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Abstract: Birgé and Massart proposed in 2001 the slope heuristics as a way to choose optimally from data an unknown
multiplicative constant in front of a penalty. It is built upon the notion of minimal penalty, and it has been generalized
since to some “minimal-penalty algorithms”. This article reviews the theoretical results obtained for such algorithms,
with a self-contained proof in the simplest framework, precise proof ideas for further generalizations, and a few new
results. Explicit connections are made with residual-variance estimators —with an original contribution on this topic,
showing that for this task the slope heuristics performs almost as well as a residual-based estimator with the best
model choice— and some classical algorithms such as L-curve or elbow heuristics, Mallows’ Cp , and Akaike’s FPE.
Practical issues are also addressed, including two new practical definitions of minimal-penalty algorithms that are
compared on synthetic data to previously-proposed definitions. Finally, several conjectures and open problems are
suggested as future research directions.

Résumé : Birgé et Massart ont proposé en 2001 l’heuristique de pente, pour déterminer à l’aide des données une
constante multiplicative optimale devant une pénalité en sélection de modèles. Cette heuristique s’appuie sur la notion
de pénalité minimale, et elle a depuis été généralisée en “algorithmes à base de pénalités minimales”. Cet article
passe en revue les résultats théoriques obtenus sur ces algorithmes, avec une preuve complète dans le cadre le plus
simple, des idées de preuves précises pour généraliser ce résultat au-delà des cadres déjà étudiés, et quelques résultats
nouveaux. Des liens sont faits avec les méthodes d’estimation de la variance résiduelle (avec une contribution originale
sur ce thème, qui démontre que l’heuristique de pente produit un estimateur de la variance quasiment aussi bon
qu’un estimateur fondé sur les résidus d’un modèle oracle) ainsi qu’avec plusieurs algorithmes classiques tels que les
heuristiques de coude (ou de courbe en L), Cp de Mallows et FPE d’Akaike. Les questions de mise en œuvre pratique
sont également étudiées, avec notamment la proposition de deux nouvelles définitions pratiques pour des algorithmes
à base de pénalités minimales et leur comparaison aux définitions précédentes sur des données simulées. Enfin, des
conjectures et problèmes ouverts sont proposés comme pistes de recherche pour l’avenir.
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1. Introduction

Model selection attracts much attention in statistics since more than forty years (Akaike, 1973;
Mallows, 1973; Burnham and Anderson, 2002; Massart, 2007). A related and crucial question
for machine learning is the data-driven choice of hyperparameters of learning algorithms. Both
are particular instances of the estimator-selection problem: given a family of estimators, how to
choose from data one among them whose risk is as small as possible?

One of the main strategies proposed for estimator (or model) selection is penalization, that is,
choosing the estimator minimizing the sum of its empirical risk —how well it fits the data— and
some penalty term —whose role is to avoid overfitting. Optimal penalties often depend on at least
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one parameter whose data-driven choice is challenging. In the early 2000s, Birgé and Massart
(2001b, 2007) pointed out two key facts leading to a novel approach for an optimal data-driven
choice of multiplicative constants in front of penalties. Birgé and Massart were considering a
rather theoretical question: what is the minimal amount of penalization needed for avoiding a
strong overfitting? For least-squares estimators in regression, they noticed that (i) the minimal
penalty is equal to half the optimal penalty, and (ii) the minimal penalty is observable. These
two facts are called “the slope heuristics” 2 and lead to an algorithm for choosing multiplicative
constants in front of penalties.

These ideas and the corresponding algorithm have been generalized since to several frame-
works (see Section 3–4 and 8), with numerous applications in various fields such as biology
(Reynaud-Bouret and Schbath, 2010; Akakpo, 2011; Bontemps and Toussile, 2013; Rau et al.,
2015; Devijver et al., 2017; Devijver and Gallopin, 2018), energy (Michel, 2008; Devijver et al.,
2019), or text analysis (Derman and Le Pennec, 2017); Section 8.3 provides more examples of
applications.

In particular, for linear estimators in regression, the original slope heuristics does not work di-
rectly and can be modified successfully into a more general “minimal-penalty algorithm” (Arlot
and Bach, 2009, 2011) detailed in Section 3.

For least-squares regression with projection or linear estimators, the slope heuristics also pro-
vides a residual-variance estimator with nice properties (Section 6.1). In the general setting, the
slope heuristics can also be seen as a way to give proper mathematical grounds to “L-curve” or
“elbow-heuristics” algorithms that are used for choosing regularization parameters in ill-posed
problems (Hansen and O’Leary, 1993), as explained in Sections 6.4–6.5.

Goals The goals of this survey are the following:

1. to review recent theoretical results about the slope heuristics, and more generally about all
minimal-penalty algorithms (Sections 2–4);

2. to help identifying how —and under which assumptions— such results could be general-
ized to other settings, possibly with new algorithms, by giving a precise account of existing
proofs (Sections 2.7, 4.1, and 5), and by identifying several conjectures and open problems
suggested by experimental results (Section 8);

3. to make connections between minimal penalties and other classical procedures for residual-
variance estimation and for model or estimator selection (Section 6).

Practical issues are only briefly mentioned in Section 7, since more details can be found on these
in the survey by Baudry et al. (2012).

There is currently no final answer to the question of generalizing minimal-penalty algorithms
as much as possible, but we hope that this survey will motivate further theoretical and empirical
work in this direction, which could have a great practical impact in statistics, machine learning,
and data science in general.

2 In “the slope heuristics”, the word “heuristics” is an uncountable noun, following the Oxford Advanced Learner’s
Dictionary. One could also write “the slope heuristic”, according to some other English dictionaries in which
“heuristic” appears as a noun. We use the former spelling throughout this article, but some other articles make use
of the latter spelling (without the final s).
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Contributions Let us finally point out some original results appearing in this article. In the
framework of least-squares fixed-design regression with projection estimators and Gaussian
noise, Theorem 1 validates the slope heuristics in a stronger sense compared to previous re-
sults (Birgé and Massart, 2007); it is inspired by Arlot and Bach (2011) but makes weaker
assumptions. Its extension to sub-Gaussian noise (Remark 1 in Section 2.5) is original. As a
corollary, Proposition 3 in Section 6.1 is the first precise statement on a slope-heuristics-based
residual-variance estimator —more precise than the result that can be derived from Arlot and
Bach (2011)—, showing that it is minimax optimal (up to log(n) factors) under mild assump-
tions. Proposition 3 provides non-asymptotic bounds (in expectation and with high probabil-
ity) on this residual-variance estimator, that can be seen as some kind of oracle inequality for
residual-variance estimation, which is interesting independently from the slope heuristics.

In the general framework, Propositions 1–2 in Section 5.2 propose two general approaches for
justifying minimal-penalty algorithms. These approaches were previously proposed in specific
settings (Lerasle and Takahashi, 2016; Garivier and Lerasle, 2011), but their generalization to the
setting of Section 3.1 is new. For instance, the application of Proposition 1 to general minimum-
contrast estimators with a bounded contrast is new, to the best of our knowledge.

On the practical side, as a complement to the survey by Baudry et al. (2012), Section 7
shows original numerical experiments on synthetic data, assessing the performance of the slope
heuristics in the least-squares regression framework, for both residual-variance estimation and
model selection. Two new practical definitions of the slope heuristics (called ‘median’ and ‘con-
sensus’) are proposed and compared to the classical ones. An efficient implementation of one
previously-proposed definition is also provided and proved (Algorithm 8 and Proposition 6 in
Appendix B.2).

2. The slope heuristics

This section presents the original “slope heuristics” (Birgé and Massart, 2001b, 2007) in the
framework of fixed-design regression, with the least-squares risk and projection estimators. By
focusing on this framework, we get most of the flavor of the slope heuristics while keeping the
exposition simple.

2.1. Framework

The framework considered in Section 2 is the following. We observe

Y = F + ε ∈ Rn (1)

where ε1, . . . ,εn are independent and identically distributed with mean 0 and variance σ2, and
F ∈ Rn is some (deterministic) signal of interest. For instance, F can be equal to ( f (xi))16i6n

for some deterministic design points x1, . . . ,xn ∈X and f some unknown measurable function
X 7→ R, with no assumption on the set X .

The goal is to reconstruct F from Y , that is, to find some t ∈ Rn such that its quadratic risk

1
n
‖t−F‖2
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is small, where for every u ∈ Rn, ‖u‖2 = ∑
n
i=1 u2

i . To this end, for every linear subspace S of Rn,
the projection estimator or least-squares estimator on S is defined as

F̂S ∈ argmin
t∈S

{
1
n
‖t−Y‖2

}
where n−1 ‖t−Y‖2 is called the empirical risk of t. Since S is a linear subspace, F̂S exists and is
unique: F̂S =ΠSY where ΠS :Rn→Rn denotes the orthogonal projection onto S. In the following,
any linear subspace S of Rn is called a model.

Let (Sm)m∈M be some collection of models, and for every m ∈M , let

F̂m = F̂Sm = ΠSmY and Πm = ΠSm .

In this survey, we assume that the goal of model selection is to choose from data some m̂ ∈M
such that the quadratic risk of F̂m̂ is minimal. The best choice would be the oracle:

m? ∈ argmin
m∈M

{
1
n

∥∥∥F̂m−F
∥∥∥2
}
,

which cannot be used since it depends on the unknown signal F . Therefore, the goal is to define
a data-driven m̂ satisfying an oracle inequality

1
n

∥∥∥F̂m̂−F
∥∥∥2

6 Kn inf
m∈M

{
1
n

∥∥∥F̂m−F
∥∥∥2
}
+Rn (2)

with large probability, where the leading constant Kn should be close to 1 —at least for large n—
and the remainder term Rn should be small compared to the oracle risk infm∈M {n−1‖F̂m−F‖2}.

2.2. Optimal penalty

Many classical selection methods are built upon the “unbiased risk estimation” heuristics: If m̂
minimizes a criterion crit(m) such that

∀m ∈M , E
[
crit(m)

]
≈ E

[
1
n

∥∥∥F̂m−F
∥∥∥2
]
,

then m̂ satisfies with large probability an oracle inequality such as Eq. (2) with an optimal con-
stant Kn = 1+o(1). This can be proved by showing a concentration inequality for ‖Πmε‖2 and
〈ε, (In−Πm)F〉 around their expectations for all m ∈M , where In denotes the identity matrix
of Rn, see Section 2.7. For instance, cross-validation (Allen, 1974; Stone, 1974) and generalized
cross-validation (GCV; Craven and Wahba, 1978) are built upon this heuristics.

One way of implementing this heuristics is penalization, which consists of minimizing the
sum of the empirical risk and a penalty term, that is, using a criterion of the form:

crit(m) =
1
n

∥∥∥F̂m−Y
∥∥∥2

+pen(m) . (3)
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The unbiased risk estimation heuristics, also called Mallows’ heuristics, then leads to the
optimal (deterministic) penalty

penopt,0(m) := E
[

1
n

∥∥∥F̂m−F
∥∥∥2
]
−E

[
1
n

∥∥∥F̂m−Y
∥∥∥2
]
. (4)

When F̂m = ΠmY , we have∥∥∥F̂m−F
∥∥∥2

=
∥∥(In−Πm)F

∥∥2
+‖Πmε‖2 (5)

and
∥∥∥F̂m−Y

∥∥∥2
=
∥∥∥F̂m−F

∥∥∥2
+‖ε‖2−2〈ε, Πmε〉+2

〈
ε, (In−Πm)F

〉
, (6)

where ∀t,u ∈ Rn, 〈t, u〉 = ∑
n
i=1 tiui . Since the εi are independent, centered, with variance σ2,

Eq. (5) and Eq. (6) imply that

E
[

1
n

∥∥∥F̂m−F
∥∥∥2
]
=

1
n

∥∥(In−Πm)F
∥∥2

+
σ2Dm

n
, (7)

E
[

1
n

∥∥∥F̂m−Y
∥∥∥2
]
=

1
n

∥∥(In−Πm)F
∥∥2

+
σ2 (n−Dm)

n
, (8)

and penopt,0(m)+σ
2 =

2σ2Dm

n
=: penopt(m) , (9)

where Dm := dim(Sm). Note that the optimal penalties (9) and (4) differ by an additive con-
stant σ2, which does not change the argmin of the penalized criterion (3); this choice simplifies
formulas involving penopt .

Eq. (7) is classically known as a bias-variance decomposition of the risk: the first term —
called approximation error or bias— decreases when Sm gets larger, while the second term —
called estimation error or variance— increases when Sm gets larger, see Figure 1 left. Eq. (8)
shows that the expectation of the empirical risk decreases when Sm gets larger, as expected since
F̂m is defined as a minimizer of the empirical risk, see Figure 1 left.

The expression of the optimal penalty in Eq. (9) leads to Mallows’ Cp (Mallows, 1973), where
σ2 is replaced by some estimator σ̂2. Several approaches exist for estimating σ2, see Section 6.1.
The slope heuristics provides a data-driven estimation of the unknown constant σ2 in front of the
penalty shape Dm/n thanks to the notion of minimal penalty.

2.3. Minimal penalty and the slope heuristics

Eq. (9) shows that the shape pen1(m) = Dm/n of the optimal penalty is known, even when σ2

is unknown. A natural question is to determine the minimal value of the constant that should be
put in front of pen1(m). More precisely, if for every C > 0

m̂(C) ∈ argmin
m∈M

{
1
n

∥∥∥F̂m−Y
∥∥∥2

+C
Dm

n

}
, (10)

what is the minimal value of C such that m̂(C) stays a “reasonable” choice, that is, avoids strong
overfitting, or equivalently, satisfies an oracle inequality like Eq. (2) with Kn = O(1) as n tends
to infinity?
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FIGURE 1. Left: Expectations of the risk and empirical risk, bias-variance decomposition of the risk. Right:
critCσ 2(m), defined by Eq. (11), for C ∈ {0,0.9,1.1,2}; its minimal value at m?(Cσ2) is shown by a plain dot. ‘Easy
setting’, see Appendix D for detailed information.

In order to understand how m̂(C) behaves as a function of C, let us consider, for every C > 0,

m?(C) ∈ argmin
m∈M

{
E
[

1
n

∥∥∥F̂m−Y
∥∥∥2

+C
Dm

n

]}
= argmin

m∈M

{
critC(m)

}
with critC(m) :=

1
n

[∥∥(In−Πm)F
∥∥2

+(C−σ
2)Dm

]
, (11)

by Eq. (8). Provided that we can prove some uniform concentration inequalities for ‖F̂m−Y‖2,
m ∈M , we can expect m?(C) to be close to m̂(C). Let us assume that for Dm large enough the
approximation error n−1‖(In−Πm)F‖2 is almost constant. For simplicity, let us also assume that
the approximation error is a decreasing function of Dm —which holds for instance if the Sm are
nested. Then, two cases can be distinguished with respect to C :

– if C < σ2, then critC(m) is a decreasing function of Dm , and Dm?(C) is huge: m?(C) overfits.
– if C > σ2, then critC(m) increases with Dm for Dm large enough, so Dm?(C) is much smaller.

This behavior is illustrated on the right part of Figure 1. In other words,

penmin(m) :=
σ2Dm

n
(12)

seems to be the minimal amount of penalization needed so that a minimizer m̂ of the penalized
criterion (3) does not clearly overfit. The above arguments are made rigorous in Section 2.5,
showing that σ2Dm/n is indeed a minimal penalty in the current framework.

We can now summarize the slope heuristics into two major facts. First, from Eq. (9) and (12),
we get a relationship between the optimal and minimal penalties:

penopt(m) = 2penmin(m) . (13)

Second, the minimal penalty is observable, since Dm̂(C) decreases “smoothly” as a function of C
everywhere except around C = σ2 where it jumps.
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2.4. Data-driven penalty algorithm

The two major facts of the slope heuristics described above directly lead to a data-driven penal-
tization algorithm, which can be formalized in two ways.

2.4.1. Dimension jump

First, we can estimate the minimal penalty by looking for a jump of C 7→ Dm̂(C) , and make use
of Eq. (13) to get an estimator of the optimal penalty.

Algorithm 1 (Slope-heuristics algorithm, jump formulation). Input:
(
‖F̂m−Y‖2

)
m∈M .

1. Compute (m̂(C))C>0 , where m̂(C) is defined by Eq. (10).

2. Find Ĉjump > 0 corresponding to the “unique large jump” of C 7→ Dm̂(C) .

3. Select m̂Alg.1 ∈ argminm∈M
{

n−1‖F̂m−Y‖2 +2ĈjumpDm/n
}

.

Output: m̂Alg.1 .

The left part of Figure 2 shows one instance of the plot of C 7→ Dm̂(C) , with one clear jump
corresponding to Ĉjump . Computational issues are discussed in Section 7.2; in particular, step 1
of Algorithm 1 can be done efficiently, see Appendix B.1. Step 2 of Algorithm 1 can be done
in several ways, see Section 7.1. The practical problems arising with step 2 of Algorithm 1 can
motivate the use of an alternative algorithm that we detail below.

2.4.2. Slope estimation

As explained in Section 2.3, the reason why Dm̂(C) jumps around C ≈ σ2 is that by Eq. (8),

1
n
E
[∥∥∥F̂m−Y

∥∥∥2
]
=

a(m)−σ2Dm

n
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10 S. Arlot

where a(m) := ‖(In−Πm)F‖2 + nσ2. Let us assume that a(m) —or equivalently, the approxi-
mation error— is almost constant for all m such that Dm is large enough. Then, considering only
models with a large dimension, the empirical risk approximately has a linear behavior as a func-
tion of Dm , with slope−σ2/n. Since the empirical risk is observable, one can estimate this slope
in order to get an estimator of σ2, and plug it in the optimal penalty given by Eq. (9).

Algorithm 2 (Slope-heuristics algorithm, slope formulation). Input: (‖F̂m−Y‖2)m∈M .

1. Estimate the slope Ŝ of ‖F̂m−Y‖2 as a function of Dm for all m ∈M with Dm “large
enough”, for instance by (robust) linear regression, and define Ĉslope =−nŜ.

2. Select m̂Alg.2 ∈ argminm∈M {n−1‖F̂m−Y‖2 +2ĈslopeDm/n}.

Output: m̂Alg.2 .

The right part of Figure 2 shows an instance of the plot of n−1‖F̂m−Y‖2 as a function of Dm .
Algorithm 2 relies on the choice of what is a “large enough” dimension, on how the slope Ĉslope
is estimated, and on the assumption that the approximation error is almost constant among large
models —otherwise it can fail strongly, as shown in Section 7.1. Therefore, Algorithms 1 and 2
both have pros and cons, and there is no universal choice between them. The links between
Algorithms 1 and 2, as well as their differences, are discussed in Section 7.1.

2.5. What can be proved mathematically

A major interest of the slope heuristics is that it can be made rigorous. For instance, we prove in
Section 2.7 the next theorem.

Theorem 1. In the framework described in Section 2.1, assume that M is finite, contains at least
one model of dimension at most n/20, and that

∃m1 ∈M , Sm1 = Rn (HId)

and ε ∼N (0,σ2In) . (HG)

Recall that for every C > 0, m̂(C) is defined by Eq. (10). Then, for every γ > 0, some n0(γ) exists
such that if n> n0(γ), with probability at least 1−4card(M )n−γ , the following inequalities hold
simultaneously:

∀C 6
(
1−η−n

)
σ2 , Dm̂(C) >

9n
10

, (14)

∀C 6
(
1−η−n

)
σ2 ,

1
n

∥∥∥F̂m̂(C)−F
∥∥∥2

>
7σ2

8
, (15)

∀C >
(
1+η+

n
)
σ2 , Dm̂(C) 6

n
10

, (16)

∀C > σ2 ,
1
n

∥∥∥F̂m̂(C)−F
∥∥∥2

6 h
(

C
σ2

)[
inf

m∈M

{
1
n

∥∥∥F̂m−F
∥∥∥2
}
+

20σ2γ log(n)
n

]
, (17)
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Minimal penalties and the slope heuristics: a survey 11

and for every η ∈ (0,1/2] and C ∈
[
(2−η)σ2,(2+η)σ2

]
,

1
n

∥∥∥F̂m̂(C)−F
∥∥∥2

6 (1+3η) inf
m∈M

{
1
n

∥∥∥F̂m−F
∥∥∥2
}
+

880σ2γ log(n)
ηn

, (18)

where σ
2
η
+
n = 40 inf

m∈M /Dm6n/20

{
1
n

∥∥(In−Πm)F
∥∥2
}
+82σ

2

√
γ log(n)

n
,

η
−
n = 41

√
γ log(n)

n
, and ∀u > 1 , h(u) =

10
(u−1)41u∈(1,2)+u31u>2 .

Theorem 1 revisits results first obtained by Birgé and Massart (2007), formulating them simi-
larly to Arlot and Bach (2011) but with milder assumptions.

What Theorem 1 proves about Algorithms 1– 2 Eq. (14) and (16) do not show exactly that
there is a single large jump in C 7→Dm̂(C) , as in the heuristic reasoning of Section 2.3. We cannot
hope to prove it since numerical experiments show that the global jump of Dm̂(C) can be split
into several small jumps within a small interval of values of C, see Figure 5 in Section 7.1.
Nevertheless, Eq. (14) and (16) imply that the variation of Dm̂(C) over a geometric window of C
is extremely strong around σ2: if Ĉjump in Algorithm 1 is defined as

Ĉwindow = Ĉwindow(η) ∈ argmax
C>0

{
Dm̂(C/[1+η ])−Dm̂(C[1+η ])

}
(19)

with η = max{η−n ,η+
n }, then Ĉwindow is close to σ2 —see Proposition 3 in Section 6.1 for a

precise statement—, and Eq. (18) implies a first-order optimal oracle inequality for the model-
selection procedure of Algorithm 1. Note that Ĉwindow can be computed efficiently, see Sec-
tion 7.2 and Appendix B.2. In addition, Eq. (14) and (16) imply that

Ĉthr. = Ĉthr.(Tn) := inf
{

C > 0/Dm̂(C) 6 Tn
}

(20)

is close to σ2 when Tn ∈ [n/10,9n/10] —precise statements are provided by Proposition 3 in
Section 6.1—, and Eq. (18) implies a first-order optimal oracle inequality for the correspond-
ing model-selection procedure. See Section 7.1 for practical comments about these variants of
Algorithm 1.

Theorem 1 does not prove that Algorithm 2 works, and it seems difficult to prove such a result
without adding some assumptions. Indeed, the key heuristics behind Algorithm 2 is a linear
behavior of the empirical risk as a function of the dimension, at least for large models. In the
proof of Theorem 1, we control the deviations of the empirical risk around its expectation, but this
is not sufficient for justifying Algorithm 2 without a strong uniform control on the approximation
errors of the models, an assumption much stronger than the ones of Theorem 1.

Note finally that Eq. (15) and (17) are not necessary for justifying Algorithm 1, but they are
interesting for theory since they justify the term “minimal penalty”. Eq. (15) is a straightfor-
ward consequence of Eq. (14), and results like Eq. (17) are easier to obtain than Eq. (18), see
Section 4.4.
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12 S. Arlot

Variant of Theorem 1 If M contains at least one model of dimension at most cn ∈ [0,n), on
the event defined in Theorem 1, we can actually prove that more results hold true: we can change
Eq. (14) and (16) respectively into

∀an < n , ∀C 6
[
1−η

−
n (an)

]
σ

2 , Dm̂(C) > an (21)

∀bn > cn , ∀C >
[
1+η

+
n (bn,cn)

]
σ

2 , Dm̂(C) 6 bn (22)

where

σ
2
η
+
n (bn,cn) :=

n
bn− cn

(
2B(cn)+4.1σ

2

√
γ log(n)

n

)
,

B(cn) := inf
m∈M /Dm6cn

{
1
n

∥∥(In−Πm)F
∥∥2
}
, and η

−
n (an) := 4.1

(
1− an

n

)−1
√

γ log(n)
n

.

In particular, under the assumptions of Theorem 1, taking an ∈ (9n/10,n), bn ∈ (n/20,n/10)
and cn = n/20, we get a larger jump of Dm̂(C) —hence easier to detect— by considering a larger
window of values of C, hence reducing the precision of the estimation of σ2.

Relaxation of the noise assumption Assumption (HG) is a classical noise model for proving
non-asymptotic oracle inequalities. In Theorem 1, it is only used for proving some concentration
inequalities at the beginning of the proof —Eq. (23)–(24) in Section 2.7—, so it could be changed
into any noise assumption ensuring that similar concentration inequalities hold true. For instance,
Theorem 1 can be generalized to the case of sub-Gaussian noise, as formalized below.

Remark 1 (Generalization of Theorem 1 to sub-Gaussian noise). Assume that the (εi)16i6n are
centered, independent, and (φ 2σ2)-sub-Gaussian for some φ > 0 —with any definition of sub-
Gaussianity among the classical ones since they are all equivalent up to numerical constants
(Boucheron et al., 2013, Section 2.3). Then, by the Cramér-Chernoff method (Boucheron et al.,
2013, Section 2.2), Eq. (24) holds true with probability at least 1−2exp(x/φ 2). In addition, Bel-
lec (2019, Theorem 3) shows that Eq. (23) holds true with probability at least 1−2exp[x/(Lφ 2)]
for some numerical constant L. Therefore, the event ΩLφ 2x defined in the proof of Theorem 1
has a probability at least 1−4card(M )e−x. So, the result of Theorem 1 holds true with x (resp.
γ) replaced by Lφ 2x (resp. Lφ 2γ) in n0 , η−n , η+

n , and in the risk bounds (17)–(18). The same
generalization holds for Eq. (21)–(22) and for consequences of Theorem 1 such as Proposition 3.

Comments on the assumptions on M Assumption (HId) is barely an assumption since we
can always add such a model to the collection considered (and it will never be selected by the
procedure). It is used in the proof of Eq. (14) where we need to make sure that a model of large
dimension and small bias exists.

Theorem 1 implicitly assumes that M contains a model of dimension at most n/20 with a
small approximation error. This is much milder than the assumption of the corresponding results
of Arlot and Bach (2009, 2011) and Arlot and Massart (2009), which is that M contains a model
of dimension at most

√
n with an approximation error upper bounded by σ2

√
log(n)/n. Here,

having a model of dimension n/20 with approximation error σ2/ log(n) is sufficient to get a
consistent estimation of σ2 and a first-order optimal model-selection procedure. Note however
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Minimal penalties and the slope heuristics: a survey 13

that such an assumption seems almost necessary for Algorithm 1 to work: if the approximation
error never vanishes for a (not too) large model, and if it is not almost constant among large
models —which can happen in practice—, we conjecture that the slope heuristics fails.

