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The Scree plot diagnostic for the number of factors (Catell, 1966) – and analogous procedures
for selection of number of principal components, singular values, etc. – is phenomenally popular
across science and engineering, with 10,000+ Google Scholar citations. This, despite being more
than 50 years old – so that it predates the Internet and Google by decades; despite considerable
vagueness in the specification of what one actually does in using the plot; and despite widespread
ignorance among users of why this might or might not be a good idea.

Cattell’s original observation was purely heuristic, based on a very preliminary and seemingly
casual empirical observation. Cattell noticed that, when plotting eigenvalues in decreasing order
versus eigenrank (1 = largest), one often observes, after some initial idiosyncrasies, a roughly
straight line in the plot – which he called the “Scree”, in analogy with tailings at the base of
mountain landslides. He suggestively identified the Scree with a null model - eigenvalues caused
by pure noise rather than signal. As it has come down to us across the decades, our task in
looking at such a plot is to identify an ’elbow’ separating the early idiosyncratic piece from the
final Scree piece.

Modern random matrix theory has reached a state where we can now use it to understand
mechanisms leading to Cattell’s observations and thereby evaluate the whole Scree plot phe-
nomenon. Indeed, the Scree plot of n eigenvalues or singular values, with the i-th largest eigen-
value plotted against the horizontal value i/n, is none other than a (sense-reversed) quantile
(inverse CDF) function of the empirical eigenvalue or singular value distribution (Figure 1).

Using random matrix theory, we can today develop some generative noise models in which
there are unambiguously no factors whatsoever, and where the quantile function is indeed well
approximated by a straight line. We can also develop generative pure noise models where there
is seemingly an elbow (Figure 2) – despite there being no factors at all!

In general, the linear slope heuristic is invalid for many different kinds of noise distributions.
Even for the white noise model, when the aspect ratio m/n (m being the number of columns and
n being the number of rows) is far from 1, the quantile function of noise-only eigenvalues is far
from linear.

To shed further light, Gavish and Donoho (2014) plotted simple histograms of the empirical
eigenvalues (Figure 3). Such histograms reveal the shape of the empirical eigenvalue density
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Figure 1: Horizontal axis: i/n. Vertical axis: size of i-th singular value. Blue circles: Scree plot
of singular values of 100-by-100 white noise matrix. Red line: quantile function of the

Quarter-Circle law, the limiting distribution of singular values for white-noise matrices, (Bais
and Silverstein, 2010).

and show that noise distributions often give rise to a compactly supported eigenvalue density,
known as the Bulk. Under many random matrix models for the noise, the Bulk has a defined,
hard edge at an analytically predicted point which we call the bulk edge. In real data, one may
observe that the bulk is well-described by such a model, but that a few individual outliers stick
out beyond the bulk edge, and which are not predicted under the noise model. We call these the
signal eigenvalues; their corresponding eigenvectors can be shown to carry useful information
about out-of-sample data.

Such outlier eigenvalues correspond to the initial idiosyncratic piece at the left end of the scree
plot; although the scree itself will not generally have a linear piece. Indeed it could only be linear
if the bulk distribution were uniformly distributed – i.e. had a flat histogram across it support. In
the useful models we know, the bulk is never uniformly distributed.

In the paper under discussion, Sylvain Arlot performs a useful service in connecting mini-
mal penalty methods with Scree plots. The minimal penalty method corresponds to thresholding
eigenvalues at the location of the bulk edge. And, indeed, there are formal proposals, such as
“Universal Singular Value Thresholding” (Chatterjee, 2013) which amount to (a slight perturba-
tion of) the minimal penalty method.

In the case m = n, the minimal penalty method would suggest the threshold 2 ·
√

nσ , while
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Figure 2: Horizontal axis: i/n. Vertical axis: size of i-th singular value. Blue circles: Scree plot
of singular values of 100-by-100 matrix where each row has mean 0 and covariance ∼ χ10,

(Bais and Silverstein, 2010).

Chatterjee’s proposal would suggest something slightly larger, say 2.01 ·
√

nσ . (These values are
particular to white noise and Frobenius loss function).

How do such proposals perform? Using results deriving from Random Matrix Theory (for
example, Florent Benaych-Georges and Raj Rao-Nadakuditi), one can quantify the performance
of the minimal penalty method and similar schemes in recovering factors under various noise
models. Gavish and Donoho (2014) demonstrated that, under a spiked model appropriate for the
case of a low-rank signal matrix, using white noise/Frobenius norm assumptions, thresholding
at the bulk edge itself is noticeably sub-optimal. One gets MSE improvements of up to 60% by
taking the threshold at about 2.31 . . . ·

√
nσ . Moreover 2.31 . . .= 4/

√
3 is the unique admissible

choice. Since 2.31> 2 the minimal penalty/Scree prescription is seriously outperformed by some
larger choice.

In practical terms, even though an eigenvalue sticks out of the bulk – and even though the
corresponding eigenvector carries some solid information – it should still properly be ignored,
unless it sticks out a certain specific distance, specific to the noise model generating the bulk.
The optimal penalty is noticeably larger than the minimal penalty.

This conclusion signals a general phenomenon, not an artifact of any particular probabilistic
model or loss function. Taking into account the inaccuracy of the empirical eigenvectors of the
data matrix in estimating the underlying population eigenvectors, caused by the noise, inevitably
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Figure 3: Histogram of singular values of 300-by-300 matrix Y = X +Z, where X is rank-3 and
Z is a white noise matrix. Note the quarter-circle shape of the bulk (corresponding to quantile

function in Figure 1) and three spikes emerging from the bulk.

leads to the conclusion that the optimal threshold for eigenvalues is necessarily noticeably larger
than the bulk edge. The exact location of the optimal threshold depends on the noise distribution
and the function at hand. In short, the minimal penalty is suboptimal, and some larger choice will
be optimal, based on the loss function and noise model.

In summary: the once-mysterious observation, that noise-only models sometimes yield roughly
straight Scree plots of eigenvalues and singular values, is made clear by modern random matrix
theory. The Scree plot just shows an empirical quantile function. The straight-line approximation
sometimes works and often fails. A histogram seems to be a more suitable way to understand this
phenomenon. The Scree plot method, and similar methods visually looking for departure from
the Scree, correspond to bulk-edge thresholding, where the bulk is apparent in the histogram
representation. It was demonstrated generally that bulk-edge thresholding is suboptimal due to
eigenvector rotation caused by the noise; a more careful analysis obtains the optimal thresh-
old suitable to the particular noise distribution at hand. Modern random matrix theory thus helps
explain traditional heuristics, evaluate them, and replace them with well-understood optimal pro-
cedures. The threshold (1+

√
m/n)

√
nσ is particular to white noise and a specific choice of loss

function; it is suboptimal even under the assumptions which derived it; and it should certainly
not be used universally.
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