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Abstract: It is common in instrumental variable studies for instrument values to be missing, for example when the
instrument is a genetic test in Mendelian randomization studies. In this paper we discuss two apparent paradoxes
that arise in so-called single consent designs where there is one-sided noncompliance, i.e., where unencouraged units
cannot access treatment. The first paradox is that, even under a missing completely at random assumption, a complete-
case analysis is biased when knowledge of one-sided noncompliance is taken into account; this is not the case when
such information is disregarded. This occurs because incorporating information about one-sided noncompliance in-
duces a dependence between the missingness and treatment. The second paradox is that, although incorporating such
information does not lead to efficiency gains without missing data, the story is different when instrument values are
missing: there, incorporating such information changes the efficiency bound, allowing possible efficiency gains. This
is because some of the missing values can be filled in, based on the fact that anyone who received treatment must
have been encouraged by the instrument (since the unencouraged cannot access treatment).
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1. Introduction

Instrumental variable methods are a popular approach to causal inference in settings where un-
measured variables confound the relationship between the treatment and outcome of interest. In
general, such unmeasured confounding precludes identification of causal effects, and one must
resort to bounds and/or sensitivity analysis. However, in the presence of an instrument some
progress can still be made. An instrument is a special variable that affects receipt of treatment
but does not directly affect outcomes, and is itself unconfounded. This setup can be represented
graphically as in Figure 1; formal identifying assumptions are given in the next section.

A classic example of an instrument occurs in randomized trials with noncompliance, in which
case the assigned treatment is often a reasonable instrument for effects of the treatment that was
actually received. Instrumental variable methods have been around for nearly a century (Wright,
1928, 1934), but their placement in a formal potential outcomes framework occurred only rela-
tively recently (Angrist et al., 1996). Examples abound in the literature, including instruments
based on distance, treatment provider preference, calendar time, and genetic variants ; we refer
to Hernan and Robins (2006); Baiocchi et al. (2014) for overviews.
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Z— A— Y

/

FIGURE 1: Directed acyclic graph showing instrument Z, treatment A, outcome Y, and unmeasu-
red variables U. Gray dotted arrows indicate relationships that are assumed absent by identifying
assumptions.

U

Although there is an extensive literature on instrumental variables, the treatment of missing
data in such settings is scant. Apart from a few recent exceptions (Burgess et al., 2011; Mogstad
and Wiswall, 2012; Chaudhuri and Guilkey, 2016; Kennedy, 2018) this problem has not recei-
ved much attention, despite the fact that missing data is very common in instrumental variable
studies. For example, Mendelian randomization studies use genetic variants as instruments, but
this information is frequently missing due to subjects not sending in samples, or ambiguous
output from genotyping platforms. Burgess et al. (2011) reported missingness in SNP-based ins-
truments ranging between 2% and 11% ; more examples can be found in Mogstad and Wiswall
(2012); Chaudhuri and Guilkey (2016). In this paper we consider instrumental variable studies
with instrument missingness, and also where noncompliance is one-sided, i.e., where unencou-
raged units cannot access treatment. One-sided noncompliance common in practice, occurring
for example in studies of new drugs not yet on market, and of limited-access job training pro-
grams. Although one-sided noncompliance is often associated with experiments, it also occurs
in observational studies where missing instrument values are common (Frolich and Melly, 2013;
Kennedy, 2018).

For example, missing instrument data and one-sided noncompliance often arise together in
fuzzy regression discontinuity designs; these are instrumental variable analyses where the ins-
trument is an indicator for being above a treatment-influencing threshold (Hahn et al., 2001; Im-
bens and Lemieux, 2008). For instance, Pitt and Khandker (1998) and Frolich and Melly (2013)
discuss a study of the effects of microcredit programs in Bangladesh, where the instrument was
an indicator for owning more than half an acre of land ; those with more than half an acre were
ineligible for the program, while those with less self-selected in. Pitt and Khandker (1998) re-
ported a “substantial number” of missing instrument values. Battistin and Rettore (2008) give
several similar examples, including studies where the instrument is an indicator for being above
a test score cutoff. Students below the cutoff may be restricted from enrollment (e.g., in college
programs), whereas students above get to choose whether to participate ; and test scores are often
missing. Angrist and Rokkanen (2015) used such an instrument to study the effect of education
at Boston’s selective “exam schools” ; they mentioned excluding any subjects with missing test
scores.

