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Data-adaptive doubly robust instrumental variable
methods for treatment effect heterogeneity

Titre: Estimateurs doublement robustes avec apprentissage automatique pour l’estimation de
l’hétérogénéité de l’effet traitement dans les modèles à variables instrumentales

Karla DiazOrdaz1 , Rhian Daniel2 and Noemi Kreif3

Abstract: We consider the estimation of the average treatment effect in the treated as a function of baseline covariates,
where there is a valid (conditional) instrument.

We describe two doubly-robust (DR) estimators: a g-estimator and a targeted minimum loss-based estimator
(TMLE). These estimators can be viewed as generalisations of the two-stage least squares (TSLS) method to semi-
parametric models that make weaker assumptions. We exploit recent theoretical results and use data-adaptive estima-
tion of the nuisance parameters for the g-estimator.

A simulation study is used to compare standard TSLS with the two DR estimators’ finite-sample performance
when using (1) parametric or (2) data-adaptive estimation of the nuisance parameters.

Data-adaptive DR estimators have lower bias and improved coverage, when compared to incorrectly specified
parametric DR estimators and TSLS. When the parametric model for the treatment effect curve is correctly specified,
the g-estimator outperforms all others, but when this model is misspecified, TMLE performs best, while TSLS can
result in large biases and zero coverage.

The methods are also applied to the COPERS (COping with persistent Pain, Effectiveness Research in Self-
management) trial to make inferences about the causal effect of treatment actually received, and the extent to which
this is modified by depression at baseline.

Keywords: Instrumental variables, doubly robustness, machine learning estimation, heterogeneous treatment effects,,
g-estimation, TMLE
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1. Introduction

There has been an increased interest in estimating the causal effect of treatment actually received
in randomised controlled trials (RCTs) in the presence of treatment non-adherence, in addition
to the intention-to-treat effect, as highlighted by the International Council for Harmonisation
addendum to guideline E9 (Statistical Principles for Clinical Trials, addendum on Estimands).
An additional challenge is posed by appreciable treatment effect heterogeneity, which is often
itself of interest. This is a a common issue with psychological interventions (Dunn and Bentall,
2007).
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In this work, we consider methods for estimating the dependence of a causal average treatment
effect on baseline covariates in RCTs with non-adherence. This is motivated by the COPERS
(COping with persistent Pain, Effectiveness Research in Self-management) trial. The interven-
tion introduced cognitive behavioural therapy approaches designed to promote self-efficacy to
manage chronic pain, with the primary outcome being pain-related disability. The research team
was interested in the causal effect of the received treatment, and whether this effect was mod-
ified by a number of baseline variables. Here, we will focus on one possible effect modifier:
depression at baseline, measured by the Hospital Anxiety and Depression Scale (HADS).

Instrumental variable (IV) methods are often used to estimate the effect of treatment received
in RCTs where randomised treatment is unconfounded by design, but treatment received is not.
Assuming that randomised treatment is a valid instrument, and under some additional assump-
tions reviewed in Section 2, it is possible to identify the average treatment effect in the treated,
conditional on baseline covariates V . In addition to investigating effect modification by a sub-
set of baseline covariates V , it can be beneficial to use a larger set W of baseline covariates for
adjustment in the analysis: (i) if the IV assumptions are more plausible conditional on baseline
covariates W , or (ii) to increase the statistical efficiency of the estimators.

A relatively simple method of estimation for this is the so-called two stage least squares
(TSLS). In its simplest form, i.e. when V is null, the first stage predicts the exposure based
on an ordinary least squares regression of the exposure on the IV and baseline covariates W ,
while the second stage regresses the outcome on the predicted exposure from the first stage and
baseline covariates W , also via ordinary least squares regression. The coefficient correspond-
ing to the predicted exposure in this second model is the TSLS estimator of the desired causal
treatment effect. TSLS is robust to the misspecification of the first stage model (Robins, 2000;
Wooldridge, 2010) but may be inefficient, especially when the treatment-exposure relationship
is non-linear (Vansteelandt and Didelez, 2018). However, where V is non-null and the treatment
effect varies by baseline covariates, TSLS relies on the outcome model (the second stage) being
correctly specified to obtain consistent effect estimates.

Doubly robust (DR) estimators are appealing in such settings, as they estimate consistently
the parameter of interest if at least one of the models, for either the exposure or the outcome
is correctly specified. In the context of linear IV models with V null, Okui et al. (2012) pro-
posed a locally-efficient estimating equations DR estimator for the causal effect of treatment in
the treated, often called a g-estimator. It augments the TSLS estimating equation by adding a
model for the instrument given the baseline covariates. This estimator is DR in the sense that it
needs to specify correctly either the outcome model or the instrument model. This estimator was
generalised to settings where V is non-null by Vansteelandt and Didelez (2018) and shown to be
locally efficient.

Recently, Tóth and van der Laan (2016) proposed a DR targeted maximum likelihood esti-
mator (TMLE) for the treatment effect in a linear IV model. TMLE is a general approach for
causal inference problems yielding semi-parametric substitution estimators (van der Laan and
Rose, 2011).

Although DR estimators offer in principle partial protection against model misspecification,
concerns remain over their performance in practice, when all models are likely to be misspec-
ified (Kang et al., 2007). To alleviate biases due to model misspecification, TMLE is usually
coupled with machine learning estimation of the nuisance parameters, using in particular the Su-
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Data-adaptive doubly robust IV estimators 137

per Learner, a cross-validation based estimator selection approach (van der Laan et al., 2007).
TMLE and other DR estimators possess a particular orthogonality property that leads to greater
suitability with machine learning estimation. Estimators based on a single nuisance model can
perform poorly when combined with machine learning fits, since the estimator inherits the slow
convergence (and hence high finite sample bias) and non-regularity of the machine learning esti-
mators, with the latter phenomenon making valid statistical inferences complex to obtain (van der
Vaart, 2014). In addition, since the resulting estimators can be irregular, the nonparametric boot-
strap is in general not valid (Bickel et al., 1997). Some DR estimators, such as TMLE, on the
other hand, when combined with machine learning estimation of the nuisance functionals, have
faster convergence and make (asymptotic) analytic statistical inference tractable via the sampling
variance of the corresponding influence functions, under empirical processes conditions, assum-
ing that the convergence rates of the machine learning estimators (to their respective truths) used
are fast enough (van der Laan and Rubin, 2006; Farrell, 2015).

Building on previous literature that establishes conditions for one-step and estimating equa-
tions estimators to be (asymptotically) Neyman orthogonal (Newey and McFadden, 1994;
van der Laan and Robins, 2003) as well as previous work that used sample splitting to avoid
empirical processes conditions (Bickel, 1982), Chernozhukov et al. (2018) proposed the use
of sample splitting when using machine learning for estimating the nuisance parameters, thus
widening the class of estimating equations DR estimators that can be estimated data-adaptively.
In particular, Chernozhukov et al. (2018) give regularity conditions for estimating equations es-
timators of the linear IV model, which can be adapted for the g-estimator introduced by Vanstee-
landt and Didelez (2018). Thus, we implement here the g-estimator with and without machine
learning estimation for nuisance parameters. We compare its performance with that of a TMLE
(Tóth and van der Laan, 2016), again implemented either parametrically or data-adaptively, and
standard parametric TSLS, in terms of mean bias, root mean squared error (RMSE) and confi-
dence interval (CI) coverage using a simulation study. We also contrast the methods by applying
them to the illustrative RCT.

This paper is organised as follows. In the next section, we define the causal parameters of
interest and the assumptions for the IV methods. In Section 3.1 we review the standard TSLS,
while in Section 3.2, we introduce the g-estimator proposed by Vansteelandt and Didelez (2018).
Section 3.3 briefly justifies the use of machine learning estimation for the nuisance models of
the DR estimators, and introduces the Super Learner. The TMLE estimator proposed by Tóth
and van der Laan (2016) is described in Section 3.4. In Section 4, we present a simulation study,
comparing the performance of these estimators. The proposed methods are then applied to the
COPERS RCT in Section 5. We conclude with a discussion in Section 6.