Finally, M is assumed to be finite, but Theorem 1 implicitly assumes a little more, since
the event on which the result holds has a large probability only if card(M )n−γ is small, which
requires to take γ large enough. Since γ appears in all the bounds, assuming that it can be chosen
fixed as n grows is equivalent to assuming that card(M ) grows at most like a power of n, which
excludes model collections of exponential complexity —that is, card(M ) ∝ an for some a > 0.
The case of exponential collections is discussed in Sections 4.7 and 8.3.4.

2.6. Bibliographical remarks

Algorithms The slope heuristics and the corresponding data-driven penalty were first proposed
by Birgé and Massart in a preprint (Birgé and Massart, 2001b) and the subsequent article (Birgé
and Massart, 2007). They are also exposed by Massart (2005), Blanchard and Massart (2006,
Section 2), Massart (2007, Section 8.5.2) and Massart (2008).

The term “slope” corresponds to the linear behavior of the empirical risk as a function of the
dimension, as Algorithm 2 exploits.

The first implementation of data-driven penalties built upon the slope heuristics was expressed
as a slope estimation, as in Algorithm 2; it was done by Letué (2000, Section A.4) for penalized
maximum likelihood, inspired by a preliminary version of the preprint by Birgé and Massart
(2001b).

Several practical issues with Algorithm 2 were underlined in the context of change-point de-
tection by Lebarbier (2002, Chapter 4), who then suggested to prefer the “dimension jump”
formulation of Algorithm 1 which was present in the final version of the preprint by Birgé and
Massart (2001b), as well as in the articles by Massart (2005) and Birgé and Massart (2007).
The drawbacks of Algorithm 1 were also underlined by Lebarbier (2002, 2005) where some au-
tomatic ways to detect the dimension jump were proposed and tested on some synthetic data.
Later on, Baudry et al. (2012) studied more deeply the practical use of Algorithms 1 and 2, with
several variants (see also Section 7). The first proposition of detecting a jump over some sliding
window was made by Bontemps and Toussile (2013), who considered only a finite set of values
of C; to the best of our knowledge, the continuous formulation for Ĉwindow is new, as well as the
corresponding algorithm in Appendix B.2.

Theory The first theoretical results about the slope heuristics were proved in the setting of the
present section, that is, regression on a fixed design with the least-squares risk and projection
(least-squares) estimators. In the articles by Birgé and Massart (2001b, 2007), the first results
obtained were similar to Eq. (14), (15), (17), and (18), making slightly stronger assumptions. A
result similar to Eq. (15) was even published previously by Birgé and Massart (2001a), but only
in the restrictive case F = 0.

The first result showing the existence of a jump —that is, Eq. (14) and (16) holding simulta-
neously for all C on the same large-probability event— was obtained for least-squares regression
on a random design with regressogram estimators (Arlot and Massart, 2009). It was then proved
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in the fixed-design setting with more general estimators including projection estimators (Arlot
and Bach, 2009, 2011).

Eq. (17) is a corollary of a classical non-asymptotic oracle inequality for Cp-like penalties;
similar results were known before the introduction of the slope heuristics (see for instance Barron
et al., 1999). Eq. (18) is more precise because of the constant 1+o(1) in front of the oracle risk,
which was first obtained by Birgé and Massart (2001b, 2007).

The extension of Theorem 1 to sub-Gaussian noise (Remark 1 in Section 2.5) is new, to the
best of our knowledge.

2.7. Proof of Theorem 1

The proof mixes ideas from Birgé and Massart (2007) and Arlot and Bach (2011). We split it
into three main steps, the last two ones being split themselves into several substeps: (1) using
concentration inequalities, (2) proving the existence of a dimension jump (Eq. (14)–(16)), and
(3) proving risk bounds thanks to a general oracle inequality (Eq. (17)–(18)).

We define n0(γ) as the smallest integer such that γ log(n)/n 6 1/802 for every n > n0(γ). At
various places in the proof (in steps 2.3, 3.2, and 3.3), we make use of the inequality: for all
a,b,θ > 0, 2

√
ab 6 θa+θ−1b.

Step 1: concentration inequalities As explained in Section 2.3, the slope heuristics relies on
the fact that ‖F̂m−Y‖2 is close to its expectation. Let x > 0 be fixed. Given Eq. (5)–(6), for every
m∈M , we consider the event Ωm,x on which the following two inequalities hold simultaneously:∣∣〈ε, Πmε〉−σ

2Dm
∣∣6 2σ

2√xDm +2xσ
2 (23)∣∣〈ε, (In−Πm)F

〉∣∣6 σ
√

2x
∥∥(In−Πm)F

∥∥ . (24)

Under (HG), by standard Gaussian concentration results (for instance, Arlot and Bach, 2011,
Propositions 4 and 6)—, we have

P(Ωm,x)> 1−4e−x .

Then, defining Ωx :=
⋂

m∈M Ωm,x , the union bound gives

P(Ωx)> 1−4card(M )e−x

and it is sufficient to prove that Eq. (14)–(18) hold true on Ωx with x = γ log(n).
From now on, we restrict ourselves to the event Ωx .

Step 2: existence of a dimension jump For proving Eq. (14) and (16), we show that m̂(C)
minimizes a quantity GC(m) close to critC(m), and then we show that GC(m1) (resp. GC(m2),
for some well-chosen m2 ∈M ) is smaller than GC(m) for any model m with Dm < 9n/10 (resp.
Dm > n/10).
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Step 2.1: control of the difference between critC(m) and the quantity minimized by m̂(C)
Let C > 0. By Eq. (10), (5), and (6), since ‖ε‖2 does not depend from m, m̂(C) minimizes over
M the function GC : M → R defined by

∀m ∈M , GC(m) :=
1
n

∥∥∥F̂m−Y
∥∥∥2

+C
Dm

n
− 1

n
‖ε‖2

=
1
n

∥∥(In−Πm)F
∥∥2− 1

n
〈ε, Πmε〉+C

Dm

n
+

2
n

〈
ε, (In−Πm)F

〉
= critC(m)−

(
1
n
〈ε, Πmε〉−σ

2Dm

)
+

2
n

〈
ε, (In−Πm)F

〉
where critC is defined by Eq. (11). Therefore, by Eq. (23)–(24) and using Dm 6 n, for every
m ∈M ,

∣∣GC(m)− critC(m)
∣∣6 2σ

2
(√

x
n
+

x
n

)
+

2σ
√

2x
n

∥∥(In−Πm)F
∥∥ . (25)

Step 2.2: lower bound on Dm̂(C) when C is too small (proof of Eq. (14)) Let C ∈ [0,σ2).
Since m̂(C) minimizes GC(m) over m ∈M , it is sufficient to prove that if C 6 (1−η−n )σ2,

GC(m1)< inf
m∈M ,Dm<9n/10

{
GC(m)

}
(26)

where m1 is given by (HId). On the one hand, by Eq. (25),

GC(m1)6 critC(m1)+2σ
2
(√

x
n
+

x
n

)
=C−σ

2 +2σ
2
(√

x
n
+

x
n

)
. (27)

On the other hand, by Eq. (25), for any m ∈M such that Dm < 9n/10,

GC(m)>
(C−σ2)Dm

n
−2σ

2
(√

x
n
+

x
n

)
+

1
n

∥∥(In−Πm)F
∥∥2− 2σ

√
2x

n

∥∥(In−Πm)F
∥∥

>
9

10
(C−σ

2)−2σ
2
(√

x
n
+

2x
n

)
. (28)

To conclude, the upper bound in Eq. (27) is smaller than the lower bound in Eq. (28) when

C 6 σ
2
(

1−40
√

x
n
−60

x
n

)
=: C̃1(x) . (29)

Taking x = γ log(n), for n > n0(γ), we have C̃1(x)> σ2(1−η−n ) hence Eq. (14).
Remark that the same reasoning with 9n/10 replaced by any an ∈ [0,n) proves that Dm̂(C) > an

for every

C 6 σ
2

(
1−

4
√ x

n +6 x
n

1− an
n

)
=: C1(x;an) . (30)

We get Eq. (21) by taking x = γ log(n) and using that x/n 6 1/602 since n > n0(γ).
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Step 2.3: upper bound on Dm̂(C) when C is large enough (proof of Eq. (16)) Let C > σ2.
Similarly to the proof of Eq. (14), it is sufficient to prove that if C > (1+η+

n )σ2,

GC(m2)< inf
m∈M ,Dm>n/10

{GC(m)} (31)

where m2 ∈ argminm∈M /Dm6n/20
{
‖(In−Πm)F‖2

}
exists by assumption. For any cn ∈ [0,n], let

us define

B(cn) := inf
m∈M /Dm6cn

{
1
n

∥∥(In−Πm)F
∥∥2
}
,

so that m2 has an approximation error equal to B(n/20). On the one hand, by Eq. (25),

GC(m2)6 critC(m2)+2σ
2
(√

x
n
+

x
n

)
+

2σ
√

2x
n

∥∥(In−Πm2)F
∥∥

6
2
n

∥∥(In−Πm2)F
∥∥2

+
(C−σ2)Dm2

n
+2σ

2
(√

x
n
+

2x
n

)
6 2B

( n
20

)
+(C−σ

2)
n/20

n
+2σ

2
(√

x
n
+

2x
n

)
. (32)

On the other hand, by Eq. (25), for any m ∈M such that Dm > n/10,

GC(m)>
n/10

n
(C−σ

2)−2σ
2
(√

x
n
+

2x
n

)
. (33)

To conclude, the upper bound in Eq. (32) is smaller than the lower bound in Eq. (33) when

C > σ
2
[

1+80
(√

x
n
+

2x
n

)]
+40B

( n
20

)
=: C̃2(x) . (34)

Taking x = γ log(n), for n > n0(γ), we have C̃2(x)6 σ2(1+η+
n ) hence Eq. (16).

Remark that if M contains a model of dimension at most cn ∈ [0,n), the same reasoning with
n/10 replaced by any bn ∈ (cn,n] and n/20 replaced by cn proves that Dm̂(C) 6 bn for every

C > σ
2
[

1+
4n

bn− cn

(√
x
n
+

2x
n

)]
+

2n
bn− cn

B(cn) =: C2(x;bn;cn) . (35)

We get Eq. (22) by taking x = γ log(n) and using that x/n 6 1/802 since n > n0(γ).
Until the end of the proof, we fix x = γ log(n).

Step 2.4: lower bound on the risk of large models (proof of Eq. (15)) This is a straightfor-
ward consequence of Eq. (14). Indeed, on Ωx , for any m ∈M such that Dm > 9n/10,

1
n

∥∥∥F− F̂m

∥∥∥2
=

1
n

∥∥(In−Πm)F
∥∥2

+
1
n
〈ε, Πmε〉

>
σ2

n

(
Dm−2

√
xDm−2x

)
=

σ2

n

[(√
Dm−

√
x
)2−3x

]
>

7σ2

8
,

where we use that x/n 6 1/772 since n > n0(γ).
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Step 3: upper bounds on the risk For proving Eq. (17)–(18), we prove a slightly more gen-
eral oracle inequality —Eq. (43)— using the classical approach used for instance by Birgé and
Massart (2001a), Massart (2007) and Arlot and Bach (2011).

Step 3.1: general approach for proving an oracle inequality Following Section 2.2, an ideal
penalty is

penid(m) :=
1
n

∥∥∥F̂m−F
∥∥∥2
− 1

n

∥∥∥F̂m−Y
∥∥∥2

+‖ε‖2

which has expectation 2σ2Dm/n = penopt(m). A key argument for getting an oracle inequality is
that penid(m) concentrates around its expectation. Indeed, let us define

∆(m) := penid(m)− 2σ2Dm

n
=

2
n

(
〈ε, Πmε〉−σ

2Dm
)
− 2

n

〈
ε, (In−Πm)F

〉
, (36)

where the second formulation is a consequence of Eq. (6). Then, by Eq. (10), for any C > 0 and
m ∈M ,

1
n

∥∥∥F̂m̂(C)−Y
∥∥∥2

+
CDm̂(C)

n
6

1
n

∥∥∥F̂m−Y
∥∥∥2

+
CDm

n
which is equivalent to

1
n

∥∥∥F̂m̂(C)−F
∥∥∥2
−∆
(
m̂(C)

)
+

(C−2σ2)Dm̂(C)

n
6

1
n

∥∥∥F̂m−F
∥∥∥2
−∆(m)+

(C−2σ2)Dm

n
. (37)

It remains to show that ∆(m) and (C− 2σ2)Dm/n are small compared to n−1‖F̂m − F‖2 for
all m ∈M . Recall that we restrict ourselves to the event Ωx until the end of the proof, with
x = γ log(n).

Step 3.2: control of ∆(m) By Eq. (23), (24), and (36), for every m ∈M and θ > 0,∣∣∆(m)
∣∣6 2

n

[
2σ

2√xDm +2σ
2x+σ

√
2x
∥∥(In−Πm)F

∥∥]
6 2θE

[
1
n

∥∥∥F̂m−F
∥∥∥2
]
+

σ2x
n

(
3θ
−1 +4

)
. (38)

Step 3.3: upper bound on the expected risk in terms of risk By Eq. (5) and (24), for every
m ∈M and θ ′ > 0, ∥∥∥F̂m−F

∥∥∥2
= E

[∥∥∥F̂m−F
∥∥∥2
]
+ 〈ε, Πmε〉−σ

2Dm

> E
[∥∥∥F̂m−F

∥∥∥2
]
−σ

2 (2√xDm +2x
)

>
(
1−θ

′)E[∥∥∥F̂m−F
∥∥∥2
]
− xσ

2 (2+θ
′−1)

so that, for every θ ′ ∈ (0,1),

E
[∥∥∥F̂m−F

∥∥∥2
]
6

1
1−θ ′

∥∥∥F̂m−F
∥∥∥2

+κ(θ ′)xσ
2 with κ(θ ′) :=

2+ 1
θ ′

1−θ ′
. (39)
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18 S. Arlot

Step 3.4: control of the remainder terms appearing in Eq. (37) Combining Eq. (38) and (39),
we get on the one hand that for every m ∈M , θ > 0, θ ′ ∈ (0,1),

∆(m)+
(2σ2−C)Dm

n

6

[
2θ +

(
2− C

σ2

)
+

]
E
[

1
n

∥∥∥F̂m−F
∥∥∥2
]
+

σ2x
n

(
3
θ
+4
)

6
2θ +

(
2− C

σ2

)
+

1−θ ′
1
n

∥∥∥F̂m−F
∥∥∥2

+
σ2x

n

(
3
θ
+4+κ(θ ′)

[
2θ +

(
2− C

σ2

)
+

])
. (40)

On the other hand, similarly, for every m ∈M , θ > 0, θ ′ ∈ (0,1),

−∆(m)+
(C−2σ2)Dm

n

6
2θ +

( C
σ2 −2

)
+

1−θ ′
1
n

∥∥∥F̂m−F
∥∥∥2

+
σ2x

n

(
3
θ
+4+κ(θ ′)

[
2θ +

(
C
σ2 −2

)
+

])
. (41)

Step 3.5: proof of a general oracle inequality Combining Eq. (37), (40), and (41) above with
θ ′ = 2θ ∈ (0,1), we get that for every θ ∈ (0,1/2) and m ∈M ,[

1−
2θ +

(
2− C

σ2

)
+

1−2θ

]
1
n

∥∥∥F̂m̂(C)−F
∥∥∥2

6

[
1+

2θ +
( C

σ2 −2
)
+

1−2θ

]
1
n

∥∥∥F̂m−F
∥∥∥2

+
σ2x

n
R1(θ ,Cσ

−2) (42)

with R1(θ ,Cσ
−2) :=

6
θ
+8+κ(2θ)

(
4θ +

∣∣∣∣ C
σ2 −2

∣∣∣∣) .

Let us assume C > σ2. For any δ ∈ (0,1], we choose

θ = θ
?(δ ,Cσ

−2) :=
δ

4

[
1−
(
2− C

σ2

)
+

]2

1+
( C

σ2 −2
)
+
+δ

[
1−
(
2− C

σ2

)
+

] < δ

4
6

1
4
.

So, if C > (1+δ )σ2, we have C > (1+4θ)σ2 hence we can divide both sides of Eq. (42) by

1−
2θ +

(
2− C

σ2

)
+

1−2θ
> 0 .

Remark that[
1+

2θ +
( C

σ2 −2
)
+

1−2θ

]
×

[
1−

2θ +
(
2− C

σ2

)
+

1−2θ

]−1

=
1+
( C

σ2 −2
)
+

1−4θ −
(
2− C

σ2

)
+

=
1+
( C

σ2 −2
)
+

1−
(
2− C

σ2

)
+

+δ
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where the last equality uses θ = θ ?(δ ,Cσ−2). So, if C > (1+δ )σ2, Eq. (42) leads to

1
n

∥∥∥F̂m̂(C)−F
∥∥∥2

6

(
1+
( C

σ2 −2
)
+

1−
(
2− C

σ2

)
+

+δ

)[
inf

m∈M

{
1
n

∥∥∥F̂m−F
∥∥∥2
}
+

σ2x
n

R2

(
δ ,

C
σ2

)]
(43)

where for every δ ∈ (0,1] and u ∈ (1,+∞),

R2(δ ,u) = R1
(
θ
?(δ ,u),u

)
6
(
10+2|u−2|

)
θ
?(δ ,u)−1 .

Therefore, for every C > (1+δ )σ2,

R2

(
δ ,

C
σ2

)
6

8
δ

(
5+ |Cσ

−2−2|
)

max

{
2+(Cσ

−2−2)+ ,
2[

1− (2−Cσ−2)+
]2
}

.

Step 3.6: risk bound for m̂(C) when C is large enough (proof of Eq. (17)) In this step, we
assume C > σ2. When C/σ2 ∈ (1,2], Eq. (43) with δ =Cσ−2−1 ∈ (0,1] yields

1
n

∥∥∥F̂m̂(C)−F
∥∥∥2

6 2
(

C
σ2 −1

)−1
[

inf
m∈M

{
1
n

∥∥∥F̂m−F
∥∥∥2
}
+

96σ2x
n

(
C
σ2 −1

)−3
]
.

When C/σ2 > 2, Eq. (43) with δ = 1 yields

1
n

∥∥∥F̂m̂(C)−F
∥∥∥2

6
C
σ2

[
inf

m∈M

{
1
n

∥∥∥F̂m−F
∥∥∥2
}
+

20σ2x
n

(
C
σ2

)2
]
.

Eq. (17) follows.

Step 3.7: oracle inequality for m̂(C) when C is close to 2σ2 (proof of Eq. (18)) Now, we
assume C/σ2 ∈ [2−η ,2+η ] with η ∈ [0,1/2]. Taking δ = η in Eq. (43) yields

1
n

∥∥∥F̂m̂(C)−F
∥∥∥2

6

(
max

{
1+η ,

1
1−η

}
+η

)
×
[

inf
m∈M

{
1
n

∥∥∥F̂m−F
∥∥∥2
}
+

σ2x
n

8
η
(5+η)max

{
2+η ,

2
(1−η)2

}]
6 (1+3η) inf

m∈M

{
1
n

∥∥∥F̂m−F
∥∥∥2
}

+
σ2x

n
8
η
(1+3η)(5+η)max

{
2+η ,

2
(1−η)2

}
6 (1+3η) inf

m∈M

{
1
n

∥∥∥F̂m−F
∥∥∥2
}
+

880σ2x
ηn

,

using that 1/(1−η)6 1+2η for every η ∈ [0,1/2]. Eq. (18) follows.
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3. Generalizing the slope heuristics

The slope heuristics has first been formulated and theoretically validated in the framework of
Section 2. Then, it rapidly became a more general heuristics for building data-driven optimal
penalties. This section discusses two possible formulations for its generalization.

3.1. General framework

Before going any further, we need to introduce a general model/estimator-selection framework.
Let S be some set, R : S 7→ [0,+∞) be some risk function, and assume that our goal is to build
from data some estimator ŝ ∈ S such that R(ŝ) is as small as possible. Let (ŝm)m∈M be a collec-
tion of estimators. The goal of estimator selection is to choose from data some m̂ ∈M such that
the risk of ŝm̂ is as small as possible, that is, satisfying an oracle inequality

R (ŝm̂)−R(s?)6 Kn inf
m∈M

{
R(ŝm)−R(s?)

}
+Rn (44)

with large probability, where R(s?) := inft∈SR(t). In the following, Kn is called “the leading
constant” of the oracle inequality (44). Let R̂n : S 7→ [0,+∞) be the empirical risk associated
with R, that is, we assume throughout Sections 3–5 that ∀t ∈ S, E[R̂n(t)] = R(t).

This framework includes the one of Section 2 by taking S = Rn, R(t) = n−1‖t−F‖2 +σ2,
ŝm = F̂m the projection estimator associated with some model Sm for every m ∈M , and the L2

empirical risk R̂n(t) = n−1‖t−Y‖2. Many other classical settings also fit into this framework,
such as density estimation with the Kullback risk or the L2 risk, random-design regression with
the L2 risk, and classification with the 0–1 risk (see Arlot and Celisse, 2010, Section 1, for
details).

3.2. Penalties known up to some constant factor

The most natural extension of the slope heuristics is to generalize it to all frameworks where
a penalty is known up to some multiplicative constant (Massart, 2005; Blanchard and Massart,
2006), that is, if theoretical results show that a good penalty is C? pen1(m) with pen1 known but
C? unknown. Penalties known up to a constant factor appear in several frameworks, for four main
reasons:

1. A penalty satisfying an optimal oracle inequality —that is, an oracle inequality with lead-
ing constant 1+ o(1)— is theoretically known, but involves unknown quantities in prac-
tice, such as the noise-level σ2 for Mallows’ Cp and CL (Mallows, 1973), see Sections 2
and 3.3.

2. An optimal penalty pen1 is known theoretically and in practice, but only asymptotically,
that is, the (unknown) non-asymptotic optimal penalty is C?

n pen1 with C?
n → 1 as the sam-

ple size n tends to infinity, but C?
n is unknown and can be far from 1 for finite sample sizes.

For instance, AIC (Akaike, 1973) and BIC (Schwarz, 1978) penalties for maximum likeli-
hood rely on asymptotic computations. Section 8.4 explains why such a problem can arise
in almost any framework.
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3. An optimal penalty is obtained by resampling, hence depending on some multiplicative
factor that might depend on unknown quantities or be correct only for n large enough, see
Remark 3 in Section 4.2 and the article by Arlot (2009).

4. A penalty C pen1 satisfying an oracle inequality with a leading constant O(1) when C
is well chosen is known theoretically, but theoretical results are not precise enough to
specify the optimal value C? of C. This occurs for instance for change-point detection
(Comte and Rozenholc, 2004; Lebarbier, 2005), density estimation with Gaussian mix-
tures (Maugis and Michel, 2011b), and local Rademacher complexities in classification
(Bartlett et al., 2005; Koltchinskii, 2006). In some frameworks, some partial informa-
tion is available about the optimal value of the constant: in binary classification, global
Rademacher complexities differ by a factor 2 between theory (Koltchinskii, 2001) and
practice (Lozano, 2000). Note that in such cases, it might happen that C? pen1 is not ex-
actly an optimal penalty, so that no oracle inequality with leading constant 1+o(1) can be
obtained; nevertheless, choosing the constant C in the penalty C pen1 remains an important
practical problem.

Then, if for every m ∈M , Cm measures the “complexity” of ŝm , the slope heuristics suggests
to generalize Algorithm 1 into the following.

Algorithm 3 (Slope-heuristics algorithm, jump formulation, general setting).
Input:

(
R̂n(ŝm)

)
m∈M ,

(
pen1(m)

)
m∈M , and (Cm)m∈M .

1. Compute
(
m̂1(C)

)
C>0 , where for every C > 0,

m̂1(C) ∈ argmin
m∈M

{
R̂n(ŝm)+C pen1(m)

}
. (45)

2. Find Ĉjump > 0 corresponding to the “unique large jump” of C 7→ Cm̂1(C) .

3. Select m̂Alg.3 ∈ argminm∈M {R̂n(ŝm)+2Ĉjump pen1(m)}.
Output: m̂Alg.3 .

Algorithm 3 relies on two ideas: (i) Eq. (13), that is, penopt = 2penmin, is valid in a more
general framework than least-squares regression and projection estimators, and (ii) if a proper
complexity measure Cm is used instead of the dimension Dm of the models, the minimal penalty
can be characterized empirically by a jump of Cm̂1(C) .

3.3. Algorithm 3 fails for linear-estimator selection

We now illustrate on an example why Algorithm 3 can fail, before showing how to correct it
in Section 3.4. Let us consider the fixed-design regression framework of Section 2.1 with linear
estimators instead of projection estimators, that is, for every m ∈M ,

F̂m = AmY

for some deterministic linear mapping Am : Rn → Rn . For instance, projection estimators are
linear estimators since the orthogonal projection Am = Πm onto a linear space Sm is linear. Other
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FIGURE 3. The minimal penalty is not proportional to tr(Am) for kernel ridge estimators (Figure taken from the
article by Arlot and Bach (2011), ‘kernel ridge’ framework, see Appendix D for details): C 7→ Cm̂1(C) for Algorithm 3
with pen1(m) = tr(Am)/n and Cm = tr(Am) (black curve / diamonds), and C 7→ tr(Am̂lin

min(C)) for Algorithm 4 (red curve
/ crosses) with linear estimators (kernel ridge).

examples include kernel ridge regression or spline smoothing, nearest-neighbor regression, and
Nadaraya-Watson estimators (Arlot and Bach, 2011, provide more examples and references).

