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Pierre Bellec1

This discussion focuses on concentration results such as Proposition 1 in Arlot (2019) used by
the author to study the Slope heuristics and minimal penalties. I will restrict my discussion to
the case of the normal mean model with Ridge regression estimates, to highlight a phenomenon
surprisingly different from Arlot (2019, Proposition 1).

Consider the following setting: y ∼ N(µ, In) is observed for an unknown mean µ ∈ Rn. A
design matrix X ∈Rn×p is available and the practitioner wishes to fit Ridge regression estimates

β̂ = argmin
b∈Rp

‖y−Xb‖2 +λ‖b‖2.

It is well known that the above estimate is linear, X β̂ = Aλ y for a deterministic matrix Aλ =
X(XT X + λ Ip)

−1XT . The practitioner chooses a grid of tuning parameters λ1 < ... < λM, and
selects one using, e.g., Mallows (1973) criterion Cp(A) = ‖y−Ay‖2 +2trace(A) or other selec-
tion/aggregation methods. In order to study the performance of Cp-tuned Ridge regression, or its
variant based on Q-aggregation (Rigollet, 2012; Dai et al., 2012, 2014) as explained in Bellec
(2018), one needs to study the one-sided concentration of random variables of the form

Cp(A)−Cp(A∗)−E[Cp(A)−Cp(A∗)]− c‖(A−A∗)y‖2,

for some absolute constant c > 0 and uniformly over all matrices A,A∗ in the model set M =
{Aλ ,λ = λ1, ...,λM}. It is common to bound the above random variable first for fixed matrices
A,A∗, obtain exponential probability bounds, and finally use the union bound over all matrices
A∈M . This union bound induces a uniform upper bound on the previous display of order logM,
where M = |M | is the cardinality of the model set, e.g., as in Proposition 3.1 of the work Arlot
(2019) discussed here. This induces oracle inequalities that grow with logM.

Surprisingly, in the case of ordered smoothers Kneip (1994) such as the above Ridge regres-
sion setting, chaining arguments (e.g., Adamczak (2015); Dirksen (2015)) lead to the bound

P
{

sup
λ≥0

(
Cp(Aλ )−Cp(A∗)−E[Cp(Aλ )−Cp(A∗)]− c‖(Aλ −A∗)y‖2)≤Cx

}
≥ 1−Ce−x.

for some absolute constant C > 0 and any x ≥ 1, cf. Bellec and Yang (2019). In particular, the
above deviation inequality is independent of both the dimension and the cardinality of the model
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set M , in striking contrast to union bound arguments used in Proposition 3.1 of Arlot (2019)
or Dai et al. (2014); Bellec (2018). The major consequence of such uniform deviation bound is
that ordered linear smoothers can be optimally tuned, no matter how many tuning parameters are
considered or how coarse the grid is, at no statistical cost: The procedure ŷ in Bellec and Yang
(2019) that leverages the above uniform deviation inequality enjoys the oracle inequality

E
[
‖ŷ−µ‖2− min

j=1,...,M
‖Aλ j y−µ‖2]≤Cσ

2.

I am wondering if the above uniform deviation inequality has consequences for the Slope heuris-
tics or the minimal penalty phenomenon, and I wish to congratulate the author for this insightful
survey.
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