In this paper we discuss two paradoxes that arise in these kinds of instrumental variable stu-
dies with missing instrument values and one-sided noncompliance. The first paradox is that,
even under a missing completely at random assumption, a complete-case analysis is biased when

Journal de la Société Frangaise de Statistique, Vol. 161 No. 1 120-134
http://wuw.sfds.asso.fr/journal
© Société Francaise de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



122 Kennedy & Small

knowledge of one-sided noncompliance is taken into account. Surprisingly, this is not the case
when such information is disregarded : so discarding information avoids bias. The second para-
dox is that, although incorporating information about one-sided noncompliance does not lead to
efficiency gains without missing data, the story is different when instrument values are missing :
there, incorporating such information changes the efficiency bound, allowing possible efficiency
gains. Before describing these paradoxes we first present some general efficiency theory for ins-
trumental variable studies with missing instrument values.

2. Setup & notation

Suppose the full data would consist of a sample of observations O* = (Z,A,Y) with Z a binary
instrument (e.g., a randomization indicator in experimental settings), A a binary treatment, and
Y some real-valued outcome. Starting in Section 4, we consider studies with one-sided noncom-
pliance, in which Z = 0 implies A = 0, i.e., control subjects cannot access treatment. Such studies
are sometimes referred to as “single consent designs” (Zelen, 1979).

Unfortunately, however, we do not observe the full data; instead we observe a sample of
independent and identically distributed observations (Oy,...,0,), where

O=(RZ,R,A,Y) ~P

and R is an indicator of whether the instrument Z is observed or not. When R = 1 the instrument
Z is observed, but when R = 0 the instrument Z is missing and we only see RZ = 0 regardless of
the value of Z. To focus ideas and simplify notation, we do not consider baseline covariates ; ho-
wever extensions are mostly straightforward (alternatively, all results can be viewed as implicitly
conditional on any such covariates).
Our goal is to estimate the classical instrumental variable estimand
EY|Z=1)-E(Y|Z=0)

=) = Gk 7= 0) ’

which equals a treatment effect under standard causal assumptions. (Note that expectations
E = Ep are under the true P, and likewise for W/ = W/ (IP) unless stated otherwise). These
assumptions have been detailed at length elsewhere (Angrist et al., 1996; Herndn and Robins,
2006), so we will limit our discussion of them before focusing on the observed data parameter
WP/ above. We also note that all subsequent results hold for the observed data parameter ¥/,
regardless of whether the causal assumptions are plausible or not.

We let Y, denote the potential outcome (Rubin, 1974) that would have been observed had
treatment been set to A = a; thus the goal is to learn about the distribution of the effect Y,—; —
Y,—o. We will also need to define potential outcomes under interventions on the instrument ; thus
let Y,, denote the potential outcome that would have been observed under both Z =zand A = a,
and similarly let A, and Y, = Y;4_ denote the potential treatment and outcome under only Z = z.

To illustrate one set of assumptions under which the observed data parameter ¥/ (IP) represents
a causal effect, consider the following.

Assumption 1 (Consistency). ¥ =Y. andA=A,if Z=z,and Y =Y, if (Z,A) = (z,a).
Assumption 2 (Positivity). 0 <P(Z=72) < 1.
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Paradoxes in instrumental variable studies 123

Assumption 3 (Instrumentation). P(A,—; =1) #P(A,—o = 1).
Assumption 4 (Unconfoundedness of Z). Z LI (A,,Y;).
Assumption 5 (Exclusion Restriction). Y, =Y.

Assumption 6 (Monotonicity). A,—1 > A;—o.

Consistency means we get to observe potential outcomes (and treatments) under the obser-
ved instrument values ; this requires there to be no interference, i.e., one subject’s treatments
and outcomes cannot be affected by other subjects’ instrument values or treatments. This would
be violated in for example vaccine studies with herd immunity, or studies with strong network
structure. Positivity requires everyone to have some chance at each instrument value. Instrumen-
tation means the instrument has to have some effect on treatment ; in other words, the arrow from
Z to A in Figure 1 must be present. Unconfoundedness means the instrument must be assigned
essentially at random, i.e., the arrow from U to Z in Figure 1 must be absent. The exclusion
restriction says that the instrument can only affect outcomes indirectly through treatment, i.e.,
the arrow from Z to Y in Figure 1 must be absent. Monotonicity means there are no “defiers”
who take treatment when not encouraged to by the instrument, but take control when encouraged
towards treatment. Note that monotonicity holds by design with one-sided noncompliance, since
then A,—o =0sowehave A,_; >A,—pifand onlyif A,—; = 1.