2. Linear instrumental variables models

Let W be a set of baseline variables, Z be the randomised treatment indicator and A be the expo-
sure of interest, the actual treatment received, assumed to be binary. Denote by Y the continuous
outcome of interest, and by U the set of all unobserved common causes of A and Y . Further,
assume that (U,W ) would be a sufficient set to control for the confounding in the effect of A on
Y , were U observed. For simplicity, but without loss of generality, we assume that interest lies in
estimating effect modification by a single baseline variable V ∈W .
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138 DiazOrdaz, Daniel, Kreif

FIGURE 1. DAG depicting a valid conditional instrument Z for exposure A in the presence of observed and unob-
served confounders W and U respectively, where the outcome is Y .
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Let a subscript 0 denote the true probability distributions, models and parameters. Let the
vector of the observed data for the i-th individual be Oi = {Wi,Zi,Ai,Yi} ∼ P0, where P0 is the
true underlying distribution from which an independent identically distributed random sample
of size n is drawn. The causal relationships between these variables are encoded by the directed
acyclic graph (DAG) shown in Figure 1.

Let the potential outcome Y (a) be the outcome that would occur if A were set to a∈ {0,1}. As
usual, we assume no interference, i.e. the potential outcomes of the i-th individual are unrelated
to the treatment status of all other individuals, and counterfactual consistency, for all individuals
Y =Y (z) and A = A(z) if Z = z, and Y =Y (z,a) if (Z,A) = (z,a), for all z and all a (Rubin, 1978;
VanderWeele, 2009).

Following Abadie (2003) and Vansteelandt and Didelez (2018), we write the conditional ver-
sion of the IV assumptions (Angrist et al., 1996), as follows:
(i) Conditional unconfoundedness: Z is conditionally independent of the unmeasured con-
founders, conditional on measured covariates W , i.e. Z ⊥⊥U |W .
(ii) Exclusion restriction: Conditionally on W , A and the confounder U , the instrument Z and
the response Y are independent, i.e. Z ⊥⊥ Y |W,U,A,
(iii) Instrument relevance (also referred to as first stage assumption): Z is associated with A
conditional on W , i.e. Z 6⊥⊥ A|W .

Assumptions (i) and (ii) can be shown to imply (ii’) Y (a) ⊥⊥ Z|W , for all a, which is an
alternative assumption often invoked independently (Robins, 1994; Vansteelandt and Didelez,
2018; Swanson et al., 2018).

In addition to these IV assumptions, we assume the following partially linear conditional mean
model for the outcome:

E[Y |A,W,Z,U ] = ϖ0(W,U)+Am0(W ), (1)

where ϖ0(W,U) and m0(W ) are unknown functions, with m0(W ) representing the causal treat-
ment effect curve given covariates W . The assumption of linearity in A is necessary to identify
m0(W ) using an instrument. With binary exposure A, this assumption always holds.

Under these assumptions, the conditional mean model (1) implies the so-called linear struc-
tural mean model (Robins, 1994):

E[Y |A,W,Z] = E[Y (0)|A,W,Z]+Am0(W ). (2)
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Proof: We begin by observing that eq. (1) implies E[Y |A = 0,W,Z,U ] = ϖ0(W,U). Thus, we can
re-write eq. (1) as

Am0(W ) = E[Y |A,W,Z,U ]−E[Y |A = 0,W,Z,U ],

= E[Y |A,W,Z,U ]−E[Y (0)|A = 0,W,Z,U ],

where we use the fact that Y = Y (z,a) = Y (a) by counterfactual consistency and exclusion re-
striction. Now, since Y (a)⊥⊥ A|(U,W ), since U and W are sufficient to control for confounding
between A and Y , we have E[Y (0)|A = 0,W,Z,U ] = E[Y (0)|A,W,Z,U ], and thus

Am0(W ) = E[Y |A,W,Z,U ]−E[Y (0)|A,W,Z,U ]

= E[Y |A,W,Z]−E[Y (0)|A,W,Z],

where the last step uses the fact that the right hand side, Am0(W ) is independent of U (Vanstee-
landt and Didelez, 2018) �.

While the linear structural mean model eq. (2) can be motivated from model (1), it is often
used explicitly as the departure point for causal treatment effect estimation. In fact, Vansteelandt
and Didelez (2018) show that these two IV models imply the same restrictions on the observed
data distribution, namely E[Y −Am0(W )|Z,W ] = E[Y −Am0(W )|W ]. Therefore, we denote by
M the statistical model for P0 implied by the IV assumptions and either model (1) or (2). This is
often called the linear IV model. Note that model M assumes the treatment effect curve m0(W )
does not depend on Z. This is known as the ‘no effect modification’ by Z assumption (Hernán
and Robins, 2006).

The causal effect of interest, the average treatment effect in the treated, conditional on V ∈W
taking the value v, can be written as a function of v as

ATT(v) = E[Y (1)−Y (0) | A = 1,V = v] = E[m0(W )|A = 1,V = v]. (3)

Since ATT(v) is the conditional expectation of m0(W ) given A = 1 and V = v, we focus on
identifying m0(W ).

Rearranging equation (2), we have

E[Y |A,W,Z]−Am0(W ) = E[Y (0)|A,W,Z],

E {E[Y |A,W,Z]|W,Z}−E[Am0(W )|W,Z] = E {E[Y (0)|A,W,Z]|W,Z} ,
E[Y −Am0(W )|Z,W ] = E[Y (0)|Z,W ],

E[Y −Am0(W )|W ] = E[Y (0)|W ], (4)

where in the second step we marginalise over A, and the last equality holding since Y (0)⊥⊥ Z|W
(Assumption ii’).

Model M thus implies

E[Y |Z,W ] = ω0(W )+m0(W )E[A|Z,W ], (5)

where ω0(W ) = E[Y −Am0(W )|W ] being equal to E[ϖ0(W,U)|W ] or E[Y (0)|W ], depending on
whether model (1) or (2) is assumed.
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Equation (5) implies E[Y |Z = 1,W ] − E[Y |Z = 0,W ] =
m0(W )(E[A|Z = 1,W ]−E[A|Z = 0,W ]) , therefore for a binary IV, under M and the
(conditional) IV assumptions, m0(W ) is identified by

m0(W ) =
E[Y | Z = 1,W ]−E[Y | Z = 0,W ]

E[A | Z = 1,W ]−E[A | Z = 0,W ]
, (6)

Estimation of the conditional expectations in equation (6) would typically involve specifying
models for the mean exposure E[A|Z,W ] and the mean outcome E[Y |Z,W ].

Denote by ω(W ) the model for E[Y − Am0(W )|W ] and π(Z,W ) the model for E[A|Z,W ].
Finally, let µ(Z,W ) denote the implied model for E[Y |Z,W ].

3. Doubly robust estimation for the linear instrumental variable model

To illustrate the methods, we consider throughout a situation where interest lies in the main effect
modification by a single variable V ∈W , with a working parametric model for the treatment effect
curve as a function of this single variable being:

m(W ;ψ) = ψc +ψvV. (7)

The statistical parameter of interest is therefore ψ = (ψc,ψv), where ψc represents the main
causal treatment effect, and ψv is the effect modification by V . The function m(W ;ψ) can be
interpreted as a working model for E[m0(W )|A = 1,V ]. Importantly, the working parametric
model is not assumed to be the true model for m0(W ).

3.1. TSLS

Estimation of the expectations in equation (6) is often done via an approach known as two-stage
least squares (TSLS). The first stage fits a linear treatment selection model, that is a model for A
conditional on the instrument and the baseline covariates of interest, and then, the second stage
is a linear model for eq. (5), that is a linear regression for the outcome on the predicted treatment
received and baseline covariates. We write

E[A|Z,W ] = π(Z,W ), (8)

E[Y |Z,W ] = ω(W )+m(W )π(Z,W ). (9)

In principle, there are many parametric choices for the second stage models, ω(W ) and m(W ).
For TSLS to be consistent, the first stage model π(Z,W ) must be the parametric linear regression
implied by the second stage, i.e. it must include all the covariates and interactions appearing in
the second stage model.

