsker condition in the theorem above restricts the flexibility of the initial distribution estimate
P̂. This restriction may be unpleasant in situations where the dependence of P{ fk(O) = 1|a,w} on w
is believed to be complicated. In these cases, one can modify the above estimator via a V -fold sample
splitting approach, resulting in a cross-validated TMLE (Zheng and van der Laan, 2011). For ease of
exposition, we focus on the case that V = 10. Here, one partitions the data into ten mutually exclusive
and exhaustive folds of approximately equal size. One then fits ten initial estimates of P̂, where each
initial estimate leaves out a different one of these ten folds. For each observation i, let v(i) denote the
fold that contains i. Let P̂v denote the initial estimate based on the nine out of ten folds that do not include
fold v. The sample splitting procedure then replaces each evaluation of (a conditional distribution of) P̂
at Oi within the for loop over k by P̂v(i), where we recall that k indexes the three dimensions of the output
of the parameter Ψ. A single, non-fold-specific fluctuation ε̂k is still returned from the logistic regression
in this for loop. The fluctuated initial estimates are still fold-specific, with

P̂v,∗
k { fk(O) = 1|a,w} ≡ expit

{
logit P̂v { fk(O) = 1|a,w}+ ε̂k

}
.

The estimator of ψk is ψ̂CV
k ≡ 1

n ∑
n
i=1 Ψk(P̂

v(i),∗
k ). The estimator ψ̂

CV should have the same multivariate
normal limit as ψ̂ would have if the Donsker condition is satisfied, but this cross-validated TMLE will
still have this multivariate normal limit even if this Donsker condition fails.

As discussed in the introduction, the delta method can be used to derive confidence intervals for
any smooth mapping Γ : R3 → R of ψ , where the efficient influence function is then 〈DP, Γ̇(ψ)〉,
with Γ̇ the gradient of Γ. For a discrete biomarker, as is studied in this section, this will require that
the biomarker takes on the value s?1 with positive probability, i.e. that E[P(S = s?1|A = 1,W )] > 0.
For example, for the log of the relative risk defined in (2), Γ(x) ≡ log(x2)− log(x1− x3) and Γ̇(x) =(
−[x1− x3]

−1,x−1
2 , [x1− x3]

−1
)
. For the risk difference on treatment A = 1 versus on treatment A = 0,
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Γ(x) = (x2− x3)/x1 and Γ̇(x) = x−2
1 (x3− x2,x1,−x1). In either case, the influence function of our esti-

mator ψ̂ can be estimated using 〈D̂, Γ̇(ψ̂)〉. Letting σ̂2 denote the empirical variance of 〈D̂(O), Γ̇(ψ̂)〉, a
95% confidence interval for Γ(ψ) is given by Γ(ψ̂)±1.96n−1/2σ̂ .

4. Estimation Under Two-Phase Sampling

In some settings, such as in many vaccine studies, the post-treatment biomarker S and the post-crossover
biomarker Sc will only be measured on a subset of the individuals in the study. For example, the
biomarker S may be measured on all treated (A = 1) cases (Y = 1) and all members of a prespeci-
fied cohort randomly drawn from the set of all individuals, whereas the crossover biomarker Sc may be
measured on a random subset of untreated (A = 0) controls (Y = 0). In this section, we study estimation
in the setting where the biomarkers are discrete.

Section 4.1 gives an overview of the notation and assumptions needed in this setting. Section 4.2
presents an inverse probability weighted TMLE based on the framework of Rose and van der Laan
(2011). This estimator is appealing because it only requires minor modifications to the estimator from
Section 3.2, namely in the inclusion of sampling weights. When the baseline covariates are not discrete,
the inverse probability weighted TMLE presented in this section may not be efficient, because it does
not fully leverage the predictive power of the baseline covariates for the missing biomarker, which is
especially important for individuals for whom these biomarkers are not measured. Though Rose and
van der Laan (2011) also presented a TMLE that can attain efficiency in settings where the baseline co-
variates are continuous, we instead present a one-step estimator for these settings, that has the advantage
of being easier to describe and implement, but the disadvantage of not being a plug-in estimator.

4.1. Overview

For treated individuals, let ∆ denote the indicator of having the biomarker S measured. For untreated
individuals, let ∆ denote the indicator of having the crossover biomarker Sc measured. We use the con-
vention that ∆ is always one for untreated cases, which does not cause a problem because Sc is defined
to be zero for all untreated cases.

We make the missing at random assumptions that the indicator ∆ is independent of the biomarkers
(S,Sc) given phase-one information (W,A,Y ), where we recall that S is degenerate for untreated individ-
uals and Sc is degenerate for treated individuals and untreated controls. For each individual i, the indi-
cator of having the biomarker measured is given by ∆i. We suppose that ∆1, . . . ,∆n is an i.i.d. sequence
given (O1, . . . ,On), where we remind the reader that Oi≡ (Wi,Ai,Si,Yi,Sc

i ). We let Õ≡ (W,A,∆S,Y,∆Sc)
denote the censored data structure, which is equal to O except that the biomarkers are unobserved for all
individuals with ∆ = 0. Let P̃ denote the corresponding distribution of (∆, Õ). Our estimation scheme
will be a function of the observed n i.i.d. draws of Õ∼ P̃.

Let Π(Õ) denote the probability that ∆ = 1 given Õ. For brevity, we let π ≡Π(Õ) for an arbitrary Õ∼
P̃ and, for each individual i, we let πi ≡Π(Oi). We note that πi = 1 for all untreated cases. Furthermore,
in a case-cohort sampling scheme, πi = 1 for all treated cases.

4.2. Inverse Probability Weighted TMLE

In this section, we will assume that πi is known for each individual. If πi only relies on W through a
discrete coarsening V of W , then the inference that we propose will be valid, albeit conservative, if πi is
replaced by a nonparametric maximum likelihood estimator π̂i of the probability that ∆ = 1 conditional
on (V,A,Y ). In fact, using this nonparametric maximum likelihood estimator typically leads to asymp-
totic efficiency gains even in our setting where πi is known, and never leads to a loss of asymptotic
efficiency in this setting (Theorem 2.3 of van der Laan and Robins, 2003).

Defining the inverse probability weighted (IPW) TMLE requires only minor modifications to Al-
gorithm 1. The modifications to our estimation scheme hinge on the fact that, for any f , EP[ f (O)] =
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EP̃[∆π−1 f (Õ)]. This fact is useful both when f is a loss function, in which case it suggests to include
weights ∆π−1 in the estimation procedure, and when f is an influence function, in which case it suggests
to weight DP in the leading term on the right-hand side of (3). The estimation scheme, which represents a
two-phase sampling TMLE as presented in Rose and van der Laan (2011), is presented in Algorithm 3 in
Section 4. When obtaining the initial estimate P̂ of P, one can use loss-based approaches, e.g. minimiz-
ing the empirical mean-squared error or Kullback-Leibler divergence to estimate the needed components
of P. The key in the two-phase sampling case is to include the inverse of the (estimated) individual-level
probabilities for belonging to the second phase as weights, i.e. including as weights ∆iπ

−1
i , in whatever

loss-based estimation procedure that is used to estimate the needed components of P (see Section 3.2.2
of Rose and van der Laan, 2011).

Confidence intervals for the IPW TMLE can again be constructed using that, under regularity
conditions closely related to those of Theorem 3, n1/2[ψ̂ − ψ]

d−→ Normal(0, Σ̃). The covariance
matrix Σ̃ can be estimated by the empirical covariance of the inverse weighted influence function(
∆iπ̄

−1
i D̂k(Õi) : k = 1,2,3

)
, where π̄i is defined in Algorithm 3 as a rescaling of πi that ensures that

∆π̄−1 has empirical mean one within both the treated and untreated strata of the observations. The only
difference relative to the estimation of Σ is that the influence function is now weighted by ∆iπ̄

−1
i . Confi-

dence intervals for the relative risk can again be generated using the delta method.