The next lemma recalls a result from Imbens and Angrist (1994) showing that under the above
assumptions, ¥/ equals a “local” average treatment effect among compliers, i.e., among those
who take treatment only when encouraged to do so by the instrument.

Lemma 1. Under Assumptions 1-6, the average treatment effect among compliers with A,—1 >
A,—o is given by
\Pf = E(Ya:1 —Y,—0 ’Azzl > AZ:O)

with W/ defined in (1).

Démonstration. This result follows from Imbens and Angrist (1994); Angrist et al. (1996). Note

E(Y |Z=1)—E(Y |Z=0) =E(Yory — Yie0) = E(Yuc._, — Yues_,)
= E{(Ya=1 — Ya=0)1(A;=1 > Az=0) }
= E(YaZI — Y=o ‘ Az:1 > AZZO)P(AZzl > AZZO) (2)

where the first equality follows from consistency, positivity, and unconfoundedness, the second
by consistency and the exclusion restriction, and the third by monotonicity. Now

P(Am1 > Aim0) =E(Am1 —Am0) =E(A|Z=1)-E(A|Z=0) 3)

where the first equality follows by monotonicity, and the second by consistency, positivity, and
unconfoundedness. Finally, to obtain the result we divide (2) by (3), which requires the instru-
mentation assumption. O

We note that the observed data quantity W/ can also represent a causal effect under alter-
native assumptions. For example, monotonicity is sometimes replaced with effect homogeneity
assumptions, in which case ¥/ can equal the average effect in the entire population (Angrist
et al., 1996) or among the treated (Hernan and Robins, 2006).
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124 Kennedy & Small
3. Preliminaries

In this section we present some general efficiency theory for instrumental variable studies (not
necessarily with one-sided noncompliance) with missing instrument values. In particular we first
present the nonparametric efficiency bounds for W/ without any missingness, then go on to
present the efficiency bound under missing at random assumptions, describe the corresponding
efficiency loss, and then analyze the efficiency of a complete-case estimator under a missing
completely at random assumption.

3.1. Efficiency bound without missingness

With full data (i.e., when R = 1 with probability one and Z is always observed), the usual instru-
mental variable estimator is
]P)n(ZY) — ]P)n(Z)IPn(Y)

¥(®) = 3,28 R @P.® @

where P, is the empirical measure, so that sample averages can be written using the shorthand
n~ 'Y, £(0;) = P,{f(0)}. It is straightforward to see that this estimator solves the equation
P.{(Z—- 7)Y —yA)} =0 in y for 7, = P,(Z), so that using standard estimating equation
results we have

W/ (B,) =W/ = P {D(0)} +o0z(1/v/n)

where B {Z—E(Z)}{(Y_‘PfA)_E(Y_q]fA)}
- Cov(Z,A) '

The next result gives the efficiency bound in this full data setting.

D(0) (&)

Lemma 2. Suppose the instrument Z is always observed. Then the nonparametric efficiency
bound for ¥/ is given by

{Z-E@)H(Y —W/A)—E(Y —¥A4)}
Var
Cov(Z,A)
Démonstration. Since the full data model is nonparametric, the tangent space is equal to the
entire Hilbert space of mean-zero finite-variance functions (Bickel et al., 1993; van der Laan

and Robins, 2003; Tsiatis, 2006) ; therefore D is the only influence function and necessarily the
efficient one. This immediately implies that its variance is the efficiency bound. 0

3.2. Efficiency bound under MCAR & MAR

Now consider the case where Z can be missing, with R an indicator for whether Z is observed,
and assume the “missing completely at random” (MCAR) condition

R 1L (Z,AY).

This means the missingness in Z is completely unrelated to not only the underlying Z values, but
also treatment and outcome.
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Paradoxes in instrumental variable studies 125

The next result gives the efficiency bound in this missing at random setting. In Section 4.1
we use this result to construct an estimator whose asymptotic variance matches the bound under
weak conditions.