For example, if we assume working models m(W ;ψ) = ψc +ψvV , and ω(W ;β ) = β>W ,
where abusing notation we assume the vector of ones is the first column of W , then the first-stage
would involve two equations, as follows

E[A|Z,W ] = αzZ +αzvZV +αvV + ∑
Wi∈W\V

αwiWi,

E[AV |Z,W ] = λzZ +λzvZV +λvV + ∑
Wi∈W\V

λwiWi, (10)
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where again, W includes 1 to allow for an intercept. Because estimation of these two first-stage
models is done separately without acknowledging that the model for A should imply the model
for AZ, the resulting TSLS estimator may be inefficient (Vansteelandt and Didelez, 2018).

Vansteelandt and Didelez (2018) show that standard TSLS estimation of β and ψ in equation
(9) is equivalent to solving an estimating equation of the form

0 =
n

∑
i=1

ey(Zi,Wi){Yi−ω(Wi;β )−m(Wi;ψ)π(Zi,Wi;α0)} , (11)

for a given α0, where ey(Zi,Wi) is any conformable index vector function of dimension dim(β )+
d.

The estimators β̂ and ψ̂ obtained solving equation (11), after substituting α̂ for α0 (the es-
timator from the first stage), are consistent asymptotically normal (CAN), when both models
ω(W ;β ) and m(W ;ψ) are correctly specified, i.e. even when π(W ;α), the first stage model for
the exposure, is misspecified (Robins, 2000; Wooldridge, 2010). Moreover, in the specific set-
tings where the treatment effect curve m(W ;ψ) is linear in the covariates and the instrument is
independent of W , TSLS is also robust to misspecification of ω(W ;β ). We refer the interested
reader to Vansteelandt and Didelez (2018), Appendix B Proposition 5, for the proof.

This means that for estimators which are doubly robust in the more general settings, with either
a treatment effect model m(W ;ψ) that depends on the covariates (treatment effect heterogeneity),
or where the instrument Z depends on W , methods beyond TSLS need to be considered.

3.2. G-estimation

Thus far, we have shown that in treatment effect modification settings with a binary conditional
IV, the TSLS IV estimator is consistent if the treatment-free outcome model ω(W ) is correctly
specified. An approach to obtaining a doubly robust estimator involves modelling E[Z|Wi] in
structural nested mean models (Robins, 1994). Then, the parameter of interest ψ can be estimated
using G-estimation.

G-estimation exploits the idea that, on average, there is no residual association between Z and
E[Y −Am0(W )|W ]. This suggest an estimation strategy for finding the parameters that make the
empirical conditional covariance between Z and the treatment-free potential outcome Y (0) equal
to 0. The resulting estimator is consistent if either the model for the conditional expectation
E(Z|W ) or the treatment-free outcome model ω(W ) or both are correctly specified, and the
assumption that partially linear IV model M for the conditional mean of Y given W and Z is
correct. The model for the conditional distribution of the binary IV g0(W ;γ0)=E[Z|W ] =P0(Z =
1|W ) is often called the instrument propensity score, and it is assumed to be a known function of
W , smooth in a finite dimensional parameter γ0.

Okui et al. (2012) showed that this g-estimator for ψ = (ψc,ψv) can be obtained as a solution
to the following estimating equation (Okui et al., 2012)

0 = ∑
n
(e(Zi,Wi;γ0)−E[e(Zi,Wi;γ0)|Wi]){Yi−ω0(Wi;β0)−m0(Wi;ψ)Ai} , (12)

where e(Z,W ) is any conformable vector function, i.e. of the appropriate dimension dim(β )+d,
with d = dim(ψ).
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This can be made (locally) efficient by choosing (Vansteelandt and Didelez, 2018)

e(Z,W ;γ0) = σ
−2
0 (Z,W )

(
1
V

)[
π0(Z,W ;α0)−

E[σ−2
0 (Z,W )π0(Z,W ;α0)|W ]

E[σ−2
0 (Z,W )|W ]

]
(13)

and σ2
0 (Z,W ) = Var{Y −Am(W ;ψ)|Z,W}.

This estimator requires the user to specify working parametric models for E(Y −
Am(W ;ψ)|W ) and E(Z|W ), i.e. to specify working models for ω(W ;β ) and g(W ;γ). The es-
timator (denoted by IV-g) considered here estimates both the parameter of interest ψ and the
nuisance parameter β jointly, though approaches that estimate β consistently first have also been
proposed (Okui et al., 2012). This can be made feasible by replacing α0, β0 and γ0 by their corre-
sponding consistent estimators α̂ , β̂ and γ̂ , and setting σ2

0 equal to 1 (as it is just a proportionality
constant). It has been shown to be CAN if either the model for E(Y −Am(W ;ψ)|A,W ) or the
model for E(Z|W ) is correct, and hence consistent whenever the model for m0(W ) is correctly
specified (Okui et al., 2012). The addition of the instrument propensity score model to the TSLS
estimating equations (11) is particularly helpful when the dependence between Z and the base-
line covariates is known, as would be the case in a randomised trial, thus guaranteeing robustness
against misspecification of the outcome model.

Moreover, the IV-g estimator is efficient when all three models are correctly specified
(Vansteelandt and Didelez, 2018).

The influence function of the IV-g estimator can be written as

Di(ψ)(Oi) = M(Zi,Wi,Ai)
−1K(Zi,Wi)

(
1
Vi

)
{Yi−ω(Wi;β )}−

(
ψc

ψv

)
(14)

with
K(Z,W ) = π(Z,W ;α)−Eg(W ;γ0)[π(Z,W ;α)|W ] (15)

and

M(Z,W,A) = AK(Z,W )

(
1 V
V V 2

)
. (16)

Since the IV g-estimator is CAN, the asymptotic variance is the variance of its influence
function, i.e. Var(ψ) = E[D(ψ)>D(ψ)] (Newey, 1990). Therefore, we obtain an estimate of the
variance by the sample variance of the estimated influence function, obtained by plugging-in
consistent estimators for α , β and γ ,

V̂(ψ̂) = n−1Varn(D̂(ψ̂)),

where we have used the subscript n to denote the sample variance on a sample of size n. This
variance estimator ignores the nuisance parameter estimation. Robust standard errors can be
obtained via the bootstrap or a sandwich estimator.

The IV-g estimator gains efficiency from assuming that the working model for the treatment
effect curve, equation (7), mψ(W ) = m(W ;ψ) = ψc +ψvV , holds when this is correct. However
when model (7) is misspecified (e.g. that the treatment effect curve depends on more covariates,
not just V , or that the relationship is not linear), the IV-g estimator will behave as a projection
onto the working parametric model, so long as the mean exposure model π0(Z,W ) is correctly
specified and Cov({π0(Z,W )−E(π0(Z,W )|W )} ,A|W ) is constant in W .
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3.3. Data-adaptive estimation

The IV-g estimator presented thus far is restricted to using parametric working models for the
nuisance parameters. Since all working models are likely to be misspecified in practice, the
resulting estimator is unlikely to be consistent.

An increasingly popular strategy to avoid the bias introduced by such model misspecification
and have valid inferences is to use machine learning estimators for the nuisance parameters. This
is made possible since DR estimators can converge at fast rates (

√
n) to the true parameter, and are

therefore CAN, even when the nuisance functionals have been estimated via machine learning,
under either empirical process conditions (e.g. Donsker class) restricting the complexity of the
nuisance functionals, or using sample splitting (van der Laan and Rose, 2011; Farrell, 2015;
Chernozhukov et al., 2017; Kennedy, 2016; Athey et al., 2018).

Briefly, if the score function S of the DR estimator is Neyman orthogonal to the nuisance
parameters i.e. the path-wise (or Gateaux) derivative of the score function exists and vanishes at
the true value of the nuisance parameters, then, as long as the data-adaptive estimators for all nui-
sance functionals converge to their respective truths, and the product of their convergence rates
is faster than n−

1
2 , the DR estimator is CAN and inference can be based on the IF. Convergence

rates for these data-adaptive estimators depend on the smoothness and number of covariates in-
cluded (Györfi et al., 2006).