Similarly to Section 2.2, expectations of the risk and empirical risk of a linear estimator can
be computed as follows:

E
[

1
n

∥∥∥F̂m−F
∥∥∥2
]
=

1
n

∥∥(In−Am)F
∥∥2

+
σ2 tr

(
A>mAm

)
n

, (46)

E
[

1
n

∥∥∥F̂m−Y
∥∥∥2
]
=

1
n

∥∥(In−Am)F
∥∥2

+
σ2
[
n+ tr

(
A>mAm

)
−2tr(Am)

]
n

, (47)

and penopt(m) = E
[

1
n

∥∥∥F̂m−F
∥∥∥2
]
−E
[

1
n

∥∥∥F̂m−Y
∥∥∥2
]
+σ

2 =
2σ2 tr(Am)

n
. (48)

Eq. (46) can be interpreted as a bias-variance decomposition similarly to Eq. (7). The optimal
penalty given by Eq. (48) has been called CL by Mallows (1973) and is similar to Cp , with
the dimension Dm replaced by the degrees of freedom tr(Am). It also depends on σ2 which
is unknown, so one could think of using Algorithm 3 with ŝm = F̂m , R̂n(t) = n−1‖t −Y‖2,
pen1(m) = tr(Am)/n, and Cm = tr(Am). Then, plotting Cm̂1(C) as a function of C, what we typ-
ically get is shown in Figure 3 (black curve / diamonds): no clear jump of the complexity is
observed around σ2, contrary to what Algorithm 3 predicts.

3.4. Minimal-penalty heuristics for linear estimators

Following Arlot and Bach (2009, 2011), the correct minimal penalty in the linear-estimators
framework is

penlin
min(m) :=

σ2
[
2tr(Am)− tr

(
A>mAm

)]
n

.
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Indeed, as in Section 2.3, let us consider, for every C > 0,

m̂lin
min(C) ∈ argmin

m∈M

{
1
n

∥∥∥F̂m−Y
∥∥∥2

+C
2tr(Am)− tr

(
A>mAm

)
n

}
, (49)

and m? lin
min (C) ∈ argmin

m∈M

{
E

[
1
n

∥∥∥F̂m−Y
∥∥∥2

+C
2tr(Am)− tr

(
A>mAm

)
n

]}
= argmin

m∈M

{
critlinC (m)

}
with critlinC (m) :=

1
n

(∥∥(In−Am)F
∥∥2

+(C−σ
2)
[
2tr(Am)− tr(A>mAm)

])
,

by Eq. (47). Let us assume that the approximation error term n−1‖(In−Am)F‖2, which appears
in Eq. (46), is a decreasing function of the degrees of freedom Cm = tr(Am); let us also assume
for simplicity that 0 6 tr(A>mAm)6 tr(Am) for every m ∈M . Then, we can distinguish two cases:

– if C < σ2, then critlinC (m) is a decreasing function of Cm , and Cm? lin
min (C) is huge: m? lin

min (C)
overfits.

– if C >σ2, then critlinC (m) increases with Cm for Cm large enough, so Cm? lin
min (C) is much smaller

than when C < σ2.
This behavior is also the one of m̂lin

min(C), as illustrated in Figure 3 (red curve / crosses), which
leads to the following algorithm.

Algorithm 4 (Minimal-penalty algorithm for linear estimators).
Input:

(
‖F̂m−Y‖2

)
m∈M ,

(
tr(Am)

)
m∈M , and

(
tr(A>mAm)

)
m∈M .

1. Compute
(
m̂lin

min(C)
)

C>0 , where m̂lin
min(C) is defined by Eq. (49).

2. Find Ĉjump > 0 corresponding to the “unique large jump” of C 7→ tr
(
Am̂lin

min(C)

)
.

3. Select m̂Alg.4 ∈ argminm∈M
{

n−1‖F̂m−Y‖2 +2Ĉjump tr(Am)/n
}

.

Output: m̂Alg.4 .

Theorem 1 can be extended to Algorithm 4, up to some minor changes in the assumptions and
results (Arlot and Bach, 2009, 2011). For kernel ridge regression, Algorithm 4 is proved to work
also for choosing over a continuous set M (Arlot and Bach, 2011), provided the kernel is fixed.

Note that when tr(A>mAm) = tr(Am), penopt(m) = 2penlin
min(m). This occurs for least-squares

estimators —for which Am = A>mAm = Πm , and we recover the setting of Section 2 and Algo-
rithm 1— and for k-nearest neighbors estimators.

3.5. General minimal-penalty algorithm

We now go back to the general setting of Section 3.1, and propose a generalization of Algo-
rithms 1 and 4. Here, we suggest to take Ĉjump = Ĉwindow , but any other formal definition of
Ĉjump could be used instead.

Algorithm 5 (General minimal-penalty algorithm, jump formulation).
Input:

(
R̂n(ŝm)

)
m∈M ,

(
pen0(m)

)
m∈M ,

(
pen1(m)

)
m∈M , (Cm)m∈M , and η > 0.
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1. Compute
(
m̂(0)

min(C)
)

C>0 , where for every C > 0,

m̂(0)
min(C) ∈ argmin

m∈M

{
R̂n(ŝm)+C pen0(m)

}
. (50)

2. Find Ĉjump > 0 corresponding to the “unique large jump” of C 7→ C
m̂(0)

min(C)
, for instance,

Ĉwindow ∈ argmax
C>0

{
C

m̂(0)
min(C/[1+η ])

−C
m̂(0)

min(C[1+η ])

}
.

3. Select m̂Alg.5 ∈ argminm∈M
{
R̂n(ŝm)+Ĉjump pen1(m)

}
.

Output: m̂Alg.5 .

Algorithm 5 implicitly assumes that the minimal and the optimal penalty are respectively
equal to C? pen0 and C? pen1 , with pen0 and pen1 known, but C? unknown. We refer to Sec-
tion 7.1 for practical remarks about the choice of Ĉjump . Computational issues are discussed in
Section 7.2.

In the “slope heuristics” setting (Section 2), pen1 = 2pen0 , and Algorithm 5 reduces to Algo-
rithm 3.

Similarly to Algorithm 2, we can also propose a “slope” formulation of Algorithm 5.

Algorithm 6 (General minimal-penalty algorithm, slope formulation).
Input:

(
R̂n(ŝm)

)
m∈M ,

(
pen0(m)

)
m∈M ,

(
pen1(m)

)
m∈M , and (Cm)m∈M .

1. Estimate the slope Ĉslope of −R̂n(ŝm) as a function of pen0(m) for all m ∈M with Cm

“large enough”, for instance by (robust) linear regression.

2. Select m̂Alg.6 ∈ argminm∈M
{
R̂n(ŝm)+Ĉslope pen1(m)

}
.

Output: m̂Alg.6 .

What remains now is to identify natural candidates for being a minimal or an optimal penalty
in the general setting.

3.6. Optimal and minimal penalties

In the general setting, the unbiased risk estimation heuristics (Akaike, 1970; Stein, 1981) sug-
gests the following optimal (deterministic) penalty

pengal
opt(m) := E

[
R(ŝm)− R̂n(ŝm)

]
(51)

which generalizes formula (4). If R(ŝm)− R̂n(ŝm) is concentrated around its expectation uni-
formly over m ∈M —which excludes too large collections M —, one can prove an oracle
inequality for the penalty (51), or for any penalty which differs from Eq. (51) by an additive term
independent from m, as in Eq. (9) and (48).

Building a minimal penalty in the general setting is more difficult. For every m∈M , let Cm be
some “complexity measure” associated with ŝm , that is, we assume that the empirical risk R̂n(ŝm)
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(or its expectation) is (approximately) a decreasing function of Cm . Algorithm 6 suggests that
the minimal penalty is a quantity which exactly compensates this decreasing trend, such as

pengal
min,0(m) :=−E

[
R̂n(ŝm)

]
. (52)

Nevertheless, in most cases including least-squares and linear estimators, pengal
min,0 is unknown,

even up to a multiplicative factor, so that we need another candidate for being a minimal penalty.
For every m ∈M , let s?m be a well-chosen element of S —see Remark 2 below— such that

R(s?m)− inft∈SR(t) decreases to zero as Cm→∞. As argued below, a natural choice for the min-
imal penalty is

pengal
min(m) := E

[
R̂n(s?m)− R̂n(ŝm)

]
. (53)

Indeed, for every C > 0 let

critgal
C (m) := E

[
R̂n(ŝm)

]
+C pengal

min(m) =CR(s?m)+(1−C)E
[
R̂n(ŝm)

]
(54)

so that mgal?
min (C) ∈ argminm∈M {critgal

C (m)} is a proxy for

m̂gal
min(C) ∈ argmin

m∈M

{
R̂n(ŝm)+C pengal

min(m)
}
.

Let us assume for simplicity that R̂n(ŝm) is a decreasing function of Cm . Then, when C < 1,
critgal

C (m) is a decreasing function of Cm , so that Cmgal?
min (C)

≈ maxm∈M Cm which corresponds

to overfitting. On the contrary, when C > 1, (1−C)E[R̂n(ŝm)] is an increasing function of Cm

while CR(s?m) is approximately constant for Cm large enough, so that Cmgal?
min (C)

� maxm∈M Cm .

Therefore, if concentration inequalities show that m̂gal
min(C) behaves likes mgal?

min (C), pengal
min is a

minimal penalty.
Let us emphasize that for making use of the fact that pengal

min is a minimal penalty, we must
assume that pengal

min ≈C? pen0 and pengal
opt ≈C? pen1 for some unknown C? > 0 and some known

penalty shapes pen0 and pen1 . Remark that we could generalize this assumption to the exis-
tence of some known function f such that pengal

min ≈C? pen0 and pengal
opt ≈ f (C?)pen1, but such a

generalization has not been proved useful yet.

Remark 2 (Choice of s?m). Overall, the above heuristics makes two assumptions on s?m ∈ S. First,
R(s?m)− inft∈SR(t) is small when Cm is large. Second, pengal

min(m) is known up to a multiplicative
constant, whose value can be used for deriving an optimal penalty. When ŝm ∈ argmint∈Sm

R̂n(t)
is an empirical risk minimizer over some model Sm⊂ S, a natural choice is s?m ∈ argmint∈Sm

R(t),
so that R(s?m)− inft∈SR(t) is the approximation error. For linear estimators, the decomposition
(46) of the risk suggests to take s?m = AmF. By analogy, we call R(s?m)− inft∈SR(t) the approx-
imation error associated with ŝm in the general case. Choosing s?m might be difficult in general;
when this makes sense, an option is the expectation of ŝm .

3.7. Bibliographical remarks

Algorithms The slope-heuristics algorithm for calibrating penalties was first proposed in the
Gaussian least-squares regression setting of Section 2 with a penalty proportional to the dimen-
sion (Birgé and Massart, 2001b), as in Algorithms 1–2. Then, it was generalized to a penalty
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function of the dimension (Birgé and Massart, 2007), and to a general penalty shape (Massart,
2005; Blanchard and Massart, 2006; Massart, 2007), as in Algorithm 3.

The first implementations of the slope heuristics were done directly with Algorithm 3 (or its
“slope” version) with Cm = Dm , instead of Algorithms 1–2, since they were outside the set-
ting of Section 2: maximum-likelihood estimators (Letué, 2000, Section A.4), and change-point
detection (Lebarbier, 2002, Chapter 4).

The proposition of using a general complexity measure Cm instead of a dimension Dm (as in
Algorithms 3, 5–6) was first made in density estimation (Lerasle, 2009), with the suggestion of
estimating Cm by resampling if necessary.

The failure of Algorithm 3 for linear estimators in regression was noticed by Arlot and Bach
(2009), where Algorithm 4 was proposed and theoretically justified. The general Algorithm 5
has only been formalized by Arlot (2011, Section 2.5), while its “slope estimation” version (Al-
gorithm 6) is new, even if the (approximate) equivalence between “jump” and “slope” algorithms
is not. Up to now, the general formulation of Algorithms 5–6 has only been proved useful in the
case of linear estimators in regression (Arlot and Bach, 2009, 2011) and in density estimation
(Magalhães, 2015; Lerasle et al., 2016), with different shapes for pen0 and pen1 . It can also be
useful in a few other settings where pen1 is proportional to pen0 but the ratio between optimal
and minimal penalty might be different from 2, for selecting among a rich collection of models
or estimators. For instance, for pruning a decision tree, the “max” variant considered by Bar-Hen
et al. (2018, Section 5.4) is equivalent to Algorithm 5 with pen1 = pen0 , hence selecting the
estimator “just after” the maximal jump.

Theory The first (partial) theoretical result proved outside the setting of Section 2 was for
maximum-likelihood estimators (histograms) in density estimation, assuming that the true den-
sity s? is the uniform density over [0,1] (Castellan, 1999). Other theoretical results outside the
setting of Section 2 are reviewed in Section 4.

The first theoretical result proved for Algorithm 3 with a penalty shape pen1(m) not function
of a dimension Dm was obtained in heteroscedastic least-squares regression (Arlot and Massart,
2009), where the penalty shape can be estimated by resampling (Arlot, 2009).

The general heuristics “penopt ≈ 2penmin” underlying Algorithm 3 was formulated by Blan-
chard and Massart (2006, Section 2) and Massart (2007, Section 8.5.2), together with a heuristic
argument for suggesting

p2(m) := R̂n(s?m)− R̂n(ŝm)

as a minimal penalty, when ŝm is an empirical risk minimizer and s?m is defined according to
Remark 2. In these papers, p2(m) is called v̂m since it can be interpretated as a variance. Here,
the general minimal penalty that we propose is pengal

min(m) =E[p2(m)], as in the PhD dissertation
of Arlot (2007, Chapter 3) for instance. Another formulation of the heuristics behind Algorithm 3
is “p1(m)≈ p2(m)”, where

p1(m) := R(ŝm)−R(s?m) ,

as for instance written in a binary classification framework by Zwald (2005, Section 6.4.3),
together with “p2(m) ∝ Dm for Dm large enough”.
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4. Theoretical results: a review

This section collects all theoretical results that are directly related to minimal-penalty algorithms,
to the best of our knowledge. First, the proof of Algorithm 5 is split into several subproblems
(Section 4.1). Then, we present full proofs of Algorithm 5 (Section 4.2) and partial results (Sec-
tions 4.3–4.7). Note that some related results outside the setting of Section 3 are reported in
conclusion (Sections 8.3.6 and 8.5).

In this section, all partial or full proofs of Algorithm 5 that we present define Ĉjump as Ĉthr.(Tn)

or Ĉwindow(η) for some well-chosen Tn or η . For the sake of simplicity, we do not discuss any-
more the exact definition chosen for Ĉjump , until we tackle this question in Section 7.1.

4.1. General approach for proving Algorithm 5

Following Theorem 1 and its proof, let us suggest a general approach towards a theoretical jus-
tification of Algorithm 5, that we split into several subproblems.

(α) The minimal and optimal penalties are known up to some common multiplicative
factor: Find two penalty functions pen0 , pen1 , and a complexity measure (Cm)m∈M , such
that for some (unknown) C? > 0, C? pen0 is a minimal penalty and C? pen1 is an optimal
penalty.

(β ) C? pen0 is actually a minimal penalty: η−n ,η+
n > 0 exist such that, on a large-probability

event,

∀C <
(
1−η

−
n
)

C? , C
m̂(0)

min(C)
> Coverfit ∝ max

m∈M
Cm (β−)

∀C >
(
1+η

+
n
)

C? , C
m̂(0)

min(C)
6 Csmall� max

m∈M
Cm (β+)

where ∀C > 0 , m̂(0)
min(C) ∈ argmin

m∈M

{
R̂n(ŝm)+C pen0(m)

}
.

The above statements about C
m̂(0)

min(C)
are vague on purpose, since the range of (Cm)m∈M is

not specified. When Cm is the dimension Dm ∈ [1,n] of some model, one can specify Coverfit
and Csmall similarly to Eq. (14) and (16), respectively.

(γ) C? pen1 is actually an optimal penalty: there exists η > 0 such that, on a large-probability
event, for every C ∈ ([1−η ]C? , [1+η ]C?),

∀m̂(1)
opt(C) ∈ argmin

m∈M

{
R̂n(ŝm)+C pen1(m)

}
,

R
(

ŝ
m̂(1)

opt(C)

)
−R(s?)6

(
1+ εn(η)

)
inf

m∈M

{
R(ŝm)−R(s?)

}
+Rn(η) (γ)

where limη→0,n→+∞ εn(η) = 0 and the remainder term Rn(η) is negligible in front of the
oracle risk infm∈M {R(ŝm)−R(s?)}.

As in the PhD dissertation of Arlot (2007), we use in this section the following notation:

p1(m) := R(ŝm)−R(s?m) , (55)

p2(m) := R̂n(s?m)− R̂n(ŝm) , (56)

and δ (m) := R(s?m)− R̂n(s?m) . (57)
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In particular, with the notation of Section 3.6,

pengal
opt(m) = E

[
p1(m)+δ (m)+ p2(m)

]
and pengal

min(m) = E
[
p2(m)

]
.

4.2. Full proofs of Algorithm 5

Few settings exist where a full proof of Algorithm 5 is available, that is, a proof that (β−), (β+),
and (γ) hold true on a large-probability event for some known pen0 , pen1 , (Cm)m∈M and some
(unknown) C?. In this article, M is always assumed to be finite with card(M )6 L1nL2 for some
L1,L2 > 0, except in Section 4.7.

We first collect results assuming that pen1 = 2pen0 , so that Algorithm 5 reduces to Algo-
rithm 3. Without explicit mention of the contrary, for all results reviewed in the list below, the
noise is assumed independent and identically distributed, ŝm ∈ argmint∈Sm

R̂n(t) is an empirical
risk minimizer, so we take s?m ∈ argmint∈Sm

R(t) for defining p2(m), and the complexity used is
Cm = Dm the dimension of Sm . Full proofs of Algorithm 5 exist in the following settings:

– Regression on a fixed design, homoscedastic (sub-)Gaussian noise, least-squares risk and
estimators: Birgé and Massart (2007) and Theorem 1 (and Remark 1 for the sub-Gaussian
case) prove it with pen0(m) = Dm/n and C? = σ2 the (constant) noise level. Note that
p1(m) = p2(m) = n−1‖Πmε‖2 in this setting.

– Regression on a random design, heteroscedastic noise (not necessarily Gaussian), least-
squares risk, with various least-squares estimators: regressograms with moment assump-
tions on the noise (Arlot and Massart, 2009), piecewise polynomials with bounded noise
(Saumard, 2013, with key concentration results for p1 and p2 proved by Saumard, 2012),
or more general models satisfying a “strongly-localized basis” assumption with bounded
noise (Saumard, 2010a; Navarro and Saumard, 2017). Contrary to the previous setting,
E[p1(m)]≈ E[p2(m)] holds true only for most models and for n large enough.
The penalty shape pen0(m) = E[p2(m)] is unknown in general and C? = 1. For regresso-
grams, the results remain true when pen0(m) is a resampling-based estimation of E[p2(m)]
(see Arlot, 2009). For piecewise polynomials, the same holds when pen0(m) is a hold-out
estimation of E[p2(m)] (see Saumard, 2013). For strongly localized bases, the (approxi-
mate) closed-form formula for E[p1(m)] and E[p2(m)] provided by Navarro and Saumard
(2017, Theorem 6.3) might be used for estimating pen0(m) without resampling; another
option is V -fold penalization (Navarro and Saumard, 2017, Section 5).

– Density estimation, least-squares risk and estimators, i.i.d. (Lerasle, 2012) or mixing data
(Lerasle, 2011). The penalty shape pen0(m) = E[p2(m)] is approximately known for some
specific models (regular histograms), in general it can be estimated by resampling as previ-
ously. In this setting, the complexity Cm can either be the dimension of Sm or the resampling-
based estimator of E[p2(m)] itself. Note that in least-squares density estimation, we have
p1(m) = p2(m) almost surely.

– Density estimation, Kullback risk and maximum-likelihood estimators, histogram models
(Saumard, 2010c). This result is the first one obtained without the least-squares risk. The
penalty shape pen0(m) =Dm/(2n) is known, C? = 1, and the optimal penalty is AIC. A par-
tial result, for the uniform density over [0,1] only, has previously been proved by Castellan
(1999).
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– Specification probabilities in general random fields (that is, graphical models), least-squares
or Kullback risks, estimators that are empirical distributions conditionally to the values
observed on a subset m of the field (Lerasle and Takahashi, 2016). The shape of the penalty
and the complexity pen0(m)=Cm = p2(m) are unknown. The authors suggest to use instead
the shape of a theoretical upper bound on E [p2(m)], dropping off pessimistic constants, with
convincing experimental results.

The above results for least-squares regression on a random design, least-squares density estima-
tion (i.i.d. case), and maximum-likelihood density estimation can all be recovered (sometimes
up to minor differences) as a corollary of a general result which holds for all “regular estimators”
(Saumard, 2010b, Chapters 7–8).

Full proofs of Algorithm 5 (or a slight modification of it) also exist in two settings where
pen1 6= 2pen0 in general:

– Regression on a fixed design, independent and identically distributed (homoscedastic) Gaus-
sian noise, least-squares risk, linear estimators: Arlot and Bach (2009, 2011) prove that
Algorithm 4 works, while Algorithm 3 fails in general, as detailed in Sections 3.2–3.3.

– Density estimation, independent and identically distributed data, least-squares risk, lin-
ear estimators (for instance, Parzen density estimators and weighted least-squares estima-
tors): Lerasle et al. (2016) —after a preliminary version in the PhD dissertation of Ma-
galhães (2015, Chapter 2)— define some theoretical quantities pen0(m) ≈ E[p2(m)] and
Cm ≈ E[p1(m)] —easy to estimate in general, and known for several examples such as
Parzen density estimators— such that

m̂(C) ∈ argmin
m∈M

{
R̂n(ŝm)+pen0(m)+CCm

}
overfits for C < 0 and satisfies an oracle inequality for all C > 0, first-order optimal when
C =C? = 1. In other words, Lerasle et al. (2016) almost prove that Algorithm 5 works with
pen0(m) = E[p2(m)], pen1(m) = E[p1(m)]+E[p2(m)], Cm = E[p1(m)], and C? = 1. This
result implies the one of Lerasle (2012) for least-squares estimators. A noticeable fact in
this framework is that penmin —and sometimes even penopt, surprisingly— can be negative,
making the terminology “minimal” penalty questionable (Lerasle et al., 2016, Sections 4.3
and 5). Note that penopt here can be negative because ŝm is not an empirical risk minimizer,
hence R̂n(ŝm) is not necessarily biased downards as an estimator of R(ŝm). Nevertheless,
for most usual estimators, penmin and penopt are always positive. Theoretical results for
choosing among Parzen density estimators with slightly different minimal-penalty algo-
rithms —closer to Goldenshluger-Lepski’s method— are discussed in Section 8.5.

Remark 3 (Minimal penalties with resampling-based estimators of E[p2(m)]). In several pa-
pers mentioned above, theoretical results validate Algorithm 5 with pen0(m) = Cm = p2(m) or
E [p2(m)], pen1(m) = 2pen0(m), and C? = 1. Such results might seem useless since (i) pen0 is
unknown, and (ii) C? is known, that is, the exact opposite of the motivation for Algorithm 5 ex-
posed in Section 3.2. Nevertheless, problem (i) can be solved by taking pen0(m) = Cm equal to
a resampling-based estimator p̂W

2 (m) of E [p2(m)] (Lerasle, 2012, for instance). Then, as usual
with resampling, it remains to find the constant CW such that CWE

[
p̂W

2 (m)
]
≈ E [p2(m)] for all
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m ∈M . When such a constant CW exists, it usually depends on the resampling scheme W, the
sample size, and the particular setting considered (Arlot, 2009). As a consequence, we recover
a setting where pen0(m) = Cm = p̂W

2 (m) is known and C? = CW is unknown, for which Algo-
rithm 5 can be useful. Note that we here propose to take Cm = p̂W

2 (m), which does not estimate
E [p2(m)] but E [p2(m)]/CW ; this is not a problem since the complexity jump is independent from
the rescaling by CW .
According to simulation experiments, the above strategy of combining resampling penalties with
the slope heuristics can be better (Lerasle, 2010, least-squares density estimation) or worse
(Garivier and Lerasle, 2011, context-tree estimation) compared to using the penalty C̃W p̂W

2 (m),
where C̃W derives from asymptotic theoretical results and does not depend on any unknown
quantity in the settings of these two articles.

4.3. Partial proofs: uncertainty on the optimal penalty

An optimal oracle inequality like (γ) in Section 4.1 has not been proved in many frameworks,
and it is quite difficult to obtain a leading constant 1 + εn(η) = 1 + o(1) while keeping the
remainder term negligible in front of the oracle risk. A much more usual result in the model-
selection literature is the following weakened version of (γ): on a large-probability event, for
every C ∈ ([1−η ]C? , [1+η ]C?) with η > 0 small enough,

R
(

ŝ
m̂(1)

opt(C)

)
−R(s?)6 Kn(η) inf

m∈M

{
R(ŝm)−R(s?)

}
+Rn(η) (γ̃ )

for some Kn(η),Rn(η)< ∞. Note that (γ) with εn = 0 and Rn > infm∈M {R(ŝm)−R(s?)} should
be understood as (γ̃ ) with Kn > 2. Similarly, a classical way to write an oracle-type inequality is

R
(

ŝ
m̂(1)

opt(C)

)
−R(s?)6 inf

m∈M

{
R(ŝm)−R(s?)+Rn(m)

}
. (γ̃ ′)

When Rn(m) is comparable to R(ŝm)−R(s?), or even larger, (for instance, Rn(m) > pen(m)),
(γ̃ ′) should be understood as (γ̃ ) with Kn > 2.

Proving only (γ̃ ) instead of (γ) is a significant limitation: (γ̃ ) does not show that C? pen1 is
an optimal penalty if we cannot prove that Kn(η) is first-order optimal, which is very difficult
to prove unless Kn(η) = 1+ o(1) as in (γ). As a consequence, in such cases, C? pen1 might
not be optimal, and the optimal penalty might be C′ pen1 with C? 6= C′, or even have a com-
pletely different shape than pen1 . For instance, in the setting of Section 3.4, the optimal penalty
is 2σ2 tr(Am)/n, but taking 2σ2[tr(Am) + tr(A>mAm)]/n as a penalty, we could have an oracle
inequality (γ̃ ) with a penalty having a suboptimal shape.