Lemma 3. Suppose R 1L (Z,A,Y) so that the instrument Z is missing completely at random.
Then the efficiency bound for ¥/ is given by the variance of

R

DO = gRTAT

[D(O) —E{D(O) |A,Y,R = 1}] YE{D(O)|A,Y,R=1}, (6)

which can be expressed as

_ Var{D(0)} P(R=0)

Var{D*(0)} ER) FR=1)

Var [E{D(O) 1A,Y}]. %

Further, the efficiency bound is the same under the weaker missing at random condition R 11 Z |
A)Y.

Démonstration. From Robins and Rotnitzky (1995), efficiency bounds under MCAR (here, R LL
(Z,A,Y)) are the same as those under a weaker missing at random (MAR) conditionR LL Z |A,Y,
which is implied by MCAR. Therefore applying their theory (also detailed by Tsiatis (20006)) to
our setting yields an efficient influence function under both MAR and MCAR given by

R

DO = g®Iay)

[D(O) _E{D(O)|A,Y,R= 1}] +E{D(O)|A,Y.R=1}.

Note that E(R | A,Y) = E(R) under MCAR, and the conditioning on R = 1 in the two rightmost
terms is unnecessary (under both MCAR and MAR). Hence the efficiency bound under MCAR
is given by

R

2
Var{D*(0)} =E <E(R)[D(0)—E{D(0) |A,Y}] +E{D(O) |A,Y}> ]

_E (ER [D(0) - E{D(0) | 4,7} "LE{D(0) A, }2>

(R
_ IE(lR)E [Var{D(O) |A,Y}} 4 Var [IE{D(O) |A,Y}}
Var{D(0)} P(R=0)
=5 Ba=n’ [E{D(O) |A,Y}].

where the third and fourth equalities follow from R LL (A,Y) and 0 = E{D(O)} = E[E{D(O) |
AY}. O

After some rearranging, the result in Lemma 3 shows that the relative efficiency under MCAR
versus the full data setting is
Var{D*(0)}
Var{D(O)}

E[Var{D(O) |A,Y}]
Var{D(O)}

= 1+ o0dds(R =0)

Therefore full data efficiency is only attainable under MCAR in unusual no-variance situations :
if Z is constant within strata of (A,Y), or if (Y —W¥/A) is constant.
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126 Kennedy & Small
3.3. Complete-case efficiency under MCAR

Under MCAR, a complete-case analysis that simply discards observations with R = 0 and applies
the usual estimator will be valid. Here we describe the efficiency of such an approach.

Specifically, the complete-case version of the instrumental variable estimand presented in the
previous subsection is given by

lpcc(P)_IE(Y|Z:1,R:1)—]E(Y\ZzO,R:I)
- EA|Z=1,R=1)-E(A|Z=0,R=1)

®)
and we have

W/ (P) = W (P)
by the MCAR condition. The complete-case estimator is then given by

Pn(RZY)Pn(R) _Pn(RZ)Pn(RY)

¥ = 5, (RZA)E, (R) P (RZ)E,(RA)

This estimator solves P,{R(Z — 7,)(Y — wA)} = 0 in y for for T, =P, (Z | R=1) =
P,(RZ)/P,(R), and thus using standard estimating equation results as before (together with the
fact that R 1L (Z,A,Y)), it is straightforward to show that

wee(p,) — W/ = P, {E&)D(O)} +op(1//n).

Therefore since R LI (Z,A,Y) the asymptotic variance (aVar) of the complete-case estimator is

_ Var{D(0)} _ aVar {%/(P,)}
~  E®R) E(R)

aVar {¥“(P,)} = Var { EfR)D(O) }
so that the relative efficiency aVar {¥*(P,)}/aVar {W#/(P,)} is the inverse proportion of units
not missing 1/E(R) = 1/P(R = 1). This is to be expected : since the complete-case estimator
only uses units with R = 1, it requires 1/P(R = 1) times as many observations to match the
efficiency attainable without missingness (for example, one would need a sample size twice as
large if half the units have missing data).

Further, comparison with the efficiency bound from Lemma 3 shows that the complete-case
estimator is generally inefficient, since its asymptotic variance (the first term on the right-hand
side of (7)) is strictly greater than the efficiency bound (the left-hand side of (7)) unless E{D(O) |
A,Y} is constant (hence, the second term on the right-hand side of (7) is zero).

