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Sylvain Sardy1

Most machine learning methods require the selection of a regularization parameter that controls
the complexity and the fit of the estimated model. The learner considered here is a sequence of
projections into a collection of linear subspaces (Sm)m∈M , the regularization penalizes the least
squares by Cdim(Sm), and the goodness-of-fit measure is the predictive risk. The optimal penalty
is seen as the constant C that unbiasedly estimates the predictive risk. Sylvain Arlot makes a
thorough theoretical and empirical survey and provides great insights of the minimal penalty and
the slope heuristics that circumvent the difficult problem of estimating the noise variance σ2.

FIGURE 1. Example of risk estimation compared to true loss.
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Adaptive lasso

Regularization methods know that bias is good, yet they often paradoxically seek an optimal
1 Section de Mathématiques, Université de Genève

Journal de la Société Française de Statistique, Vol. 160 No. 3 152-153
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



Discussion by S. Sardy 153

model by minimizing an unbiased estimate of the risk. We recommend biased estimation of the
risk towards models of lower complexity. We illustrate our point with orthonormal regression
Y = µ + ε , where µ is believed to be sparse. We consider two estimators.

A typical projection estimator is subset selection with Cn
p models of size p ∈ {0,1, . . . ,n} and

a total of |M | = 2n models (Sm)m∈M . Conditional on p = dim(Ŝm) the best model Ŝm is the
support of µ̂ϕ = ηhard

ϕ (Y) with threshold ϕ =
√

C and C = Y 2
(n−p). In that case the unbiased

risk estimate formula based on Stein (1981) and Sardy (2009, Equation (12)) takes into account
that the optimal model Ŝm is estimated. On the contrary Mallow’s Cp of (9) which unbiasedness
property is conditional on each Sm of size p underestimates the variance and consequently selects
an over-complex model. The left plot of Figure 1 illustrates this behavior. The factor 2 in (9) is
too small, which concurs with Birgé and Massart (2007).

Adaptive lasso (Zou, 2006) indexed by (λ ,ν) includes best subset selection at its limit when
ν → ∞. For adaptive lasso, the right plot of Figure 1 shows that, for a fixed large ν = 20, the
unbiased estimate of the risk (Sardy, 2012) as a function of λ has high variance on the left side of
the minimum of the true loss which itself has a high negative derivative. Biasing towards smaller
complexity (i.e., larger λ ) would lead to an estimator with smaller risk.

These two examples suggest a slope method with a larger constant than 2. An even larger con-
stant should be employed when the design is not fixed, the regression matrix is badly condition
(ill-posed inverse problems) and σ2 is unknown. BIC (Schwarz, 1978) and Quantile universal
threshold (QUT) (Giacobino et al., 2017) lead to low complexity models. QUT is also a good
competitor of the scree test to recover the number of components in principal component analysis
(Josse and Sardy, 2016).
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