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Can we trust L2-criteria and L2-losses?

Titre: Peut-on avoir confiance dans les critères et les fonctions de perte L2 ?

Yannick Baraud1

In this thorough survey, Sylvain Arlot adresses the important problem of estimator selection in
Statistics. Given a n-sample X = (X1, . . . ,Xn) with distribution Ps? belonging to a parametrized
statistical model P = {Ps, s ∈ S} and a loss function ` on S2, the problem of estimator selection
is that of finding from the data an estimator which minimizes the mapping t 7→ `(s?, t) among
a family {ŝm, m ∈M } ⊂ S of candidate ones. The slope heuristics as well as other selection
procedures aim at designing a selection rule, i.e. a mapping X 7→ “m(X) with values in M , for
which one can assure with a probability p close to 1 that the selected estimator s̃= ŝm̂(X) satisfies
an inequality of the form

`(s?, s̃)6 Kn inf
m∈M

`(s?, ŝm)+Rn (1)

where Kn is a constant that we wish to be as close as possible to 1 and Rn is an additional
term that we wish to be as small as possible compared to infm∈M `(s?, ŝm). Inequality (1) is
already interesting when the family {ŝm, m ∈M } reduces to two distinct and deterministic
points {s0,s1} ⊂ S in which case the selection rule corresponds to a test between s0 and s1.
When s? belongs to {s0,s1} and the right-hand side of (1) is smaller than `(s0,s1), this inequality
tells us that the procedure selects the true parameter with a probability at least p. Our aim is to
discuss the property of this test and the pieces of information that an inequality like (1) brings on
the true distribution Ps? of the data.

When the parameter set S is a subset of a Hilbert space H = L2(µ) for some suitable measure
µ , a convenient loss (from the point of view of the mathematical analysis) is that given by the
Hilbert norm ‖·‖. I shall refer to ‖·‖ as a L2-loss and more specifically focus on the following
typical examples.

Example 1 (The regression setting). We observe a random vector X = (X1, . . . ,Xn) with values
in (Rd)n and mean of the form (s, . . . ,s) or equivalently a n-sample X1, . . . ,Xn with values in Rd

and mean s = (s1, . . . ,sd) ∈ S where S is a subset of the Hilbert space H = Rd . The space H
can also be seen as L2(µ) for µ being the counting measure on {1, . . . ,d}. Given a subgaussian
distribution Q on R and s ∈ S, Ps denotes here the distribution of the vector X = s+ ε ∈ Rd with
ε ∼Q⊗d (I shall refer to the Gaussian framework when Q is Gaussian). In this regression setting,
statisticians often base their selection rule on the least squares that I shall see as a L2-criterion
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and define for t ∈ Rd by

γ̂1,n(t) =−
2
n

n

∑
i=1

(
d

∑
j=1

t jXi, j

)
+‖t‖2 with ‖t‖2 =

d

∑
j=1

t2
j . (2)

More precisely, given s0 and s1 in S, the test based on the least squares selects s0 when γ̂1,n(s0)<
γ̂1,n(s1) and s1 when γ̂1,n(s0)> γ̂1,n(s1), the choice between s0 and s1 being unimportant in case
of equality.

Example 2 (Density estimation). The parameter set S is here a family of densities which are
squared integrable with respect to some dominating measure µ and for s ∈ S, Ps = s ·µ . Taking
H = L2(µ) and using the well-known L2-criterion γ̂2,n defined for t ∈ L2(µ) by

γ̂2,n(t) =−
2
n

n

∑
i=1

t(Xi)+‖t‖2 with ‖t‖2 =
∫

t2dµ, (3)

one may test s? = s0 versus s? = s1 in the same way as we did in Example 1 with γ̂2,n in place of
γ̂1,n.

The similarities between the L2-criteria (2) and (3) are striking and the common Hilbertian
structure that underlines both frameworks allows additionally to use very similar mathematical
technics for analyzing their properties. Although quite similar in their mathematical forms, there
exist, from a more statistical point of view, major differences between these two criteria and their
ways of testing between s0 and s1. First of all, unlike the least squares in the Gaussian framework,
the L2-criterion in density estimation does not provide a reliable test in general. A very simple
counter-example is the following one. Assume that one observes a n-sample X ′1, . . . ,X

′
n with

values in a very large interval [0,2
√

a] for some parameter a satisfying
√

a > n = 100. For
convenience, we change the unit of the data by considering the random variables Xi = X ′i /