4.3. One-Step Estimator that Fully Leverages Continuous Baseline Covariates

We now present a one-step estimator that fully leverages the predictive power of baseline covariates,
treatment status, and endpoint status for the missing values of the biomarker. Under some regularity
conditions, this estimator is efficient in the model in which the probability of treatment given covariates is
unknown, and is only slightly inefficient in settings where the probability of treatment given covariates is
known (Marsh, 2016). In the setting where the treatment mechanism is unknown, the efficient influence
function is given by

D̃
P′
(õ)≡ δπ

−1DP′(õ)+
(
1−δπ

−1)EP′
[
DP′(Õ)

∣∣∣∆ = 1,a,w,y
]
,

where õ ≡ (w,a,δ s,y,δ sc) and we abuse notation and let π = Π(õ). The elements of the above vector
rewrite as

D̃P′
k (õ)≡ 1{a = ak}

P′(a|w)
{

δπ
−1 fk(o)+

(
1−δπ

−1)EP′ [ fk(O)|∆ = 1,a,w,y]−EP′ [ fk(O)|ak,w]
}

+EP′ [ fk(o)|ak,w]−Ψk(P′), (6)

To define our estimator, we first suppose that we have an estimator P̂ of the distribution P of the data
that would have been observed had the probability of membership in the second phase of sampling been
equal to one for all individuals. This estimator can be obtained via loss-based learning using inverse
probability weighting (see Section 3.2 of Rose and van der Laan, 2011). Next, we define our estimator

as ψ̂ ≡ Ψ(P̂)+ 1
n ∑

n
i=1 D̃

P′
(Õi). Let Σ̂n denote the empirical covariance matrix of D̃

P′
(Õi), i = 1, . . . ,n,

where here we acknowledge the notational overload with the covariance matrix Σ̂n from Section 3.2
(single-phase sampling). Under some conditions, one can show that n1/2Σ̂

−1/2
n

[
ψ̂−Ψ(P)

]
d−→N(0, Id),

where Id denotes the 3× 3 identity matrix. One can then use the delta method to develop confidence
intervals for any contrast based on the principally stratified means ψ , such as the log relative risk.

To gain some intuition on this estimator, note that, if the baseline covariates are strongly predictive
of the biomarker among treated individuals and of the crossover biomarker among uninfected untreated
individuals, then the estimate of EP [ fk(O)|∆ = 1,a,w,y] will be approximately equal to fk(o). There-
fore, δπ−1 fk(o)+

(
1−δπ−1

)
EP′ [ fk(O)|∆ = 1,a,w,y] is approximately equal to fk(o), so that D̃P′

k (õ)
is approximately equal to the efficient influence function in the setting where phase two information is
observed on everyone.

Finally, we note that, though we have assumed that Π is known, the proposed one-step estimator will
also yield valid inference if Π is replaced by an estimate and a doubly robust term is negligible.
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5. Continuous Biomarker

5.1. Algorithm and Theoretical Guarantees

Thus far we have assumed that the biomarker is discrete. Suppose now that the biomarkers S1,Sc
0 are

continuous, with support in R. We will show the methods that we have proposed immediately extend to
this case once one replaces the indicators that S = s?1 and Sc = s?1 by kernels. The extension to the case
that the biomarkers have support in Rd , d > 1, is straightforward by using kernels for Rd-valued data,
though, given that kernel smoothers are highly susceptible to the curse of dimensionality, we expect that
this method will only yield informative estimates when d is small. For simplicity, we consider the full
sampling case where all treated individuals and all untreated individuals without the event have their
biomarker measured. As in the previous section, our objective will be to estimate the effect of treatment
conditional on a biomarker value s?1.

This treatment effect will be a function of three parameters, which are defined with respect to the
(conditional) Lebesgue densities of the biomarkers S and Sc, which are assumed to exist. To avoid intro-
ducing new notation for these densities, we will abuse notation so that writing “S = s” or “Sc = s” in a
conditional probability statement refers to the conditional density of S or Sc at s. Once we have made this
abuse of notation, the definition of Ψ(P) from Section 2 does not need to be changed to study the setting
where the biomarkers are continuous. So, for example, Ψ1(P′) ≡ EP′ [P′(S = s?1|A = 1,W )] represents
the Lebesgue density of S at s?1, conditional on A = 1 and W , averaged across values of W ∼ P′.

Let K denote a kernel in R, where this function is centered at zero and integrates to one. Examples of
kernels include K(x) = 1{−1 ≤ 2x ≤ 1} (uniform kernel), K(x) ∝ exp(−x2/2) (Gaussian kernel), and
K(x) ∝

1
2(3− x2)exp(−x2/2) (fourth-order Gaussian kernel), where the constants in the ‘∝’ statements

are chosen so that the kernels integrate to one. The first two kernels are second-order in the sense that∫
xtK(x)dx = 0 for t = 1, whereas the final kernel is fourth-order in the sense that

∫
xtK(x)dx for t =

1,2,3. Generally, a kernel is of order r if
∫

xtK(x)dx = 0 for all t = 1, . . . ,r− 1. We define Kh as the
function x 7→ h−1K[xh−1], where h > 0 is the bandwidth.

Before presenting our algorithm, we introduce the kernel-dependent pseudo-outcomes that we will
use to replace fk, k = 1,2,3. In particular, we define f1,h(Oi)≡ Kh(S− s?1), f2,h(Oi)≡ 1Y=1 Kh(S− s?1),
and f3,h(Oi) ≡ 1Y=0 Kh(Sc− s?1). We continue to use the definitions a1 = 1, a2 = 1, and a3 = 0. For
an arbitrary P′, we also define DP′

k,h analogously to DP′
k from Theorem 2, but with each instance of fk

replaced by fk,h. We also define a smoothed version of our parameter. To do this, it will be useful to make
the dependence of Ψ(P) on s?1 explicit in the notation: in particular, we define Ψ(P;s)≡ {Ψk(P;s) : k =
1,2,3} for all s in the support of S|A = 1 under P. We now define and give an equivalent expression for
the kernel-smoothed version of Ψ(P;s?1):

Ψh(P)≡
∫

Ψ(P;s)Kh(s− s?1)ds = E [E [ fk,h(O)|ak,W ]] . (7)

The equivalent expression relies on changing the order of integration between the integral over s and
the integral over W ∼ P. We write the three components of Ψh(P) as Ψk,h(P) for k = 1,2,3. It will be
convenient to define qk,h as the function w 7→ E [ fk,h(O)|ak,w].

Our proposed estimation procedure is presented in Algorithm 2. In our procedure, we estimate qk,h
for each k = 1,2,3, and so by the latter identity in (7) it follows that we can use these expectations to
evaluate Ψh at our estimated distribution.

Our estimator can be analyzed using standard arguments for kernel estimators. We will break our
analysis into a study of the bias and a study of the variance of our estimator. We will show that our esti-
mator has small bias for the smoothed principally stratified mean vector Ψh(P) at a user-defined value of
h. Therefore, the bias of our estimator for Ψ(P) will be driven by the convergence of a kernel-smoothed
parameter to the true target parameter. As is standard for kernel estimators, the rate of convergence of
the bias will be driven by the differentiability of s 7→Ψ(P;s) at s and by the order of the kernel that we
select.
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Algorithm 2 CV-TMLE for Estimating Ψ1(P), Ψ2(P), and Ψ3(P) when the biomarker is continuous
Takes as input n observations Obs≡ {Oi : i = 1, . . . ,n} and a kernel Kh.
For simplicity, focus on 10-fold cross-validation.
function CV-TMLE(Obs)

for v = 1, . . . ,10 do
Initial Estimates: Using data from training set v, define an initial estimator P̂v of P:

— The marginal distribution of W under P̂v should be the empirical of the observations in training set v.

— Using only observations in the training set v, compute an estimate w 7→ P̂v(A = 1|w) of w 7→ Pv(A = 1|w), and
an estimate w 7→ q̂v

k,h(w) of w 7→ qk,h(w).

. Each qk,h should have range in (0,∞).

for k = 1,2,3 do
Fluctuation for Targeting Step: Define ε̂k as a minimizer (in real-valued ε) of(

1
n

n

∑
i=1

1Ai=ak

P̂v(Ai|Wi)

[
fk,h(Oi)− exp

{
log q̂v(i)

k,h (Wi)+ ε

}])2

.