Results Nevertheless, proving (β ) and (γ̃ ) still shows that Algorithm 5 provides a data-driven
estimator satisfying an oracle inequality. Such a result exists for context-tree estimation with the
Kullback risk, φ -mixing processes, and maximum-likelihood estimators (Garivier and Lerasle,
2011), with pen0(m) = Cm = p2(m) and pen1(m) = 2pen0(m). Simulation experiments suggest
that p2(m) can be replaced by a BIC-type penalty or a resampling-based estimator of E [p2(m)],
see Remark 3 in Section 4.2. What is missing to get a proof of (γ) is a tight concentration
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inequality for δ (m)− δ (m′), that is, to have Eq. (60) satisfied with εδ = o(1) as required in
Proposition 2, see Section 5.2.2. Simulation experiments suggest that pen1 = 2pen0 is indeed an
optimal choice here.

4.4. Minimal penalty in terms of risk: (β ′)

Another way to define a minimal penalty is in terms of the risk of ŝ
m̂(0)

min(C)
, which is theoretically

interesting but does not prove the presence of a complexity jump as expected by Algorithm 5:

∀C < (1−η
−
n )C? , R

(
ŝ

m̂(0)
min(C)

)
−R(s?)> κ max

m∈M

{
R(ŝm)−R(s?)

}
(β ′−)

∀C > (1+η
+
n )C? , R

(
ŝ

m̂(0)
min(C)

)
−R(s?)6 K

(
C
C?

)
inf

m∈M

{
R(ŝm)−R(s?)

}
+Rn

(
C
C?

)
(β ′+)

where for every x> 1, K(x)∈ [1,∞) and Rn(x)� infm∈M {R(ŝm)−R(s?)} in general, and κ > 0
is an absolute constant.

When (β ), which is defined in Section 4.1, is replaced by (β ′) above, the justification of
Algorithm 5 is far from being complete, since there might be no complexity jump as required in
the definition of Ĉwindow . Nevertheless, once (β ′) is proved, one can reasonably conjecture that
(β ) holds true under similar assumptions, provided that Cm is well chosen. Moreover, (β ) and
(β ′) are closely related if

∀x > 0 , inf
m∈M /Cm>x

{
R(ŝm)−R(s?)

}
> g(x)> 0 (58)

for some increasing function g. Indeed, assuming (58), (β−) implies (β ′−) with

κ =
g(Coverfit)

maxm∈M {R(ŝm)−R(s?)}
,

and (β ′+) implies (β+) with

Csmall = g−1
(

K
(

C
C?

)
inf

m∈M

{
R(ŝm)−R(s?)

})
+Rn

(
C
C?

)
.

Note that Eq. (58) holds true with g(x) = x/α if Cm ≈ α p1(m); for instance, for least-squares
estimators and risk, α = σ2/n since Cm = Dm and p1(m)≈ σ2Dm/n. Let us remark finally that
the proof of (β ′−) usually relies on a proof of (β−), sometimes hidden by technical details.

Results To the best of our knowledge, a full proof of (β ′) currently exists only in settings where
(β ) is proved to hold, except one result that we report in Section 4.7. Some partial proofs of (β ′)
are reviewed in the next subsections.
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4.5. Partial proofs: uncertainty on the minimal penalty

A result weaker than (β ) can be proved about the complexity jump: for some C?
1 < C?

2 (that
remain distinct even when n→+∞),

∀C <C?
1 , (β−) holds true, and ∀C >C?

2 , (β+) holds true. (β̃ )

In other words, C?
1 pen0 is a too small penalty, while C?

2 pen0 is a sufficiently large penalty.
From the theoretical point of view, proving (β̃ ) instead of (β ) is a serious limitation: for rea-

sons similar to the ones explained in Section 4.3 for (γ̃ ), it can happen that pen0 is not the
shape of a minimal penalty. For instance, in the setting of Section 3.3, (β̃ ) holds true with
pen0(m) = tr(Am) although this quantity is not always proportional to the minimal penalty, as
shown by Figure 3.

Nevertheless, from the practical point of view, one can still derive from (β̃ ) a way to get from
data some Ĉ∈ [C?

1 ,C
?
2 ], for instance by taking a large η in the definition of Ĉwindow(η). If (C?

2/C?
1)

is not too large and if (γ̃ ) holds true for some C? ∈ [C?
1 ,C

?
2 ], this leads to an estimator satisfying

an oracle inequality.

Results One full proof of (β̃ ) and (γ̃ ) is available for prediction in a Gaussian graphical model
via neighborhood selection, with conditional least-squares risk and estimators, a minimal-penalty
shape pen0(m) = Cm = Dm , and an optimal penalty shape pen1 proportional to pen0 (Verzelen,
2010). The proof of (β̃ ) assumes in addition that the graph is a square lattice. Simulation experi-
ments suggest that there is indeed a jump around C? and that Algorithm 5 works well.

4.6. Partial proofs: for some specific s? only

The weakest partial proofs of (β ) are the ones only valid for some particular s?, which often is
s? = 0. Then, although C? pen0 is a minimal penalty for this particular s?, the general shape of the
minimal penalty can differ from pen0 . For instance, in the Lasso case, an empirical study shows
that the shape of E [p2(m)] depends on s? and on some other features of the distribution of the
data (Connault, 2011).

Nevertheless, such weak results still are a good way to guess pen0 for a practical use of Algo-
rithm 5, and they can be a first step towards a full theoretical justification.

Results Such partial proofs exist in the case of multiplicative penalties, an apparently different
setting that can still be cast into the framework of Algorithm 5. The principle, as exposed by
Baraud et al. (2009) for least-squares regression, is to replace the penalized criterion (3) by the
product of the empirical risk by some penalty term, that is, choosing

m̂ ∈ argmin
m∈M

{
R̂n(ŝm)

(
1+

penmult(m)

n−Dm

)}
. (59)
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This can actually be seen as an additive penalization method as in Eq. (3), with the penalty

pen(m) := R̂n(ŝm)
penmult(m)

n−Dm
.

So, choosing a multiplicative factor in front of penmult(m) is equivalent to choosing a multiplica-
tive factor in front of an additive penalty of a particular form. For fixed-design regression with
least-squares risk and estimators, Baraud et al. (2009) prove that (β−) holds true if s? = 0, while
(β ′+) and (γ̃ ) hold true in general, with C? penmult

0 (m) = Dm and penmult
1 ∝ penmult

0 .
In addition, in the setting of multivariate regression on a fixed design with the least-squares

risk and low-rank least-squares estimators, (γ̃ ) and (β ′+) are proved in a general case, while (β−)
is proved only for s? = 0 (Giraud, 2011); remark that (β+) can certainly be proved in a general
case, although its proof is not written in the article by Giraud (2011). Note also that these results
are valid both for additive penalties and for multiplicative penalties as the ones of Baraud et al.
(2009).

4.7. Partial proofs: richer collections of models

Throughout the article, we assume (at least implicitly) that M is not too large, that is, card(M )
grows at most polynomially with the sample size n, or M can be well approximated by such
a polynomial set of estimators —e.g., kernel ridge regression with one continuous parameter λ

(Arlot and Bach, 2011). Nevertheless, the case where M is larger deserves attention, and we
review in this subsection the partial results about minimal penalties in such settings. Note that
each of them suffers from some of the limitations emphasized in Sections 4.3–4.6.

Let us consider the fixed-design regression setting, with least-squares risk and estimators on
finite-dimensional vector spaces Sm . Assuming as Birgé and Massart (2007) that the penalty is a
function of the dimension, the selected estimator

ŝm̂ with m̂ ∈ argmin
m∈M

{
R̂n(ŝm)+pen(Dm)

}
can be rewritten as ŝ ′

D̂
where

∀D ∈ N, ŝ ′D ∈ argmin
t∈S′D

{
R̂n(t)

}
, S′D :=

⋃
m∈M
Dm=D

Sm , and D̂ ∈ argmin
D∈N

{
R̂n(ŝ ′D)+pen(D)

}
.

Then, discarding all models of dimension D > n, ŝm̂ = ŝ ′
D̂

is a penalized empirical risk minimizer
over a collection (S′D)06D6n of cardinality at most n+1. The difference with the initial formula-
tion is that the models S′D are not vector spaces (in general), and the complexity of S′D strongly
depends on f (D) := card{m ∈M /Dm = D}. Three cases can be distinguished, following Birgé
and Massart (2007):

(i) M is “small” or “polynomial” when f (D) 6 CDω for some C,ω > 0. Then, card(M )
grows polynomially with n (since models of dimension Dm > n can safely be discarded),
and the complexity of S′D is essentially the same as the one of a D-dimensional vector
space.
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(ii) M is “large” or “exponential” when f (D) grows much faster —typically of order
(n

D

)
—,

which implies in particular that card(M ) grows exponentially with n. Then, S′D is much
more complex than a D-dimensional vector space. A typical example is (full) variable
selection among p > n variables, for which f (D) =

(p
D

)
>
(n

D

)
.

(iii) M is “moderate” in the intermediate situation, when D−1 log f (D) stays bounded away
from 0 and ∞ for n� D� 1.

The current subsection focuses on cases (ii) and (iii); all other results mentioned in this article
correspond to case (i).

Results for case (ii): large number of models

In fixed-design regression with least-squares risks and estimators, (β ′) and (γ̃ ) are proved by
Birgé and Massart (2007) for the (full) variable-selection problem with p orthonormal variables,
assuming that the noise is Gaussian, and defining

pen0(m) =
Dm

n

(
1+2log

p
Dm

)
, C? = σ

2 ,

and pen1(m) = C pen0 with any C > 1. Note that (β−) can be derived from the proof by Birgé
and Massart (2007, Proposition 2), but it is not written in the article by Birgé and Massart (2007).

Similar theoretical results are proved by Sorba (2017, Chapter 8) for Gaussian variable selec-
tion with p = n and a more general collection of models, that can be smaller than full variable
selection but still exponentially large. Formally, Sorba (2017, Section 8.1) assumes that M sat-
isfies a “completion rule”, which holds for instance for the collection of regressograms over a
partition whose cells are hyperrectangles of Rd . Then, (β ′−) and (γ̃ ) hold true, with pen0(m)
proportional to Dm

n log en
Dm

—showing that a log(n) factor is still necessary here— and (β−) is
proved when the target signal is null. Compared to the results of Birgé and Massart (2007), a gap
of a multiplicative constant remains between minimal and sufficient penalties.

Sorba (2017, Chapter 9) proves similar theoretical results about histogram selection for den-
sity estimation by penalized log-likelihood, with the Kullback risk, for any large collection of
subpartitions of a regular partition of [0,1] into N + 1 pieces, assuming N 6 n/(logn)2. A suf-
ficient penalty ∝

Dm
n log(N) satisfies (γ̃ ). If the target density is uniform over [0,1], (β ′−) holds

true with a minimal penalty level of the same order of magnitude. As a consequence, when
log(N) ∼ log(n), this proves that a log(n) factor must be added to the penalty compared to the
case of a polynomial collection M .

Two partial results are available with multiplicative penalties, which are introduced in Sec-
tion 4.6. In the same setting as Birgé and Massart (2007), (β−) —assuming s? = 0 and a specific
“exponential” collection M with f (D) ≈

(n
D

)
—, (β ′+), and (γ̃ ) are proved by Baraud et al.

(2009), with penmult
0 (m) = 2Dm log(n). For estimation of a Gaussian graph —that is, in a Gaus-

sian graphical model, predict the value at each vertex of the graph given its neighbors, by linear
regression—, with least-squares risk and estimators, (β−) —assuming that s? = 0 and M con-
tains some specific “exponential” collection with f (D) ≈

(p
D

)
for some p > n—, (β ′+), and (γ̃ )

are proved by Giraud (2008), with penmult
0 (m) = 2Dm log(p). In both articles by Baraud et al.

(2009) and Giraud (2008), (γ̃ ) holds with penmult
1 =C penmult

0 for any C > 1.
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Finally, several other arguments can be found for the necessity of a penalty larger than

σ
2 Dm

n

(
1+ log

n
Dm

)
—up to a numerical constant— for change-point detection, which is an instance of variable
selection with p = n− 1. Minimax lower bounds (Durot et al., 2009, Theorem 2) and general
oracle inequalities (Birgé and Massart, 2007) prove that for the true model m?,

pen(m?)> κσ
2 Dm?

n

(
1+ log

n
Dm?

)
is necessary for some constant κ > 0. Abramovich et al. (2006, Section 1.9) provide several other
reasons why the optimal penalty should be close to 2σ2 Dm

n log n
Dm

.

Results for case (iii): moderate number of models

In fixed-design regression with least-squares risks and estimators, (γ̃ ) holds true in general, and
(β̃ ′) is proved assuming that s? = 0 and all models of the same dimension D are orthogonal
(Birgé and Massart, 2007, Proposition 3), with

pen0(m) = λ
Dm

n

[
1+2

√
f (Dm)+2 f (Dm)

]
, f (D) = a+

b log(D+1)
D

, and C? = σ
2

under some condition on the constants λ ,a,b. By (β̃ ′), we mean (β̃ ) with a jump in the risk
instead of the complexity; here, the gap in (β̃ ′) is C?

2/C?
1 = 6/5.

Results of the same flavor exist for a toy problem close to the above setting (Sorba, 2017,
Chapter 10), and for a Gaussian linear process and a b-ary tree partition collection —with no
assumption on s? for proving (β−) and (β ′−)— (Sorba, 2017, Chapter 6). All these results show
that “intermediate” collections of models can require a penalty strictly larger than the minimal
penalty σ2Dm

n of “polynomial” collections.

5. Towards new theoretical results on minimal penalties

We now describe some strategies for proving that Algorithm 5 works in other settings. This
section is a bit more abstract and technical than the rest of the article, so it can be skipped at first
reading. As in Section 4.1, whose notation is used throughout the section, we consider separately
subproblems (α), (β ), and (γ).

5.1. Hints for (α): how to find pen0, pen1, and Cm?

Using the notation defined by Eq. (55), (56), and (57), Section 3.6 suggests that p1(m)+ p2(m)

or its expectation pengal
opt(m) should be an optimal penalty, and p2(m) or its expectation pengal

min(m)
should be a minimal penalty.

In both cases, computing (approximately) E[pi(m)], i = 1,2, or deriving an asymptotic ex-
pansion of pi(m), i = 1,2, at least for Cm large enough, can lead to formulas for pen0(m) and
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pen1(m). For instance, for fixed-design regression with the least-squares risk, exact formulas for
E[pi(m)] lead to Algorithm 1 for least-squares estimators, and to Algorithm 4 for linear estima-
tors. The main difficulty here is to have no unknown quantity inside pen0 or pen1 .
For general estimators in the fixed-design regression setting, an exact formula for pengal

opt(m) is
given by covariance penalties (Efron, 2004), which can be expressed using the degrees of free-
dom when the noise is Gaussian and the loss is quadratic. For maximum-likelihood estimators
and risk, a partial asymptotic solution is given by the formula of the AIC criterion (Akaike,
1973), which derives from some version of the Wilks phenomenon (see also Section 5.2). In
both cases, only a formula for pen1 is available, and pen0 remains unknown, even if one can
sometimes conjecture that pen0 = pen1 /2.
For random-design regression with the quadratic risk, Navarro and Saumard (2017, Theorem 6.3)
provide an (approximate) closed-form formula for E[p1(m)] and E[p2(m)] —by proving that
p1(m) and p2(m) concentrate around some deterministic quantity, which is not necessarily equal
to their expectation— that is not directly useful because it depends on the unknown distribution
of the (Xi,Yi).

Another option is to define pen0(m), resp. pen1(m), as some resampling-based estimator of
E[p2(m)], resp. E[p2(m)+ p1(m)], and to use Algorithm 5 for estimating the common (unknown)
multiplicative factor C? such that

C?E
[
pen0(m)

]
≈ E

[
p2(m)

]
and C?E

[
pen1(m)

]
≈ E

[
p1(m)+ p2(m)

]
,

see Remark 3 in Section 4.2. In addition to the papers mentioned in Section 4.2, let us mention
here that a concentration result for the resampling estimate of E[p2(m)] is proved by Arlot (2007,
Chapter 7), for empirical risk minimizers and a general bounded risk.

If no natural quantity arises as a complexity measure Cm , such as the number of parameters
in regression, E [p2(m)] (or a resampling-based estimator of it) can be a good guess for Cm , see
the article by Lerasle (2012) and Remark 3.

5.2. Hints for (β ): how to prove that C? pen0 is a minimal penalty?

Following the results mentioned in the previous subsections, two general approaches can be
used for proving (β ), assuming either that C? pen0(m) = E [p2(m)] as in Theorem 1, or that
pen0(m) = Cm = p2(m) as done by Lerasle and Takahashi (2016). This section details these two
approaches for proving (β−) and (β+), before focusing on the concentration inequalities they
both require. Recall that

∀C > 0, m̂(0)
min(C) ∈ argmin

m∈M

{
R̂n(ŝm)+C pen0(m)

}
.
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5.2.1. Below the minimal penalty: (β−)

Following the proof of Theorem 1 When C? pen0(m) = E[p2(m)], similarly to the proof of
Eq. (14) in Theorem 1, one can prove (β−) by showing that for some well-chosen m1 ∈M ,

∀C < (1−η
−
n )C? , inf

m∈M /Cm<Coverfit

GC(m)> GC(m1)

where GC(m) := R̂n(ŝm)+C pen0(m) = R(s?m)−δ (m)− p2(m)+
C
C?

E
[
p2(m)

]
is the quantity minimized by m̂(0)

min(C). Then, in addition to the arguments sketched in Section 3.5,
we only need here tight concentration inequalities for δ (m)− δ (m1) and for p2(m), see Sec-
tion 5.2.3. A natural choice for m1 is a minimizer of the approximation error R(s?m)−R(s?)
over m ∈M .

Generalizing the strategy of Lerasle and Takahashi (2016) and Garivier and Lerasle (2011)
When pen0(m) =Cm ∝ p2(m), the approach 3 used by Lerasle and Takahashi (2016) and Garivier
and Lerasle (2011) can be summarized into the following proposition.

Proposition 1. Let us consider the general framework of Section 3.1 and use the notation of
Section 4.1. Let εδ ∈ [0,1], ε ′

δ
> 0, and assume that for every m ∈M , pen0(m) = p2(m) and

∀m,m′ ∈M ,
∣∣δ (m)−δ (m′)

∣∣6 εδ

[
R(s?m)−R(s?)+R(s?m′)−R(s?)

]
+ ε
′
δ
. (60)

Then, for every C ∈ [0,1),

p2
(
m̂(0)

min(C)
)
> sup

m∈M

{
p2(m)− 2

1−C

[
R(s?m)−R(s?)

]}
−

ε ′
δ

1−C
, (61)

and if R(s?m1
) = R(s?) for some m1 ∈M with p2(m1)> 0, for any α ∈ (0,1),

∀C 6 1−ηα , p2
(
m̂(0)

min(C)
)
> (1−α)p2(m1) with ηα =

ε ′
δ

α p2(m1)
. (62)

Assume in addition that the data ξ1, . . . ,ξn ∈ X are i.i.d. and some contrast function γ :
Ξ×S→ R and constants A,L > 0 exist such that

∀t ∈ S , R̂n(t) =
1
n

n

∑
i=1

γ(ξi, t) and R(t) = E
[
R̂n(t)

]
= E

[
γ(ξ1, t)

]
, (63)

∀t ∈ S ,
∣∣γ(ξ1, t)

∣∣6 A a.s. , (64)

and ∀m ∈M , var
(
γ(ξ1,s?m)− γ(ξ1,s?)

)
6 L
[
R(s?m)−R(s?)

]
. (65)

Then, for every x > 0, with probability at least 1−2card(M )e−x, for any θ > 0, Eq. (60) holds
true with

εδ = θ and ε
′
δ
=

(
L
θ
+

4A
3

)
x
n
.

3 It should be noticed here that the article by Lerasle and Takahashi (2016) was prepublished on June 2011 (arXiv
preprint number 1106.2467), a few months before the preprint by Garivier and Lerasle (2011), despite what the
publication date of the former paper suggests.

Journal de la Société Française de Statistique, Vol. 160 No. 3 1-106
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



38 S. Arlot

Proposition 1 is proved in Appendix A.1. Eq. (62) proves that (β−) holds true if p2(m1) is
close to supm∈M p2(m), which is a reasonable assumption. For instance, in the setting of Sec-
tion 2, m1 is given by assumption (HId) leading to ŝm1 = Y , hence

p2(m1) =
1
n

(
‖Y −Fm1‖2−‖Y − F̂m1‖2)= 1

n
‖ε‖2 ≈ σ

2 .

The proof of Proposition 1 also works when assuming only that p2(m)> 0 for every m ∈M
and

(1− ε0)p2(m)6 pen0(m)6 (1+ ε0)p2(m) ,

which can be used when pen0(m) is a resampling estimate of E[p2(m)] for instance. Then, we
loose a factor in the “rate” ηα of estimation of C? in Eq. (62), see Appendix A.1.

Proposition 1 is new —apart from the fact that its proof relies heavily on the proof technique
proposed by Lerasle and Takahashi (2016)— but rather abstract in its general form. Under the
additional conditions (63)–(65), it can be used for minimum-contrast estimators

ŝm ∈ argmin
t∈Sm

{
R̂n(t)

}
with a bounded contrast γ , so that one automatically has p2(m) > 0 and Eq. (63)–(64) as re-
quested. Then, Eq. (65) is a classical assumption (Massart and Nédélec, 2006) which holds for
bounded regression with the least-squares contrast —with L = A = 8M2 if data are bounded
by M, according to Arlot and Massart (2009)—, and for binary classification with the 0–1 loss
under the margin condition (Mammen and Tsybakov, 1999; Massart and Nédélec, 2006). Let us
emphasize that Algorithm 5 has never been justified for binary classification with the 0–1 loss
up to now, so Proposition 1 is of significant interest even if it only provides a partial justification
—with (β−) only, in a rather abstract form.

5.2.2. Above the minimal penalty: (β+)

Before detailing two approaches for proving (β+), let us recall that if an oracle inequality like
(β ′+) is available, a simple way to prove (β+) is to use the connection from (β ′+) to (β+)
explained in Section 4.4.

Following the proof of Theorem 1 When C? pen0(m) = E [p2(m)], following the proof of
Eq. (16) in Theorem 1, (β+) can be proved by showing that for some well-chosen m2 ∈M ,

∀C > (1+η
+
n )C? , inf

m∈M /Cm>Csmall

GC(m)> GC(m2) ,

which requires concentration inequalities for δ (m)− δ (m2) and for p2(m), see Section 5.2.3.
Two natural choices are

m2 ∈ argmin
m∈M /Cm6Csmall

{
R(s?m)−R(s?)

}
and m2 ∈ argmin

m∈M

{
E
[
R(ŝm)−R(s?)

]}
.
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Generalizing the strategy of Lerasle and Takahashi (2016) and Garivier and Lerasle (2011)
When pen0(m) = Cm ∝ p2(m), the approach used by Lerasle and Takahashi (2016) and Garivier
and Lerasle (2011) can be summarized into the following proposition.

Proposition 2. Let us consider the general framework of Section 3.1 and use the notation of
Section 4.1. Let εδ ,εp ∈ [0,1), ε ′

δ
> 0, assume that Eq. (60) holds true and that for every m∈M ,

pen0(m) = p2(m) and ∣∣p1(m)− p2(m)
∣∣6 εp p1(m) . (66)

Then, for every C > 1, we have

R
(

ŝ
m̂(0)

min(C)

)
−R(s?)6 K(C) inf

m∈M

{
R(ŝm)−R(s?)

}
+K′(C) (67)

and p2

(
m̂(0)

min(C)
)
6 K(C)(1+ εp) inf

m∈M

{
R(ŝm)−R(s?)

}
+K′(C)(1+ εp) , (68)

where K(C) :=
max

{
(C−1)(1+ εp) , 1+ εδ

}
min
{
(C−1)(1− εp) , 1− εδ

}
and K′(C) :=

ε ′
δ

min
{
(C−1)(1− εp) , 1− εδ

} .
Proposition 2 is proved in Appendix A.2.
Now, assume that Eq. (60) and (66) hold on a large-probability event. Then, taking C = 1+η

with η > 0, we get K(C) 6 O(1)/η if η is small enough, and Eq. (67) implies (β ′+). If in
addition p2(m1) stays bounded away from zero as n tends to infinity, Eq. (62) implies (β−). If
moreover the oracle risk tends to zero and ε ′

δ
= o(1), then, Eq. (68) implies (β+). Assuming also

that max{εδ ,εp} = o(1), then K(2) = 1+ o(1) hence Eq. (67) with C = 2 implies a first-order
optimal oracle inequality (γ) with pen1 = 2pen0 .

The conditions of Proposition 2 can be relaxed. First, pen0(m) = p2(m) can be replaced by
(1− ε0)p2(m) 6 pen0(m) 6 (1+ ε0)p2(m) for some ε0 > 0 with C(1− ε0) > 1, which can be
used when pen0(m) is a resampling estimate of E [p2(m)] for instance. Second, Eq. (66) can be
replaced by ∀m∈M ,−ε ′p+ε−p p1(m)6 p2(m)6 ε+

p p1(m)+ε ′p for some ε−p ,ε
+
p > 0 and ε ′p > 0.

Then, K(C) and K′(C) are slightly enlarged, as well as the bound in Eq. (68), see Appendix A.2.
In particular, Proposition 2 can justify (γ) with pen1 = (1+α−1)pen0 provided that both ε−p and
ε+

p converge to α > 0, and ε ′p is small enough.
Assumption (66) is strong and we do not expect that it can be proved as generally as assump-

tion (60) in Proposition 1. Nevertheless, it holds when p1(m) and p2(m) both concentrate around
E [p1(m)] ≈ E [p2(m)] for every m ∈M , and it can be satisfied in other cases. For instance, for
least-squares estimators in least-squares fixed-design regression (Section 2) or in least-squares
density estimation (Lerasle, 2012), p1(m) = p2(m) almost surely. Bounding |p1(m)− p2(m)|
also turns out to be easier to get than a concentration inequality for p1 and p2 separately in some
settings where p1(m) 6= p2(m) in general (Garivier and Lerasle, 2011).