Machine learning estimation of the nuisance parameters of DR estimators for the partially lin-
ear IV model has been studied recently. Chernozhukov et al. (2018) give sufficient conditions to
guarantee that using data-adaptive fits for the nuisance functionals in DR estimators constructed
from estimating equations based on Neyman-orthogonal scores results in valid inferences. In
particular, consider the score function

Si = {Zi−g(Wi)}{Yi−ω(Wi)−m(Wi;ψ)Ai} , (17)

where g(Wi) and ω(Wi) are L2-functions with respect to P0, mapping W 7→ R. Assuming Y,A
and Z are bounded and with finite variance bounded away from zero, the estimator obtained as a
solution to the estimating equation with score (17) is CAN even after plugging in data-adaptive
nuisance estimators, as long as these satisfy:

‖ĝ(W )−g0(W )‖×‖ω̂(W )−ω0(W )‖< oP(n−
1
2 ), (18)

where ‖◦‖= ‖◦‖P,2 i.e. the L2-functions with respect to P0.
We refer the interested reader to Chernozhukov et al. (2018) for the technical details.
Since the g-estimator for the IV model is Neyman orthogonal, data-adaptive IV-g estimators

can be obtained by solving equation (12) after data-adaptive estimates for ω(W ) (the treatment-
free outcome model), π(Z,W ) (the exposure model) and/or g(W ) (the instrument propensity
score) have been plugged in. Under sufficient regularity conditions, and provided the data-
adaptive models used converge sufficiently fast to their respective true parameter, the resulting
IV g-estimator is CAN.

For example, solving equation (12) where we have plugged in fits from a parametric model
for π(Z,W ) and data-adaptive estimates for E[Y −Am0(W )|W ] and E[Z|W ], the arguments used
in Chernozhukov et al. (2018) can be applied directly to show that the IV-g estimator is CAN
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when eq. (18) holds. To see why, consider a parametric model for π(Z,W ) = α0+α1Z+α2V , so
that the score function for eq. (12) is S = (1 V )> {α1 (Z−g(W ))(Y −ω(W )−Am(W ;ψ))},
which is of the form eq. (17).

The data-adaptive IV-g estimator implemented here uses data-adaptive estimates for E[A|Z,W
and E[Z|W ] but estimates jointly the parametric m(W ;ψ) and ω(W,β ) as before. The resulting
estimator can be shown to be CAN if the nuisance models converge to their respective truths
at the rates of convergence in equation (18), under sufficient regularity conditions. See the Ap-
pendix for a sketch of the proof.

To obtain the data-adaptive estimates, we use the Super Learner (SL) (van der Laan et al.,
2007). The SL uses cross validation to find the optimal weighted convex combination of multiple
candidate estimators specified by the user in the SL library. The library can include parametric
and non-parametric estimators. The SL has been shown to perform asymptotically as well as
the best learner included in its library, so that adding additional algorithms improves the perfor-
mance of the SL. The finite sample performance of the SL has been demonstrated extensively
in simulations (van der Laan et al., 2007; Porter et al., 2011; Pirracchio et al., 2015). The use
of data-adaptive fits for nuisance functionals has been extensively exploited within the TMLE
literature which we review next.

3.4. Targeted minimum loss estimation (TMLE)

Targeted minimum loss estimation (TMLE) is a general approach for causal inference, which has
been adopted on a wide range of causal problem (Gruber and van der Laan, 2010; van der Laan
and Rose, 2011; Zheng and van der Laan, 2012; van der Laan and Gruber, 2012; Petersen et al.,
2014).

TMLE is a semi-parametric influence-function based estimation approach, which incorporates
a “targeting” step that guarantees the resulting estimator has a well behaved higher-order residual
term. Most commonly, it combines estimates of nuisance functionals and an initial estimate of
the target parameter. These initial estimates can be obtained by specifying parametric models
or, under empirical processes conditions (e.g. Donsker class) which can be relaxed using sample
splitting (Zheng and van der Laan, 2011), via machine learning. Typically, the TMLE literature
uses the Super Learner with cross-validation (van der Laan et al., 2007). Assuming the data-
adaptive estimates converge to their respective truths sufficiently fast, the resulting TMLE is
CAN. We refer the interested reader to van der Laan and Rose (2011) and van der Laan and Rose
(2018).

Tóth and van der Laan (2016) proposed three TMLE estimators for the (partially) linear IV
model. In the next section, we describe in more detail the non-iterative linear TMLE, which we
denote by IV-TMLE.

3.4.1. IV-TMLE

Let Ψ : P 7→ R2 be the target parameter mapping from the space of all possible models for the
true distribution of the data P0 to R2, defined by projecting the treatment effect curve onto the
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working parametric model mψ = ψc +ψvV , i.e. Ψ(P0) = (ψc,ψv) = ψ0 is the solution to

E
[(

1
V

)
{m0(W )− (ψc +ψvV )}

]
= 0.

We note that Ψ only depends on P0 through m0 and the distribution of Z and the covariates P0W .
We denote this relevant part by Q0 = (m0,g0,Q0W ) with Q0W = P0W .

Under the IV model M : E[Y |Z,W ] = ω0(W )+m0(W )π0(Z,W ), the treatment effect curve
m0(W ) depends on µ0(Z,W ) =E[Y |W,Z] and π0(Z,W ), and thus construction of a TMLE for the
IV model starts by obtaining initial estimates of µ(Z,W ), π(Z,W ), and the instrument propensity
score g(W ). We denote these initial estimates by a 0 superscript. From these, and model (5), we
calculate an initial estimate for m(W ), denoted m0(W ).

The next step in the construction of a TMLE requires the specification of a loss function L(P),
such that the expectation of the loss function is minimised at the true probability distribution,
E0[L(P0)(O)] = minP∈PE0(L(P)(O)). Here, we use the square error loss function. Under the IV
model M and the working model for the treatment effect curve mψ(V ) = ψc+ψvV , the efficient
influence function (EIF) can be written as:

D∗(m,g,QW )(O) = h(W ){π0(Z,W )−E0(π0(Z,W )|W )}{Y −π0(Z,W )m0(W )−ω0(W )}
−h(W ){(π0(Z,W )−E0[π0(Z,W )|W ])m0(W )}(A−π0(Z,W ))+DW (QW ), (19)

where h(W ) is the so-called clever covariate, defined as

h(W ) = Var(V )−1
(

E[V 2]−E[V ]V
V −E[V ]

)
ζ
−2(W ) (20)

with the term ζ 2(W ), which is associated with instrument strength, being

ζ
2(W ) = VarZ|W (π(Z,W )|W ) ,

= E[{π(Z,W )− ∑
z∈{0,1}

π(z,W )g(Z = z,W )}2|W ],

= {π(1,W )−π(0,W )}2 g(W )(1−g(W )),

= {π(1,W )−π(0,W )}2 Var(Z|W ). (21)

Finally DW (QW ) = c
{

m0(W )−mψ(V )
}

.
The targeting step involves fitting a linear model for m(W ) on the single “clever” covariate

h(W ) with the initial estimate m0(W ) as an offset,

m∗(ε)(W ) = m0(W )+h(W )T
ε. (22)

Estimation of the coefficient in equation (22) involves solving the empirical EIF equation,

1
n

n

∑
i=1

D∗(m∗(ε),g0,QW )(Oi) = 0, (23)

or equivalently, solving for ε a system of d linear equations:

1
n

n

∑
i=1

h0(Wi){π0(Zi,Wi)−Eg0(Wi)[π
0(Zi,Wi)|Wi]}

{
Yi−Ai

(
m0(Wi)+h0(Wi)

>
ε

)
−ω

0(Wi)
}
= 0,
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where h0(Wi) is obtained by plugging in π0(Zi,Wi) and g0(Wi) into the equations defining the
clever covariate (21) and (20).

Denote by ε∗ the solution to equation (23). Then, the non-iterative linear TMLE estimator of
m0(W ) is obtained by substituting ε∗ into equation (22). Finally, we project the resulting function
m∗(ε∗)(W ) onto the working model mψ by OLS, obtaining (ψ∗c ,ψ

∗
v ), the TMLE estimator of the

statistical parameters of interest.

Tóth and van der Laan (2016) showed that this approach results in an estimator which is
double-robust, i.e. consistent when (i) the initial estimators of π0(Z,W ) and g0 are consistent,
(ii) the initial estimators of m0 and g0 are consistent, or (iii) the initial estimators of m0 and ω0
are consistent. However, using a linear fluctuation model has the drawback that the resulting
estimates are not guaranteed to be constrained within the bounds implied by the data.