4. First paradox

Now that we have characterized the efficiency theory for instrumental variable studies under the
MCAR condition R LI (Z,A,Y), we will present our first (apparent) paradox that arises when
noncompliance is one-sided. Namely, we will show that, even assuming the MCAR condition,
a complete-case analysis is generally biased when one-sided noncompliance is taken into ac-
count. More specifically, incorporating the fact that noncompliance is one-sided generates a new
missingness indicator, for which MCAR (but not MAR) is violated.
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Paradoxes in instrumental variable studies 127
4.1. Main result

As mentioned in Section 2, one-sided noncompliance means the unencouraged with Z = 0 do
not have access to treatment, so that Z = 0 implies A =0, i.e., A,—o =0and A = 1 implies Z = 1.
Equivalently, in such studies there are only never-takers (A, = 0) and compliers (A; = z), and
no always-takers (A; = 1) or defiers (A; = 1 — 7). In this section we show that incorporating
information about one-sided noncompliance invalidates MCAR so that a complete-case analysis
is biased.

Before stating our first result we introduce some new notation. Since A = 1 implies Z =1
under one-sided noncompliance, whenever Z is missing for subjects with A = 1 we can actually
fill in Z = 1. This yields a new missingness indicator, different from R, defined by

R'=R(1-A)+A 9)

which equals the initial missingness indicator R whenever A = 0, but equals 1 whenever A = 1
since then it is known that Z = 1. We also define the corresponding complete-case estimand
based on this updated indicator as

_EY|Z=1,R"=1)-E(Y|Z=0,R"=1)
- EA|Z=1,RT=1)-EA|Z=0,Rt=1)

¥ (P) (10)

The next theorem gives our first main result, which is that incorporating information about
one-sided noncompliance violates MCAR and thus generally invalidates a complete-case analy-
sis, even though without incorporating such information MCAR in fact holds and a complete-
case analysis would be valid.

Theorem 1. Let O = (R,RZ,A,Y) ~ P and suppose the MCAR condition R L1 (Z,A,Y) holds,
so that
W (P) = P (P)

for P and W<¢ the full-data and complete-case instrumental variable estimands in (1) and (8).
When there is one-sided noncompliance and P(R = 1) < 1, then MCAR fails for the updated
indicator R" from (9) which incorporates the knowledge that A = 1 implies Z = 1, i.e.,

and in general a complete-case analysis based on RT will be biased, i.e.,
wi(P) £ ¥ (P).

Démonstration. In the next subsection we will derive the explicit form of the bias of the
complete-case estimand based on RY, proving the second result. To see why R" VL (Z,A,Y)
for the first result, note that R" )/l A due to the fact that

PR =1]A=1)=1

PR =1|A=0)=P(R=1|A=0)=P(R=1),

and these expressions are not equal unless there is no missingness. O
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128 Kennedy & Small

The result in Theorem 1 is counterintuitive at first glance : if we use the original missingness
indicator R and pretend not to know about one-sided noncompliance, then a complete-case analy-
sis is valid ; however if we take into account this latter information using R, then we cannot do a
complete-case analysis anymore. The main intuition for this result is that, even if the instrument
is initially missing completely at random (using the indicator R), incorporating the one-sided
noncompliance information induces a dependence between the new indicator R™ and treatment
A, since A = 1 implies Z = 1 and thus R = 1. This invalidates MCAR and instead makes the
instrument missing at random (but not completely).

Remark 1. In a setting with baseline covariates W, the results of Theorem 1 indicate that a W-
specific MAR condition is violated for the indicator R', i.e., R VI (Z,A,Y) | W, even when it
holds for the original indicator R, i.e., even if R 1L (Z,A,Y) | W.

Remark 2. Although MCAR is violated when using RT, MAR still holds ; more specifically we
have R" 1L (Z,Y) | A. This follows since if A = 1 then R" = 1 is constant, and if A = 0 then
RT = R, which is independent of (Z,Y).

Theorem 1 therefore tells us that, in studies with one-sided noncompliance and missing instru-
ment values, one should either not use complete-case analyses (or analogous methods in settings
with covariates) or else one should not incorporate the one-sided noncompliance information. In
our view it is preferable to assume minimal untestable MAR conditions like R 1L Z | (A,Y), since
this holds for both R and R', instead of stronger MCAR conditions like R 1L (Z,A,Y), which
incorporate testable constraints (R LL (A,Y)) and require different analysis methods depending
on whether one-sided noncompliance information is taken into account. This is especially pru-
dent since efficiency bounds are the same under both MAR and MCAR ; thus the benefits of
MCAR assumptions do not include efficiency gains, but in fact just less computational burden
(e.g., allowing complete-case analysis).