Whatever the proof technique used —through (β ′+), as in the proof of Theorem 1 or as in
the article by Lerasle and Takahashi (2016)—, proving that the upper bound on the complexity
in (β+) is much smaller than the lower bound in (β−) is done by assuming that the oracle risk
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tends to zero as n→ ∞, or at least that some estimator of “not too large” complexity has a small
approximation error (as in Theorem 1). We conjecture that such an assumption is unavoidable in
general.

5.2.3. Concentration inequalities

The proof techniques summarized in Sections 5.2.1–5.2.2 require some concentration inequal-
ities for δ (m)− δ (m′) and p2(m), and some deviation inequalities for |p1(m)− p2(m)|/p1(m).
This section provides some ways to obtain such results.

Concentration of δ (m)−δ (m′) As explained in the proof of Proposition 1, δ (m)−δ (m′) is a
sum of independent and identically distributed random variables, so it can be concentrated with
Bernstein’s inequality (Boucheron et al., 2013, Theorem 2.10), leading to a result like Eq. (60)
if a boundedness assumption (64) and some margin-type condition (65) are satisfied.
In the unbounded case, other kinds of concentration inequalities can be used. For instance, for
density estimation with the Kullback risk and maximum-likelihood estimators on histogram
models —that is, the setting of Saumard (2010c) without the boundedness assumption on the
target density—, Saumard and Navarro (2018, Sections 4.2–4.3) use a modified version of Bern-
stein’s inequality for controlling δ (m)− δ (m′). Note that Saumard and Navarro (2018) only
prove (β+) and a first-order optimal oracle inequality (γ), but the proofs of Saumard and Navarro
(2018) can be adapted to get a full proof of the slope heuristics, that is, a result similar to the one
of Saumard (2010c) when the density can be unbounded.

Concentration of p2(m) The problem is much harder for p2(m). It can be seen as proving a
non-asymptotic version of the Wilks phenomenon (Wilks, 1938) in a nonparametric setting with
model misspecification (Boucheron and Massart, 2011), which makes this problem interesting
beyond minimal-penalty algorithms. In addition to the settings mentioned in Section 4.2, con-
centration results for p2 are available in two cases.
For bounded-contrast minimizers, a concentration inequality is proved in a general setting in-
cluding bounded regression and classification with Vapnik-Chervonenkis classes (Boucheron
and Massart, 2011). This result can be used for proving that Algorithm 5 works with regresso-
gram estimators (Arlot and Massart, 2009).
For maximum-likelihood estimators, in a parametric setting (Spokoiny, 2012), in a semipara-
metric setting (Andresen and Spokoiny, 2014) and in a nonparametric setting with a quadratic
penalty (Spokoiny, 2017), p2 is close to some quadratic form with high probability, and this
quadratic form itself satisfies some concentration properties. Nevertheless, these results have not
been used yet for proving that Algorithm 5 works.
Note also that a concentration inequality for p2(m), with histogram (maximum-likelihood) den-
sity estimators and the Kullback risk, have been obtained by Saumard and Navarro (2018), im-
proving previous results by Saumard (2010c).

Proof of Eq. (66) Apart from the specific approaches mentioned in Section 5.2.2, we do not
know any result for bounding directly |p1(m)− p2(m)|/p1(m) as required in Eq. (66).
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5.3. Hints for (γ): how to prove that C? pen1 is an optimal penalty?

When C? pen1(m) = E [p1(m)+ p2(m)], oracle inequalities (γ) or (γ̃ ) usually rely on some con-
centration inequality for the ideal penalty R(ŝm)−R̂n(ŝm) = p1(m)+δ (m)+ p2(m), as in step 3
of the proof of Theorem 1. One actually needs only concentration for[

R(ŝm)− R̂n(ŝm)
]
−
[
R(ŝm′)− R̂n(ŝm′)

]
for all m,m′ ∈M . Concentration results for δ (m)− δ (m′) and for p2(m) are reviewed in Sec-
tion 5.2 since they are usually required for proving (β ). Therefore, we now focus on p1(m).

Concentration of the excess risk p1(m) What remains is to concentrate p1(m) —or equiva-
lently R(ŝm)−R(s?) or R(ŝm)— around its expectation, a difficult problem that has not been
solved except in a few settings: the ones for which a full proof of the slope heuristics exists —see
Section 4.2—, and the ones listed below.

Several papers recently tackled the case of fixed-design linear regression with the least-squares
risk, when ŝm minimizes a (penalized) least-squares criterion over a convex set, assuming that
the penalty Ω is convex. Concentration inequalities for√

R(ŝm)−R(s?) or
√

R(ŝm)−R(s?)+Ω(ŝm)

are available under different assumptions on the noise (Gaussian or not) and on Ω (Chatterjee,
2014; Bellec, 2017; Bellec and Tsybakov, 2017; Muro and Geer, 2018). They apply to various
examples such as the Lasso (in its constrained formulation) and isotonic regression (Chatterjee,
2014), the Lasso and the group Lasso in their usual regularization formulation (Bellec, 2017;
Bellec and Tsybakov, 2017), splines and total-variation regularization (Muro and Geer, 2018).
When Ω is a semi-norm, Bellec (2018) proves upper and lower bounds on E[R(ŝm)]. The article
by Chen et al. (2017) also is related to this topic.

For general losses, high-probability upper and lower bounds on R(ŝm)−R(s?) —sometimes
plus a regularization term Ω(ŝm)— are proved by Bartlett and Mendelson (2006) for general em-
pirical minimizers —with a rather abstract result—, by Saumard (2010b) for “regular” estimators
and losses, and by van de Geer and Wainwright (2017) for regularized empirical risk minimizers
—with precise applications provided for “linear losses” such as linearized least-squares regres-
sion, maximum-likelihood estimators on an exponential model, and log-linear regression. Note
that the general approaches of Bartlett and Mendelson (2006), Saumard (2010b) and van de Geer
and Wainwright (2017) are closely related; Chatterjee (2014), Bellec (2017), Bellec and Tsy-
bakov (2017) and Muro and Geer (2018), which are mentioned above for linear regression, use
a similar technique that is exposed clearly by Bellec (2017, Section 2) for instance.

Saumard (2017) proves a concentration inequality for the quadratic risk R(ŝm) of a least-
squares estimator over a convex set, in the heteroscedastic random-design regression setting; this
result requires to handle specifically the quadratic part of the empirical process, which cannot
be concentrated tightly with the general approach of van de Geer and Wainwright (2017) for
instance. Note also that the result obtained by Saumard (2017) applies to more general models
than the ones of Navarro and Saumard (2017) for which a full proof of the slope heuristics exist.
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For histogram (maximum-likelihood) estimators and the Kullback risk in density estimation,
in addition to the result obtained by Saumard (2010c) and mentioned in Section 4.2, concentra-
tion inequalities for R(ŝm) have been obtained by Castellan (1999), and Saumard and Navarro
(2018) have recently improved them.

Let us also recall that Proposition 2 in Section 5.2.2 provides an alternative approach for
proving (γ) when pen1(m) ∝ p2(m).

6. Related procedures

Minimal-penalty algorithms are primarily made for model/estimator selection, but in the fixed-
design regression setting (Algorithms 1 and 4) they also provide an estimator Ĉjump of the noise
variance σ2. This section compares minimal penalties to its main alternatives for both tasks,
starting by residual-(co)variance estimation.

6.1. Residual-variance estimation

Let us consider the fixed-design regression setting of Sections 2 and 3.3–3.4 and their notation.
An example of interest is when

∀i ∈ {1, . . . ,n} , Fi = f (xi) for some smooth f and some design points xi ∈ Rd . (69)

Literature on residual-variance estimation Many estimators exist for the residual variance
σ2 in nonparametric regression. An exhaustive list is beyond the scope of this article; for more
references, we refer to the articles by Hall et al. (1990), Dette et al. (1998), Spokoiny (2002),
Müller et al. (2003), Liitiäinen et al. (2009) and Ramosaj and Pauly (2019), and to the articles
by Belloni et al. (2014), Chatterjee (2015), Reid et al. (2016) and Giacobino et al. (2017) for
the high-dimensional variable-selection case. A related problem is noise-variance estimation in
heteroscedastic regression (see Brown and Levine, 2007, Gendre, 2008, and references therein).

This section focuses on minimal-penalty based estimators and on estimators that are quadratic
forms of the data vector Y ∈ Rn, that is,

σ̂
2
B :=

〈Y, BY 〉
tr(B)

(70)

where B is some n× n symmetric matrix. Eq. (70) actually covers several, if not all, classical
residual-variance estimators —in particular the ones suggested in the context of model/estimator
selection with Cp or CL —, which allows their common non-asymptotic analysis (Dette et al.,
1998).

Residual-based estimators The most classical variance estimators are based upon the residu-
als —through the empirical risk— on some model Sm0 :

σ̂
2
m0

:=
1

n−Dm0

∥∥Y − F̂m0

∥∥2
. (71)
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Remark that σ̂2
m0

= σ̂2
B with B = In−Πm0 . When σ2 must be estimated in the formula of the

Cp penalty, the classical suggestions are of the form σ̂2
m0

(Mallows, 1973; Efron, 1986; Baraud,
2000).

The bias of σ̂2
m0

as an estimator of σ2 can be derived from Eq. (8):

E
[
σ̂

2
m0

]
−σ

2 =
1

n−Dm0

∥∥(In−Πm0)F
∥∥2

. (72)

If F ∈ Sm0 , then σ̂2
m0

is unbiased, and otherwise it suffers some upward bias, depending on the
approximation error and on the dimension of Sm0 . Proposition 4 in Appendix A.4 provides a
general formula for the variance and MSE of σ̂2

m0
. For instance, assuming for simplicity that the

noise is Gaussian,

E
[(

σ̂
2
m0
−σ

2)2
]
=

2σ4

n−Dm0

+
4σ2

∥∥(In−Πm0)F
∥∥2

(n−Dm0)
2 +

∥∥(In−Πm0)F
∥∥4

(n−Dm0)
2 . (73)

Choosing the model Sm0 without prior knowledge is a difficult question. For minimizing the
MSE, one must trade off terms depending on 1/(n−Dm0) and on the approximation error, that
vary differently as functions of Sm0 ; this can be as difficult as the model-selection problem.
When some unbiased model Sm0 is known with Dm0 = o(n), taking it for the estimation of σ2

is a reasonable choice. This matches the suggestion of Mallows (1973) and Efron (1986) in
the variable-selection setting with a full model of dimension p = o(n). In the setting given by
Eq. (69), when contiguous xi are close enough, a natural choice for Sm0 is the linear span of
(e2i + e2i−1)16i6n/2 where (e1, . . . ,en) denotes the canonical basis of Rn. Then, assuming for
simplicity that n is even,

σ̂
2
m0

=
1
n

n/2

∑
i=1

(Y2i−Y2i−1)
2 (74)

is a consistent estimator of σ2 if f is uniformly continuous and max16i6n‖xi− xi+1‖= o(1).

Note that for high-dimensional variable selection, several residual-based estimators on a data-
driven model m0 —for instance, chosen by cross-validation— are available, but theoretical guar-
antees are still lacking for several of them (Reid et al., 2016; Giacobino et al., 2017).

Variance estimation with minimal penalties The problem of choosing m0 for σ̂2
m0

can be
solved (bypassed in fact) by using the slope heuristics. Let us state non-asymptotic risk bounds
for Ĉthr. and Ĉwindow as estimators of σ2, that derive from Theorem 1 and its proof in Section 2.

Proposition 3. In the framework described in Section 2.1, assume that M is finite, contains at
least one model of dimension at most cn ∈ [0,n/3), and that (HId) and (HG) hold true —see
Section 2.5. Let Ĉthr.(Tn) be defined by Eq. (20) with Tn ∈ (cn,n), and Ĉwindow(η) be defined by
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Eq. (19) with η > 0. For any x > 0 and T ∈ (cn,n), let us define

C1(x;T ) := σ
2

(
1−

4
√ x

n +6 x
n

1− T
n

)

and C2(x;T ;cn) := σ
2
[

1+
4n

T − cn

(√
x
n
+

2x
n

)]
+

2n
T − cn

B(cn)

where B(cn) := inf
m∈M /Dm6cn

{
1
n

∥∥(In−Πm)F
∥∥2
}
.

Then, an event Ωx of probability at least 1−4card(M )e−x exists on which

C1
(
x; 2n

3

)
1+η

6 Ĉwindow(η)6C2

(
x;

n
3

)
(1+η) if η >

√
C2
(
x; n

3

)
C1
(
x; 2n

3

) −1 and x ∈
[
0,

n
180

]
, (75)

and C1(x;Tn)6 Ĉthr.(Tn)6C2(x;Tn;cn) . (76)

If we assume in addition that cn 6 Tn/2, then,

E
[(

Ĉthr.−σ
2)2
]
6 739max

{(
1− Tn

n

)−2

,

(
Tn

2n

)−2
}

×

[(
B

(
Tn

2

))2

+
σ4 log(4cardM )

n
+σ

4
(

log(4cardM )

n

)2
]
.

(77)

Proposition 3 is proved in Appendix A.3. Note that the constant 739 in Eq. (77) can be strongly
reduced under mild additional assumptions, see Appendix A.3. Proposition 3 can also be ex-
tended to (φ 2σ2)-sub-Gaussian noise, at the price of replacing x by Lφ 2x in Eq. (75)–(76) and
log(4cardM ) by Lφ 2 log(4cardM ) in Eq. (77), where L is a numerical constant; see Remark 1
in Section 2.5.

If B(cn) tends to 0 as n tends to +∞ —which is a mild assumption—, by Proposition 3 with
x = 2log(n)+ log(4cardM ), we get that Ĉthr.(Tn) and Ĉwindow(η) estimate consistently σ2, with
deviation bounds of order

B(cn)+σ
2

√
log(n)+ log(cardM )

n
,

provided that cn 6 τn with τ < 1/3,

Tn = ρn with ρ ∈ (0,1) , and σ
2
η ∝ B(cn)+σ

2

√
log(n)+ log(cardM )

n
.

These deviation bounds for Ĉthr. and Ĉwindow can be interpreted as an oracle inequality, since they
coincide with the best possible risk of σ̂2

m0
with Dm0 6 cn , without any prior knowledge except

the choice of (Sm)m∈M . Indeed, Eq. (73) shows that when Dm0 6 cn 6 τn with τ < 1, up to
constants depending on τ only,√

E
[
(σ̂2

m0
−σ2)2

]
&

1
n

∥∥(In−Πm0)F
∥∥2

+
σ2
√

n
> B(cn)+

σ2
√

n
.
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The bound (77) on the mean squared error (MSE) of Ĉthr. can be compared to the minimax
optimal rate ∝ n−min{1,8/d} for the MSE in the setting of Eq. (69) when f has a bounded second-
order derivative (Spokoiny, 2002). Assuming that log(cardM ) = o(n1/9), that the approximation
error B(cn) is minimax optimal hence of order c−4/d

n , and that cn 6 τn with τ < 1, we get that
Ĉthr. is optimal when d > 9 up to constants and within a factor log(cardM ) of the minimax
risk when d 6 8. Similar risk bounds can easily be obtained from Proposition 3 under different
assumptions on the signal. For instance, when Eq. (69) holds true with f that is α-Hölderian for
some α > 0, an approximation error of order D−2α/d

m can be obtained with local polynomials of
maximal degree bαc. We conjecture that these residual-variance estimation bounds are minimax-
optimal up to logarithmic factors provided that (Sm)m∈M has a cardinality at most polynomial in
n and achieves the minimax approximation error bounds. These consequences of Proposition 3
have the flavor of adaptive risk bounds derived from oracle inequalities (Birgé and Massart,
1997), which is new for residual-variance estimation to the best of our knowledge. Therefore,
the additional log(cardM ) factor —coming from the union bound over m ∈M and typically of
order log(n)— seems a mild price for the versatility of Ĉthr. and Ĉwindow .

Residual-based estimators vs. the slope heuristics In addition to the risk bounds comparison
above, we can compare the definition of σ̂2

m0
with the one of Ĉslope in Algorithm 2. On the

one hand, σ̂2
m0

estimates the asymptotic slope of −‖Y − F̂m‖2 as a function of Dm from two
points: m0 and m1 such that Sm1 = Rn. On the other hand, Algorithm 2 makes a (robust) linear
regression over, say, all m such that Dm ∈ [n/2,n]. An illustration is provided by Figure 10 in
Appendix C. This confirms that minimal penalties —here, the slope heuristics— allow to avoid
the choice of a single m0 ∈M by making use of the full collection (Sm)m∈M for estimating the
residual variance. Intuitively, this difference makes Algorithm 2 more stable and less dependent
on some strong assumption about Sm0 . The numerical experiments of Figure 6b in Section 7.1
and Figure 10 in Appendix C indeed show that when Sm0 happens to be a bad model, σ̂2

m0
can

suffer from a large error, whereas Ĉthr. is much more robust.

Residuals of linear estimators Residual-based estimators have also been proposed with sev-
eral other linear estimators F̂m0 = Am0Y of F , that is, defined as σ̂2

B in Eq. (70) with a matrix
B = (In−Am0)

>(In−Am0). For instance, Am0 can correspond to some Nadaraya-Watson fit (also
known as kernel-based estimator; Hall and Marron, 1990) or to spline smoothing (Carter and
Eagleson, 1992); the article by Dette et al. (1998) provides more references. In the setting given
by Eq. (69), the challenging case d > 1 can be tackled with k-nearest neighbors (Liitiäinen et al.,
2010) or a local linear fit of f (Spokoiny, 2002). All these estimators suffer from the same draw-
back as σ̂2

m0
, that is, they rely on the choice of a single matrix Am0 , hence requiring to specify

the regularization parameter m0 . On the contrary, the minimal-penalty approach of Algorithm 4
avoids this choice in a principled way.

Difference-based estimators Difference-based estimators are an important family of residual-
variance estimators, which are designed for the setting of Eq. (69) when ‖xi− xi+1‖= o(1) and
f is smooth, often assuming d = 1. The first example has been proposed by Rice (1984),

σ̂
2
Rice :=

1
2(n−1)

n−1

∑
i=1

(Yi+1−Yi)
2 ,
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which is close to the residual-based estimator defined by Eq. (74). More generally, difference-
sequence estimators of order m > 1 are defined by

σ̂
2
(d0,...,dm)

=
1

n−m

n−m

∑
i=1

(
m

∑
j=0

d jYi+ j

)2

where
m

∑
j=0

d j = 0 and
m

∑
j=0

d2
j = 1 .

The only admissible sequence (d j) j=0,1 for m = 1 leads to σ̂2
Rice . For a general order m, when

xi ∈ R, the optimal sequence (d j) j=0,...,m in terms of MSE does not depend on f asymptotically
and can be computed explicitly (Hall et al., 1990), although the picture can be quite different in
a non-asymptotic setting (Dette et al., 1998).

Assuming xi ∈ R, difference-based estimators of order m > 1 are suboptimal by a constant
factor 1+ 1/(2m) in terms of MSE for normal data (Hall et al., 1990), while for instance the
residual-based estimator of Hall and Marron (1990) attains the optimal rate var(ε2

1 )/n. This issue
is corrected for instance with covariate matching (Müller et al., 2003; Du and Schick, 2009),
which in the case of order m = 1 consists in replacing σ̂2

Rice by

1
2n(n−1) ∑

i6= j
Wi, j(Yi−Yj)

2

with some well-chosen weights Wi, j > 0 (Müller et al., 2003). Another variant of difference-based
estimators, which is asymptotically optimal, is studied by Tong et al. (2013).

Choosing m and the sequence (d j) j=0,...,m is also a difficult problem with no prior knowledge
(Dette et al., 1998). But the main drawback of such estimators is that, when f is not continuous,
they can be severely biased in an unpredictable way. An empirical method for detecting whether
the bias is small enough is proposed by Buckley and Eagleson (1989) and might be useful.

6.2. Estimation of the residual covariance matrix

Assume now that several regression problems such as (1) must be solved simultaneously, a frame-
work known as “multi-task regression”, “multivariate regression”, “multiple linear regression”,
and “seemingly unrelated regression”; the article by Solnon et al. (2012) and the PhD disser-
tation of Solnon (2013) provide references on this topic. One observes Y j = F j + ε j ∈ Rn for
j = 1, . . . , p, assuming that the noise vectors Ei := (ε j

i ) j=1,...,p ∈ Rp are independent and identi-
cally distributed, with zero mean and covariance matrix Σ∈Mp(R). Then, a natural extension of
the residual-variance estimation problem is the estimation of Σ with as few prior knowledge on
the F j as possible, which is often required for the multi-task problem of estimating (F j) j=1,...,p .
For instance, Solnon et al. (2012) make use of the prior knowledge that the F j are close, in
combination with kernel ridge regression, and selects regularization parameters with a penalty
generalizing CL which depends on the full matrix Σ.

An estimator Σ̂ of Σ based upon minimal penalties is proposed by Solnon et al. (2012). It
satisfies (1− η)Σ � Σ̂ � (1+ η)Σ with large probability, with η ∝ p

√
log(n)/nc(Σ)2 where

c(Σ) is the condition number of Σ. The construction of Σ̂ goes as follows:
(i) For every j ∈ {1, . . . , p}, apply Algorithm 4 to the one-dimensional regression problem

Y j = F j + ε j, and store â j = Ĉjump which estimates a j := Σ j, j .
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(ii) For every i 6= j ∈ {1, . . . , p}, apply Algorithm 4 to the one-dimensional regression prob-
lem (Y i +Y j) = (F i + F j) + (ε i + ε j), and store âi, j = Ĉjump which is an estimator of
ai, j := Σi,i +Σ j, j +2Σi, j .

(iii) Denote by J the linear map on Rp(p+1)/2 that sends ((a j)16 j6p,(ai, j)16i 6= j6p) to Σ, and
define Σ̂ = J((â j)16 j6p,(âi, j)16i6= j6p).

This construction can actually be generalized to any other one-dimensional residual-variance es-
timator σ̂2 that satisfies (1−η0)σ

2 6 σ̂2 6 (1+η0)σ
2 with large probability for all the above

one-dimensional problems, leading to a similar result with η ∝ c(Σ)pη0 . The remarkable prop-
erty of the minimal-penalty-based estimator Σ̂ of Solnon et al. (2012) is that it suffices to assume
that an estimator of small complexity has a small approximation error —with slightly stronger
constraints compared to Theorem 1, see the exact assumptions of Arlot and Bach (2011)—
for each one-dimensional problem Y j to get this assumption automatically satisfied for all the
Y i +Y j, i 6= j.

6.3. Model/estimator-selection procedures based on Cp/CL

Let us go back to the model/estimator-selection problem in the fixed-design regression setting.
For selecting among linear estimators with the least-squares risk, a popular penalization approach
is Mallows’ CL (Mallows, 1973), as described in Section 3.3:

m̂CL ∈ argmin
m∈M

{
1
n

∥∥∥F̂m−Y
∥∥∥2

+penCL
(σ2,m)

}
with penCL

(σ2,m) :=
2σ2 tr(Am)

n
. (78)

In the particular case of projection estimators, tr(Am) = Dm the dimension of the corresponding
model, and CL reduces to Cp which is described in Section 2.2. Both Cp and CL penalties assume
that the noise-level σ2 is known, so in general it must be replaced by some data-driven estimation
of it. Minimal-penalty algorithms provide an estimator of σ2 specially built for this estimator-
selection task (Algorithms 1 and 4), which can be plugged into Eq. (78) and for which theoretical
guarantees can be proved, as shown by Theorem 1 and Arlot and Bach (2011). This subsection
reviews some classical ways to estimate σ2 inside Eq. (78), as well as other estimator-selection
procedures that are closely related, in the framework of Section 3.3 (linear estimator selection)
and with its notation.

Fixed variance estimator A first option is to replace σ2 by some fixed estimator σ̂2 of this
quantity, for instance chosen among the estimators described in Section 6.1. The most classical
choice is to take a residual-based estimator σ̂2

m0
as defined by Eq. (71), for some m0 ∈M (Mal-

lows, 1973; Efron, 1986; Baraud, 2000). For projection estimators, this option is often named
“Cp” and called “Cp(L0,L )” by Efron (1986, Table 4). As discussed in Section 6.1, choosing
m0 can then be as difficult as the original estimator-selection problem.

When using the penalty penCL
(σ̂2,m), theoretical guarantees can be obtained if one can prove

that σ̂2 is close to σ2 with large probability, in combination with Theorem 1 or its analogous
for linear estimators. For instance, Baraud (2000, Theorem 6.1) does it for projection estimators
with σ̂2

m0
such that Dm0 = n/2; the approximation error of m0 then appears as an additive term in

the right-hand side of the oracle inequality.
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Nevertheless, even if such guarantees imply some asymptotic-optimality result —provided
that the approximation error of m0 tends to zero—, they might not help for choosing the best
possible estimator σ̂2 in terms of estimator selection, since these only are upper bounds. Indeed,
the best bound is obtained when σ̂2 is well concentrated around σ2, but it is known that overpe-
nalizing a bit —that is, taking σ̂2 slightly larger than σ2— empirically improves the estimator-
selection performance (see Section 8.4). Residual-based estimators do overpenalize, because of
the approximation error of m0 , but the overpenalization factor is unknown in practice and cannot
be controlled without strong assumptions on the target F ; the consequences of a bad choice of
m0 with σ̂2

m0
are illustrated in the numerical experiments of Section 7.1, see Figures 6–7.

On the contrary, minimal-penalty algorithms are more than a simple “plug in” of an esti-
mator of σ2 —independent of the estimator-selection problem— inside penCL

. As detailed in
Section 8.4, minimal-penalty algorithms seem to overpenalize slightly, by design, but a formal
proof of this phenomenon remains an open problem.

Variance estimator depending on m Another approach is to plug into Eq. (78) a different
variance estimator for each m ∈M , by considering the residuals on the model m for which
the penalty is computed. In other words, assuming that Dm < n for all m ∈M , m̂ is chosen by
penalization with the penalty penCL

(σ̂2
m,m). Let us consider projection estimators for simplicity.