We remark that the variance of the IV-TMLE estimators becomes very large when the term
ζ 2(W ) is very small. Since ζ 2(W ) captures the strength of the instrument in predicting the expo-
sure given W , the IV-TMLE estimators become unstable with large variance when the instrument
is weak. To stabilise the estimators, we choose the maximum of the estimated value of ζ 2(W )
and 0.025 when constructing the clever covariate for a given data set.

4. Simulation Study

We perform a factorial simulation study to assess the finite sample performance of the alternative
methods to estimate the statistical parameter of interest, under the different combinations of ω ,
π or m being in turn correctly specified or not, while the instrument model is always correct. We
write 1(k 6= k0) as an indicator function for scenarios where the assumed model for k ∈ {ω,π,m}
is misspecified.

We generate data to mimic a randomised controlled trial with two-sided non-adherence, i.e.
both randomly allocated groups have a non-zero probability of receiving the opposite treatment.
The are two different sample sizes, small n = 500 and large n = 10,000. We begin by generating
five independent standard normal variables W1, . . . ,W4 and V . These are the observed baseline
covariates, of which one is the effect modifier V . We also generate a standard normal unobserved
confounder U . We generate randomised treatment also independently of the other variables, Z ∼
Bern(0.6), and then simulate the binary treatment received A ∼ Bern(π0(W,V,U,Z)), i.e. the
probability of getting the active treatment is a function the baseline variables, the unobserved
confounder, and the instrument, namely

logit(π0) = 1.5Z +0.03V +0.01W1 +0.01W2 +0.01W3 +0.01W4 +0.03U−1(π 6= π0)(5ZW1).

Notice that we are generating the exposure A in such a way that the condition necessary for the
IV-g estimator to converge to the parameter of interest when M is wrong is no longer satisfied,
for settings where the true π0 6= π .
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The continuous outcome Y is then simulated from Y ∼ N(µ0,1), with µ0 given by:

µ0 = ω0(W )+m0(W )A+U,

ω0(W ) = {1−1(ω 6= ω0)}{0.5+0.5V +0.01W1 +0.01W2 +0.01W3 +0.01W4}
+ 1(ω 6= ω0)exp{0.05+0.05V +0.001W1 +0.001W2 +0.001W3

+ 0.001W4− 0.2V (W1 +W2 +W3 +W4)},
m0(W ) = 0.5+0.5V +1(m 6= m0){3(W1 +W2 +W3 +W4)},

which means that the true E[m0(W )|A = 1,V = v] = 0.5+0.5V , i.e. ψ0 = (ψc0,ψv0) = (0.5,0.5).
We generate 1,000 replicates for each scenario. We perform analyses with TSLS, IV-g and IV-

TMLE, the latter two are implemented with and without the data-adaptive estimation of nuisance
models. For the TSLS, the first stage is as per equation (10). Parametric IV-g and TMLE use main
terms logistic models for the instrument propensity score and the treatment model, namely

logit(g(W ;γ)) = logit{P(Z = 1|W )}= γ0 +
4

∑
i=1

γiWi + γ5V,

and

logit(π(W,Z;α)) = logit{P(A = 1|Z,W )}= αzZ +
4

∑
i=1

αiWi +α5V

.
For the data-adaptive estimation of π(Z,W ) and g(W ), we use the Super Learner. Since A

and Z are binary, the library used includes glm (generalised linear models), step (stepwise model
selection using AIC), svm (support vector machines, with radial basis functions) and gam (gen-
eralised additive models), with linear and second-order terms used for the glm, step and gam
learners.

In addition, for the IV-TMLE, we use need data-adaptive estimates of the continuous outcome.
The library of learners used for µ(Z,W ) and ω(W ) includes glm, step, svm and polymars (mul-
tivariate adaptive polynomial spline regression), chosen in order to preserve the linear structure
of the partially linear IV model (5).

The SEs of the parametric IV-g and TMLE are obtained by bootstrapping (percentile 95%
confidence intervals (CI) using 1999 bootstrap samples), while for the data-adaptive estimators
the SEs are based on the empirical variance of the estimated (E)IF.

We compute the mean bias of the estimates, coverage of 95% CI, and root mean square error
(RMSE).

4.1. Results from the simulation

Figures 2 and 3 show the mean bias (top) and CI coverage rate (bottom) corresponding to sce-
narios with sample size of n = 500 and n = 10,000 respectively. For clarity, the figures show
only the methods resulting in absolute bias less than 2 are plotted, corresponding to those having
absolute bias < 400% of the true parameter value. The excluded results are reported in Table 4
in the Appendix.

When all models are correctly specified (first column, plotted in black), all methods show close
to zero bias for both of the target parameters. At large sample sizes (n = 10,000), the coverage
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FIGURE 2. Performance (Bias and Coverage) of TSLS, TMLE and IV-g estimators, when the sample size is n = 500.
Scenarios with correct or misspecified π and ω vary by column, m correctly specified is plotted in black while m
misspecified is plotted in grey. The hollow shapes correspond to parametric nuisance models estimation, and the
solid shapes correspond to estimators using data-adaptive nuisance model estimates. The bias is presented with
Monte Carlo Error CIs. Results corresponding to bias≥ 2 in absolute value are not plotted, but can be found in Table
4. Dotted line in the bias plot is the 0 line, the dashed lines in the coverage plot are the 92.5 and 97.5 % coverage
rates.
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FIGURE 3. Performance (Bias and Coverage) of TSLS, TMLE and IV-g estimators, when the sample size is n= 10,000.
Scenarios with correct or misspecified π and ω vary by column, m correctly specified is plotted in black while m
misspecified is plotted in grey. The hollow shapes correspond to parametric nuisance models estimation, and the
solid shapes correspond to estimators using data-adaptive nuisance model estimates. The bias is presented with
Monte Carlo Error CIs. Results corresponding to bias≥ 2 in absolute value are not plotted, but can be found in Table
4. Dotted line in the bias plot is the 0 line, the dashed lines in the coverage plot are the 92.5 and 97.5 % coverage
rates. rates.
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levels are close to the nominal value (between 92.5 and 97.5%) for TSLS and IV-g estimator. In
contrast, the bootstrapped CIs corresponding to parametric TMLE result in over-coverage (99%),
while the EIF-based CIs for the data-adaptive TMLE shows under-coverage, which is especially
in the small sample size scenarios (n = 500), dropping below 90% for ψv. This low-coverage
phenomenon of the EIF-based CIs for TMLE estimators has been noted before by van der Laan
and Gruber (2011) and Petersen et al. (2014).

TSLS performs well when m and π are correctly specified (second column), but when the
exposure model π is misspecified (3rd and 4th columns), it performs poorly, even in scenarios
where m and the IV model are correctly specified (plotted in black), demonstrating numerically
the lack of double robustness. When m is misspecified (plotted in grey), TSLS results in bias
≥ 200% of the true effect (not plotted in the Figures, see Table 4). Consequently, the coverage
of the CIs is poor, being close to 0 in the larger sample size settings.

Both parametric TMLE and g-estimator result in small levels of bias and good coverage under
those misspecified scenarios when the double robust properties are expected to provide protec-
tion. For example, with m correctly specified, the g-estimator has small bias and good coverage
even when the exposure model π and the outcome model ω are misspecified (the last column
of the Figures). TMLE on the other hand shows some significant bias, even at large samples
n = 10,000. However, implementing the IV-g and IV-TMLE methods using the Super Learner
returns the bias and coverage to the levels reported under correct specification, with TMLE still
showing coverage under 92.5%.

Where m is misspecified, we would expect the g-estimator to behave as a projec-
tion of the true treatment effect curve onto the working parametric model mψ(W ), as
long as the model for the exposure π(Z,W ) is correctly specified and it is such that
Cov({π0(Z,W )−E(π0(Z,W )|W )} ,A|W ) is constant in W . Since the data generating models
are such that the true π0(W,Z) has constant covariance with the received exposure given W , we
can see in the first two columns of Figures 2 and 3, that the g-estimator performance is adequate
when the parametric model π(W,Z) is correctly specified (empty triangles plotted in grey). In
contrast, for scenarios where the true π0(W,Z) does not have conditional constant covariance
with A given W (third and fourth columns), there is substantial remaining bias even after using
data-adaptive fits for the nuisance models, especially for the intercept ψc (see for example, in the
last column of Figure 3 plotted in grey).