√
a for

all i ∈ {1, . . . ,n} and take as a reference measure µ =
√

aλ where λ denotes the usual Lebesgue
measure on R. By doing so, the rescaled data Xi take their values in the interval [0,2]. We assume
that their true density (with respect to µ) is s?= s0 = 1l[0,1/a]+a−1/2(1−a−1/2)1l(1/a,1/a+1] (which
means that the data actually lie in the smaller interval [0,1+1/a]) and we introduce the candidate
density s1 = (4a)−1/21l[0,2] which is supported on the interval [0,2]. Note that both densities are
bounded by 1. With a probability at least (1− 1/

√
a)n > 0.36, no observation falls into the

interval [0,1/a] hence

γ̂2,n(s0) = (1/
√

a)
[
−2(1−1/

√
a)+1+(1−1/

√
a)2]= 1/a3/2

while
γ̂2,n(s1) = (1/

√
a) [−2/2+1/2] =−1/(2

√
a)< γ̂2,n(s0).

This means that the L2-criterion γ̂2,n fails to select the true density s0 among {s0,s1} even though
the distribution Ps0 is quite different from Ps1 . Using the classical likelihood ratio test between s0
and s1 and the fact that the Hellinger affinity between the distributions Ps0 and Ps1 is ρ(s0,s1) =∫ √

s0s1dµ = (
√

2)−1(a−3/4 +
√

1−a−1/2) < 0.71, we would make no mistake except on a set
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of probability not larger than

P

[
n

∏
i=1

s1(Xi)>
n

∏
i=1

s0(Xi)

]
= P

[
n

∏
i=1

√
s1(Xi)

s0(Xi)
> 1

]
6 ρ

n(s0,s1)< 0.71n,

which is smaller than 5% when n > 9 and becomes completely negligible when n passes 100.
It is actually well-known that in density estimation the L2-criterion and the L2-loss suffer from
many drawbacks and we refer the reader to Devroye and Lugosi (2001, Section 6.5) and Birgé
(2014) for a related discussion.

This weakness of the L2-criterion completely disappears in the Gaussian framework since
choosing there between the parameters s0 and s1 by means of the least squares is equivalent to
using the likelihood ratio test between Ps0 and Ps1 (which is of course optimal). The good property
of the least squares criterion actually extends to the subgaussian case and there is no need for s?

to be an element of {s0,s1} to make the correct choice since it can be proven that this criterion
is likely to select the closest point to s? (for the Euclidean distance) even in the case of a slight
misspecification of this model.

However, the superiority of the L2-criterion in the Gaussian framework compared to the den-
sity one and our enthusiasm that may celebrate an inequality like (1) in the regression set-
ting should be nuanced. The closeness of s? and s̃ with respect to the Euclidean distance may
say very little on the closeness of Ps? and P̃s. To see this, consider Example 1 with S = Rd ,
s? = (1/2, . . . ,1/2), Q the uniform distribution in [−1/2,1/2] (so that the coordinates of the Xi

are uniformly distributed on [0,1]) and the problem of selecting between s0 = s?+(a, . . . ,a) and
s1 = s?+(0, . . . ,0,b) with a = 3/d and b = 10−1. I shall assume here that both the dimension d
and the number n of observations are large, say larger than 15 000 for the sake of convenience.
Then the parameter s0 is much closer to the truth than s1 since

‖s?− s0‖2 = da2 < 6.10−4 < 10−2 = b2 = ‖s?− s1‖2 ,

and applying Proposition 5 of Birgé (2006) (with X = (X1, . . . ,Xn) ∈ Rnd , y = 4‖s?− s0‖2−
‖s0− s1‖2 /4 and z = 0), we obtain that the least squares criterion selects s0 (as expected) with a
probability at least

1− exp
[
− 3n

100

(
‖s0− s1‖2− 98

25
y
)]

> 0.99.

However, the distribution Ps0 is quite far away from the true one since

ρ(Ps? ,Ps0) = (1−a)d < e−ad = e−3 hence h2(Ps? ,Ps0)> 1− e−3

while Ps1 satisfies h2(Ps? ,Ps1) = b = 10−1 and is therefore much closer! If the reader does not like
the Hellinger distance, he can alternatively consider the total variation distance ‖·‖TV and check
that ‖Ps?−Ps1‖TV = b = 0.01 while 1 > ‖Ps?−Ps0‖TV > 0.95.

This discussion shows that the use of the L2-criterion (and the L2-distance) for estimating a
density should be avoided in general and that, in the regression setting, an inequality like (1) (for
the Euclidean loss) should be interpreted with caution. The closeness of the parameters does not
translate in general to the closeness of the corresponding distributions. Comparing the behaviours
of candidate estimators of s? by comparing their Euclidean distances to it may lead to quite
erroneous conclusions, at least when one is interested in the estimation of the true distribution of
the data.
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