
Journal de la Société Française de Statistique
Vol. 160 No. 3 (2019)

|

Discussion on "Minimal penalties and the slope
heuristic: a survey" by Sylvain Arlot

Titre: Discussion sur "Pénalités minimales et heuristique de pente" par Sylvian Arlot

Adrien Saumard1

I would like to begin this note with some sincere compliments to Sylvain Arlot for a most valu-
able survey. I know that this ambitious project started some years ago and I deeply thank his
author for having had the courage to put an end to this quite huge amount of work. Let me
also thank the Editor Gilles Celeux for giving the opportunity to publish this work in the best
conditions and having raised a discussion around it.

I have no doubt that this survey will contribute to promote the whole lines of research con-
nected to minimal penalties and optimal penalties design heuristics, from the most theoretical
aspects, to the methodological ones and to their usage in applications as well. All these facets
are treated with great details at one place, which is very rare, but highly precious. Indeed, it
emphasizes the unity of the subject and the connections between existing works and approaches.

1. On the usage of the slope heuristics

With a slight abuse of simplification, I would emphasize that the slope heuristics and more gen-
eral penalty calibration methods are mostly interesting when (V-fold) cross-validation - or other
resampling based methods - is inefficient, or difficult to implement, or impossible. This occurs
in two major domains of statistics and machine learning (and of course in a variety of other
statistical tasks): clustering - that is unsupervised classification - and time series analysis.

Because of the lack of labels, a standard cross-validation of the classification performance is
impossible in clustering. As reviewed in the article, there is already a great deal of work on the
behavior of the slope heuristics for the clustering task, especially in the model based approach.
Empirical evidence of the benefits of using penalty calibration algorithms in these settings is
now clear. I would argue however that we have rather little theoretical understanding of the
problem. The main obstacle is that mixture models are (highly) non-linear. So one is tempted
to use some classical chaining arguments, that are inefficient when tackling the optimality of
the slope heuristics (for instance), since some constants are automatically lost in the estimates.
The use of chaining estimates should in fact at least be indirect in order to preserve some sharp
theoretical expressions related to the excess risks and general representation formulas for the
latter quantities such as in Navarro and Saumard (2017) might help in this case.
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A refined analysis of the geometry of mixture models would be very welcome in my opinion,
and could have an impact on the understanding of the nature of the clustering task in general.
Remarkable contributions that may be related to this direction are (Gassiat and van Handel, 2013,
2014; Heinrich and Kahn, 2018).

Concerning time series analysis, which is in my point of view a most natural domain of ap-
plication of penalty design heuristics, precise investigations are rather lacking. I would push
towards the analysis of some classical models situations, that have a great impact for instance
on econometry, such as model selection for auto-regressive processes, especially ARMA-type
processes, and also for GARCH-type volatility models. Indeed, cross-validation is typically hard
to implement in these settings, especially when the residuals are correlated, since for instance
the technique of blocking depends on some hyper-parameters that are difficult to tune.

A way to start in this direction of research is to look for refinements in previous analysis of
model selection in such frameworks. Relevant references are (but not limited to) related to early
works of Fabienne Comte and co-authors (Baraud et al., 2001; Comte and Rozenholc, 2002;
Comte and Genon-Catalot, 2006; Comte et al., 2008, 2010).

2. A conjecture in the binary classification setting

Grant the notations of the survey and set R̂n (t) = 1/n∑
n
i=1 1{Yi 6=t(Xi)} for binary valued random

variables Yi and function t , thus corresponding to the binary classification setting, with i.i.d. sam-
ple (Xi,Yi) , i = 1, ...,n. Assume that we have a polynomial collection of models, with polynomial
covering numbers. More precisely, assume that there exists Am,Vm > 0 such that,

N (m,L2 (Pn) ,ε)≤

(
Am ‖Fm‖L2(Pn)

ε

)Vm

, ε > 0,

where N (m,L2 (Pn) ,ε) is the minimal number of L2 (Pn)-balls covering the model m and Fm is a
measurable envelope of m.

Conjecture: Under the above framework, the “classical” slope heuristics - with constant 2 be-
tween the optimal and minimal penalty - is valid for a penalty shape equal to the (smallest)
power Vm appearing in the polynomial entropy number bound of the model m, if there exists
a (uniform) strong margin relation over the union of the models and if the models are “nice”
enough (in terms of metric entropy). If only a weak margin condition holds, then the minimal
penalty phenomenon - i.e. the phase transition - is still satisfied for a penalty shape equal to Vm,
for “nice” enough models, but the ratio of the optimal penalty over the minimal one is greater
than 2 - in fact equal to 2/α - and depends on the (highest) exponent α in the margin relation,
Var{γ(s)-γ(sm)} ≤ L [R (s)−R (sm)]

α , α ≤ 1, L > 0, where γ (t)(x,y) = 1{y 6= t (x)} is the
so-called binary classification contrast.

Let me explain the rationale behind this conjecture. Using (Navarro and Saumard, 2017,
Proposition 6.6), we have for any m ∈M ,

p1 (m) ∈ argmax
C≥0

{
sup
s∈mC

{(Pn−P)(γ (sm)− γ (s))}−C
}
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and

p2 (m) = max
C≥0

{
sup
s∈mC

{(Pn−P)(γ (sm)− γ (s))}−C
}

,

with mC = {s ∈ m : R (s)−R (sm)≤C}. Now, for C sufficiently large (it happens that the con-
stant in the lower bound for C is actually problematic when there is existence of a strong margin
relation), results in Giné and Koltchinskii (2006), see also (Koltchinskii, 2011), show that the
following estimate is reasonable for “nice” enough models,

K1σC

√
Vm

n
≤ E

[
sup
s∈mC

{(Pn−P)(γ (sm)− γ (s))}
]
≤ K2σC

√
Vm

n
,

where σ2
C = sups∈mC

Var{γ(s)-γ(sm)}. In some cases however, some extra log factor would be
necessary (Massart and Nédélec, 2006). Then by abusively taking the latter equivalence for an
equality (K1 = K2 = K) and considering that the margin relation saturates, σ2

C ∼ LCα , easy cal-
culations give that, with probability close to one (controlled by Talagrand’s type concentration
inequalities for suprema of bounded empirical processes),

p1 (m)∼
(

K
√

L
α

2

) 2
2−α

(
Vm

n

) 1
2−α

and p2 (m)∼
(

2
α
−1
)

p1 (m) .