Tables 1 and 2 report the RMSE results. When m is correctly specified, IV-g outperforms
all other methods, with the smallest RMSE. Where the working parametric model for the treat-
ment effect curve m(W ) is misspecified, TMLE has smaller RMSE in most settings. Looking
at the larger sample n = 10,000, we can conclude that both DR estimators have reported per-
formance according to their theoretical double-robust properties, and the TSLS method showed
similar performance to the parametric implementation of the IV-g method. Both DR methods
have benefitted from the data-adaptive estimation of the nuisance parameters: the performance
of the estimators have not been harmed in the correctly specified scenarios, and RMSE has been
greatly reduced in the scenarios when the DR properties do not provide protection against mis-
specification.
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TABLE 1. RMSE of the TSLS, TMLE and IV-g estimators, when the sample size is n = 500.

Scenario Nuisance models estimation Parameter Method RMSE
m(W ) correct m(W ) mis

π cor, ω cor Parametric ψc TSLS 0.446 1.030
IV-g 0.443 1.084
IV-TMLE 0.473 0.606

ψv TSLS 0.480 1.131
IV-g 0.479 1.132
IV-TMLE 0.580 1.234

SL ψc IV-g 0.439 1.159
IV-TMLE 0.475 0.614

ψv IV-g 0.468 1.117
IV-TMLE 0.586 1.160

π cor, ω mis Parametric ψc TSLS 0.520 1.065
IV-g 0.517 1.119
IV-TMLE 0.548 0.655

ψv TSLS 0.782 1.314
IV-g 0.788 1.338
IV-TMLE 1.073 1.262

SL ψc IV-g 0.495 1.183
IV-TMLE 0.616 0.685

ψv IV-g 0.753 1.295
IV-TMLE 1.111 1.368

π mis, ω cor Parametric ψc TSLS 26.835 160.523
IV-g 39.241 446.003
IV-TMLE 10.649 22.791

ψv TSLS 49.141 163.553
IV-g 139.285 1596.750
IV-TMLE 24.685 33.392

SL ψc IV-g 0.316 0.990
IV-TMLE 0.472 0.557

ψv IV-g 0.309 0.822
IV-TMLE 0.756 0.858

π mis, ω mis Parametric ψc TSLS 37.825 154.812
IV-g 17.157 420.882
IV-TMLE 12.496 24.872

ψv TSLS 75.209 150.203
IV-g 39.172 1491.963
IV-TMLE 37.065 47.649

SL ψc IV-g 0.367 1.011
IV-TMLE 0.743 0.788

ψv IV-g 0.557 0.925
IV-TMLE 1.446 1.437
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TABLE 2. RMSE of TSLS, TMLE and IV-g estimators, when the sample size is n = 10,000.

Scenario Nuisance models estimation Parameter Method RMSE
m(W ) correct m(W ) mis

π cor, ω cor Parametric ψc TSLS 0.092 0.207
IV-g 0.092 0.228
IV-TMLE 0.092 0.112

ψv TSLS 0.090 0.213
IV-g 0.090 0.214
IV-TMLE 0.091 0.113

SL ψc IV-g 0.092 0.255
IV-TMLE 0.093 0.112

ψv IV-g 0.090 0.215
IV-TMLE 0.093 0.114

π cor, ω mis Parametric ψc TSLS 0.107 0.213
IV-g 0.107 0.234
IV-TMLE 0.107 0.125

ψv TSLS 0.140 0.240
IV-g 0.134 0.236
IV-TMLE 0.140 0.156

SL ψc IV-g 0.104 0.260
IV-TMLE 0.136 0.143

ψv IV-g 0.133 0.237
IV-TMLE 0.206 0.163

π mis, ω cor Parametric ψc TSLS 0.270 10.160
IV-g 0.333 9.660
IV-TMLE 0.349 1.957

ψv TSLS 0.269 1.250
IV-g 0.345 1.890
IV-TMLE 0.382 0.682

SL ψc IV-g 0.069 0.408
IV-TMLE 0.075 0.098

ψv IV-g 0.066 0.196
IV-TMLE 0.076 0.100

π mis, ω mis Parametric ψc TSLS 0.317 10.158
IV-g 0.378 9.658
IV-TMLE 0.686 2.427

ψv TSLS 0.416 1.277
IV-g 0.456 1.908
IV-TMLE 0.875 0.822

SL ψc IV-g 0.078 0.409
IV-TMLE 0.094 0.128

ψv IV-g 0.107 0.212
IV-TMLE 0.153 0.516
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5. Motivating example: the COPERS trial

We now illustrate the methods in practice by applying each in turn to the motivating example.
The COping with persistent Pain, Effectiveness Research in Self-management trial (COPERS)
was a randomised controlled trial across 27 general practices and community services in the UK.
It recruited 703 adults with musculoskeletal pain of at least 3 months duration, and randomised
403 participants to the active intervention and a further 300 to the control arm. The mean age of
participants was 59.9 years, with 81% white, 67% female, 23% employed, 85% with pain for at
least 3 years, and 23% on strong opioids.

Intervention participants were offered 24 sessions introducing them to cognitive behavioural
(CB) approaches designed to promote self-management of chronic back pain. The sessions were
delivered over three days within the same week with a follow-up session 2 weeks later. At the
end of the 3-day course participants received a relaxation CD and self-help booklet. Controls
received usual care and the same relaxation CD and self-help booklet.

The primary outcome was pain-related disability at 12 months, using the Chronic Pain Grade
(CPG) disability sub-scale. This is a continuous measure on a scale from 0 to 100, with higher
scores indicating worse pain-related disability.

In the active treatment, only 179 (45%) attended all 24 sessions, and 322 (86.1%) received at
least one session. The control arm participants had no access to the active intervention sessions.
Participants and group facilitators were not masked to the study arm they belonged to.

The intention-to-treat analysis found no evidence that the COPERS intervention had an ef-
fect on improving pain-related disability at 12 months in people with long-established, chronic
musculoskeletal pain (−1.0, 95% CI −4.8 to 2.7).

Poor attendance to the sessions was anticipated, and so obtaining causal treatment effect es-
timates was a pre-defined objective of the study. The original report included a causal treatment
effect analysis using TSLS, using a binary indicator for treatment received (attending at least
half of the sessions), and assuming that randomisation was a valid instrument for treatment re-
ceived (Taylor et al., 2016). The IV model adjusted for the following baseline covariates: site of
recruitment, age, gender and HADS score and the CPG score at baseline. This IV analysis found
no evidence of a treatment effect on CPG at 12 months amongst the compliers ( −1.0, 95% CI
−5.9 to 3.9).

The COPERS study also performed a number of subgroup analyses to investigate treatment ef-
fect heterogeneity, but did not carry out IV analysis with effect modification. However, treatment
heterogeneity in the causal effect is still of interest.

For our re-analyses, the data set consists of 652 participants followed up for 12 months, 374
allocated to active treatment, and 278 in the control (93% of those recruited). Thirty-five indi-
viduals (5%) have missing primary outcome data, and a further 4 ( <1%) have missing baseline
depression score, leaving a sample size of 613.

We focus on the causal effect of receiving at least one treatment session as a function of
depression at baseline measured using the Hospital Anxiety and Depression Scale (HADS).

We argue that random allocation is a valid IV: the assumptions concerning unconfoundedness
and instrument relevance are justified by design. The exclusion restriction assumption seems
plausible with our choices for A, as only those participants receiving at least one training sessions
would know how to use the CB coping mechanisms and potentially to improve their disability.
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It is unlikely that that random allocation has a direct effect, though since participants were not
blinded to their allocation, we cannot completely rule out some psychological effects of knowing
one belongs to the control or active group on pain and disability.