Targeting Step: For each fold v, define

q̂v,∗
k,h(w)≡ exp

{
log q̂v

k,h(w)+ ε̂k

}
.

The marginal distribution of W ∼ P̂ does not need to be fluctuated.
Estimator: The estimator of ψk,h is 1

n ∑
n
i=1 Ψk,h(P̂

v(i),∗
k,h ), and, for each individual i, the estimate of the corresponding

component of the smoothed influence function is D̂k,h,i ≡ D
P̂v(i),∗

k,h
k,h .

return Estimate ψ̂
h
≡ (ψ̂k,h : k = 1,2,3) and estimated smoothed influence function D̂h,i ≡ (D̂k,h,i : k = 1,2,3).

Theorem 4 (Bias for Unsmoothed Parameter). Let K be an rth-order kernel and suppose that, for each
k ∈ {1,2,3}, s 7→ Ψk,h(P;s) is (t + 1)th-order differentiable on the real line with uniformly bounded
(t +1)th derivative. If

∫
|umin{r,t+1}K(u)|du < ∞, then ‖Ψh(P)−Ψ(P)‖= O(hmin{r,t+1}).

Next, we study the variance of our estimator, which is (asymptotically) unbiased for the parameter
evaluated at the kernel-smoothed data generating distribution. Before presenting this result, we will
define the covariance matrix Σn to be used in the upcoming theorem. For q̄k equal to the limit of the
estimates of qk,ĥn

as n→ ∞ (see the upcoming Condition A4) and ε ∈ R, we let

gk,ε,h̄n
(o)≡ 1a=ak

P(ak|w)
[

fk,h̄n
(o)− exp{log q̄k(w)+ ε}

]
+ exp [log q̄k(w)+ ε] (8)

and define Σn as the 3 × 3 matrix representing the covariance matrix under O ∼ P of(
h̄1/2

n gk,ε̄k,h̄n
(O) : k = 1,2,3

)
, where ε̄k, k = 1,2,3, is defined in the upcoming Condition A9. The fol-

lowing theorem relies on conditions that are stated in the upcoming Section 5.2.

Theorem 5 (Estimation of Smoothed Parameter). If Conditions A4 through A10 hold, then

(nĥn)
1/2

Σ
−1/2
n

[
ψ̂

ĥn
−Ψĥn

(P)
]

d−→ N(0, Id). (9)

The proof of this result is given in Appendix C. Under mild conditions, the Σn matrices will be
consistently estimable via the cross-validated empirical covariance matrix Σ̂n ≡ 1

n ∑
n
i=1 D̂ĥn,i[D̂ĥn,i]

T .
Note that Ψĥn

(P) is a data adaptive parameter (van der Laan et al., 2013), in the sense that it is random
through the bandwidth ĥn. One of the conditions for the theorem, listed in the next subsection, is that
there exists a deterministic sequence h̄n such that ĥn/h̄n→ 1+oP(h̄

1/2
n ). In fact, many selection proce-

dures satisfy the (typically stronger) condition that ĥn/h̄n−1 = OP(n−1/2) for a deterministic sequence
h̄n (Chiu, 1991; Hall et al., 1991; Fan and Marron, 1992). Under these stronger conditions, the differ-
ence between the data adaptive smoothed parameter at bandwidth ĥn and the sample size dependent, but
deterministic, smoothed parameter at bandwidth h̄n is of the order n−1/2, so that one can replace the data
adaptive parameter by Ψh̄n

(P) in the above theorem without changing the result.
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An estimator of the smoothed relative risk RRP
h (s

?
1) ≡ Ψ2,h(P)/[Ψ3,h(P)−Ψ1,h(P)] is given by

R̂Rĥn
(s?1) ≡ ψ̂

2,ĥn
/[ψ̂

3,ĥn
− ψ̂

1,ĥn
]. Similar delta method arguments used to develop confidence inter-

vals for discrete biomarkers can be used in the continuous setting. Then, Wald-type confidence inter-
vals for the log smoothed relative risk can be defined by using that, under the conditions of Theo-
rem 5, (nĥn)

1/2σ̂
−1
ĥn

[logR̂Rĥn
(s?1)− logRRP

ĥn
(s?1)] converges to a standard normal distribution, where, for

Γ̇(x) =
(
−x−1

2 ,−[x1− x3]
−1, [x1− x3]

−1
)
, we define

σ̂
2
ĥn
≡ 1

n

n

∑
i=1

[
〈D̂ĥn,i, Γ̇(ψ̂ ĥn

)〉− 1
n

n

∑
j=1
〈D̂ĥn, j, Γ̇(ψ̂ ĥn

)〉

]2

.

Combining the above two theorems demonstrates that there are rates for h̄n such that asymptotically
normal inference is possible for the unsmoothed parameter RRP(s?1). Indeed, balancing the standard
error of ψ̂

ĥn
, i.e. O((nĥn)

−1/2), and its bias for estimating the unsmoothed parameter, i.e. O(hmin{r,t+1})

for r, t defined in Theorem 4, shows that the bias converges more quickly than the standard error if h =
o(n−1/(2min{r,t+1}+1)). Nonetheless, selecting these rates for h̄n requires undersmoothing, i.e. choosing a
rate for h̄n that is slower than the rate that is optimal according to a criterion such as the mean-squared
error of a density estimator at S = s1, conditional on A = 1. Following the estimation of the causal effect
of continuous treatments in Kennedy et al. (2016), who himself followed the suggestion of Wasserman
(2006), we focus our inference solely on the smoothed relative risk parameter, rather than on the original,
unsmoothed parameter. The rate of decay on the bias from the above theorem is still interesting: it shows
that this smoothed parameter is getting close to the unsmoothed parameter as the sample size grows.
Nonetheless, we do not attempt to quantify the proximity of the smoothed parameter to the unsmoothed
parameter in the confidence interval that we construct. Once one has adopted this perspective, one has
flexibility in selecting the bandwidth h. For example, one could use a cross-validated mean integrated
squared error criterion, where this criterion is selected for estimating the marginal density of S among
all treated individuals.

An alternative approach would be to use the recent work of (Bibaut and van der Laan, 2017), that
enables principled selection of an undersmoothed bandwidth for non-pathwise-differentiable parameters
such as Ψ. Consideration of the performance of this method for the estimation of Ψ is beyond the scope
of this work.

5.2. Conditions for Asymptotically Normal Estimation of the Smoothed Parameter

Theorem 5 used the following conditions to prove the asymptotic normality of the estimator for contin-
uous biomarkers:

(A4) The treatment mechanism estimates satisfy maxv
∥∥P̂v(a|W = ·)−P(a|W = ·)

∥∥ = oP(1). Further-

more, for k = 1,2,3, there exists a function q̄k such that maxv

∥∥∥q̂v
k,ĥn
− q̄k

∥∥∥= oP(1).

(A5) There exists a deterministic positive sequence {h̄n}∞
n=1 such that ĥn/h̄n → 1+ oP(h̄

1/2
n ) and nh̄n

diverges to infinity.

(A6) maxv

∥∥∥q̂v
k,h−qk,h

∥∥∥∥∥P̂v(ak|W = ·)−P(ak|W = ·)
∥∥= oP(n−1/2ĥ−1/2

n ).

(A7) The kernel K can be evaluated using a composition of a finite number of arithmetic operations (+,
−,÷,×), indicator functions (x 7→ 1{x > c} for a constant c), and exponential functions (x 7→ ex).
Furthermore, the kernel K is bounded and uniformly continuous.

(A8) There exists a constant c > 0 such that P{c−1 < mink,v q̂v
k,h(W )≤maxk,v q̂v

k,h(W )< c}= 1−oP(1)
and a constant δ > 0 such that P{maxk,v,a 1/P̂v

k (a|W )< δ−1}= oP(1).

(A9) For each k ∈ {1,2,3}, there exists a fixed ε̄k ∈R such that ε̂k,n→ ε̄k in probability as n→∞, where
here (and here only) we make the dependence of ε̂k on n explicit in the notation by denoting this
quantity by ε̂k,n.
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(A10) There exists some fixed δ > 0 such that, with probability approaching one, all of the eigenvalues
of Σn are bounded below by δ .