The identity p1 (m) = p2 (m) then arises if and only if the exponent in the margin relation is
equal to 1. Note that actually, the particular structure of the binary contrast is not essential and
the rationale should work for the selection of some “nice” enough models - and nice enough
sample distribution - in a general bounded M-estimation setting.

3. Remarks about the over-penalization effect

Theoretical validation of the slope heuristics is based on estimates of the excess risks that are
optimal to first order. As emphasized in Section 8.4 of the survey, second order effects also play
a significant role in the behavior of estimator selection rules in the moderate sample size regime,
as they influence what is known as the over-penalization effect.

I agree on the fact that the slope heuristics has a tendency to avoid over-fitting (from its
very definition actually!) and this might be related to some kind of over-penalization. I also
pointed this phenomenon in a paper about the slope heuristics in MLE, Saumard (2010, page 2),
emphasizing the superiority of the slope heuristics over AIC for small to moderate sample sizes.

However, I would not be too optimistic on the ability of the dimension jump - or slope es-
timation - algorithm to produce a satisfying, close to optimal, over-penalization. Indeed, in my
opinion, avoiding over-fitting does not necessary lead to a sharp over-penalization. As explained
in Saumard and Navarro (2018, Section 2.3), optimal over-penalization is in fact related to a pre-
cise multiple pseudo-testing problem on a collection of “random hypotheses”. So there may exist
procedures that avoid over-fitting, even with small sample sizes, but that are still sub-optimal for
the latter “multiple hypotheses” problem.

This objection is actually inspired by some simulations that we carried out with Fabien
Navarro for the paper (Saumard and Navarro, 2018) - even if we decided not to report them

Journal de la Société Française de Statistique, Vol. 160 No. 3 154-157
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



Discussion by A. Saumard 157

for simplicity of exposition (but we may add them in a further revision!). In our density estima-
tion setting, we observe a superiority of the slope heuristics over AIC for small sample sizes,
but the performances of both algorithms are still quite poor in this regime compared to our over-
penalization strategy.

Finally, I agree that proposing a completely data-driven over-penalization procedure with
nearly optimal performances for small to moderate sample sizes is quite a challenge. So is the
theoretical validation of the superiority of over-penalization over classical approaches.

Aknowledgements: I am grateful to Lionel Truquet for instructive discussions about times series
models and especially about their cross-validation. I also warmly thank Sylvain Arlot, Camille
Saumard and Lionel Truquet for having carefully revised this note.

References

Baraud, Y., Comte, F., and Viennet, G. (2001). Model selection for (auto-)regression with dependent data. ESAIM
Probab. Statist., 5:33–49.

Comte, F., Dedecker, J., and Taupin, M. L. (2008). Adaptive density estimation for general ARCH models. Econo-
metric Theory, 24(6):1628–1662.

Comte, F. and Genon-Catalot, V. (2006). Penalized projection estimator for volatility density. Scand. J. Statist.,
33(4):875–893.

Comte, F., Lacour, C., and Rozenholc, Y. (2010). Adaptive estimation of the dynamics of a discrete time stochastic
volatility model. J. Econometrics, 154(1):59–73.

Comte, F. and Rozenholc, Y. (2002). Adaptive estimation of mean and volatility functions in (auto-)regressive models.
Stochastic Process. Appl., 97(1):111–145.

Gassiat, E. and van Handel, R. (2013). Consistent order estimation and minimal penalties. IEEE Trans. Inform.
Theory, 59(2):1115–1128.

Gassiat, E. and van Handel, R. (2014). The local geometry of finite mixtures. Trans. Amer. Math. Soc., 366(2):1047–
1072.

Giné, E. and Koltchinskii, V. (2006). Concentration inequalities and asymptotic results for ratio type empirical
processes. Ann.Probab., 33:1143–1216.

Heinrich, P. and Kahn, J. (2018). Strong identifiability and optimal minimax rates for finite mixture estimation. Ann.
Statist., 46(6A):2844–2870.

Koltchinskii, V. (2011). Oracle inequalities in empirical risk minimization and sparse recovery problems, volume
2033 of Lecture Notes in Mathematics. Springer, Heidelberg. Lectures from the 38th Probability Summer School
held in Saint-Flour, 2008, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School].

Massart, P. and Nédélec, E. (2006). Risks bounds for statistical learning. Ann.Stat., 34(5):2326–2366.
Navarro, F. and Saumard, A. (2017). Slope heuristics and V -fold model selection in heteroscedastic regression using

strongly localized bases. ESAIM Probab. Stat., 21:412–451.
Saumard, A. (2010). Nonasymptotic quasi-optimality of AIC and the slope heuristics in maximum likelihood estima-

tion of density using histogram models. hal-00512310.
Saumard, A. and Navarro, F. (2018). Finite sample improvement of Akaike’s Information Criterion. arXiv preprint

arXiv:1803.02078.

Journal de la Société Française de Statistique, Vol. 160 No. 3 154-157
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238


	On the usage of the slope heuristics
	A conjecture in the binary classification setting
	Remarks about the over-penalization effect
	References

