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A note on BIC and the slope heuristic
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BIC (Schwarz et al., 1978) is a Bayesian model selection criterion relying on an asymptotic
approximation of the integrated likelihood, where Op(1) are neglected. It is generally written for
a parametric model m ∈M as the following penalized maximum likelihood criterion

BIC(m) =−L (θ̂m)+
log(n)

2
Dm (1)

where L (θ̂m) is the maximized likelihood in the model m and Dm the number of estimated
parameters. The model with minimum BIC is chosen. BIC is known to be consistent in many sit-
uations when the true model belongs to a nested family (Keribin, 2000; Gassiat and Van Handel,
2013; Yang, 2005) but these asymptotic properties may not hold in practice.

In an other hand, the slope heuristic, allowing to define non asymptotic minimal and optimal
penalties, can be naturally extended to frameworks where a penalty is known up to a multiplica-
tive constant. It is the case for BIC as the optimal penalty term is known theoretically and in
practice, but only asymptotically:

BIC(m) =−L (θ̂m)+C Dm

The constant C can be estimated with Algorithm 2 (Arlot, 2019), as used for example by Rau
et al. (2015).

We illustrate here an interesting comparison between BIC and the slope heuristic. In Keribin
et al. (2019), a constrained mixture model is developed to estimate tumor genome alterations.
Each single-nucleotide polymorphism (SNP) of a DNA sequence is characterized by a copy
number (cn) and a bi-allele frequency (baf). It can be shown that the (baf,cn) values are located
on a grid, whose frame depends on the proportion p of the normal tissue, see figure 1. Each point
of the grid corresponds to a specific genomic alteration. The acquisition process gives access
to the copy number through the logarithm of the R-ratio, lrr = α log2 cn+ β , where α and β

are unknown constants. Thus, two noisy signals BAF and LRR are extracted from SNP arrays
and segmented in S regions of assumed constant (and unknown) alteration (figure 2). The joined
(BAF,LRR) observations are located around a point of a theoretical grid whose characteristics
depend on the unknown proportion p of normal tissue and the experimental parameters α and
β , these three values to be inferred. To reduce the variance and the size of the data, the signal
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FIGURE 1. For a given proportion p of the normal tissue, positions of the tumoral mutations in the 2D plane defined
by B-Allele Frequency (baf) and copy number (cn). Mutations of germ line homozygous are in red. Mutations of germ
line heterozygous are in black and blue. The blue centers characterize a loss of heterozygosity (LOH).

FIGURE 2. Example of tumoral measurements, from Popova et al. (2009).

is averaged on each segment i = 1, . . . ,S of length ni (between 500 to 1500 SNPs in a segment).
Hence, knowing the theoretical mutation k(i) of segment i, the conditional distribution of the
observed mean signal (BAFi,LRRi) is defined as a bi-variate independent Gaussian distribution:

BAFi(k(i))∼N

(
bafk(i)(p,α,β ),

σ2

ni

)
, LRRi(k(i))∼N

(
lrrk(i)(p,α,β ),

η2

ni

)
(2)

where (bafk(i)(p,α,β ), lrrk(i)(p,α,β )) is the theoretical center of the mutation k(i) of segment i.
As the allocations of the observations to the mutation centers are unknown, a Gaussian mixture
model is defined, whose centers are constrained to belong to a grid. The unknown parameters to
be inferred are α , β , p, the variances σ2 and η2 and the mixing weights π . Hence, the model size
Dm depends essentially on the size of the mixing weights π , defined by the number of possible
centers for a maximum copy number m.

This model was applied on a real colon tumor sample, with S = 200 segments, leading to
n = 2S (homozygous or heterozygous) observations from a genome sequence of N = 262 000
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SNPs. BIC largely over-estimates the maximum copy number that was known for these data.
As the graph of the maximal log-likelihood against Dm clearly shows a linear trend for large
values of Dm, the slope heuristic was also tested. It leads to select the correct model, with an
estimated minimal Ĉslope = 3.76 greater than the BIC value CBIC = log(2S)/2 = 3. This may
seem surprising, because BIC does not tend in general to overestimate the size of a model.
However, BIC can be sensitive to bias, and the observed overestimation could be due to the
rough assumptions (independence, homoscedasticity for example) that have been made.

We propose an alternative interpretation. In case of identifiable models, BIC results from the
asymptotic expansion of the integrated likelihood (see Lebarbier and Mary-Huard (2006) for
details):

logIP(X |m) = L (θ̂ |m)− Dm

2
logn (3)

+ logIP(θ̂m|m)+Dm
log(2π)

2
− 1

2
log |I(θ̂m)|︸ ︷︷ ︸

OP(1)

+OP(n−1/2) (4)

where L (θ̂ |m) is the maximum likelihood under model m and |I(θ̂m)| is the determinant of the
Fisher information matrix, estimated by

I(θ̂m) =−
∂ 2L (θ)/n

∂θ 2 |θ=θ̂m

.

Standard BIC is defined by neglecting terms less than order OP(1), that is, all terms in (4). Taking
the opposite gives (1). As noticed in Remark 2 of Lebarbier and Mary-Huard (2006), if the error
in OP(n−1/2) in (4) is negligible when n tends to infinity, the error in OP(1) resulting of the
Laplace approximation can disturb the choice of the final model even if the two terms in (3) are
preponderant when n is large. Moreover, following Kass and Wasserman (1995), the sample size
n should be the rate at which the Hessian matrix of the log-likelihood function grows; thus n
becomes the number of data values contributing to the summation that appears in the formula
of the Hessian. In our model, both the number of observations and the Hessian are difficult
to determine. Remember that each observation i is itself the average of the signal on a DNA
segment with ni SNPs, and coming from the constrained unknown center (bafk(i), lrrk(i)). If all
the segments were of the same length, say a mean length ni = ` = N/S, we assume that I(θ̂m)
could be written as Ĩ(θ̂m)/`, so that the penalty constant including OP(1) terms in (4) would
not be negligible and C̃BIC = CBIC +(log(`)− log(2π))/2 = 5.6. With this adapted definition,
BIC selects the correct model. This would be consistent with Raftery (1995) who stressed on the
fact that n should be the actual number of individuals rather than the number of cases or cells.
For logistic regression for example, it should be the number of individuals, and not the number
of grouped data. Hence in our case, BIC penalty term would be C̆BIC = log(2N)/2 = 6.6. Both
penalty terms C̃BIC and C̆BIC are between the minimal Ĉslope and optimal 2Ĉslope values coming
from the slope heuristic.

In conclusion, we claim that using the slope heuristic when the maximum likelihood presents a
linear trend for large values of Dm is a robust way to perform model selection. In anyways, when
CBIC is less than the minimal Ĉslope, BIC should not be used; at least the way it is approximated
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should be reconsidered. Moreover, as some rough assumptions have been made to define the
model (such as independence and homoscedasticity), this example shows a case where the slope
heuristic can be used with some model bias. One could hence conjecture that the slope heuristic
can be justified when a bias exists and remains constant for the large models.
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