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We study here the performance of the slope heuristics in a change-point detection framework.

Change-point setting. We observe a finite sequence {yt}t=1,...,n realisation of independent
variables Yt drawn from a Gaussian distribution where the mean s is assumed to be piecewise
constant on a partition m of J1,nK (change-points delimiting the segments of the partition) and
the variance be known:

Yt ind. ∼N (sr,σ
2) if t ∈ segment r.

In such framework, the model selection issue arises for the choice of the number of segments
(the size of m, |m|). To ensure that the selected estimator ŝ = ŝm̂ satisfies an oracle inequality,
Lebarbier (2005) shows that the optimal partition/segmentation m̂ minimises a penalized least-
squares criterion m̂ ∈ argmin

m
‖y− ŝm‖2/n+ pen(m) where the penalty is

pen(m) = pen(|m|) = σ
2 |m|

n

(
c1 log

(
n
|m|

)
+ c2

)
= σ

2 fn(c1,c2,m)

In practice, since the penalty depends on the partition through its dimension, the optimal seg-
mentation in K segments m̂K is computed for every K up to Kmax, then K̂ is obtained using the
penalty.

Simulation design and quality criteria. We considered series of length n = 200 with σ ∈
{0.1,0.5,1,1.5,2} (scenarios from easy to difficult detection). All series are affected by 4
change-points located at positions 60,110,140,180. The mean within each segment alternates
between 0 and 1, starting with s1 = 0. Each combination was replicated S = 200 times. The qual-
ity of the segmentation parameter estimation is assessed via:
? The difference between the true number of segments and the estimated one, K̂−K;
? The two components of the Hausdorff distance between the true and the estimated segmenta-
tions that are d1 = E (ms||mŝ) and d2 = E (mŝ||ms) where E (mA||mB) = supb∈mB

infa∈mA |a− b|
in order to assess the quality of the change-point locations. d2 assesses how our estimated seg-
mentation is able to recover the true change-points. On the contrary, d1 judges how relevant the

1 UMR AgroParisTech/INRA MIA-Paris

Journal de la Société Française de Statistique, Vol. 160 No. 3 140-149
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



Discussion by É. Lebarbier 141

proposed change-points are compared to the true segmentation.
? The risk of the proposed estimator ŝm̂, ‖s− ŝm̂‖2 in order to assess the global estimation of the
mean s.
The criteria are also computed for the optimal segmentation for the true number of segments,
denoted m̂K and we consider the optimal segmentation in terms of risk that is m̂K̃ where
K̃ ∈ argmin

K
‖s− ŝm̂K‖2 (trajectorial oracle).

Expected results in change-point detection. A powerful segmentation procedure
? must recover the true segmentation in easy detection scheme leading to the selection of the true
number of segments and with both null d1 and d2;
? tends to underestimate the number of segments in order to avoid false detection when the
detection is difficult (selecting the true number of segments in this case is not desired). The
obtained estimator yields then high values of d2 due to the missed change-points but low values
of d1 as the change-points we propose tend to correspond to true ones. Note that on the contrary
an overestimation of K results in a large d1 and a small d2.

Algorithm 1 versus algorithm 2. Lebarbier (2005) proposed to take c1 = 2 and c2 = 5. Then
the variance σ2 can be seen as a constant α that can be calibrated using either algorithms 1 or 2.

Algorithm 1 (biggest jump). We study the impact of Kmax in this algorithm. Different values
of Kmax = nβ are considered with β ∈ {0.5,0.6,0.7,0.8}. Results are given in Figure 1 and
Table 1. Whatever Kmax, we observe the same tendency according to the detection difficulty:
more the detection is difficult, less change-points are detected but they are well positioned. This
behaviour is preferable (smaller d1 compared to m̂K for σ ≥ 1). The choice of Kmax has clearly
an influence on the selection of the number of segments (thus on the segmentation): for a too
small Kmax, the algorithm can detect no change-point whereas the detection is clear by eyes
(see the example presented in Figure 4) and on the contrary for a too high value of Kmax, the
number of segments is overestimated compared to smallest Kmax with thus too many spurious
change-points (see the example presented in Figure 6). For n = 200 (our simulation scheme),
it seems to be reasonable to choose Kmax = n0.6. Indeed, in this case the algorithm 1 tends to
recover the true number of segments, and therefore its performances are the same as that of m̂K ,
and the obtained estimator performs significantly better when the series become more difficult
to segment. Moreover, even in the most difficult scenarios, our estimator has a performance
close to that of the trajectorial oracle (orange in Figure 1).
Table 1 shows that the biggest jump can be reached for different values of α . According to
results observed on simulations, the first one is preferred, i.e. the one associated to the smallest
α (that is done here). We also observe that for β = 0.6, α = σ2 is well estimated except for
the very easy detection case due to some simulations with no selected change-points. However
when Kmax is too large, σ2 is underestimated.

Algorithm 2 (slope). We propose to use this algorithm in two fashions: (i) estimate σ2 by
performing a linear regression of ‖y− ŝm̂K‖2 as a function of fn(c1,c2,m) and (ii) forgot the
values of c1 and c2 and estimate them (including σ2) by performing a regression of ‖y− ŝm̂K‖2 as
a function of both K log(n/K) and K. We choose two sets of dimensions to run the regressions:
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10−15 and 20−40. We have the same conclusions that for algorithm 1: (1) the underestimation
of K̂ is desired in terms of segmentation when the detection problem is difficult whatever the
strategy (compared to the true segmentation) and (2) the choice of the dimensions on which the
regression is performed have an influence on the segmentation results (see also the examples
presented in Figures 4, 5 and 6). The conclusion is not the same for the two strategies: for (i),
it is preferable to choose smallest dimensions whereas this is the contrary for (ii) in terms of
segmentation locations and in terms of risk.