Thus, we advocate for an estimator that can attain the MCAR/MAR efficiency bound under
weak conditions. One such estimator is given by

= Pl {Z-BEZIAYR = )} +EEZ A YR = )Y ~P,(1)})
g _ E(RT|A,Y) an
" Pl (2 EE A YR = D} HE(Z|AY.R = 1)[{A-P.(4)})

where E(R" | A,Y) and E(Z | A,Y,R" = 1) are estimates of the missingness propensity score
and instrument regression, respectively. For discrete Y, these nuisance functions can be based on
saturated models, in which case a standard analysis shows that the estimator attains the efficiency
bound under no conditions as long as E(R" | A,Y) and its estimator are bounded away from
zero. For continuous Y, construction of these estimators would require some smoothing, and a
sufficient condition for asymptotic efficiency would be that the estimators achieve faster than
n~'/4 rates (e.g., in L norm). The estimator W, can be viewed as solving an estimating equation
based on an estimated version of the efficient influence function in (6) (with R replacing R). This
is a standard way to construct efficient estimators, and the analysis of corresponding asymptotic
properties follows from usual estimating equation techniques (van der Vaart, 2000; van der Laan
and Robins, 2003).
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Paradoxes in instrumental variable studies 129

4.2. Explicit form for bias

In this subsection we explore the form of the bias of a complete-case approach using the indicator
R, in the presence of one-sided noncompliance.

Lemma 4. Under MCAR (R LL (Z,A,Y)) the bias of ¥ from (10) is given by

P(RT=0[Z=1)

W (B) ¥ (B) = () gy 17— o

for

a=FEA|Z=1,R"=1)-E(A|Z=1,R"=0)
B=E(Y|Z=1,A=1)—-E(Y |Z=1A=0)-¥/(P).

A proof of Lemma 1 is given in the Appendix. This result indicates that as long as there is
missingness, i.e., P(RT = 0| Z = 1) > 0, then there are two scenarios in studies with one-sided
noncompliance in which it is valid to do a complete-case analysis (using the indicator R") :

1. Among those encouraged towards treatment (Z = 1), compliance (A = 1) rates are the
same regardless of whether the instrument is missing or not (i.e., oc = 0).

2. The mean treatment-control difference in outcomes among those encouraged towards
treatment (Z = 1) is equal to the instrumental variable effect ¥/ (Ge., B =0).

In general these two no-bias conditions would not be expected to hold. The first condition
(involving ) cannot be tested since Z is unobserved when R = 0. However the second condi-
tion could be assessed (assuming MAR) by estimating ¥/ under MAR and comparing to the
mean treatment-control difference among those encouraged towards treatment with R = 1. Al-
ternatively, to assess bias apart from these conditions, one could simply compare estimates under
MCAR and MAR directly.

5. Second paradox

In this section we present our second apparent paradox : that, although knowing noncompliance
is one-sided does not yield efficiency gains with full non-missing data, such knowledge is in
fact informative in settings with missing data. In particular we characterize the change in the
efficiency bound that results from exploiting knowledge of one-sided compliance.

5.1. Efficiency bound without missingness

Recall from Section 3.1 that the full data efficient influence function is D(O) from (5), which
is also the influence function for the usual IV estimator ¥/ (P,) from (4). This can be shown to
yield the full data efficiency bound

Y. Var(Y —WA|Z=2)/P(Z=2)
Var{D(O)} = = 7 =) R | z=0)]2
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130 Kennedy & Small

Now suppose a known compliance rate E(A | Z = 0) = p among the unencouraged, for some
known value 0 < p < 1 — €. For example p = 0 corresponds to the one-sided noncompliance
scenario in which Z = 0 implies A = 0. Then we can define the corresponding estimand

_EY|z=1)-E({Y|Z=0)
) (P) = EA|Z=1)—-p

with efficient estimator

wh(p,) = ot

Y|Z=1)-P,(Y|2=0) [ 1  PfA-p)(1-2)P,(2)}]"
]P)n(A|Z: 1)_P a l:\Pf(]P)n) ]P)n(ZY)_]P)n(Z)]Pn(Y .