We now discuss these conditions.

Condition A4. This condition requires mean-square consistency of the needed nuisance parameter esti-
mates, where we require this consistency for the estimators within each training fold. If the same esti-
mators are used within each training fold, then this is equivalent to requiring mean-square consistency
of the estimation of the needed nuisance parameters on the full sample. This condition does not require
any rate for this convergence, and so is a minor assumption relative to A6, though we note that A4 is
not necessarily implied by A6 (e.g., if the treatment mechanism is known and one uses this information
in estimation). Note that here we have assumed that the treatment mechanism estimates converge to the
true treatment mechanism in mean-square, whereas we have only required that q̂v

k,ĥn
has some limit. The

condition on the treatment mechanism seems minor given that the treatment mechanism is known in
most settings where crossover designs would be employed.

Condition A5. This condition requires that the bandwidth selection procedure that is employed will
eventually return a (nearly) deterministic result. The procedures of (Chiu, 1991; Hall et al., 1991) yield
data-driven bandwidth selections ĥn that satisfy ĥn/h�n = 1+OP(n−1/2), where here h�n is the optimal
bandwidth in terms of mean integrated squared error. In fact, Fan and Marron (1992) demonstrates that
the OP(n−1/2) term quantifying the multiplicative deviation of these bandwidth selection procedures
from the optimal bandwidth is optimal even in terms of the leading constant. Therefore, if one selects
ĥn to optimize an estimate of the density of S among treated individuals, we expect that the selected
bandwidth will eventually behave as a deterministic sequence and therefore that A5 will be satisfied.

Condition A6. This condition requires that product of the estimates of the treatment mechanism and
the smoothed densities qk,h converge to zero faster than does the standard error of our estimator. If the
treatment mechanism is known, as is the case in a randomized trial, then one can ensure that this product
is exactly zero at every sample size. Otherwise, the plausibility of this condition will typically rely on
the dimensionality of W . As a reference point, we note that, if a parametric model could be correctly
specified for an unknown treatment mechanism, then this condition would also automatically be satisfied
if ĥn→ 0 in probability, since in this case the product from this condition would be OP(n−1/2).

Condition A7. This condition does not rely on the data or the data generating distribution and therefore
can be verified in applications. We use this condition to ensure certain empirical process and envelope
conditions that we use in our proof are satisfied. This condition is satisfied by most kernels used in prac-
tice. For example, it is satisfied by K(x) = 1{−1/2 ≤ x ≤ 1/2} (uniform kernel), K(x) = exp(−x2/2)
(Gaussian kernel), and K(x) = 1

2(3− x2)exp(−x2/2) (fourth-order Gaussian kernel).

Condition A8. This assumption ensures that our estimates both of the density qk,h and of the treatment
mechanism do not fall too close to zero or one, and can be enforced in practice via truncation. For the
truncation not to damage the chance of the consistency of these estimates in A6, Condition A8 requires
that the true treatment mechanism does not fall too close to zero or one. This will be plausible for the
treatment mechanism in a randomized trial in which all individuals have a non-negligible probability
of receiving or not receiving treatment. The assumption on the density qk,h requires that, within each
stratum of covariates, any given realization of the biomarker is not very rare or very likely. Furthermore,
the assumption on qk,h requires that the probability of having Y = 1 within baseline covariate strata
of individuals not receiving treatment at baseline is never too common (this is to be expected for rare
events), and also that the event probability is bounded away from zero among treated individuals within
each stratum of baseline covariates.

Condition A9. The existence of a limit ε̄k for ε̂k can be ensured under mild conditions using arguments
for Z-estimators (van der Vaart and Wellner, 1996). We omit these arguments here for brevity.

Condition A10. This condition aims to ensure that the limit is non-degenerate. Its plausibility can be
checked in practice by checking the size of the eigenvalues of the estimator Σ̂n of Σn, given by Σ̂n ≡
1
n ∑

n
i=1 D̂ĥn

(Oi)[D̂ĥn
(Oi)]

T , and ensuring that the smallest eigenvalue is not close to zero.
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6. Simulation

We conduct simulations similar to the settings in Gilbert and Hudgens (2008), though with continuous
rather than discrete baseline covariates and biomarker. Here we focus on a univariate post-treatment
biomarker because such biomarkers are often of interest in vaccine studies (see Corey et al., 2015, for
examples). We consider sample size 5000 with equal number of people in treatment A = 1 and control
A = 0. We generate (W,S1) from bivariate normal distribution with mean (0.41,0.41)T and covariance
matrix (

0.552 0.552 ·0.5
0.552 ·0.5 0.552

)
.

For a = 0,1, we generate the potential outcome from the logistic model

PF(Ya = 1|W,S1) = expit(β0 +β1a+β2W +β3S1 +β4aS1)

where expit(x)≡ exp(x)/(1+exp(x)) and β0 = 1.2,β1 =−0.6,β2 =−0.5,β3 =−0.1,β4 =−0.9, such
that the average disease rate is 9.5% among individuals receiving A = 1 and is 18.8% among indi-
viduals receiving A = 0. We consider a full sampling setting where all treated individuals (A = 1)
and all untreated controls (A = 0,Y = 0) have the biomarker measured. We consider Gaussian kernel
Kh(x) = 1√

2πh
exp(− x2

2h2 ) to smooth 1{S1 = s∗1}. We use R package SuperLearner (Polley and van der
Laan, 2012) to estimate the kernel-smoothed Ψh(P) in equation (7). We consider GLM, GLM with in-
teraction, stepwise regression, neural network and sample mean in our SuperLearner library, whose
corresponding wrapper functions in the SuperLearner package are respectively given by SL.glm,
SL.glm.interaction, SL.step, SL.nnet, SL.mean. All of these functions were run at their default
settings in version 2.0-22 of the SuperLearner package.

We calculate two versions of the true parameters: one without smoothing and one with smoothing.
The true parameter without smoothing can be derived from the following identity

Ψ1(P;s∗1) = PF(S1 = s∗1)

Ψ2(P;s∗1) =
∫

PF(Y1 = 1|S1 = s∗1,W = w)PF(S1 = s∗1,W = w)dw

Ψ3(P;s∗1) =
∫

PF(Y0 = 0|S1 = s∗1,W = w)PF(S1 = s∗1,W = w)dw

The target parameter is log relative risk Ψh = log( Ψ2,h
Ψ1,h−Ψ3,h

). The smoothed version of the true parameter
is calculated by (7). We calculate the 95% Wald-type confidence interval and its coverage over the
unsmoothed true parameter and smoothed true parameter across 1000 simulations with different kernel
bandwidth h. Figure 1 shows the confidence interval coverage for a fixed s∗1 = 0.6 with different choices
of h. The coverage probability for the unsmoothed vaccine efficacy parameter drops below the nominal
level when h is small or large. The coverage probability for the smoothed parameter drops below the
nominal level when h is small but does not drop below nominal level when h is large. The results are
similar for other values of s∗1.

The primary results that we present in the main text will be based on a bandwidth of 0.2. We selected
this bandwidth by first noting the three places that the bandwidth is used in our procedure: first, to
estimate the density of S|A = 1,W that appears in the definition of Ψ1; next, to estimate the density of
S|A = 1,Y = 1,W that appears in the definition of Ψ2; and, finally, to estimate the density of Sc|A =
0,Y = 0,W that appears in the definition of Ψ3. To simplify selection of the bandwidth, we considered
the estimation of the corresponding densities when the covariate W was not conditioned on, namely
the estimation of the densities of (S|A = 1), (S|A = 1,Y = 1), and (Sc|A = 0,Y = 0). Since Y is a rare
outcome, the sparsest stratum in these conditioning statements will occur in the second listed density,
namely the density of S|A = 1,Y = 1. Consequently, we expect that the bandwidth selection should be
driven by the estimation of Ψ2. To select the bandwidth for our simulations, we generated many data
sets of size 5000, estimated the density of S|A = 1,Y = 1, and evaluated the default bandwidth selected
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FIGURE 1. The coverage probability for the unsmoothed vaccine efficacy parameter drops below the nominal level when h is
small or large. The coverage probability for the smoothed vaccine efficacy parameter drops below the nominal level when h is
small but does not drop below nominal level when h is large.

by the density function in R; this default bandwidth is selected based on Eq. 3.31 of Silverman (1986).
We found that values of approximately 0.15 were typically selected. Because the densities used in the
definitions of Ψ1, Ψ2, and Ψ3 are defined conditionally on W , we inflated this selected bandwidth to 0.2
to define the primary bandwidth considered in the main text. In Appendix F we also present results at
bandwidths of 0.1, 0.3, and 0.4.