Then m̂ minimizes over m ∈M the criterion

critFPE(m) :=
1
n

∥∥∥F̂m−Y
∥∥∥2

+
2σ̂2

mDm

n
=

1
n

∥∥∥F̂m−Y
∥∥∥2
(

1+
2Dm

n−Dm

)
(79)

which has been proposed by Akaike (1969, 1970) under the name FPE —final prediction error—
and is called “naive Cp” or “Cp(L0,L0)” by Efron (1986, Table 4). The FPE criterion (79)
actually is a particular case of the multiplicative penalties defined by Eq. (59) in Section 4.6.
More references and non-asymptotic oracle inequalities satisfied by such multiplicative penalties
can be found in the article by Baraud et al. (2009), which explains in particular how the FPE
criterion (79) should be enlarged, depending on the size of the collection M . The main drawback
of multiplicative penalties is probably that they need to deal carefully with the largest models.
For instance, for FPE, the results of Baraud et al. (2009, Theorem 1) assume that for all m ∈M ,
Dm 6 0.39(n+2)−1, an assumption that can be weakened into Dm 6 ρn for some ρ < 1 when
considering a modified multiplicative penalty (Baraud et al., 2009, Corollary 1).

Generalized cross-validation For choosing the regularization parameter of some smoothing
methods, Wahba (1977) proposed the criterion called “generalized cross-validation” (GCV) de-
fined as a rotationally invariant form of the cross-validation estimate, that is,

critGCV(m) :=
1
n

∥∥∥F̂m−Y
∥∥∥2
(

1
n

tr(In−Am)

)−2

. (80)

GCV can also be seen as a reweighted cross-validation estimate, which takes into account the
asymmetry of the design (Craven and Wahba, 1978). Nevertheless, as remarked by Efron (1986,
Remark W), “Despite its name, GCV is (nearly) a member of the Cp family of estimates”. Indeed,
considering projection estimators only,

critGCV(m) =
1
n

∥∥∥F̂m−Y
∥∥∥2
(

n
n−Dm

)2

≈ 1
n

∥∥∥F̂m−Y
∥∥∥2 n+Dm

n−Dm
= critFPE(m) (81)
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where the approximation holds true when Dm� n. Theoretical guarantees for GCV are available
in various settings (Li, 1985, 1987; Cao and Golubev, 2006), with the same limitation as the ones
of FPE and other multiplicative penalties. For instance, Cao and Golubev (2006, Theorem 2)
consider a truncated version of GCV where all m ∈M such that tr(Am)>

√
n are discarded, and

some examples exist where GCV is not asymptotically optimal (Li, 1986). Let us finally mention
that an empirical comparison of GCV and minimal penalties (Algorithm 4) is done by Arlot and
Bach (2009, 2011) for several kinds of linear estimators, showing that either Algorithm 4 clearly
outperforms GCV or the two methods perform similarly, depending on the setting.

6.4. L-curve, corner, and elbow heuristics

Minimal-penalty algorithms, in particular Algorithms 1–3, can be related to some “L-curve”,
“corner” or “elbow” heuristics, which are often used for choosing hyperparameters in the statis-
tics and machine-learning communities.

The L-curve is defined as a plot of the size of the residuals versus the size or the estima-
tor complexity. Using the notation of Section 3, when the goal is to select an estimator among
(ŝm)m∈M , the L-curve can be defined as (Cm,R̂n(ŝm))m∈M . For instance, the right part of Fig-
ure 2 in Section 2.4 shows an L-curve (the black dots); Figure 11 in Appendix C provides another
illustration. The practical use of the L-curve has been suggested by Miller (1970) and Lawson
and Hanson (1974, Chapters 25–26). Some precise heuristic choice of a regularization parameter
—often called “the L-curve method”— has first been proposed by Hansen (1992) and Hansen
and O’Leary (1993) for some inverse problem with Tikhonov regularization. The main idea is
that the L-curve has three main parts:

(i) a straight part where the residuals R̂n(ŝm) decrease fastly while Cm is almost constant,
where the regularization is too strong,

(ii) a flat part where Cm increases much while the residuals R̂n(ŝm) decrease slowly, where
some overfitting occurs, and

(iii) in between, a “corner” or “elbow”, where the regularization parameter is of the correct
order.

Therefore, the L-curve is L-shaped —hence its name, given by Hansen and O’Leary (1993)—
and the L-curve method suggests to choose m corresponding to the corner of the “L”.

Several definitions of the corner can be proposed, as well as several measures of “size” and
“complexity” can be considered when plotting the L-curve (Hansen and O’Leary, 1993). The
most common choice is to define the corner as the location where the L-curve has a maxi-
mal curvature (Hansen and O’Leary, 1993) —hence the name “maximum-curvature criterion”
(Grodzevich and Wolkowicz, 2009) often used for this heuristics— and to look at the L-curve in
log-log scale (Hansen and O’Leary, 1993), although several variants exist (Regińska, 1996). Ad-
ditional practical problems need also to be solved, especially when M is discrete (how to define
the curvature of a finite set of points?) and when some computational issues arise, for instance
because computing every single point of the L-curve is expensive (Hansen and O’Leary, 1993;
Castellanos et al., 2002; Hansen et al., 2007; Heng et al., 2010). Another option, proposed for
a change-point detection problem (Lung-Yut-Fong et al., 2015), relies on performing two linear
regressions on the L-curve in order to identify its parts (i) and (ii); it can therefore be directly
related with the “slope” formulation of minimal-penalty algorithms.
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Empirical or theoretical studies of L-curve algorithms are available mostly for inverse prob-
lems with Tikhonov regularization (Hansen, 1992), truncated SVD (Hansen and O’Leary, 1993;
Reichel and Rodriguez, 2013), or conditional-gradient regularization (Castellanos et al., 2002),
showing reasonably good empirical performance. Several of the papers mentioned in this sub-
section show that L-curve algorithms compare favorably to generalized cross-validation (GCV)
on simulated examples; for instance, Hansen (1992) show some similarity between GCV and
L-curve algorithms, and report a tendency of GCV to overregularize. Nevertheless, the L-curve
method is proved to be not consistent in several families of realistic examples (Engl and Grever,
1994; Vogel, 1996; Hanke, 1996), when the noise tends to zero or when the sample size tends to
infinity. According to Hanke (1996), the reason for this inconsistency is that the corner seems to
correspond to the minimal level of regularization —the minimal penalty, with the words of the
present survey— more than to the optimal level; hence choosing m at the corner leads to some
overfitting.

The L-curve can also be used similarly in unsupervised learning for choosing the number
of clusters, where it is defined as a plot of the within-cluster dispersion as a function of the
number of clusters. Indeed, as written by Tibshirani et al. (2001), “Statistical folklore has it that
the location of such an ‘elbow’ indicates the appropriate number of clusters”. Various methods
actually use a similar idea (Tibshirani et al., 2001; Sugar and James, 2003; Matias and Miele,
2017), although they are not straightforward applications of the method of Hansen and O’Leary
(1993). Remark that procedures choosing the number of clusters using the slope heuristics show
good experimental results, according to Baudry (2009, Section 4.4), Maugis and Michel (2011a),
Bontemps and Toussile (2013) and Baudry (2015).

Comparison with minimal-penalty algorithms Let us start with their common points. Both
corner/elbow heuristics and minimal-penalty algorithms are based on the L-curve: directly in
Algorithm 2, indirectly in Algorithm 1 since (Dm̂(C))C>0 can be seen as a reparametrization
of the convex hull of the L-curve. Both rely on the idea of detecting a sharp variation of an
observable quantity (the curvature / the selected dimension in Dm̂(C)) in some region of interest
(the optimal value of regularization parameters / the minimal value of the constant in front of the
penalty). For both methods, a visual check (of the presence of an elbow / a jump) is possible,
and strongly encouraged (Hansen and O’Leary, 1993; Baudry et al., 2012). The strength of the
connection between elbow heuristics and minimal penalties is emphasized in the following three
works. For choosing the constant in front of the penalty for change-point detection, Lavielle
(2005, Remark 2) suggests an algorithm close to (but slightly different from) the slope-heuristics
algorithm of Lebarbier (2005), which can be formulated as a maximal-curvature criterion on
the L-curve. For Hawkes-process estimation via model selection, when the model collection is
large, Reynaud-Bouret and Schbath (2010) remark that the true model generally corresponds to a
sharp angle of the L-curve, hence propose an algorithm between the slope and elbow heuristics,
which consists in choosing m̂(Ĉ) with pen(m) = Cm and Ĉ equal to the opposite of the slope of
the segment joining the first and the last point of the L-curve. For choosing the bandwidth of
a Gaussian kernel for quantile estimation with one-class support vector machines, Vert (2006,
Section 6.2.2) points out an “elbow effect” and locates the elbow region with a “maximal jump”
procedure similar to Algorithm 1.
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Nevertheless, several important differences must be pointed out between the two approaches.
First, the elbow heuristics tries to localize directly the optimal m whereas the slope heuristics
localizes it in two steps: first, it estimates the minimal penalty, then, it uses an estimated optimal
penalty for selecting some m. Second, the assumptions made on the shape of the L-curve are
different. The L-curve must be exactly L-shaped for elbow heuristics, since otherwise the curva-
ture can be large far from the “true” elbow. On the contrary, the slope heuristics assumes a linear
behavior of the empirical risk as a function of Dm (or Cm) only for large models (Algorithms 2
and 6), and makes an even milder assumption with its jump formulation (Algorithms 1 and 5; see
Theorem 1). Third, theoretical grounds are much stronger for the slope heuristics (with strong
optimality results like Theorem 1 in several settings) than for the elbow heuristics which is even
proved inconsistent in some realistic cases (Engl and Grever, 1994; Vogel, 1996; Hanke, 1996).

Overall, we consider the slope heuristics and its generalization (minimal penalties) as a simple
and principled way to localize an elbow on the L-curve (when there is one), and to make use of it
for optimal model/estimator selection. In particular, a natural answer to the problem of choosing
the scale at which the L-curve should be considered on the x-axis is given by Section 3.6: it
should be (the shape of) the minimal penalty.

6.5. Scree test and related methods

For choosing the number of factors in factor analysis, or the number of components in principal
components analysis, some classical methods can be related to minimal-penalty and L-curve
algorithms.

Scree test The most popular one —named the scree test— has been proposed by Cattell for
factor analysis (Cattell, 1966; Cattell and Vogelmann, 1977). It is based upon the “scree plot”,
that is, a plot of the eigenvalues versus their rank (in decreasing order), which can be seen as
an L-curve for factor analysis. The key remark made by Cattell (1966) is that the scree plot
ends with a linear part —a scree—, and that the beginning of the linear part corresponds to the
“correct” number of factors. Overall, the scree test chooses a number of factors equal to the rank
of the starting point of the linear part at the end of the scree plot.

This idea is close to the “slope” formulation of minimal-penalty algorithms (Algorithms 2
and 6). By analogy, we can say that the starting point of the linear part in the scree plot is a
“minimal regularization level” —an upper bound on the number of factors that should be kept at
the end. This fits well the goal of the initial paper by Cattell (1966), which is not to find the exact
true number of factors —a quantity which might be impossible to define formally—, but only to
keep a number of factors which explain 95% to 99% of the “substantive variance”. Nevertheless,
the scree test seems to be often used for estimating the “true number of factors” itself (Jackson,
1993).

Similarly to minimal-penalty and L-curve algorithms, making use of the scree test requires
to overcome practical issues: Cattell remarks that “even a test as simple as this requires the
acquisition of some art in administering it” (Cattell, 1966). For instance, it seems important to
normalize the data (Cattell, 1966), and sometimes the scree plot ends with two or three linear
parts —then, one should cut at the beginning of the first linear part (Cattell, 1966).
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Variants Several variants of the scree test exist. The number of factors can for instance be
given by the intersection of the scree plot with some reference curve, which corresponds to some
“average scree plot” obtained with “pure noise”, as proposed by Horn (1965) and Horn and
Engstrom (1979), and by Frontier’s broken stick method (Frontier, 1976).

Another variant exists for estimating the intrinsic dimension of some data set, inside a clas-
sification procedure (Bouveyron et al., 2015b). Given a decreasing sequence of eigenvalues
(λ( j))16 j6n, the estimated intrisic dimension is the smallest j such that λ( j)− λ( j+1) 6 T for
some threshold T , which can be chosen by cross-validation in the article by Bouveyron et al.
(2015b). The underlying assumption is that the scree plot is L-shaped, and that the point where
the discrete derivative goes below T corresponds to the “elbow”, or to the beginning of the linear
part.

Results All these methods are only validated by numerical experiments (Cattell and Vogel-
mann, 1977). For instance, for principal component analysis, Jackson (1993) concludes that the
broken stick method is one of the two best methods for choosing the number of components. The
scree test tends to overestimate by one the number of components according to Jackson (1993),
which is consistent with our remark above that it corresponds to a “minimal regularization level”
—not an optimal one.

Note however that some theoretical results are proved for the closely related problem of low-
rank matrix recovery from noisy data by hard-thresholding of singular values. In an asymptotic
framework, when the goal is to minimize the asymptotic mean squared error in some specific
asymptotic regime, Gavish and Donoho (2014) show that the optimal hard threshold can be
written λ?(m/n)

√
nσ when the matrix to recover is of size m× n. Interestingly, the “minimal

threshold”, which corresponds to the largest singular value obtained from pure noise, is asymp-
totically equal to (1+

√
m/n)

√
nσ . In the framework of Gavish and Donoho (2014), the scree

test would correspond to using the “minimal hard threshold”, and it seems indeed reasonable
to use it for estimating the rank (the number of factors). On the contrary, when the goal is to
minimize some quadratic error, the optimal threshold is a bit larger: Gavish and Donoho (2014,
Figure 4) show that

∀m 6 n, λ?

(m
n

)
> 1+

√
m
n
.

6.6. Thresholding under the null

A related approach, for choosing the threshold λ of thresholding estimators, starts by consider-
ing the minimal value λ̂min of the threshold such that the estimator is equal to zero. Under the
null hypothesis —that is, when the true signal is zero—, λ̂min = λ̂ null

min corresponds to the min-
imal thresholding level, and any good threshold must be larger than λ̂ null

min . For instance, in the
setting of the previous paragraph —that is, singular-values hard thresholding—, λ̂ null

min is of order
(1+

√
m/n)

√
nσ , and Gavish and Donoho (2014) provide an explicit formula for the optimal

threshold, which can be written c(m/n)λ̂ null
min for some c(m/n)> 1.

In a general setting, Giacobino et al. (2017) define the quantile universal threshold (QUT)
λ QUT as the (1−α)-quantile of λ̂ null

min for some α ∈ (0,1). It turns out that QUT corresponds
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to the universal threshold proposed for wavelet thresholding (Donoho et al., 1995), and it can
be used much more generally, beyond hard or soft thresholding. For instance, for choosing the
regularization parameter λ of the Lasso and related procedures in high-dimensional regression,
good performance can be obtained with λ = cλ QUT for some c > 1 (Giacobino et al., 2017,
Section 4.2).

QUT and Algorithm 1 have common points: they both start by identifying a minimal value for
the parameter of interest (λ or C), then multiply it by a constant factor to get an optimal value
of the parameter. Their main difference lies in the definition of the minimal parameter value: it
is obtained from data under the null-hypothesis for QUT, hence requiring to know —or at least
to approximate— the null-hypothesis distribution, while Algorithm 1 defines it directly from the
data, whatever their distribution.

Note that Section 7.5 details a procedure by Rozenholc (2012), that is a variant of minimal-
penalty algorithms for change-point detection, and can also be seen as a null-hypothesis based
calibration procedure, hence similar to QUT.

6.7. Other model/estimator-selection procedures

Many other model/estimator-selection procedures exist and are studied. A detailed account on
these is far beyond the scope of this survey. This subsection only mentions a few of them, that
are of interest in relation with minimal-penalty algorithms.

Unknown variance First, in addition to the procedures based upon Cp and CL that are listed in
Section 6.3, some procedures are specially built for dealing with the problem of not knowing the
noise variance in regression, which is also what minimal-penalty algorithms do in the regression
case. For instance, Baraud (2011) provides an abstract general-purpose estimator-selection pro-
cedure, which leads to the model-selection procedure of Baraud et al. (2014) for Gaussian model
selection with unknown variance. We refer to the article by Giraud et al. (2012) for a detailed
survey on high-dimensional variable-selection methods when the variance is unknown.

Cross-validation and resampling An important family of general-purpose estimator-selection
procedures is cross-validation (Arlot and Celisse, 2010), and more generally all resampling-
based selection procedures —e.g., resampling-based penalties (see Arlot, 2009, and references
therein). Comparing them to minimal-penalty algorithms is interesting at least in two distinct
situations.

First, when Algorithm 5 works with pen0 and pen1 known but C? is unknown —for instance,
for linear estimators in regression with the least-squares risk— resampling-based procedures are
natural competitors, that can be used either for choosing the constant in front of pen1 , or di-
rectly for the initial estimator-selection problem. Then, minimal-penalty algorithms have a clear
advantage over resampling, because of their much smaller computational cost (see Section 7.2),
while they have comparable or better statistical performance according to both theoretical and
experimental results, as shown for instance by Arlot and Bach (2011).

Second, when Algorithm 5 works with some unknown pen0 and/or pen1 , an option mentioned
in Remark 3 in Section 4.2 is to estimate them by resampling. Then, the computational cost of
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Algorithm 5 is comparable to that of cross-validation and other resampling strategies applied to
the initial estimator-selection problem. In such cases, the interest of using minimal penalties is
the precise non-asymptotic calibration of the constant in front of the resampling-based penalty,
which is not guaranteed when using the theoretical value for this constant, since it is often based
upon asymptotic considerations. In addition, the conjecture detailed in Section 8.4 suggests an-
other reason for combining resampling and minimal penalties in such frameworks.

7. Some practical remarks

This section discusses several practical questions about the use of minimal-penalty algorithms.
A more detailed study of some of them can be found in the survey by Baudry et al. (2012).

7.1. Several definitions for Ĉ

The minimal-penalty estimator Ĉ of the constant that should be put in front of the penalty pen1
can be defined in several ways, which leads to the practical issue of choosing one among these
definitions. Two main approaches are proposed in the previous sections.

Jump approach First, Ĉ can be defined as the position Ĉjump of “the unique large jump” of
C 7→ C

m̂(0)
min(C)

, as in Algorithms 1, 3, 4, and 5. Section 2.5 suggests two ways to formally define

Ĉjump : choosing the maximal jump Ĉwindow(η) over a geometric window [C/(1+η),C(1+η)],
and choosing the value Ĉthr.(Tn) of C for which C

m̂(0)
min(C)

goes under some threshold Tn . Another
natural option is to choose the position of the maximal jump

Ĉmaxj. ∈ argmax
C>0

{
C

m̂(0)
min(C

−)
−C

m̂(0)
min(C

+)

}
,

that is, taking limη→0 Ĉwindow(η).

Slope approach Second, Ĉ can be defined as Ĉslope , the opposite of the estimated value of the
slope of the empirical risk as a function of pen0 , as in Algorithms 2 and 6. This approach can be
formalized in several ways, using ordinary or robust linear regression, either over a fixed range
[pmin, pmax] of values of pen0 , or with the method m̂CAPUSHE proposed by Baudry et al. (2012,
Section 4.2), which is based upon a stability study of the selected estimator and depends on some
parameter pct ∈ (0,1].

Note that Ĉwindow , Ĉthr. , and Ĉslope all depend on some hyperparameter (η , Tn , pmin and pmax ,
pct). We refer to Appendix D.2 for more details on each definition of Ĉ considered in this section.

Theoretical comparison Let us first compare theoretically the various definitions of Ĉ. For
Ĉjump , when there is a single large jump in

C 7→ C
m̂(0)

min(C)
,
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Ĉwindow are shown by stars on the x-axis (in this order). The sample chosen here is not typical at all (see Table 1) but
illustrates well the differences between Ĉmaxj. , Ĉwindow , and Ĉthr. . Setting called ‘easy’ in Appendix D.
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as illustrated by Figure 2 in Section 2.4, reasonable choices for Tn and η make Ĉwindow(η) very
close to Ĉmaxj. = Ĉthr.(Tn). On the contrary, when the phase transition around the minimal penalty
yields several jumps of medium size in

C 7→ C
m̂(0)

min(C)
,

as in Figure 5 for instance, Ĉmaxj. , Ĉthr.(Tn), and Ĉwindow(η) can take quite different values and
lead to selecting different models. Theoretical guarantees such as Theorem 1 in Section 2.5 do
not exclude such a situation, even asymptotically, so they only apply to Ĉthr.(Tn) and Ĉwindow(η)
with Tn and η of the correct order of magnitude.

Yet, the maximal jump and threshold definitions with Tn = C := (maxm Cm +minm Cm)/2 co-
incide when the largest jump is of size at least (maxm Cm−minm Cm)/2. This condition always
holds true if no m ∈M has a complexity Cm ∈ (C ;maxm Cm), which often occurs for computa-
tional reasons, since estimators with complexity Cm >C usually are hard to compute and known
to be suboptimal.

For the slope approach, no theoretical guarantee is available, but the linear behavior of R̂n(ŝm)
as a function of pen0(m) is supported theoretically from expectation computations, as detailed in
Sections 2.2–2.3 and 3.3–3.4.

The jump and slope approaches can seem quite different at first sight, but they actually are
the two sides of the same coin. Section 2 shows that reasoning from the same computations,
Eq. (7)–(8), can lead to a heuristic justification of both approaches. Another argument enlightens
the similarity of the jump and slope approaches. By Proposition 5 and its proof in Appendix B.1,
the path (m̂(0)

min(C))C>0 is piecewise constant, m̂(0)
min(C) = mi for C ∈ [Ci,Ci+1), and the sequences

(mi)06i6imax and (Ci)06i6imax can be visualized on the L-curve (pen0(m),R̂n(ŝm))m∈M : the angles
of the lower convex envelope of the L-curve exactly correspond to the mi , 0 6 i 6 imax , and

Ci =
R̂n(ŝmi)− R̂n(ŝmi−1)

pen0(mi−1)−pen0(mi)

is the opposite of the slope of the segment joining mi−1 to mi on the L-curve. So, Ĉmaxj. can
be visualized on the L-curve, as illustrated by Figure 4. Given the L-curve (black dots), draw
its (piecewise linear) lower convex envelope (green squares), localize the widest segment —in
terms of values of Cm , which is usually proportional to pen0(m)—: its slope is −Ĉmaxj. . Then,
one clearly see why Ĉmaxj. is often close to Ĉslope in the setting of Figure 4: for a random point
cloud with a linear trend of slope ≈−C? for large abscissa values, estimating its slope by linear
regression is almost equivalent to looking at the slope of the longest segment of its lower convex
envelope. Note that Ĉthr. can be visualized on the L-curve similarly to Ĉmaxj. .

This direct comparison emphasizes the respective drawbacks of Ĉmaxj. and Ĉslope . When the
amplitude of the largest jump is small, Ĉmaxj. is not a reliable estimation of C?, see Figure 9b in
Appendix C.

When some large models have a significantly positive approximation error, as in the ‘hard’
setting described in Appendix D —see the right of Figure 10— they pollute the slope estimation
and make Ĉslope biased, unless only a few such models are present and robust regression is used.
In the latter case, since Ĉjump ∈ {Ĉmaxj.,Ĉwindow,Ĉthr.} only depends on the lower convex envelope
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Configuration All equal Exactly 4 At least 3 All different Ĉmaxj. = Ĉthr. Max, thr, and win
equal equal different

Frequency (‘easy’) 0.524 0.238 0.967 < 10−3 0.777 0.009
Frequency (‘hard’) 0.134 0.118 0.894 < 10−3 0.769 0.008

TABLE 1. Frequency of various configurations for the set of five models m̂ respectively selected by Algorithm 1 with
Ĉmaxj. (‘max’), Ĉthr. (‘thr’), Ĉwindow (‘win’), by Algorithm 2 (Ĉslope) and by m̂CAPUSHE . ‘Easy’ and ‘hard’ settings,
see Appendix D for details.

of the L-curve, even a large number of “polluting” models will not influence Ĉjump at all, making
it more robust.

This difference between Ĉjump and Ĉslope also appears in the assumptions made for their theo-
retical and heuristic justifications. In Section 2, Ĉslope requires the approximation error to be al-
most constant over all large models —which makes sense when (Sm)m∈M is a family of models
with increasing complexity, for instance, but can be violated in some other contexts—, whereas
Ĉjump only assumes that two models exist with a small approximation error, one of moderate
complexity and one of large complexity.

Experimental comparison In addition to the above theoretical comparison, we report the re-
sults of new simulation experiments for variable selection in least-squares regression. We con-
sider two settings: in the ‘easy’ setting, the order between variables is known, while in the ‘hard’
setting, two possible orders (the correct one and its converse) are considered alternatively, making
half of the models very bad. The ‘hard’ setting is the archetype of a setting where the approxi-
mation error is not constant over large models; it does not aim to be realistic. All details about
simulation experiments —data generation, model collection, and exact implementation for each
definition of Ĉ— are given in Appendix D.

First, since the beginning of this section outlines strong theoretical connections between the
different definitions of Ĉ, a natural question is: how different are the models finally selected,
depending on the definition taken for Ĉ? Table 1 shows that they all coincide most of the time
in the ‘easy’ setting —with a clear single large jump, as for the sample of Figures 2 and 4—,
and they globally agree at least 90% of the time or more in both settings. The probability of
a total disagreement is very small (less than 0.1%) even if it sometimes occurs, as illustrated
by Figure 5, where Ĉmaxj. , Ĉthr. , and Ĉwindow respectively lead to selecting m̂ = 14, 11, and 7;
Figure 9b in Appendix C shows a similar configuration. Similar conclusions are obtained by
Arlot and Massart (2009, Section 3.3) about Ĉmaxj. and Ĉthr. .

Second, since our experiments consider projection estimators in least-squares regression, all
minimal-penalty based Ĉ estimate σ2, so they can be compared to σ̂2

m0
—defined by Eq. (71)— as

estimators of the residual variance σ2. Results are provided in Figure 6, as well as Tables 2–3 in
Appendix C, where several values of parameters of the Ĉ are compared. In the ‘easy’ setting (Fig-
ure 6a), all methods behave similarly and as expected from theoretical arguments: the distribution
of Ĉ is asymmetric around σ2, with smaller deviations below σ2 than above σ2, as in the bounds
of Proposition 3. Such an asymmetry is a good property in terms of model-selection performance,
as suggested by Figure 8 in Section 8.4 for instance. The order of magnitude of the deviations
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FIGURE 6. Distribution over 10000 independent samples of Ĉ/σ2 for seven estimators Ĉ of σ2: Ĉmaxj.