This estimator ‘P{; (P,) can be shown to solve the equation

P,((z—&) |y —w){za+(1-2)p}]) =0

in y for 7, = P,(Z), rather than the equation P,{(Z — 7,)(Y — wA)} = 0 solved by the stan-
dard estimator W/ (PP,,). Although not the case for general p > 0, when p = 0 exactly we have
‘Pf; (P,) = W/(P,), so that there is no efficiency gain from incorporating knowledge of one-
sided noncompliance. This follows since ZA + (1 —Z)p = ZA = A when p = 0, so that in-
corporating the knowledge that p = 0 yields the exact same estimator as if the knowledge
was not used. This is to be expected, since if E(A | Z = 0) = 0 exactly then the estimator
P,(A|Z=0)=P,{A(1—2)}/P,(1 —Z) will equal the true parameter p = 0 with probability
one (of course the converse is not true : if P,(A | Z = 0) = 0 we cannot be certain that p = 0).

Therefore, when there is no missing data, incorporating knowledge of one-sided noncom-
pliance (or, in other words, p = 0) simply yields the same standard estimator that does not in-
corporate this knowledge, and hence does not give any efficiency gains. However, in the next
subsection we will show that the story is different when there is missing data (and MCAR holds
for the original missingness indicator R) : then using such knowledge can in fact provide effi-
ciency gains.

5.2. Main result

Here we show our second apparently paradoxical result : that knowledge of one-sided noncom-
pliance gives opportunities for efficiency gains when instrument values are missing, contrary to
the setting without such missing data. This follows because the knowledge that A = 1 implies
Z =1 allows us to fill in some missing data (among those with A = 1).

Theorem 2. Assume the MCAR condition R 1L (Z,A,Y). Then the efficiency bound Var{D*(0)}
for estimating W/ is no less than the bound Var{D,s(0)} when it is also known that noncom-
pliance is one-sided. In particular the difference between the bounds is

Var{D*(0)} — Var{D,(0)} = odds(R = 0)E [Var{D(O) A7} ‘ A= 1} P(A=1)>0.

Démonstration. As noted in Remark 2 we have that R 1L (Z,A,Y) implies R" 1L (Z,Y) | A.
Therefore, as in Section 3.3 the efficiency bounds are equivalent under R" L (Z,Y) | A and
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RT 11 Z | (A,Y) (Robins and Rotnitzky, 1995). This implies the efficient influence function under
R 1l (Z,A,Y) with known one-sided noncompliance is given by

RT

- E(RT|A,Y)
Rf

" E(RT|A)

D,,(0) D(0) ~E{D(0) |4,Y,R" = 1}| +E{D(0) | 4,Y,R" = 1}

D(0) ~E{D(0) | A,Y}| +E{D(0) | 4,Y}

where we note that E{D(O) | A,Y,R" = 1} = E{D(O) | A,Y} follows from the fact that R" |
Z | (A,Y), which is implied by RT LL (Z,Y) | A. Therefore the variance of the efficient influence
function (which by definition is the efficiency bound) is

:
Var{D,(0)} =E <E<Rf|A)2 [D(O) —~E{D(0) | A, Y}} ’ +E{D(0) | A, Y}2>

B Var{D(O) | A,Y}
‘E[ E(RT |A)

} —I—Var[]E{D(O) |A,Y}]

T —
= Var{D(0)} +E [M

= Var{D(0)} + odds(R = 0)E [(1 — A)Var{D(0) | A, Y}} .

Var{D(0) | A, Y}]

The first equality follows since the cross term in the variance is zero by iterated expectation, the
second by iterated expectation and since E[E{D(O) | A,Y }] = 0, the third using the law of total
variance, and the fourth using the definition of R'. Rearranging the last line yields the result. [

Theorem 2 shows that, in general, efficiency gains are possible when Z is partially missing by
incorporating knowledge of one-sided noncompliance. The only ways the bounds Var{D*(O)}
and Var{D,;(0)} can be equal are in the two unusual no-variance situations mentioned in Sec-
tion 3.3, or if no one is treated (i.e., there are only never-takers). This is different from the setting
without missing data, where such efficiency gains are not possible ; there knowledge of one-sided
noncompliance leads to the exact same estimators that would be used without such knowledge.
The intuition behind the gain in efficiency comes from the fact that knowledge of one-sided
noncompliance allows us to fill in some missing data; in particular we know that those who are
treated must have had missing instruments equal to Z = 1, since those with Z = 0 cannot access
treatment. This also explains why the increase in efficiency is proportional to the fraction treated
PA=1).