Discussion. For both algorithms, calibrated choices need to be made. For easy detection cases
(as in Figure 4 when eyes are sufficient), these choices are easy to make but they are quickly
complicated with the detection difficulty as is common on real data. We can observe, for the
algorithm 2 and the strategy (i) (see Examples presented in Figures 5 and 6) that there exists two
schemes in the behaviour of ‖y− ŝm̂K‖2 as a function of fn(c1,c2,m): a first one after the oracle
dimension (in red) followed by dimensions in which the ’noise is segmented’ (in blue). This
latter scheme is not preferable to perform the regression but as we can see the ’good’ dimensions
are difficult to identify.
To conclude I recommend the algorithm 1 for which the previous results milit for a calibration
of Kmax and also of a Kmin.

Robustness to the model and comparison study. We compared the robustness of our criterion
combined with the algorithm 1 (denoted Algo1) with two others: Lavielle (2005) simplified the
penalty to βK and proposed a heuristic to calibrate β (denoted Lav) and Zhang and Siegmund
(2007) developped a BIC criterion dedicated to the gaussian segmentation framework (denoted
mBIC). We considered the same simulation design as previously but with a Student distribution
for the noise with different degrees of freedom ν = {50,10,6,3} (ν = 50 being the closest Gaus-
sian case). Results are given in Figure 3. When the simulation scheme is close to a Gaussian
simulation, the performances of Algo1 and mBIC are slightly the same and better compared to
Lav that tends to overestimate K: the underestimation of K results in a better performance in
terms of segmentation (smaller d1). When the degree of freedom of the Student distribution de-
creases, this tendency is accentuated for Algo1 and Lav leading to the same conclusion whereas
the results of mBIC deteriorate. It is marked for the case ν = 3 where Algo1 outperforms the
others in terms of risk.
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β 0.6 0.8
σ 0.1 0.5 1 1.5 2 0.1 0.5 1 1.5 2
Jump size 6.6 6.7 6.4 7 7.5 10 9.6 10 10 11
Mult jump 18% 12% 18% 16% 16% 14% 15% 12% 20% 12%√

αmin 0.35 0.55 0.98 1.4 1.9 0.084 0.42 0.83 1.3 1.6
TABLE 1. Different values associated to the results presented in Figure 1 with Kmax = n0.6 and n0.8: Jump size: size
in average of the biggest jump; Mult jump: percentage of simulations for which several jumps equals to the biggest
jump dimension exist; αmin is the value of α in average associated to the biggest jump.
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K̂−K ‖s− ŝm̂‖2

d1 d2

FIGURE 1. Boxplots of the different quality criteria. In each case, from left to right: the four left boxplots assess
the estimator obtained with the algorithm 1 (grey) and the different values of Kmax = nβ with β = 0.5,0.6,0.7,0.8
respectively, then the optimal segmentation m̂K̃ (orange) and the optimal segmentation in K segments m̂K (blue).
x-axis: σ .
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K̂−K ‖s− ŝm̂‖2

d1 d2

FIGURE 2. Same as in Figure 1 but with the algorithm 2. In grey from left to right: (i) 10-15; (i) 20-40; (ii) 10-15; (ii)
20-40.

Journal de la Société Française de Statistique, Vol. 160 No. 3 140-149
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



146

K̂−K ‖s− ŝm̂‖2

d1 d2

FIGURE 3. Comparison of our estimator obtained by algorithm 1 with Kmax = n0.6 (grey) with two others criteria Lav
(orange) and mBIC (blue) for n = 200. x-axis: ν = 3 (left) to 50 (right).
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(a) (b)

(c) (d)

FIGURE 4. Example with σ = 0.1: (a) serie with the true mean (red); (b) plot of ‖y− ŝm̂K‖2 as a function of
fn(c1,c2,m) with results of the algorithm 2 and the strategy (i): the selected number of segments is the same, K̂ = 5;
(c) same as (b) with results of the algorithm 1 for β = 0.4,0.6,0.8: the selected number of segments is different,
K̂β=0.5 = 1, K̂β=0.6 = 5 and K̂β=0.8 = 14; (d) plot of α 7→ K̂α with the biggest jump associated to the results of (c).
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(a) (b)

(c) (d)

FIGURE 5. Example with σ = 1: (a) serie with the true mean (red); (b) plot of ‖y− ŝm̂K‖2 as a function of fn(c1,c2,m)
with results of the algorithm 2 and the strategy (i): the selected number of segments are K̂10−15 = 4 and K̂20−40 = 5;
(c) same as (b) with results of the algorithm 1 for β = 0.5,0.6,0.8: the selected number of segments is different,
K̂β=0.5 = 4 and K̂β=0.6 = K̂β=0.8 = 5; (d) plot of α 7→ K̂α with the biggest jump associated to the results of (c).
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(a) (b)

(c) (d)

FIGURE 6. Example with σ = 1.5: (a) serie with the true mean (red); (b) plot of ‖y− ŝm̂K‖2 as a function of
fn(c1,c2,m) with results of the algorithm 2 and the strategy (i): the selected number of segments are K̂10−15 = 2
and K̂20−40 = 4; (c) same as (b) with results of the algorithm 1 for β = 0.5,0.6,0.8: the selected number of segments
is different, K̂β=0.5 = K̂β=0.6 = 2 and K̂β=0.8 = 9; (d) plot of α 7→ K̂α with the biggest jump associated to the results
of (c).
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