(‘max j.’), Ĉthr. (‘thr.’), Ĉwindow (‘win.’), Ĉslope in Algorithm 2 (‘slope’), ĈCAPUSHE (‘CAP.’), the median of
{Ĉmaxj.,Ĉthr.,Ĉwindow,Ĉslope,ĈCAPUSHE} (‘med.’), and σ̂2

m0
defined by Eq. (71) (‘resid.’). See Appendix D for details.

of Ĉjump/σ2 from Proposition 3 is B(cn)/σ2 +
√

log(n)/n with cn = n/3 (for Ĉwindow) or Tn/2
(for Ĉthr.); in our experiments, with n = 100 and Tn = n/2, we get B(cn)/σ2 ∈ [0.04,0.08], and√

log(n)/n≈ 0.2, so the constants appearing in Proposition 3 here are pessimistic.
The most variable Ĉ clearly is ĈCAPUSHE , but to be completely fair, we must notice that the

procedure proposed by Baudry et al. (2012) only outputs a selected model m̂CAPUSHE and we
make an arbitrary choice for defining some ĈCAPUSHE from the definition of m̂CAPUSHE (see
Appendix D.2). Among other definitions of Ĉ, Ĉmaxj. , and Ĉwindow are slightly more variable
than the others but the difference is mild.

Interesting differences occur in the ‘hard’ setting, which is designed as a case example for
difficult situations for Ĉslope , ĈCAPUSHE , and σ̂2

m0
. As expected, Ĉslope completely fails because

of the wide amplitude of the approximation error among large models, and σ̂2
m0

behaves totally
differently depending on the parity of m0 : σ̂2

m0
is worse than Ĉslope when Sm0 is one of the ‘bad’

models, while it works well when Sm0 is one of the ‘good’ models (see Figure 10 and Table 3 in
Appendix C). This failure of Ĉslope and ĈCAPUSHE —when (Sm)m∈M is the union of subcollec-
tions having different approximation properties— is also reported by Baudry (2009, Section 4.5),
Devijver (2017b, Figures 3–4) and Devijver et al. (2019, Figure 6) in realistic settings. The nested
algorithm presented in Section 7.3 might be a way to fix this issue, even if it has not been tested
yet in such situations.

More generally, depending on the setting, choosing the parameter for one definition of Ĉ can
be a big practical issue. For instance, Tables 2–3 in Appendix C show that Ĉthr.(Tn) is sensitive
to the choice of Tn . Even if Tn = n/2 works well for the ‘easy’ and ‘hard’ settings, it is certainly
not a universally good choice, and changing F , n or σ2 could easily make it fail compared to
other definitions of Ĉ. Similarly, the performance of Ĉslope strongly depends on the parameters
pmin, pmax and choosing them from data is not an easy task, a problem also reported in the change-
point detection setting (Lebarbier, 2002, Chapter 4). A reasonable option is given by m̂CAPUSHE
(Baudry et al., 2012, Section 4.2), and it works reasonably well in the ‘easy’ setting, but it fails
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(a) ‘Easy’ setting.
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(b) ‘Hard’ setting.

FIGURE 7. Distribution over 10000 independent samples of ‖F̂m̂ − F‖2/ infm∈M ‖F̂m − F‖2 for m̂ = m̂(2Ĉ)
with Ĉ among the seven estimators Ĉ compared in Figure 6, and for m̂ obtained by majority vote among
{m̂(2Ĉmaxj.), m̂(2Ĉthr.), m̂(2Ĉwindow), m̂(2Ĉslope), m̂CAPUSHE} with m̂(2Ĉwindow) as a default choice (‘cons.’) or con-
sidering only the samples on which such a majority exists (‘no rej.’). See Appendix D for details.

in the ‘hard’ setting as expected.

Third, the model-selection performance of all these procedures is assessed by Figure 7 and by
Tables 2–3 in Appendix C.

At first order, the conclusions are similar to the ones obtained for estimating σ2. All definitions
of Ĉ work well in the ‘easy’ setting. In the ‘hard’ setting, σ̂2

m0
completely fails, while m̂CAPUSHE

and Ĉslope do slightly worse than the other formulations of the slope-heuristics algorithm.
The detailed comparison of the procedures that work well is a bit different: the model-selection

performance (risk ratios) are not ordered exactly as the mean-squared errors in Tables 2–3. The
main reason is that risk estimation —which reduces to estimating σ2 in our setting— is different
from model selection (Breiman and Spector, 1992). Figure 8 in Section 8.4 shows at least one
reason for this difference: overpenalizing slightly, that is, overestimating σ2 a bit, improves the
model-selection performance. According to Figure 8, the best overpenalization factor is 1.12
in the ‘easy’ setting. For instance, Table 2 shows that taking Dm0 = n/10 for σ̂2

m0
leads to better

model-selection performance than D0 = n/2 in the ‘easy’ setting, even if D0 = n/2 yields a much
better estimator of σ2.

Note however that for a given bias (as an estimator of σ2), the best model-selection perfor-
mance is obtained when the variance is the smallest: compare for instance Ĉslope with D0 = n/2
and CAPUSHE in the ‘easy’ setting (Table 2 in Appendix C).

Let us finally mention that previous simulation experiments in various settings have com-
pared some of the definitions of Ĉ. In short, almost all of them report that Ĉmaxj. is less reliable
—because of the event on which there is not a single large jump (Maugis, 2008, Figure 8.11;
Baudry et al., 2012, Section 5), which happens more or less often— compared to Ĉthr. (Ar-
lot and Bach, 2011; Solnon et al., 2012), Ĉwindow (Bontemps and Toussile, 2013), and Ĉslope or
ĈCAPUSHE (Baudry, 2009, Section 3.2; Maugis and Michel, 2011a; Connault, 2011; Baudry et al.,
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2012; Roche, 2014, Table 2.1). Only Devijver and Gallopin (2018) report similar performances
for Ĉmaxj. and ĈCAPUSHE . Nevertheless, Ĉmaxj. remains useful for confirming the choice made
with another definition of Ĉ (Connault, 2011; Baudry et al., 2012), with a visual check that there
is a single large jump. The slope approach can also fail for reasons detailed previously in this
subsection (Baudry, 2009; Devijver, 2017b; Devijver et al., 2019). Lebarbier (2005) even shows
that Ĉmaxj. and Ĉslope can both fail, which motivates a modified algorithm —called “calibrated
method”— for change-point detection; note that Arlot et al. (2019) fix this precise failure by
using the slope heuristics with a penalty shape depending on two constants, as detailed in Sec-
tion 7.4.

Conclusion on the choice of Ĉ First, it is not surprising to have to choose among several
definitions of Ĉ or to choose some hyperparameter such as η , Tn or pmin , because of no free
lunch theorems: no fully automatic estimation procedure can work uniformly well over all sta-
tistical problems (Devroye et al., 1996, Chapter 7). An expert advice is always necessary at
some point. For minimal-penalty algorithms, our suggests join the ones of Baudry et al. (2012)
and Connault (2011): never use a single definition of Ĉ in a blind way, either by consider-
ing several definitions for Ĉ or by checking visually that there is a clear complexity jump
and/or that the L-curve exhibits a clear linear trend on the data. When computing all values
of (R̂n(ŝm),pen0(m),pen1(m),Cm)m∈M is too expensive, one should also take into account the
computational cost of the procedure, as discussed in Section 7.2.

We propose the following (semi-automatic) approach for using several definitions Ĉmaxj. , Ĉthr. ,
Ĉwindow , Ĉslope , and ĈCAPUSHE of Ĉ simultaneously. If the goal is to estimate σ2, take their me-
dian. If the goal is estimator selection, compute the five corresponding estimator choices m̂, and
make a majority vote: if at least three over five coincide, take their common value, otherwise,
output a warning and ask the user to look at the complexity jump and the L-curve. When the
five methods disagree, using a completely different approach remains a good option, for in-
stance, cross-validation. The results of using this strategy (in a fully automatic way since our
experiments need to be reproducible) are reported in Figures 6–7 above as well as Tables 2–3 in
Appendix C, showing good performance in all settings.

Finally, the above comparison also points out several risky choices for Ĉ (in addition to σ̂2
m0

):
Ĉmaxj. without checking that there is indeed a single large jump, Ĉthr. with a bad choice for Tn ,
the “naive” version Ĉslope of the slope approach, and Ĉslope or ĈCAPUSHE when selecting among a
union of subcollection of estimators that may have different approximation properties.

7.2. Algorithmic cost

When all empirical risks can be computed Let us assume that the values of the empirical
risk R̂n(ŝm), the minimal and optimal penalty shapes pen0(m) and pen1(m), and the complexity
Cm for all m∈M are stored in memory. Then, the computational complexity of minimal-penalty
algorithms is the following.

For Algorithm 5, computing the full path (m̂(0)
min(C))C>0 requires at most O([cardM ]2) oper-

ations —as shown in Appendix B.1— and much less in practice. Indeed, denoting by imax + 2
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the cardinality of this path —which must be smaller than card(M )—, it can be computed with
O(imax cardM ) operations.

Furthermore, depending on the definition of Ĉjump , it might not be necessary to compute the
full path. For instance, with the threshold approach, using the notation of Appendix B.1, if i(Tn)
is such that Ĉthr.(Tn) = Ci(Tn) , only O(i(Tn)cardM ) operations are necessary, and usually we
have i(Tn)� imax� card(M ).

Computing Ĉwindow as defined in Algorithm 5 might seem costly at first sight. Appendix B.2
shows that given the path (m̂(0)

min(C))C>0 , of cardinality imax +2, computing Ĉwindow can be done
with at most O(imax log imax) operations.

Finally, step 3 of Algorithm 5 requires at most O(cardM ) operations. Overall, Algorithm 5
always has a complexity O(imax cardM )6 O([cardM ]2).

For Algorithm 6, step 1 is a (robust) linear regression —hence it has a computational cost
O(cardM )— and step 2 can be done with O(cardM ) operations. Note that m̂CAPUSHE has a
larger computational cost since it requires to run O(cardM ) times Algorithm 6, hence a total
cost of O([cardM ]2).

When computing all empirical risks is not tractable In general, most of the computational
complexity of computing m̂Alg.5 or m̂Alg.6 corresponds to computing R̂n(ŝm) for all m ∈M .
For instance, for density estimation with Gaussian mixture models (Maugis and Michel, 2011a),
performing maximum-likelihood estimation in several large models involves a large computa-
tional cost, while we know that all corresponding estimators are always bad. Can we remove
from the collection (ŝm)m∈M most estimators with Cm “large”, without degrading too much the
performance of Algorithms 5–6?

For the jump approach, two estimators having a small approximation error are needed to get
a jump, as with the assumptions of Theorem 1: one of large complexity, one much less complex.
If we are not sure of which estimators have a small enough approximation error, considering
more than two of them can be helpful; otherwise, this does not hurt —and we conjecture that this
slightly decreases the variance of Ĉjump —, without being mandatory.

For the slope approach, the picture is different. Having only two estimators with a small ap-
proximation error implies making a linear regression over the corresponding two points, which
is very close to the residual-based estimator σ̂2

m0
defined by Eq. (71), as shown by Figure 10 in

Appendix C. Therefore, Ĉslope with only a few large-complexity estimators faces the risk that
some of them have a large approximation error, to which it will be quite sensitive, unlike Ĉjump

(see Figure 10b). Using a robust regression in Ĉslope decreases the risk but does not exclude it
totally, as shown by the poor results of m̂CAPUSHE in our experiments in the ‘hard’ setting in
Section 7.1.

A more reliable strategy for the slope approach —at least for settings a bit less difficult than
our ‘hard’ setting— is to consider only estimators of complexity up to Cmax , and to carefully
check that Cmax is large enough by visualizing the linear relation between the empirical risk and
pen0 . This can be done easily with the CAPUSHE package (Baudry et al., 2012). The experiments
of Baudry et al. (2012, Section 5) show as expected that Ĉslope is better —more stable— when
Cmax is large enough. Similarly, for change-point detection, Lebarbier (2002, Chapter 4; 2005,
Section 4.2) studies the influence of such a bound Cmax on Ĉmaxj. and propose a heuristic method
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—called “calibrated”— for choosing Cmax from data.
Note finally that in some frameworks, well-chosen large-complexity estimators are easy to

compute. For instance, in fixed-design regression, the estimator equal to the original data al-
ways has an empirical risk and an approximation error equal to zero —see assumption (HId) in
Theorem 1.

7.3. Nested minimal-penalty algorithm

In a framework where M is a cartesian product M1×M2 , Devijver et al. (2017) propose a
“nested slope heuristics” algorithm, that we here generalize to Algorithms 5–6. The idea is to
choose m̂ = (m̂1, m̂2) ∈M1×M2 in two steps. First, for every m1 ∈M1 , select one estima-
tor among (ŝ(m1,m2))m2∈M2 with a minimal-penalty algorithm; the selected index is denoted by
m̂2(m1). Then, select one estimator among (ŝ(m1,m̂2(m1)))m1∈M1 with a minimal-penalty algorithm.
The numerical experiments of Devijver et al. (2017) on some transcriptomic data-analysis prob-
lem show that such a nested algorithm can work, for choosing a number m1 of clusters (of indi-
viduals) and a partitioning m2 of the features (the genes) used for inferring a cluster-dependent
gene regulatory network.

7.4. Estimation of several unknown constants in the penalty

When the optimal penalty involves several unknown constants, that is,

∀m ∈M , penopt(m) =C?
1 pen(1)1 (m)+ · · ·+C?

k pen(k)1 (m) (82)

for some known pen(1)1 , . . . ,pen(k)1 , the slope approach can be generalized, using linear regression
for estimating simultaneously C?

1 , . . . ,C
?
k . The idea has first been proposed with Algorithm 2 by

Lebarbier (2002, Section 4.3.2) in the case of change-point detection, where the optimal penalty
depends on k = 2 constants.

It has since been used —with good numerical performance— in several settings: change-
point detection (Arlot et al., 2019), joint variable selection and clustering via Gaussian mixture
models (Meynet and Maugis-Rabusseau, 2012), principal curves estimation (Biau and Fischer,
2012), and unsupervised segmentation of spectral images via piecewise-constant Gaussian mix-
ture models (Cohen and Le Pennec, 2014).

Nevertheless, no theoretical guarantees are currently available for such an algorithm. In ad-
dition to the practical issues already mentioned for the slope approach, this procedure is dif-
ficult to apply when there is not a single natural complexity measure Cm but several of them
—pen(1)1 (m), . . . ,pen(k)1 (m) can be k complexity measures—, which have to be combined wisely
for defining what are the “complex enough” m ∈M over which the (robust) linear regression
should be done. Another major difficulty is when card(M ) or n are not large enough to allow a
good estimation of several constants C?

1 , . . . ,C
?
k simultaneously.

Another option is to make use of a simplified penalty shape —depending on a single multi-
plicative constant—, even when we know that it differs from the optimal shape given by Eq. (82).
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Several articles make use of such a simplified penalty, instead of trying to calibrate k = 2 con-
stants, with satisfactory numerical results: for density estimation / clustering with Gaussian mix-
ture models (Maugis and Michel, 2011a; see also Michel, 2008, App. C.2) or multinomial mix-
ture models (Derman and Le Pennec, 2017), for choosing a simplicial complex in the computa-
tional geometry field (Caillerie and Michel, 2011), and for selecting jointly the rank and a set of
variables in a high-dimensional finite mixture regression model (Devijver, 2017a).

A numerical comparison between simplified penalty shape and calibration of two constants is
done in a few other papers, with various conclusions: favorable to the simplified shape (Lebar-
bier, 2002, Section 4.3.2, for change-point detection with Gaussian noise), similar for both
methods (Devijver and Gallopin, 2018, for inference of a high-dimensional Gaussian graphi-
cal model), or favorable to the calibration of two constants —for change-point detection with
Laplace noise and a simplified shape derived from experiments with Gaussian noise (Lebar-
bier, 2002, Section 4.6.4), for change-point detection with positive-definite kernels (Arlot et al.,
2019), and for curve clustering (Meynet and Maugis-Rabusseau, 2012, Figure 5). As a conclu-
sion, choosing between these two strategies should be done carefully, depending on the frame-
work.

7.5. Variants for change-point detection

For change-point detection seen as a model-selection problem, three approaches closely related
to minimal penalties have been proposed, without being exactly of the form of Algorithm 5. The
first is the “calibrated method” (Lebarbier, 2005, Section 4.2) mentioned in Section 7.2.

Second, Lavielle (2005, Section 2.3) remarks that Ĉmaxj. often leads to underestimating the
number of changes. Then, using the notation of Appendix B.1, it is proposed instead to define m̂
as the largest mi = m̂(Ci) corresponding to a jump whose height Ci−Ci−1 is much larger than the
one of the largest subsequent jump, that is, max j>i{C j−C j−1}. This approach might be closer
to an elbow heuristics (see Section 6.4) than to a minimal-penalty algorithm.

Statistical Base Jumping Third, an unpublished idea by Rozenholc (2012) is the following.
Assume that change-point detection is cast as a model-selection problem in fixed-design regres-
sion, so that we can use the notation of Section 2. Take some D “large” but, say, smaller than
n/2, for instance D = n/ log(n) or D =

√
n. Compute F̂D the empirical risk minimizer over the

set of piecewise-constant signals with D pieces (which is a union of
(n−1

D−1

)
vector spaces of di-

mension D). Consider the residual vector Ỹ =Y − F̂D and apply the penalization approach to this
pseudo-data, that is, compute

∀C > 0 , m̃(C) ∈ argmin
m∈M chpt

n

{
1
n

∥∥∥Ỹ −ΠmỸ
∥∥∥2

+C pen0(m)+pen′0(m)

}
(83)

where the model collection M chpt
n is the one adapted to change-point detection, and the penalty

shape C pen0(m) + pen′0(m) is a simplified version of the penalties proposed by Comte and
Rozenholc (2004), Lavielle (2005) and Lebarbier (2005), such as

CDm , CDm + log
(

n−1
Dm−1

)
or C log

(
n−1

Dm−1

)
+Dm .
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Define ĈSBJ as the minimal value of C > 0 such that Dm̃(C) = 1, and finally select

m̂SBJ ∈ argmin
m∈M chpt

n

{
1
n
‖Y −ΠmY‖2 +

2ĈSBJ

1+ D
n

pen0(m)+pen′0(m)

}
.

Note that F̂D , (m̃(C))C>0 and m̂SBJ can all be computed efficiently, in particular using dynamic
programming. The heuristics behind this method is that if D is large enough to catch all true
change-points of F in F̂D , then Ỹ does not contain any signal anymore, and ĈSBJ pen0 is the min-
imal penalization level needed to recover with Eq. (83) the unique model of dimension one (con-
stant signal). The factor 1+ D

n dividing ĈSBJ corrects for the variance of the pseudo-sample Ỹ .
Unpublished experiments (Rozenholc, 2012) suggest that m̂SBJ provides very good segmenta-
tions, much better than with the original slope heuristics —that is, Algorithm 1 or 2, as done by
Lebarbier (2005) for instance.

7.6. Other uses of minimal penalties

Let us finish this section by mentioning two other uses of a minimal-penalty algorithm in the
literature.

Choice of a penalty shape Algorithm 5 can be used for choosing among several penalty
shapes, by detecting bad ones, which are the ones that do not lead to a clear dimension jump, as
illustrated by Baudry et al. (2012, Section 3 of supplementary material) in the setting of Caillerie
and Michel (2011).

Minimal-penalty assisted experiments For estimating a good deterministic constant C̃? to be
put in front of the penalty, Chagny (2013) computes on 100 samples the constant Ĉ chosen by
a slope heuristics algorithm, and defines C̃? as the maximal value of Ĉ observed over the 100
samples. The main interest of this approach is to require less computations than the standard one
—which would be to compute, for every C in a grid, the average over the 100 samples of the risk
of the estimator selected with the penalty C pen1 , and then to take C̃? that minimizes the average
risks over C in the grid—, even if the value C̃? might not be the optimal one.

8. Conclusion, conjectures, and open problems

As a conclusion of this survey, we sketch what is known theoretically for minimal-penalty al-
gorithms, as well as several conjectures and open problems of high interest. Let us recall that
Section 5 provides some hints for tackling many of these conjectures and open problems.

8.1. Settings and losses where minimal-penalty algorithms apply

Let us sketch the set of frameworks for which minimal-penalty algorithms are theoretically jus-
tified, at least partially (see Section 4).

The typical situation is a polynomial collection of minimum-contrast estimators (also called
empirical risk minimizers) with a regular contrast (Saumard, 2010b) (for instance, the least-
squares contrast), the corresponding risk (expected value of the contrast), and (almost) i.i.d. data.
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Then, all obtained results show that penopt ≈ 2penmin . In other terms, the slope heuristics holds
true in several frameworks “close to” choosing among a polynomial collection of projection
estimators with the least-squares risk and i.i.d. data.

The general result proved by Saumard (2010b, Chapters 7–8) for regular contrasts suggests
that the slope heuristics is probably valid in all frameworks that are close enough to this ideal
situation —e.g., least-squares estimators in regression or (conditional) density estimation with
the least-squares risk—, under appropriate assumptions.

Two results, in regression (Arlot and Bach, 2009) and in density estimation (Lerasle et al.,
2016), show that linear estimators can be considered instead of minimum-contrast estimators,
at the price of changing the slope heuristics (Section 2) into a minimal-penalty heuristics (Sec-
tion 3). A similar extension can probably be done in other settings for estimators that are (close
to) linear functions of (part of) the data.

More generally, using the notation introduced in Section 4.1, it is probably often true that
E[p2(m)] is a minimal penalty and E[p1(m)+ p2(m)] an optimal penalty. But unless these expec-
tations are (approximately) known up to a multiplicative constant, applying such results requires
to estimate E[p2(m)] and E[p1(m)+ p2(m)] by resampling (see Remark 3 in Section 4.2), and
we then loose a nice feature of Algorithm 5 which is its small computational cost compared to
cross-validation.

8.2. Unavoidable assumptions

Even in settings for which a full proof of a minimal-penalty algorithm is known, a natural ques-
tion to ask is which assumptions are unavoidable for this algorithm to work.

Based upon existing proofs —in particular the one of Theorem 1, which is typical—, we
conjecture that at least three assumptions are (almost) needed.

First, a “complex” estimator should be present in the collection, similarly to (HId). Note that
such an estimator can often be added on purpose to a predefined collection.

Second, one “less complex” but “good” estimator should also be present in the collection,
similarly to what Theorem 1 assumes implicitly. The exact definition of “good” can depend
on the context. In general, being consistent should suffices; note that assuming that the oracle
estimator is consistent is a mild assumption for estimator selection, since otherwise the problem
is not much interesting. In the setting of Theorem 1, it suffices to have a model with a small
approximation error, even if the corresponding estimator is not consistent. Note however that
such an assumption can be violated in practice, for instance when the estimator collection has
not been well chosen, so that the approximation error never vanishes.

Third, it seems reasonable to make some mild moment assumption on the data so that the
key quantities p1 and p2 concentrate around their expectations, at least when using deterministic
penalty shapes. Nevertheless, a Gaussian assumption such as (HG) is not necessary (Arlot and
Massart, 2009; Saumard, 2013); see also Remark 1 in Section 2.5. Independence of data is not
necessary either (Lerasle, 2011; Garivier and Lerasle, 2011). Risk bounds could be obtained un-
der much weaker moment assumptions —for instance, when the noise only has a finite moment
of order two—, for empirical risk minimizers (Mendelson, 2018) or for robust estimators (Au-
dibert and Catoni, 2011, for instance). Nevertheless, we are not aware of any theoretical result
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on minimal penalties in such a setting.

8.3. Other settings, losses, estimators

Numerical experiments show that minimal-penalty algorithms can be used fruitfully in many
other settings such as supervised classification (Zwald, 2005), model-based clustering (Maugis
and Michel, 2011a; Baudry, 2015), high-dimensional inference (Devijver and Gallopin, 2018),
change-point detection (Lebarbier, 2005; Bardet et al., 2012), topological data analysis (Caillerie
and Michel, 2011), functional linear models (Roche, 2014) or Hawkes-process intensity estima-
tion (Reynaud-Bouret and Schbath, 2010), with applications in various domains such as biology
—genomics (Akakpo, 2011; Reynaud-Bouret and Schbath, 2010), transcriptomics (Rau et al.,
2015; Devijver and Gallopin, 2018), quantitative trait prediction from genomic data (Devijver
et al., 2017), population genetics (Bontemps and Toussile, 2013)—, energy —electricity con-
sumption prediction (Devijver et al., 2019), oil production modelization (Michel, 2008, Chap-
ter 6)—, hyperspectral image segmentation (Cohen and Le Pennec, 2014), text analysis (Derman
and Le Pennec, 2017), and bike sharing systems (Bouveyron et al., 2015a; Godichon-Baggioni
et al., 2019). Combining these numerical experiments —especially the ones showing that the
empirical risk is indeed close to a linear function of some known pen0 for large-complexity
estimators— with the partial theoretical results available (Section 4), several settings can be
identified where we conjecture that a minimal-penalty algorithm such as Algorithms 5–6 could
be used fruitfully. Among them, we select below the most challenging ones, in terms of both
practical applications and theoretical interest.

8.3.1. Supervised classification

A classical setting where minimal-penalty algorithms would be quite useful is supervised classi-
fication with the 0–1 loss and corresponding empirical risk minimizers. No theoretical result is
available up to now, and it seems tough to prove any because the 0–1 contrast is far from being
regular. Nevertheless, Boucheron and Massart (2011) provide a key ingredient of the proof, that
is, a concentration inequality for p2(m) that applies easily to 0–1 classification, even when fast
learning rates are possible. Given Proposition 1 and the general strategy detailed in Section 5,
what remains is to prove a similar concentration inequality for p1(m), and to be able to estimate
(up to the same unknown constant) E[p1(m)] and E[p2(m)].

A probably easier open problem is to provide theory for the case of classification with a
convex loss, such as the logistic loss —at the basis of logistic regression— or the hinge loss
—at the basis of support vector machines. At least, for the hinge loss, the numerical experiments
reported by Zwald (2005, Section 6.4.3) suggest that minimal-penalty algorithms can work with
pen0(m) = Cm = Dm and pen1(m) = 2Dm .