6. Discussion

In this paper we discussed two paradoxes related to bias and efficiency in instrument variable stu-
dies, in the common setting where instrument values are partially missing, and noncompliance
is one-sided. Our first paradox is that complete-case analyses are biased, even when values are
missing completely at random, if knowledge of one-sided noncompliance is taken into account.
This is because incorporating one-sided noncompliance information (by filling in Z = 1 whene-
ver A = 1) induces a dependence between missingness and treatment, invalidating MCAR and

Journal de la Société Frangaise de Statistique, Vol. 161 No. 1 120-134
http://wuw.sfds.asso.fr/journal
© Société Francaise de Statistique et Société Mathématique de France (2020) ISSN: 2102-6238



132 Kennedy & Small

thus a complete-case analysis. Our second paradox is that incorporating information about one-
sided noncompliance generally also leads to efficiency gains (i.e., the efficiency bound changes)
when there is missing data, but not when no data are missing. This second result is due to the fact
that the one-sided noncompliance allows us to fill in some missing values (again since we know
Z =1 whenever A = 1), thus alleviating some of the information loss due to missing instrument
values.

We hope our work might spur more research on missingness in instrumental variable designs,
since we have shown that some interesting and unexpected phenomena can arise. More generally,
in the same spirit as van der Laan and Robins (2003), we also hope our paper becomes part of a
larger stream of work that gives a more connected and simultaneous treatment of causal inference
and missing data problems, since issues related to both often occur together in practice.
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7. Appendix
7.1. Proof of Lemma 1

First note that the true IV estimand simplifies to

le_E(Y|Z:1)—E(Y|Z:0)
N EA|Z=1)

since Z = 0 implies A = 0. This together with R" L (Z,Y) | A also implies
EY|Z=0R"=1)=YE(Y|[Z=0A=a)P(A=a|Z=0,R"=1)=E(Y|Z=0),
a

so the complete-case estimand based on R is similarly given by

IPT_1{-3(1/|z:1,1e*:1)—1[»3(y|z:0)
N E(A|Z=1,Rt=1) '

Therefore the bias of ¥ is

\Iﬁ_q]f_E(Y|Z:1,RT:1)—E(Y\ZZO)_E(Y|Z:1)—E(Y|Z:0)

N E(A|Z=1,Rt=1) E(A|Z=1)

A{E(Y |Z=1R"=1)-E(Y |Z=0)}E(A|Z=1)
EA|Z=1,RT=1)EA|Z=1)
{E(Y|Z=1)—-E(Y|Z=0)}E(A|Z=1,R"=1)

EA|Z=1,RI=1)EA|Z=1)
EY|Z=1,RT=1)-E(Y|Z=1 EA|Z=1
-2 E(A\Zzl,)R*:( )‘ )+lpf{E(A](ZL1,RT):1)_1}
EA|Z=1,RT=1)-EA|Z=1)
EA|Z=1,RT=1)

={B(|z=14=1)-EF¥|z=14=0)}
E(A|Z=1)
+le{IE(A|Z:1,RT:1)_1}
={B(|z=14=1)-E(F¥|Z=1,4=0)-}

EA|Z=1,RT=1)-EA|Z=1)
EA|Z=1,RT=1)

~{E(y|1Z=1,4=1)-E(¥|2=1,4=0)-%}

X{E(A|Z=1,RT=1)E(AIZzl,R*:O)}x{ PR =0]Z=1) }

EA|Z=1,RT=1)
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where the first equality follows by expressions for ¥/ and W' above, the second by rearranging,
the third by subtracting and adding E(Y | Z = 1) in the numerator of the first term, the fourth

EY|Z=1,RT=1)—-E(Y|Z=1)

:{E(Y|Z:1,A:1)—E(Y|Z: 1,A:0)}E(Ayz:1,RT:1)
—{E(Y]Z:l,Azl)—E(Y\Z:I,A:O)}E(A|Z:1)
YE(Y[Z=1,A=0)—E{Y|Z=1,A=0)

:{E(Y|z:1,A:1)—E(Y|Z:1,A:0)}{E(A|z:1,RT:1)—E(A|z:1)},

the fifth by rearranging, and the sixth since
EA|Z=1)= {E(A 1Z=1,R" =1)-E@A|Z=1,R' :())}H-E(RT 1Z=1)
+EA|Z=1,R"T=0)

and rearranging. This yields the desired result.
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