We perform each of the methods in turn, TSLS, IV-g and IV-TMLE to estimate ATT(v). As
Table 3 summarises, the use of DR methods, even after using Super Learner does not result in a
material change in the point estimates or SEs, compared to standard TSLS. All five estimators
result in the same conclusions, namely that there is no evidence of an average treatment effect
in the treated, and also that there is no evidence of effect modification by baseline depression.
This result could be due to small numbers of participants in the trial, or indeed our definition
of being exposed to treatment (attending at least one session). Nevertheless, the direction of the
treatment effect modification is interesting, indicating that the treatment may benefit more those
with higher depression symptoms at baseline, suggesting a reduction in the disability score.

TABLE 3. ATT of the COPERS intervention on CPG, with all-or-nothing binary exposure A, main effect ψc and
effect modification by depression ψv.

ψc SE 95% CI ψv SE 95% CI
TSLS 2.94 4.67 (-6.21, 12.09) -0.58 0.57 (-1.70, 0.54)
IV-g 2.78 4.66 (-6.35, 11.91) -0.53 0.54 (-1.59, 0.53)
IV-g SL 2.10 4.75 (-7.21, 11.41) -0.45 0.54 (-1.51, 0.61)
IV-TMLE 3.16 4.74 (-6.13, 12.45) -0.64 0.56 (-1.74, 0.46)
IV-TMLE SL 2.22 4.88 (-7.34, 11.78) -0.51 0.58 (-1.65, 0.63)

6. Discussion

This paper compared the performance of two doubly robust estimators for the ATT conditional
on a baseline covariate, i.e. ATT(v), in the presence of unmeasured confounding, but where a
valid (conditional) IV is available. These estimators were implemented with and without the
use of data-adaptive estimates of the nuisance parameters. We have demonstrated empirically
through simulations that the IV-g estimator has good finite sample performance when using
data-adaptive fits for the nuisance parameters, provided the parametric model assumed for the
treatment effect curve is correctly specified. The IV-TMLE does not rely on a correctly specified
parametric working model, and instead models the whole treatment effect curve, projecting the
final estimates onto the working model of interest. This allows us to define the parameters of
interest even under a misspecified treatment effect curve. However, it is less efficient compared
with the IV g-estimator when the parametric working model for the treatment effect curve is
correctly specified. The g-estimator on the other hand can suffer large biases when the assumed
treatment effect curve is misspecified. As the simulations show, the use of data-adaptive fits for
the nuisance models greatly reduces bias, and improves coverage for both estimators, resulting
in much smaller RMSEs, when compared with using parametric nuisance models, and thus data-
adaptive fits should be used.

The methods were motivated and tested in the context of estimating the ATT with effect mod-
ification in RCTs with non-adherence to randomised treatment with binary exposure and a con-
tinuous outcome. However, the methods presented here are applicable to other settings. One
situation may be where the IV assumptions are believed to be satisfied only after conditioning on
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baseline covariates, making this applicable to certain observational settings. Extensions to situ-
ations with continuous exposure are also straight-forward if one is prepared to assume linearity
of the treatment effect curve (Tóth and van der Laan, 2016; Vansteelandt and Didelez, 2018).

We have focused on the ATT(v) as the estimand of interest, but Ogburn et al. (2015) have
shown that the same functional of the observed data can be used to identify under monotonicity
the local average treatment effects conditional on baseline covariates, LATE(v). In fact, much of
the previous literature regarding estimation of instrumental variable models with covariates has
assumed monotonicity. In particular, for the special case where V =W , previous methods include
full parametric specifications suitable when both the IV and exposure are binary (Little and Yau,
1998; Hirano et al., 2000) as well as semi-parametric models (Abadie, 2003). In the case where
V is null, Frölich (2007) characterised two distinct non-parametric estimation methods, while
Tan (2006) proposed a DR estimator which is consistent when the instrument propensity score
and either the outcome or the exposure parametric models are correctly specified.

For the ATT(v), Robins (1994) proposed DR estimators in settings where V =W , while Tan
(2010) did so in settings where V is a strict subset of W respectively. The DR estimator presented
by Okui et al. (2012) and Vansteelandt and Didelez (2018) builds on the work of Tan (2010). For
the special case when V is null, Vansteelandt and Didelez (2018) proposed other DR estimators
which are locally efficient, and also constructed a bias-reduced DR IV estimator. Several authors
have proposed data-adaptive estimators for the linear IV model with no effect modification, be-
ginning with a TSLS where the first stage in fitted using LASSO with a data-adaptive penalty
(Belloni et al., 2012). The bias-reduced DR IV estimator has also been implemented when V
is null using data-adaptive fits for the conditional mean outcome in the unexposed ω(W ) (Ver-
meulen and Vansteelandt, 2016). Chernozhukov et al. (2018) proposed two other IV DR data-
adaptive estimators and gave conditions under which data-adaptive fits can be used for the law
of the instrument Z given W , g(W ), the treatment model π(Z,W ) and ω(W ). Comparing these
DR estimators to the those presented here would be a promising avenue for future research.

The present study has some limitations. Firstly, we did not use sample-splitting in our estima-
tors. Evaluating the effect of doing so in point estimation and variance estimation is a promising
extension. In addition, we did not seek to quantify the rates of convergence attained by algo-
rithms included in the SL library. This is because in general the rates of convergence of the
individual machine learning algorithms depend on the number of included variables, and other
tuning parameters, making the assessment of rates of convergence complex. A potential promis-
ing solution for this could be to include the highly adaptive lasso (HAL) (Benkeser and Laan,
2016) in the SL library, as this has been proven under sufficient regularity conditions to converge
at rates faster than n−

1
4 .

A number of extensions to the work presented here are of interest. The IV-g method imple-
mented here jointly estimates ω(W ) and m(W ), and thus used parametric models for both. This
is not necessary, and an alternative strategy where ω(W ) is estimated beforehand and the fit-
ted values are plugged into the estimating equation (12) is possible, thus allowing the use of
data-adaptive fits for the model ω(W ). Future work could extend the bias-reduced DR estimator
to the linear IV model with effect modification, and compare this with IV-TMLE and a fully
data-adaptive version of the IV-g estimator.
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Appendix

6.1. Consistent data-adaptive g-estimation

Here, we give here a sketch of the proof of consistency of the data-adaptive g-estimator. Similarly
to Chernozhukov et al. (2018) and Farrell (2015), we let P be the class of probability distribu-
tions for O that obey the partially linear IV model, such that for each P ∈P , the restrictions
E[Y −Am0(W )|W ] = ω0(W ), E[A|Z,W ] = π0(Z,W ), and E[Z|W ] = g0(W ) hold. Let η0 denote
the nuisance functional describing g0(W ), ω0(W ), and π0(Z,W ). For simplicity, we sketch the
arguments under the null, that is m0(W ;ψ0) = 0. In addition, unlike Chernozhukov et al. (2018),
we do not use sample splitting, and proceed instead under empirical processes conditions which
are from now on assumed to hold.

Denote by εY = Y −ω0(W ) and εA = π0(Z,W )−E(π0(Z,W )|W ). Since the instrument Z is
binary, we can write E(π0(Z,W )|W ) =∑Z π0(Z,W )g0(W ), where we use the shorthand g0(W ) =
g0(Z = z,W ) = Pr(Z = z|W ).

We want to find conditions guaranteeing that
√

n(ψ̂−ψ0) = op(1), where ψ̂ has been esti-
mated with the IV g-estimator which used data-adaptive estimates for the nuisance parameters
η .

We begin by writing

√
n(ψ̂−ψ0) = (24)

1√
n ∑

i
S (Oi;ψ0, η̂0)−Ep[S (Oiψ0, η̂0)]−S (Oi,ψ0,η0)−Ep[S (Oiψ0,η0)]+

√
nEP[S (Oi,ψ0, η̂0)],

where S is the score corresponding to the estimating equation (12), with σ2
0 = 1, i.e.:

S (Oi;ψ0,η0) = {π0(Zi,Wi)−Ep[π0(Zi,Wi)g0(Wi)]}{Yi−ω0(Wi)−m0(Wi;ψ0)Ai} , (25)

The first part can be shown to be oP(1) where ‖S (Oi,ψ0, η̂0)−S (Oi,ψ0,η0)‖ = oP(1), by
Chebyshev’s inequality.