Table 1 shows the bias, standard error, and coverage probability of the unsmoothed and smoothed
truth for different s∗1 with bandwidth chosen to be 0.2. The proposed TMLE estimator has low bias
and is asymptotically unbiased. As expected, the coverage probability for the smoothed vaccine effi-
cacy parameter is better than the coverage probability for the unsmoothed vaccine efficacy parameter.
Our additional simulation results for bandwidths 0.1, 0.3, and 0.4 are given in Appendix F. These re-
sults continue to show appropriate coverage of the smoothed parameter, though, as expected, when the
bandwidth is large we see poorer coverage of the unsmoothed parameter.

s∗1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bias, Truth -0.02 -0.01 -0.00 0.01 0.02 0.03 0.04 0.05 0.07 0.09
Bias, Smoothed -0.01 -0.02 -0.02 -0.01 -0.01 -0.01 -0.01 -0.00 0.01 0.03
Standard Error 0.18 0.17 0.17 0.17 0.17 0.18 0.19 0.21 0.23 0.27
Coverage, Truth 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.96 0.96 0.97
Coverage, Smoothed 0.96 0.95 0.95 0.94 0.93 0.94 0.95 0.95 0.96 0.96

TABLE 1. Bias, standard error, and coverage probability of the log relative risk point estimator and confidence intervals for
different s∗1 values with bandwidth chosen to be 0.2.

7. Discussion

We have presented a targeted minimum loss-based estimator (TMLE) for estimating contrasts between
the principally stratified means of absorbent endpoints in a crossover design, where we recall that an ab-
sorbent endpoint is an endpoints whose occurrence renders any subsequent measures of the biomarker of
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interest scientifically uninteresting. For most biomarkers, death is an absorbent endpoint. In HIV vaccine
trials, HIV infection is an absorbent endpoint when the biomarker of interest is the immune response.
We have established sufficient conditions for the nonparametric identifiability of treatment-specific prin-
cipally stratified means. Our identifiability conditions do not require that the baseline covariates be dis-
crete. We also established a necessary and sufficient condition for the falsifiability of our assumption
that relates the conditional distribution of the biomarker in the population that was treated at baseline
to the conditional distribution of the biomarker in the population that was treated at the crossover stage.
An implication of this result is that the crossover assumption can be tested: if the test fails to reject, then
there is no evidence in the data that the crossover assumption is falsifiable. If the test rejects, then there
is evidence in the data that the crossover assumption is false.

Our proposed method does not handle right-censoring on the absorbent endpoint. When dropout is
rare, this will at most induce a small amount of bias in an estimate of the principally stratified mean
outcomes. When dropout is more common but rare enough that a reasonable proportion of individuals
have follow-up to the end of the study, the methods in this work can be readily extended by incorporating
inverse probability of censoring weights to the proposed estimators. When few individuals have follow-
up until the end of the study, further methodological development is needed to develop low-variance
estimators that account for dropout.

When the biomarker is continuous, our proposed method relies on a choice of bandwidth. Though
our theoretical results provide guarantees for a wide range of sequences of selected bandwidths, we
have given only limited discussion to how the bandwidth should be selected in practice. We did present
one heuristic strategy in our Section 6, which involves using existing bandwidth selection approaches for
estimating the conditional density of S given that A = 1 and Y = 1 – this density is related to a density
that appears in the definition of the parameter Ψ2. We leave the theoretical analysis of this and other
bandwidth selection strategies to future work.

Our proposed estimators are especially advantageous in settings where (i) the baseline covariates are
predictive of the post-treatment biomarker and (ii) the relationship between these baseline covariates
and the biomarker is complex. The predictiveness of the baseline covariates improves the plausibility
of the identifiability assumption linking the biomarker measured in treated individuals to the biomarker
measured in untreated individuals following their crossover to treatment. In these settings, obtaining
statistical inference for the contrast of interest using existing methods relies on either ignoring the base-
line covariates, discretizing the baseline covariates, or assuming a parametric relationship between the
biomarker and these baseline covariates. Our proposed TMLE is especially compelling in these settings
because it enables the incorporation of flexible estimation techniques for the conditional distribution of
the biomarker given the baseline covariates, while still admitting statistical inference.
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Appendix

Appendix B: Proofs of Results from Main Text

B.1. Identifiability

B.1.1. Identifiability under A1, A2, and A3

Proof of Theorem 1. Proof of 1. Using that PF(S1 = s?1) = EF [PF(S1 = s?1|W )], ignorability shows that
PF(S1 = s?1|A = 1,W ), and consistency then shows that the right-hand side is equal to E[P(S = s?1|A =
1,W )].

Proof of 2. Using that PF(Y1 = 1,S1 = s?1) = EF [PF(Y1 = 1,S1 = s?1|W )
]
, ignorability shows that

PF(Y1 = 1,S1 = s?1|W ) = PF(Y1 = 1,S1 = s?1|A = 1,W ), and consistency shows that the right-hand side
is equal to E [P(Y = 1,S = s?1|A = 1,W )].

Proof of 3. Note that

PF (Y0 = 0,S1 = s?1) = EF
[
EF
[
1{Y0=0,S1=s?1} |W

]]
(Tower Property)

= EF [PF (S1 = s?1|Y0 = 0,W )PF(Y0 = 0|W )
]

(Simplification)

= EF [PF (Sc
0 = s?1|Y0 = 0,W )PF(Y0 = 0|W )

]
(A3)

= EF [PF (Y0 = 0,Sc
0 = s?1|W )

]
(Simplification)

= EF [PF (Y0 = 0,Sc
0 = s?1|A = 0,W )

]
(A2)

= E [P(Y = 0,Sc = s?1|A = 0,W )] . (A1)

B.1.2. Non-Falsifiability of A3

We now show that A3 is not falsifiable from the observed data if Ψ4(P) = 0. We do this by constructing
a distribution that is consistent with the observed data (in the sense of A1), satisfies the ignorability
assumption A2, and satisfies the crossover assumption A3. This shows that, if Ψ4(P) = 0, then we
cannot falsify A3 from the observed data, even as the sample size approaches infinity.

Theorem A.1. If Ψ4(P) = 0, then condition A3 is not falsifiable from the observed data.

Proof. Suppose that Ψ4(P) = 0. We establish that A3 is not falsifiable by showing that there exists a
distribution PF

1 such that, if PF = PF
1 , then A1, A2, and A3 hold. Consider the distribution PF

1 , defined
by its conditional densities (with respect to appropriate dominating measures):

pF
1 (y1|sc

0,y0,s1,a,w) = p(y|A = 1,s1,w),

pF
1 (s

c
0, |s1,y0,a,w) = p(Sc = sc

0|Y = 0,A = 0,w)

pF
1 (s1,y0|a,w) =

{
p(Sc = s1,Y = 0|A = 0,w), if y0 = 0
p(S = s1|A = 1,w)− p(Sc = s1,Y = 0|A = 0,w), if y0 = 1,

pF
1 (a,w) = p(a,w).