Therefore, we want to give sufficient conditions for

‖S (Oi,ψ0, η̂0)−S (Oi,ψ0,η0)‖p = oP(1). (26)
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Using recursive expansion around each true nuisance functional, S (Oi,ψ0, η̂0) can be written
as

= {π0(Z,W )−∑
z

π0(Z,W )g0(W )}{Y −ω0(W )}+{π0(Z,W )−∑
z

π0(Z,W )g0(W )}
(
ω0(W )− ω̂0(W )

)
+ ∑

z
π0(Z,W )(g0(W )− ĝ0(W )){Y −ω0(W )}+∑

z
π0(Z,W )(g0(W )− ĝ0(W ))

(
ω0(W )− ω̂0(W )

)
+ {(π0(Z,W )− π̂0(Z,W ))−∑

z
(π0(Z,W )− π̂0(Z,W ))g0(W )}{Y −ω0(W )}

+ {(π0(Z,W )− π̂0(Z,W ))−∑
z
(π0(Z,W )− π̂0(Z,W ))g0(W )}

(
ω0(W )− ω̂0(W )

)
+ ∑

z
(π̂0(Z,W )−π0(Z,W ))(g0(W )− ĝ0(W )){Y −ω0(W )}

+ ∑
z
(π̂0(Z,W )−π0(Z,W ))(g0(W )− ĝ0(W ))

(
ω0(W )− ω̂0(W )

)
,

which can be further simplified to:

= εAεy + εA{ω0(W )− ω̂0(W )}−∑
z

π0(Z,W ){g0(W )− ĝ0(W )}εy

− ∑
z

π0(Z,W )(g0(W )− ĝ0(W ))
(
ω0(W )− ω̂0(W )

)
+ εy

{
(π̂0(Z,W )−π0(Z,W ))−∑

z
(π̂0(Z,W )−π0(Z,W ))g0(W )

}
+ (π̂0(Z,W )−π0(Z,W ))

(
ω0(W )− ω̂0(W )

)
− ∑

z
(π̂0(Z,W )−π0(Z,W ))g0(W )

(
ω0(W )− ω̂0(W )

)
+ εy ∑

z
(π̂0(Z,W )−π0(Z,W ))(g0(W )− ĝ0(W ))

− ∑
z
(π̂0(Z,W )−π0(Z,W ))(g0(W )− ĝ0(W ))

(
ω0(W )− ω̂0(W )

)
.
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Therefore

‖S (Oi,ψ0, η̂0)−S (Oi,ψ0,η0)‖p

≤ ‖εA{ω0(W )− ω̂0(W )}‖P +‖εy

{
(π̂0(Z,W )−π0(Z,W ))−∑

z
(π̂0(Z,W )−π0(Z,W ))g0(W )

}
‖P

+ ‖εy ∑
z

π0(Z,W )(ĝ0(W )−g0(W ))‖P

+ ‖
(
ω0(W )− ω̂0(W )

){
(π̂0(Z,W )−π0(Z,W ))−∑

z
(π̂0(Z,W )−π0(Z,W ))g0(W )

}
‖P

+ ‖
(
ω0(W )− ω̂0(W )

)
∑

z
π0(Z,W )(ĝ0(W )−g0(W ))‖P

+ ‖∑
z
(π̂0(Z,W )−π0(Z,W ))(g0(W )− ĝ0(W ))

(
ω0(W )− ω̂0(W )

)
‖P

≤
√

C‖ω0(W )− ω̂0(W )‖P +
√

C‖

{
(π̂0(Z,W )−π0(Z,W ))−∑

z
(π̂0(Z,W )−π0(Z,W ))g0(W )

}
‖P

+
√

C‖(π0(1,W )−π0(0,W ))(ĝ0(W )−g0(W ))‖P

+ ‖
(
ω0(W )− ω̂0(W )

){
(π̂0(Z,W )−π0(Z,W ))−∑

z
(π̂0(Z,W )−π0(Z,W ))g0(W )

}
‖P

+ ‖
(
ω0(W )− ω̂0(W )

)
(π0(1,W )−π0(0,W ))(ĝ0(W )−g0(W ))‖P

+ ‖∑
z
(π̂0(Z,W )−π0(Z,W ))(g0(W )− ĝ0(W ))

(
ω0(W )− ω̂0(W )

)
‖P,

where we assume that there exists a constant C > 0, such that

P(E[{π0(Z,W )−∑
z

π0(Z,W )g0(W )}2]≤C) = 1, and

P(E[{Y −ω0(W )}2]≤C) = 1. (27)

Finally, since ‖(π0(1,W )−π0(0,W ))‖ is bounded and

‖π̂0(Z,W )−π0(Z,W )‖ = oP0(1), (28)

‖ω̂0(W )−ω0(W )‖ = oP0(1), (29)

‖ĝ0(W )−g0(W )‖ = oP0(1), (30)

by definition of ω0(W ) and g0(W ), we conclude that the assumption (26) needed for the first part
of eq. (24) to be oP(1) holds.

Now, for the second term in eq. (24), we want conditions such that

√
nEP[S (ψ0, η̂0)] = oP(1), (31)
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we have
√

nEP[S (ψ0, η̂0)] =
√

nEP[π̂0(Z,W )−EP[π̂0(Z,W )](Y − ω̂0(W ))]

=
√

nEP[π̂0(Z,W )−∑
z
{π̂0(Z,W )ĝ0(W )}(Y − ω̂0(W ))]

=
√

nEP[π̂0(Z,W )−∑
z
{π̂0(Z,W )ĝ0(W )}(ω0− ω̂0(W ))]

=
√

nEP

[
π̂0(Z,W )−∑

z
{π̂0(Z,W )(g0(W )− ĝ0(W ))}

(
ω0− ω̂0(W )

)]
= ∑

z
{π̂0(Z,W )(g0(W )− ĝ0(W ))}{ω0(W )− ω̂0(W )}.

Now the norm of the first term of this expression is such that

‖∑
z

π̂0(Z,W )(g0(W )− ĝ0(W ))‖ = ‖π̂0(1,W )(g0(1,W )− ĝ0(1,W ))+ π̂0(0,W )(g0(0,W )− ĝ0(0,W ))‖

= ‖(π̂0(1,W )− π̂0(0,W ))(g0(1,W )− ĝ0(1,W ))‖
≤ ‖(π̂0(1,W )− π̂0(0,W ))‖‖(g0(1,W )− ĝ0(1,W ))‖,

where we have used Cauchy-Schwarz inequality in the last step. Now, since
‖(π̂0(1,W )− π̂0(0,W ))‖ is bounded, assuming

‖g0(W )− ĝ0(W )‖‖ω0(W )− ω̂0(W )‖= oP(n
−1
2 ), (32)

is sufficient to guarantee eq. (31) holds.
In summary, to guarantee the data-adaptive IV g-estimator is CAN assumptions (27), (28)

and (32) need to hold. These conditions are essentially the same found by Chernozhukov et al.
(2018).
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6.2. Extra results

TABLE 4. Scenarios excluded from the Bias and Coverage Figures.

Scenario m model Parameter Method bias MCE CI coverage
n = 500
π mis, ω cor cor ψv IV-ga -4.057 -12.691 4.577 0.986

mis ψc TSLS -6.881 -16.826 3.064 0.683
mis ψc IV-ga -31.033 -58.624 -3.442 0.882
mis ψv TSLS 6.785 -3.348 16.918 0.998
mis ψv IV-ga -45.811 -144.787 53.165 0.982

π mis, ω mis cor ψv TSLS -2.171 -6.834 2.492 0.984
mis ψc TSLS -6.740 -16.330 2.850 0.694
mis ψc IV-ga -30.361 -56.392 -4.330 0.879
mis ψv TSLS 5.751 -3.557 15.059 0.996
mis ψv IV-ga -41.902 -134.385 50.581 0.984

n = 10,000
π mis, ω cor mis ψc TSLS -10.101 -10.169 -10.032 0.000

mis ψc IV-ga -9.521 -9.622 -9.420 0.001
π mis, ω mis mis ψc TSLS -10.097 -10.166 -10.028 0.000

mis ψc IV-ga -9.518 -9.620 -9.416 0.001
mis ψc IV-TMLEa -2.333 -2.374 -2.291 1.000

a All nuisance models fitted parametrically.
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