Given that P is a probability measure, clearly, the first, second, and fourth conditional densities are
everywhere nonnegative and sum to one. The third conditional density is nonnegative because Ψ4(P) = 0
and sums to one since

∑
s1

∑
y0

pF
1 (s1,y0|a,w) = ∑

s1

p(S = s1|A = 1,w) = 1.
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Condition A2 is easily established for the above since a does not appear on the right-hand side of any
of the density definitions except for the definition of pF

1 (a,w). To establish A1, the only challenge is in
showing that pF

1 (s1|w) = p(S = s1|A = 1,w) and pF
1 (y0|w) = p(Y = y0|A = 0,w), but these results both

follow by respectively summing pF
1 (s1,y0|a,w) over y0 and s1. Furthermore, note that A3 holds if PF =

PF
1 , since, for all s1, the fact that S1 is independent of A,Sc

0 given W shows that pF
1 (S1 = s1|Y0 = 0,w)

equals p(Sc = s1|Y = 0,A = 0,W ), and A1 and A2 show that p(Sc = s1|Y = 0,A = 0,W ) = pF
1 (S

c
0 =

s1|Y0 = 0,w).

B.2. Estimation when Biomarker is Discrete

Proof of Theorem 2. It is well known (van der Laan and Robins, 2003) that, for an arbitrary bounded
function f : O→ R, a ∈ {0,1}, and parameter Φ f ,a defined by Φ f ,a(P′)≡ EP′ [EP′ [ f (O)|A = a,W ]], the
gradient at P′ is

o 7→ 1{A = a}
P′(a|w)

{ f (o)−EP′ [ f (o)|A,W ]}+EP′ [ f (o)|A = a,W ]−Φ
f ,a(P′).

The proof concludes by noting that Ψk(P′) = Φ fk,ak(P′) for all k = 1,2,3.

Appendix C: Estimation when Principal Biomarker is Continuous

We first present several lemmas used to prove Theorem 5 from the main text, which establishes an
asymptotically normal distribution for the estimate of the smoothed parameter. The proof of these lem-
mas is deferred until after that of Theorem 5. We then prove Theorem 4 from the main text, which shows
that, under some conditions, the smoothed parameter converges to the true, unsmoothed parameter as
the bandwidth shrinks to zero.

We now present the lemmas used in the above proof of Theorem 5. The first lemma uses fixed func-
tions w 7→ q̌k(w) and w 7→ π̌k(w). When we invoke this theorem, we will do so at q̂v

k,h and P̂(ak|W = ·),
where we will do to this conditionally on training sample v so that we can treat these functions as known.

Lemma A.2. Fix k and functions w 7→ q̌k(w) and w 7→ π̌k(w). The class Gk(q̌k, π̌k) defined in (A.3) is
VC-subgraph (van der Vaart and Wellner, 1996). Furthermore, the VC dimension of this class does not
depend on q̌k, π̌k.

The next lemma is useful for establishing that our estimator ensures that the empirical mean of the
smoothed influence function is zero.

Lemma A.3. Fix k ∈ {1,2,3}. Define

Zk,ĥn
(ε)≡ 1

n

n

∑
i=1

1Ai=ak

P̂(Ai|Wi)

[
fk,ĥn

(Oi)− exp
{

log q̂v(i)
k,ĥn

(Wi)+ ε

}]
.

If A8, then Zk,ĥn
(ε̂k) = 0 with probability approaching one.

The final lemma presents a technical condition controlling a class used in the proof of Theorem 5.

Lemma A.4. Fix δ > 0. Under the conditions of Theorem 5, the class G̃ v
k,δ ,h̄n

defined in the proof of
Theorem 5 has envelope cδ for a constant c that does not depend on the sample realization O1, . . . ,On.

Proof of Theorem 5. To simplify notation, we assume that n is divisible by 10 so that validation fold v
is of size n/10 – note that the results of this proof go through without this assumption. We let Pv

n denote
the empirical distribution of the observations in validation set v. For a function g and a distribution Q,
we let Qg = EQ[g(O)].
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Fix k ∈ {1,2,3}. By the same expansion used to establish (5),

Ψk,h(P′)−Ψk,h(P) =−PDP′
k,h +Remk,h(P,P′), (A.1)

where, with q′k,h(w)≡ EP′ [ fk,h(O)|ak,w],

Remk,h(P,P′) = EP

(P′(ak|W )−P(ak|W ))
(

q′k,h(W )−qk,h(W )
)

P′(ak|W )

 .
By Cauchy-Schwarz and A8, this remainder upper bounds as∣∣Remk,h(P,P′)

∣∣≤ δ
−1∥∥P′(ak|W = ·)−P(ak|W = ·)

∥∥∥∥q′k,h−qk,h
∥∥ .

For a given training fold v, the above is oP(n−1/2ĥ−1/2
n ) by A6 when evaluated at h = ĥn and P′ = P̂v,∗

k,ĥn
.

Multiplying by n−1 and summing the identity (A.1) over v = 1, . . . ,10 and i ∈ v at h = ĥn and P′ = P̂v,∗
k,ĥn

,
shows that

ψ̂k,h−Ψk,h(P) =−
1
n

10

∑
v=1

∑
i:v(i)=1

E
[

D
P̂v,∗

k,ĥn

k,ĥn
(O)

]
+oP(n−1/2ĥ−1/2

n ).

Using Lemma A.3, with probability approaching 1 the above shows that

ψ̂k,h−Ψk,h(P) =
1

10

10

∑
v=1

(Pv
n −P)D

P̂v,∗
k,ĥn

k,ĥn
+oP(n−1/2ĥ−1/2

n ). (A.2)

Consider the following R6-valued data structure, which can be derived from the observed data structure:
O ≡ (q̌k(W ), π̌k(W ),A,S,Sc,Y ). For i = 1, . . . ,n, we will let Oi denote their corresponding R6-valued
data structure. Noting that fk,h(o) can be evaluated from o = (q̌k(w), π̌k(w),a,s,sc,y), we define f̃k,h so
that f̃k,h(o) = fk,h(o). For fixed functions w 7→ q̌k(w) and w 7→ π̌k, define the class

Gk(q̌k, π̌k)≡
{

o 7→ gv
k,ε,h(o) : ε ∈ R,h ∈ R

}
, (A.3)

where

gv
k,ε,h(o)≡

1a=ak

π̌k(w)

[
f̃k,h(o)− exp{log q̌k(w)+ ε}

]
+ exp [log q̌k(w)+ ε] . (A.4)

Lemma A.2 demonstrates that Gk(q̌k, π̌k) is VC-subgraph (van der Vaart and Wellner, 1996), and that the
VC dimension does not depend on q̌k, π̌k. For each v and for the class Gk(q̂v

k,h,w 7→ P̂v(ak|w)), let gv
k,ε,h

denote the element of this class indexed by ε and h. Note that (A.2) rewrites as

ψ̂k,h−Ψk,h(P) =
1
10

10

∑
v=1

(Pv
n −P)gv

k,ε̂k,ĥn
+oP(n−1/2ĥ−1/2

n ). (A.5)

Consider the following subclass of Gk(q̂v
k,h,w 7→ P̂v(ak|w)):

G v
k,δ ≡

{
o 7→ gv

k,ε,h(o) : |ε− ε̄k| ≤ δ , |1− ĥn/h̄n| ≤ δ h̄1/2
n

}
.

The VC dimension of this subclass is no greater than that of Gk(q̂v
k,h,w 7→ P̂v(ak|w)) and so is bounded

by a constant that does not depend on the sample. Combining this with the fact that the VC dimen-
sion of this subclass is bounded by a universal constant c1 shows that the VC dimension of the class
G̃ v

k,δ ,h̄n
≡
{

h̄1/2
n [gv

δ
−gv

k,ε̄k,h̄n
] : gv

δ
∈ G v

k,δ

}
is also bounded by a constant that does not rely on the sample.
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Introducing G̃ v
k,δ ,h̄n

is useful because, for any fixed δ > 0, (A.5) combined with A5 and A9 yield that,
with probability approaching one,∣∣∣∣∣ψ̂k,h−Ψk,h(P)−

1
10

10

∑
v=1

(Pv
n −P)gv

k,ε̄k,h̄n
−oP(n−1/2ĥ−1/2

n )

∣∣∣∣∣
≤

∣∣∣∣∣ 1
10

10

∑
v=1

(Pv
n −P)(gv

k,ε̂k,ĥn
−gv

k,ε̄k,h̄n
)

∣∣∣∣∣≤ 1

10h̄1/2
n

10

∑
v=1

sup
g̃v

δ
∈G̃ v

k,δ ,h̄n

∣∣(Pv
n −P)g̃v

δ

∣∣ . (A.6)

Lemma A.4 shows that the class G̃ v
k,δ ,h̄n

has an envelope upper bounded by cδ for a constant c that does

not depend on the sample, i.e. supg∈G̃ v
k,δ ,h̄n
|g(o)| ≤ cδ for all o. Now, for each v we know that G̃ v

k,δ ,h̄n
is a

VC-class and there exists an upper bound on the VC-dimension that does not depend on O1, . . . ,On, and
so Theorem 2.14.1 in van der Vaart and Wellner (1996) can be used to show that, conditionally on the
training set v,

n1/2EPv
0

 sup
g̃v

δ
∈G̃ v

k,δ ,h̄n

∣∣(Pv
n −P)g̃v

δ

∣∣21/2

. δ ,

where Pv
0 is the distribution of the data in validation fold v and here and throughout we use “.” to denote

“less than or equal to up to a positive multiplicative constant that does not depend on the observations
O1, . . . ,On”. The above holds for all δ . Therefore, for any deterministic sequence δn ↓ 0, the above
shows that the right-hand side of (A.6) is oP(n−1/2h̄−1/2

n ) for this choice of δ = δn. Moreover, by A5,
oP(n−1/2h̄−1/2

n ) = oP(n−1/2ĥ−1/2
n ).

We will choose the sequence δn ↓ 0 in such a way that the display in (A.6) at δ = δn holds with
probability approaching one. We show that such a sequence exists as follows. Let Eδ ,n denote the event
that (A.6) does not hold. Because, for any fixed δ , the complement of Eδ ,n holds with probability ap-
proaching one, we know that there exists a sequence γδ ,n ↓ 0 so that P{Eδ ,n} ≤ γδ ,n for all n. As this
is true for all δ , there exists a sequence δn ↓ 0 so that P{Eδn,n} → 0 as n→ ∞. One way to construct
such a sequence {δn} is as follows: first, let n1 = 1; then recursively, for j = 1,2, . . ., choose δn = 1/2 j

for all n = n j + 1, . . . ,n j+1, where n j+1 is the smallest natural number that is greater than n j such that
max{γ1/2 j,n j+1

,γ1/2 j+1,n j+1
} ≤ 1/2 j — notably, the fact that max{γ1/2 j,n,γ1/2 j+1,n}→ 0 as n→ ∞ implies

that n j+1 is finite. The event Eδn,n occurs with probability approaching zero along this deterministic se-
quence, and so the display in (A.6) holds with probability approaching one when δ = δn. Plugging this
choice of {δn} sequence into the discussion from the previous paragraph, which controlled the right-
hand side of (A.6) for a given sequence δn ↓ 0, we see that

ψ̂k,h−Ψk,h(P) =
1
10

10

∑
v=1

(Pv
n −P)gv

k,ε̄k,h̄n
+oP(n−1/2ĥ−1/2

n ).

For each v, the function gv
k,ε̄k,h̄n

does not depend on validation sample v. Therefore, Chebyshev’s in-
equality applied over each (Pv

n −P)gv
k,ε̄k,h̄n

can be used to show that, if there exists a function gk,ε̄k,h̄n
such

that h̄nPv
0 [(g

v
k,ε̄k,h̄n

−gk,ε̄k,h̄n
)2] = oP(1), then (Pv

n −P)gv
k,ε̄k,h̄n

is equal to (Pv
n −P)gk,ε̄k,h̄n

+oP(n−1/2h̄−1/2
n ),

where under A5 the oP term can also be expressed as oP(n−1/2ĥ−1/2
n ). Under A4, the convergence to a

fixed function gk,ε̄k,h̄n
does indeed hold, with gk,ε̄k,h̄n

defined in (8). Hence,

ψ̂k,h−Ψk,h(P) =
1

10

10

∑
v=1

(Pv
n −P)gk,ε̄k,h̄n

+oP(n−1/2ĥ−1/2
n )

= (Pn−P)gk,ε̄k,h̄n
+oP(n−1/2ĥ−1/2

n ).

Journal de la Société Française de Statistique, Vol. 161 No. 1 176-200
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



Principally Stratified Treatment Effect Estimation in Crossover Studies 197

The above asymptotically linear expansion holds for each k.
Let gε̄,h̄n

: o 7→ (gk,ε̄k,h̄n
(o) : k = 1,2,3). Using A4 and A8, each component in the R3-valued vec-

tor gε̄,h̄n
(O) is almost surely bounded by a universal constant times h̄−1

n for O ∼ P. Using that h̄n and
ĥn are essentially equivalent under A5, our result will follow if we establish asymptotic normality of
the sequence n1/2(Pn − P)h̄1/2

n Σ
−1/2
n gε̄,h̄n

. We do this via a Cramér-Wold device and a central limit
theorem for triangular arrays. Let b be an R3-valued column vector. Observe that A10 ensures that,
with probability approaching one as n→ ∞, h̄1/2

n bT Σ
−1/2
n gε̄,h̄n

(O) is almost surely bounded by a con-

stant cb times h̄−1/2
n . Furthermore, VarP[h̄

1/2
n Σ

−1/2
n bT gε̄,h̄n

(O)] is equal to ‖b‖2. Using that nh̄n → ∞

(A5), one can show that the Lindeberg condition for triangular arrays is satisfied and the sequence
〈b,n1/2(Pn−P)h̄1/2

n Σ
−1/2
n gε̄,h̄n

〉 converges in distribution to a normal random variable with variance ‖b‖2.

As b was arbitrary, n1/2(Pn−P)h̄1/2
n Σ

−1/2
n gε̄,h̄n

converges to a N(0, Id) random variable.

Proof of Lemma A.2. The subgraph of a class G ′≡{o 7→ g(o) : g} is defined as the set {(o,z) : z< g(o)}.
For a pair (o,z), membership to this set can be computed by first computing g(o), and subsequently
returning an indicator that z < g(o). Now, for Gk, these functions g are indexed only by parameters
(ε,h) ∈R2. Furthermore, for properly defined t that only depends on the choice of kernel K, A7 ensures
that all of these these functions can be computed using no more than a total of t arithmetic operations
(+, −, ÷, ×), indicator functions (x 7→ 1{x > c} for a constant c), and exponential functions (x 7→
ex). By Theorem 8.14 in Anthony and Bartlett (1999), the VC-dimension of this class is no more than
m(t +2)(t +2+19log2[9(t +2)]), hence is finite and does not depend on q̌k, π̌k.

Proof of Lemma A.3. Fix k ∈ {1,2,3}. By the strong positivity assumption, with probability approach-
ing one there exists at least one i such that Ai = ak. Without loss of generality, suppose that this holds.
Combining this with the bound on q̂v

k,ĥn
in A8, Zk,ĥn

is a monotonically strictly decreasing. Furthermore,
Zk,ĥn

(ε) respectively diverges to +∞ and−∞ as ε tends to−∞ and +∞. Furthermore, Zk,ĥn
is continuous,

and therefore there exists a (unique) solution in ε to Zk,ĥn
(ε) = 0, and this solution must coincide with

ε̂k, defined as the minimizer of Zk,ĥn
(ε)2 in ε .

Proof of Lemma A.4. Note that

h̄1/2
n |gv

k,ε,h(o)−gv
k,ε̄k,h̄n

(o)|

≤ h̄1/2
n

1a=ak

P̂k(ak|w)
∣∣ fk,h(o)− fk,h̄n

(o)
∣∣+ h̄1/2

n

∣∣∣∣ 1a=ak

P̂k(ak|w)
−1
∣∣∣∣ ∣∣∣elog q̂v

k,h(w)+ε − elog q̂v
k,h(w)+ε̄k

∣∣∣
≤ h̄1/2

n P̂k(ak|w)−1
[∣∣ fk,h(o)− fk,h̄n

(o)
∣∣+ ∣∣∣elog q̂v

k,h(w)+ε − elog q̂v
k,h(w)+ε̄k

∣∣∣]
By (A7), K is bounded and so

∣∣ fk,h(o)− fk,h̄n
(o)
∣∣. |h−1− h̄−1

n |. Using a Taylor expansion and the bound

on q̂v
k,h from (A8), we also have that, with probability approaching one,

∣∣∣elog q̂v
k,h(w)+ε − elog q̂v

k,h(w)+ε̄k

∣∣∣ .
|ε− ε̄k|. Furthermore, by (A8), P̂k(ak|w)−1 . 1. Hence,

|gv
k,ε,h(o)−gv

k,ε̄k,h̄n
(o)|. h̄1/2

n |h−1− h̄−1
n |− h̄1/2

n |ε− ε̄k|

= h̄−1/2
n

∣∣∣∣1− h
h̄n

∣∣∣∣(1+
[

h̄n

h
−1
])
− h̄1/2

n |ε− ε̄k|

If gv
k,ε,h falls in G v

k,δ , then the right-hand side upper bounds by cδ for a constant c that does not depend

on O1, . . . ,On. Therefore, the envelope of the class G̃ v
k,δ ,h̄n

is of the order δ .
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Proof of Theorem 4. Fix k ∈ {1,2,3} and suppose that r ≥ t +1. A Taylor series expansion shows that

Ψk,h(P)−Ψk(P) =
∫

[Ψk(P;s)−Ψk(P)]Kh(s− s?1)ds

=
t

∑
j=1

[
1
j!

∂ j

∂ s j Ψk(P;s)
∣∣∣∣
s=s?1

∫
(s− s?1)

jKh(s− s?1)ds

]

+
∫

(s− s?1)
t+1

(t +1)!
∂ t+1

∂ st+1 Ψk(P;s)
∣∣∣∣
s=s̃s

Kh(s− s?1)ds,

where each s̃s is an intermediate value falling between s and s?1. So, the right-hand side is equal to the
final term. By the uniform bound on the (t +1)th derivative of s 7→Ψk(P;s), the magnitude of the final
term is upper bounded by a t-dependent constant times

∫ ∣∣(s− s?1)
t+1Kh(s− s?1)

∣∣ds = ht+1
∫ ∣∣∣∣∣
(

s− s?1
h

)t+1

K
(

s− s?1
h

)∣∣∣∣∣ ds
h

= ht+1
∫ ∣∣ut+1K(u)

∣∣du.

The right-hand side is O(ht+1) by assumption. The result follows because k ∈ {1,2,3}was arbitrary.

Appendix D: Efficient Influence Functions

We now review the definition of efficient influence functions, which is used in Theorem 2. Define the
following fluctuation submodel through P:

dPε(o)≡ [1+ εh(o)]dP(o), where EP[h(O)] = 0 and sup
o
|h(o)|< ∞.

The function h is a score, and the closure of the linear span of all scores yields the tangent space. It
is the resulting tangent space that is important, as pathwise differentiability is equivalent for any set
of functions h that yield the same tangent space. Hence, the restriction that supo∈O |h(o)| < ∞, while
convenient, will have no impact on the resulting differentiability properties.

The parameter Ψ is called pathwise differentiable at P if there exists a DP ∈ L2
0(P), i.e. a DP such that

DP(O) has mean zero and finite variance under O∼ P, such that

Ψ(Pε)−Ψ(P) = ε

∫
DP(o)h(o)dP(o)+o(ε).

We call DP a gradient of Ψ at P. The efficient influence function is the gradient DP for which DP(O),
O∼ P, has minimal variance. In a nonparametric model, DP(O) is almost surely unique.
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Appendix E: Two-Phase Sampling Algorithms

Algorithm 3 TMLE for Estimating Ψ1(P), Ψ2(P), and Ψ3(P) under Two-Phase Sampling
Takes as input n observations Obs≡ {Oi : i = 1, . . . ,n}, and also the weights ∆iπ

−1
i .

function TMLE(Obs)

Stabilization: For a = 0,1, let c(a)≡ ∑i:Ai=a ∆i/πi

#{i:Ai=a} . For each i, let π̄i ≡ c(Ai)πi.

. For a = 0,1, the choice of c(a) ensures that 1
#{i:Ai=a} ∑i:Ai=a ∆iπ̄

−1
i = 1.

Initial Estimates: Define an initial estimator P̂ of P:

— The marginal distribution of W under P̂ should be the weighted empirical distribution, for which each observations
puts a mass of ∆iπ̄

−1
i at each observation Õi.

— Only the estimates of the components of P(O|W ) needed to evaluate Ψk and Dk, k = 1,2,3, are needed: P̂(A =
1|W = ·), P̂(Y = 1|S = s?1,A = 1,W = ·), P̂(S = s?1|A = 1,W = ·), and P̂(Y = 0,Sc = s?1|A = 0,W = ·).

. If estimated using loss-based learning, include observation weights ∆iπ̄
−1
i .

for k = 1,2,3 do . Recall the definitions of fk and ak from Theorem 2.
Fluctuation for Targeting Step: Using observations i = 1, . . . ,n, fit the intercept ε̂k using an intercept-only logistic
regression with outcome fk(Oi), offset logit P̂{ fk(O) = 1|a,w}, and weights

1Ai=ak
P̂(Ai|Wi)

∆iπ̄
−1
i .

Targeting Step: We now define a fluctuation of P̂∗k of P̂, targeted towards estimation of ψk. Define

P̂∗k { fk(O) = 1|ak,w} ≡ expit
{

logit P̂{ fk(O) = 1|ak,w}+ ε̂k
}
.

The marginal distribution of W ∼ P̂ does not need to be fluctuated.
Plug-In Estimator: The estimator of ψk is ψ̂k ≡ Ψk(P̂∗k ), and the estimate of the corresponding component of the

(full data) influence function is D̂k ≡ DP̂∗k
k .

. Here, by “full data” influence function, we mean that D̂k is the influence function that we would have had if the
phase two covariates had been measured on all individuals. When subsequently developing confidence intervals,
D̂k(Oi) will be weighted by ∆iπ̄

−1
i .

return Estimate ψ̂ ≡ (ψ̂k : k = 1,2,3) and estimated full data influence function D̂≡ (D̂k : k = 1,2,3).

Appendix F: Additional Simulation Results

s∗1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bias, Truth 0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.05 0.06 0.08
Bias, Smoothed 0.04 0.05 0.02 -0.01 -0.01 0.02 0.05 0.08 0.07 0.06
Standard Error 0.28 0.27 0.26 0.26 0.27 0.29 0.31 0.34 0.39 0.49
Coverage, Truth 0.97 0.97 0.98 0.98 0.97 0.97 0.97 0.97 0.97 0.96
Coverage, Smoothed 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.98 0.97 0.96

TABLE 2. Bias, standard error, and coverage probability of the log relative risk point estimator and confidence intervals for
different s∗1 values with bandwidth chosen to be h = 0.1.
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s∗1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bias, Truth -0.03 -0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.13 0.15
Bias, Smoothed 0.03 0.02 0.02 0.02 0.01 0.01 0.00 -0.00 -0.00 0.00
Standard Error 0.14 0.13 0.13 0.13 0.13 0.14 0.14 0.15 0.17 0.19
Coverage, Truth 0.93 0.94 0.94 0.95 0.95 0.94 0.93 0.93 0.92 0.92
Coverage, Smoothed 0.96 0.95 0.94 0.95 0.95 0.95 0.96 0.96 0.95 0.95

TABLE 3. Bias, standard error, and coverage probability of the log relative risk point estimator and confidence intervals for
different s∗1 values with bandwidth chosen to be h = 0.3.

s∗1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Bias, Truth -0.07 -0.04 -0.01 0.02 0.05 0.08 0.12 0.15 0.18 0.22
Bias, Smoothed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.00 -0.00
Standard Error 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.13 0.14 0.15
Coverage, Truth 0.90 0.93 0.95 0.95 0.93 0.91 0.84 0.79 0.73 0.71
Coverage, Smoothed 0.95 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96

TABLE 4. Bias, standard error, and coverage probability of the log relative risk point estimator and confidence intervals for
different s∗1 values with bandwidth chosen to be h = 0.4.
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