8.3.2. Model-based clustering, choice of the number of clusters

Estimating the number of clusters for (unsupervised) clustering is another problem where fine
tuning of penalties is a major challenge. A classical approach —called model-based clustering—
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is to estimate the data density by maximum-likelihood on a mixture model, and to define clus-
ters by a maximum a posteriori rule. Then, the number of clusters can be chosen by maximiz-
ing the penalized log-likelihood. Minimal-penalty algorithms with pen0(m) = Cm = Dm and
pen1(m) = 2Dm are shown successful by experiments on synthetic and real data, for various
problems following this strategy (up to modifications that are specified below):

– clustering with Gaussian (Baudry, 2015), Poisson (Rau et al., 2015), multinomial (Derman
and Le Pennec, 2017), or some functional (Bouveyron et al., 2015a) mixture models.

– clustering with Gaussian mixtures and the conditional log-likelihood instead of the log-
likelihood, which leads to slightly different kinds of clusters (Baudry, 2015).

– joint clustering and variable selection —that is, identifying which features are relevant for
clustering— with mixtures of Gaussian (Maugis and Michel, 2011a) or multinomial (Bon-
temps and Toussile, 2013) variables.

– efficient joint clustering and high-dimensional variable selection with maximum-likelihood
estimators trained on data-driven models obtained by a first step of L1 penalization (Meynet
and Maugis-Rabusseau, 2012); here, the shape of the minimal penalty seems to be close to a
linear combination of Dm and Dm log p

Dm
(Meynet and Maugis-Rabusseau, 2012, Figure 6),

and the algorithm described in Section 7.4 can be used.
– when an additional feature vector is provided for each observation, clustering a mixture of

Gaussian regression models, jointly done with feature selection (Devijver, 2017b; Devijver
et al., 2019) or partitioning (Devijver et al., 2017), via two-steps procedures similar to the
one of Meynet and Maugis-Rabusseau (2012).

We conjecture that minimal-penalty algorithms indeed work in these settings, that is, as one
can observe on synthetic or real data: (i) p2(m) is (close to) a linear function of the number of
parameters Dm , (ii) Algorithm 5 or 6 with pen0(m) = Dm and pen1(m) = αDm provides an esti-
mator with a small Kullback-Leibler risk, for some α > 1 to be determined, and (iii) the number
of clusters selected by this algorithm is equal to the true one K? with large probability when n is
large and the data distribution is close to a mixture with K? components. Note that (ii) is a den-
sity estimation guarantee —hence, slightly different from clustering, but classical for justifying
theoretically a penalty shape (Maugis and Michel, 2011b; Meynet and Maugis-Rabusseau, 2012;
Bontemps and Toussile, 2013; Derman and Le Pennec, 2017; Devijver, 2017a)— and that (ii)
and (iii) may require different values of α since estimation and model identification are different
goals for model selection, see Section 8.3.6. When variable selection is done jointly with cluster-
ing, (iii) can be completed by the fact that the true set of relevant variables is selected with large
probability.

Up to now, only oracle inequalities with theoretical penalties are available in some of these
settings. Of course, proving the above conjecture would be less difficult for pure model-based
clustering (Baudry, 2015; Bouveyron et al., 2015a; Rau et al., 2015; Derman and Le Pennec,
2017) than for the two-steps algorithm using L1-penalized maximum-likelihood for defining
data-driven models (Meynet and Maugis-Rabusseau, 2012; Devijver, 2017b; Devijver et al.,
2019).

Note also that variable selection, without any order among variables, means that the model
collection considered is large —with the terminology of Section 4.7—, at least implicitly; this
fact raises specific issues that are addressed in Section 8.3.4.
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8.3.3. High-dimensional statistics

Hyperparameter tuning is a major issue for high-dimensional statistics (Giraud, 2014, Chap-
ter 5), which can often be addressed by penalization. Despite several positive numerical results,
providing a full theoretical proof of a minimal-penalty algorithm in this context remains an open
problem.

Clustering Numerical results about minimal-penalty algorithms for joint (model-based) clus-
tering and variable selection are reviewed in Section 8.3.2. For block-diagonal estimation of the
covariance matrix of a high-dimensional Gaussian vector (graphical model), Devijver and Gal-
lopin (2018) provide positive numerical results for a similar algorithm —maximum likelihood
on data-driven models obtained by thresholding the empirical covariance matrix. Nevertheless,
given the difficulty of proving an oracle inequality (Devijver and Gallopin, 2018, for instance),
it seems hard to obtain a full theoretical validation of the minimal-penalty algorithms of Meynet
and Maugis-Rabusseau (2012), Devijver (2017b) and Devijver and Gallopin (2018).

Regression: the Lasso and related algorithms One of the most classical high-dimensional
statistics problem is variable selection in linear regression, for which the (group) Lasso and
related algorithms are popular. Penalized least-squares can be used for choosing their parameters,
thanks to covariance penalties (Efron, 2004), which have a simple expression of the form σ2df/n
when the noise is Gaussian, where σ2 denotes the residual noise-level and df are the degrees of
freedom. Easy-to-compute estimators of df exist for the Lasso (Tibshirani and Taylor, 2012;
Dossal et al., 2013) and group Lasso (Vaiter et al., 2012), among others. The remaining issue
is to estimate σ2 without knowing any small correct model, for which minimal penalties are a
natural approach (see Section 6.1).

The PhD dissertation of Connault (2011) provides an extensive numerical study of minimal
penalties for calibrating either the Lasso or least-squares estimators trained on models selected
by the Lasso (‘Lasso+LS’). In short, the major difficulty is that the natural candidate for pen0(m),
that is E[p2(m)]/σ2, cannot be used because it depends on the (unknown) signal β ?. Simplified
penalty shapes —that is, E[p2(m)]/σ2 for a zero signal, or for a zero signal and an identity design
matrix— often work for Lasso+LS, and sometimes for the Lasso, depending on the signal-to-
noise ratio and on the sparsity of the signal. This is not satisfactory because these minimal-
penalty algorithms sometimes fail for the Lasso or Lasso+LS, and Connault (2011) proposes
“antidotes” for detecting the failure but nothing for correcting it, except using cross-validation.

It nevertheless seems possible to solve the case of an orthogonal design matrix, when the
Lasso is soft thresholding and Lasso+LS is hard thresholding. Taking the number of selected
variables k as tuning parameter, Loubes and Massart (2004, Section 2) conjecture that for soft
thresholding, E[p2(k)] ≈ 3

2
σ2k

n . If one could prove this conjecture, a minimal-penalty algorithm
could be used for estimating σ2 —hence for calibrating soft (or hard) thresholding. Section 8.3.4
discusses the case of hard thresholding.

For a general design matrix and for other estimators, we think that the key question is to
find the good parametrization of the estimator to be calibrated. For instance, the Lasso can
be parametrized by the regularization parameter or by the number of selected variables, and
Connault (2011) shows that the theoretical minimal penalty E[p2(m)] and the performance of
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minimal-penalty algorithms strongly depend on the chosen parametrization. We also conjecture
that the solution might not come from a direct application of Algorithms 5–6, but by the more
general approach of identifying an observable phase transition —with respect to some well-
chosen parameter— that provides the key information for an optimal calibration of the algorithm
considered —for instance, an estimation of σ2 for the (group) Lasso. This idea has already been
proposed in a few settings that are detailed in Section 8.5. For high-dimensional regression,
theoretical results prove the existence of phase transitions in the risk of the Lasso (Bellec, 2017,
Section 4; Bellec, 2018, Section 4.3) and of the constrained formulation of the Lasso (Chatterjee,
2014, Section 2.1). Nevertheless, it is not clear whether these phase transitions are observable,
so they might not be useful for choosing hyperparameters. The approach of Section 6.6 seems to
be another promising direction for tackling this problem.

Let us finally mention that concentration inequalities for p1(m) are available for the Lasso
and some related algorithms —see Section 5.3 for details. They can be useful for validating
minimal-penalty algorithms.

8.3.4. Large collection of models

As recalled in Section 4.7, the nature of the model-selection problem depends on the size of
the model collection. All full proofs and almost all partial results available for minimal-penalty
algorithms are for small collections, for which optimal model selection can be obtained with the
unbiased risk estimation heuristics. For large collections, only a few partial theoretical results are
available, as reported in Section 4.7. Therefore, the case of large collections remains a widely
open problem of major interest.

The most classical situation is variable selection among p & n variables, which amounts to
select among a collection of 2p models. Let us start by focusing on the two settings where
minimal-penalty algorithms are best understood: (i) variable selection with p = n and an or-
thonormal design —so that penalizing the least-squares criterion by a function of the number of
variables is equivalent to hard thresholding—, and (ii) change-point detection —finding the loca-
tions of abrupt changes in the distribution of a sequence of n observations— which can be casted
as a variable-selection problem with p = n− 1 variables —the possible breakpoint locations—
and solved by penalized least-squares.

Let us also recall that the notation (β ), (β−), (β+), (β ′), (γ), and (γ̃ ) refer to partial results
about minimal-penalty algorithms; they are defined in Sections 4.1–4.4.

Orthonormal variable selection by hard thresholding For variable selection with an or-
thonormal design and Gaussian noise, Birgé and Massart (2007, Proposition 2) prove (β ′) and
(γ̃ ) with a minimal penalty of order 2σ2 Dm

n log n
Dm

—at least for 1�Dm� n. We conjecture that
(β ) holds true in the same setting: a proof of (β−) derives from the proof written by Birgé and
Massart (2007, Proposition 2), and (β+) seems easy to get given the results obtained by Birgé
and Massart (2007). Then, (β ) and (γ̃ ) would prove that Algorithm 5, with pen0(m)≈Dm log n

Dm
and pen1(m) given by Birgé and Massart (2007, Section 3.1.3), provides a good data-driven
variable-selection procedure, satisfying an oracle inequality close to being optimal.

The main remaining challenge for having a full proof of a first-order optimal procedure is
problem (γ): find a first-order optimal penalty of the form σ2 pen1(m) with pen1(m) known. We
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think that this is a hard problem, whose resolution would have a great impact on model-selection
theory in general, since even the value of the optimal excess risk of such a variable-selection
procedure is not exactly known at first order. We only know by minimax arguments that it should
be of order log n

Dm?
times the oracle excess risk, up to a constant factor.

Another open problem for orthonormal variable selection is to determine the minimal penalty
for non-Gaussian noise. Contrary to small model collections, this is not a straightforward exten-
sion of Gaussian results since the experiments of Lebarbier (2005, Section 5) for another large
collection problem —change-point detection— suggest that the minimal penalty then is different
for Laplace and for Gaussian noise.

Change-point detection Penalized least-squares is a classical approach to change-point de-
tection, for which an oracle inequality (γ̃ ) holds true for Gaussian noise and a penalty of the
form σ2 Dm

n

[
c1 log n

Dm
+ c2

]
where c1,c2 > 0 are two numerical constants and σ2 is the residual

noise-level (Lebarbier, 2005); a similar result in a slightly different setting is proved by Arlot
et al. (2019). The numerical experiments of Lebarbier (2005), Sorba (2017), Garreau (2017,
Section 4.1), Cabrieto et al. (2018, Figure 4, for instance) and Arlot et al. (2019), as well as the
partial theoretical results of Sorba (2017) —see Section 4.7—, suggest that a minimal-penalty
algorithm with Cm = Dm and pen0(m) proportional to a linear combination of Dm and Dm log n

Dm
(or close to it, according to Birgé and Massart, 2007, and Sorba, 2017) should work well in
this setting. Given the numerical experiments of Lebarbier (2005) and Arlot et al. (2019), we
conjecture that the ratio between the optimal and minimal penalty belongs to (1,2]; it may be
model-dependent.

Proving these conjectures formally would require to solve two open problems: (a) prove the
existence of a dimension jump for some known pen0 —or, equivalently, prove that step 2 of
Algorithm 6, or its generalization of Section 7.4, works well—, and (b) prove an optimal oracle
inequality for a penalty C? pen1 that can be derived from the minimal penalty. Problem (b) is
very hard, as for orthonormal variable selection. Problem (a) seems less difficult: Sorba (2017,
Chapter 8) is close to proving it, but there is still a gap between “large enough” and “too small”
penalties, which leaves open the possibility of having no clear dimension jump. It remains a
challenge, as emphasized by the fact that the shape of the minimal penalty seems to depend
on the noise distribution not only through its variance (Lebarbier, 2005, Section 5). Note that
proving (a) with C? = σ2 would be sufficient to get a good data-driven penalty for change-point
detection, since an oracle inequality —maybe suboptimal— is already available for a penalty
depending on σ2 and known quantities.

To conclude on change-point detection via penalized least-squares, let us recall that Rozen-
holc (2012) proposes a related but different approach to penalty tuning —see Section 7.5— that
might be even more efficient than minimal-penalty algorithms for change-point detection with
penalized least-squares. Justifying it theoretically would therefore be of great interest.

Beyond penalized least-squares, slope-heuristics algorithms empirically work well for change-
point detection with dependent data in two settings: causal processes with the maximizer of a
penalized log-likelihood (Bardet et al., 2012), and long-memory processes with the minimizer
of a local Whittle contrast (Bardet and Guenaizi, 2018). Bardet et al. (2012) even show the re-
markable fact that minimal penalties numerically adapt to variations of the optimal constant C?

Journal de la Société Française de Statistique, Vol. 160 No. 3 1-106
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



Minimal penalties and the slope heuristics: a survey 71

—which can be of order log(n) or
√

n— when the dependence structure varies. A theoretical
validation of these results seems quite a challenge, since handling small model collections in the
same settings already is an open problem.

General setting Understanding minimal-penalty algorithms for more general variable-selection
problems seems a too high theoretical challenge for the next few years. We nevertheless con-
jecture that minimal-penalty algorithms work well beyond orthonormal variable selection and
change-point detection, given the successful experiments of Maugis and Michel (2011a) and
Bontemps and Toussile (2013) for joint variable selection and model-based clustering (see Sec-
tion 8.3.2).

Minimal-penalty algorithms experimentally work well in several other settings mentioned
previously, where large model collections are implicitly considered through L1 penalization or
thresholding: model-based clustering (Meynet and Maugis-Rabusseau, 2012), multivariate re-
gression with a mixture of linear models (Devijver, 2017b; Devijver et al., 2017), and Gaussian
graphical model estimation (Devijver and Gallopin, 2018).

8.3.5. Infinite estimator collections

Throughout the article, the estimator collection (ŝm)m∈M is assumed to be finite. Nevertheless,
Algorithms 5–6 can still be used (at least theoretically, due to computational issues) for some
infinite collections that behave as small (finite) collections, with the terminology of Sections 4.7
and 8.3.4.

Indeed, Arlot and Bach (2011) prove that Algorithm 5 can be used for selecting a tuning
parameter within a continuous set M . The proof of Arlot and Bach (2011) for kernel ridge
regression mostly relies on two facts: (i) Algorithm 5 would work for a collection of L1nL2

such estimators for any fixed L1,L2 > 0, (ii) the collection of kernel ridge regressors can be well
approached by a finite collection of L1nL2 estimators for some fixed L1,L2 > 0. We conjecture that
a similar approach can be used for proving that Algorithm 5 works with some other continuous
collections, starting by multiple-kernel ridge regression with a fixed number of kernels.

8.3.6. Model selection for identification of the true model

Throughout this survey, we assume that the goal is to choose a data-driven m̂ ∈M such that the
risk of ŝm̂ is minimal, that is, satisfies a non-asymptotic oracle inequality (2). Model selection
can target a different goal, which is to identify the smallest true model m? ∈M with probability
one asymptotically, assuming that some true model exists; a procedure m̂ achieving this goal
is said “model-consistent”. Then, the exact same procedure cannot achieve the two goals in
general (Yang, 2005). Can minimal-penalty algorithms still be useful for identification? Some
experiments and theoretical arguments suggest a positive answer.

Role of the size of the model collection For large collections —see Section 8.3.4—, it turns
out that both estimation and identification require to overpenalize compared to the unbiased
risk estimation principle. Therefore, the minimal-penalty algorithms suggested in Section 8.3.4
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should also work for identification. This conjecture is supported by the experiments of Bontemps
and Toussile (2013, Figure 2) about variable selection in multinomial mixture models, and by
those of Arlot et al. (2019, Figure 2) and Garreau and Arlot (2018, Figure 5–6) about change-
point detection.

For small collections, the picture is different. A typical example is least-squares fixed-design
regression with projection estimators, as in Section 2. Let us focus on this setting here for sim-
plicity. The slope heuristics then leads to a model-selection procedure equivalent to Cp , which
is first-order optimal for estimation but inconsistent for identification (Shao, 1997, Theorem 1).
A simple way to fix this failure is to replace the factor 2 between minimal and optimal penalties
in the slope heuristics by, say, a log(n) factor, in order to get a BIC-type penalty, hence consistent
for identification (Shao, 1997, Theorem 2). Such a correction of the slope heuristics may seem
unsatisfactory, so one may consider to combine it with a procedure choosing from data between
AIC and BIC-type penalties (Yang, 2005; van Erven et al., 2012).

Change-point detection For change-point detection with well-chosen small collections of
models, Gey and Lebarbier (2008), Durot et al. (2009) and Akakpo (2011) propose specific
hybrid procedures for identification of the change-point locations. In short, they consist of two-
steps procedures, with minimal-penalty algorithms in both steps. The first step selects within a
small model collection, providing an oversegmentation of the data sequence. The second step re-
moves the unnecessary change-points. Proving the consistency of these procedures —including
the minimal-penalty algorithms— is an open problem. Another natural question is to generalize
such two-steps procedures to other model-selection problems with an identification goal.

Minimal penalties for consistent identification Let us finally mention some theoretical re-
sults about the minimal level of penalization needed for model consistency, that is, for having
m̂ = m? a.s. asymptotically. Even without a corresponding calibration algorithm —since the min-
imal penalty is not observable here—, this question remains of interest for theory.

In least-squares regression, Shao (1997, Theorem 1 (iii)) shows that Cp is not model consistent,
assuming only that some true model m′ ∈M exists with Dm? < Dm′ 6 Dm? +κ for some fixed
κ > 0. Such a result actually holds for any penalty of the form CDm/n with C > 0 fixed as n
grows, which can be proved from arguments used in the proof of Theorem 1. Conversely, using a
penalty of the form λnDm/n with λn→+∞ and λn/n→ 0 as n tends to infinity provides a model-
consistent procedure (Shao, 1997, Theorem 2). Therefore, the minimal level of penalization for
identification is of the form λnDm/n with λn→+∞.

For maximum-likelihood estimators, at least two results are available. BIC-type penalties are
minimal for estimating the order of a Markov chain without any prior upper bound on its order
(van Handel, 2011). For density estimation with i.i.d. data, identifying the true model among a
nested family by minimizing the log-likelihood penalized by pen(m) = f (m)g(n) requires that
g(n)>C?(s?) log logn for some constant C?(s?)> 0 (Gassiat and Van Handel, 2013).

8.3.7. Miscellaneous

Model selection Numerical experiments suggest that minimal-penalty algorithms work well
for several other model-selection problems. We list them below, in order to help identifying
settings where new theoretical results could be proved:
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1. Heteroscedastic regression when the residual variance is known up to a constant —which
can occur for inverse problems—, with least-squares risk and estimators (Villers, 2007,
Section 2.6.2), beyond regressograms and strongly localized bases for which theoretical
results are already known for a random design (Arlot and Massart, 2009; Navarro and
Saumard, 2017). The fixed-design case can be handled similarly to the results of Arlot and
Bach (2011). The random-design case with general models is clearly more challenging.

2. Estimation of two kinds of geometrical objects, with least-squares risk and estimators:
simplicial complices (Caillerie and Michel, 2011) and principal curves (Biau and Fischer,
2012).

3. Least-squares risk and estimators for clustering of compositional data (Godichon-Baggioni
et al., 2019), Hawkes-process intensity estimation (Reynaud-Bouret and Schbath, 2010),
and in a functional linear model (Roche, 2014, Section 2.4).

4. Maximum-likelihood estimators with the Kullback-Leibler loss for semiparametric regres-
sion with censored data via the Cox model (Letué, 2000), point-process intensity estima-
tion (Michel, 2008, Section 6.3 and Appendix D.1.2), regression for counting processes
under a proportional-hazard assumption (Oueslati and Lopez, 2013), and segmentation of
spectral images via spatialized Gaussian mixtures (Cohen and Le Pennec, 2014).

Estimator selection We emphasize in this survey that minimal-penalty algorithms can be use-
ful for estimator selection in general. Beyond the few theoretical results pointed out in Sec-
tion 4.2, we conjecture that Algorithms 5–6 work for several estimator-selection problems.

First, numerical experiments suggest that they can be used for selecting among maximum-
likelihood or least-squares estimators trained on data-driven models, obtained by L1 penaliza-
tion in a variable-selection setting (Meynet and Maugis-Rabusseau, 2012; Devijver, 2017b),
by thresholding the empirical covariance matrix (Devijver et al., 2017; Devijver and Gallopin,
2018), by k-means (Caillerie and Michel, 2011), or by (kernel) PCA in classification (Zwald,
2005, Section 6.4.3) or functional data analysis (Roche, 2014, Section 2.4). Some of these re-
sults are detailed above in Sections 8.3.2 and 8.3.3.

Second, minimal-penalty algorithms can be used successfully for the pruning step of CART
in regression (Gey and Lebarbier, 2008) and of a spatial variant of CART (Bar-Hen et al., 2018),
according to numerical experiments.

Finally, Algorithms 5–6 certainly cannot succeed for any kind of estimator collection. Sec-
tion 8.5 describes a natural and promising way to generalize the minimal-penalty approach be-
yond Algorithms 5–6.

8.4. Overpenalization

It is known empirically that a better model-selection performance can be obtained by overpe-
nalizing a bit: the penalty C pengal

opt(m) = CE
[
R(ŝm)− R̂n(ŝm)

]
has optimal performance when

C is slightly above 1, as shown for instance by Arlot and Baudry (2002), Arlot (2007, Chap-
ter 11) and Arlot (2009, Section 6.3.2) in the regression setting, and by Arlot and Lerasle (2016,
Figure 3) in least-squares density estimation. A similar phenomenon holds in the experiments
of Section 7.1, as shown by Figure 8. For histogram selection in density estimation, Saumard

Journal de la Société Française de Statistique, Vol. 160 No. 3 1-106
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



74 S. Arlot

0 1 2 3 4
1

1.5

2

2.5

3

3.5

4

C

R
is

k
 r

a
ti
o
 f
o
r 

M
a
llo

w
s
 C

p
 p

e
n
a
lt
y
  
 C *

FIGURE 8. Overpenalization with Mallows’ Cp penalty, ‘easy’ setting (see Appendix D.2 for details). Error bars are
so small that they would not be visible on the graph. The optimal overpenalization factor is C = 1.12, leading to an
improvement by a factor 1.015 compared to taking C = 1.

and Navarro (2018) propose a natural way to overpenalize automatically, which leads to a new
corrected version of the AIC criterion. Nevertheless, choosing from data an appropriate overpe-
nalization factor remains an open problem.

For reasons detailed below, we conjecture that minimal penalties can help solving this is-
sue. More precisely, when Algorithms 5–6 are known to be first-order optimal, we conjecture
that they automatically overpenalize —by a factor close to 1 when n is large—, and that this
overpenalization decreases the risk of the final estimator compared to penalization by pengal

opt(m).
Another way to formulate this conjecture, following Lacour and Massart (2016) and Lacour
et al. (2017, Section 2.4), is to state that the optimal constant C? depends on n differently from
what first-order asymptotics suggest, and that Algorithm 5 estimates well the finite-sample value
of C?. Section 2 certainly provides the less difficult setting for proving this conjecture, even if
the challenge is high: it requires to analyze penalization procedures at a precision level an order
of magnitude higher than ever.

Several results support the above conjecture. First, several simulation experiments show that
minimal-penalty algorithms overpenalize slightly in most settings: this is reported by Villers
(2007, Section 2.6.2.4), Arlot and Bach (2011) and Solnon et al. (2012, Section 6), and this holds
for the experiments of Section 7.1 (see Figure 6 in Section 7.1 and Tables 2–3 in Appendix C).

Second, Theorem 1 is consistent with the fact that Ĉjump might overestimate σ2. Taking for
instance Tn = n/2, Theorem 1 implies that on a large-probability event,

(1−η
−
n )σ2 6 Ĉthr.(Tn)6 (1+η

+
n )σ2

with η+
n > η−n ; Proposition 3 in Section 6.1 provides a precise statement. If these bounds are

tight, it means that Ĉthr. is slightly biased upwards as an estimator of σ2, which corresponds to
overpenalization.

Third, minimal-penalty algorithms take into account the full collection of estimators (ŝm)m∈M
in their definition, and Section 8.3.4 details why they should automatically adapt to the richness
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of the collection M . We claim that the need for overpenalization might be mostly related to
the richness of M , so that the conjectures of Section 8.3.4 could help solving the above over-
penalization conjecture. Let us explain briefly why, by considering fixed-design regression with
projection estimators, using some results and the vocabulary of Section 4.7. When M is small
—say, one model per value of the dimension—, penCp

(m) = 2σ2Dm/n is an (asymptotically)
optimal penalty and the minimal penalty is σ2Dm/n. When M is large —say,

(n
D

)
models of

dimension D—, the minimal amount of penalization required is multiplied by 1+2log(n/Dm),
which is of order 2 log(n)� 1 (except for the largest models), and good performance can be ob-
tained with some penalties of the same order of magnitude. For a given sample size n, between
these two extreme settings, there is a continuum of collections M of increasing sizes, for which
the optimal amount of penalization is C?

n(M )penCp
for some C?

n(M ) between 1 and 2log(n),
approximately: this is an instance of the overpenalization phenomenon. So, if a minimal-penalty
algorithm adapts to the size of M , it would capture the need for overpenalization by C?

n(M ) in
the constant Ĉjump . At least, Ĉjump would be asymptotically of the correct order for both small
and large M , which cannot be done with some estimator σ̂2 that does not take into account the
collection M .

8.5. Beyond Algorithms 5–6: phase transitions for estimator selection

Most, if not all, nonparametric estimators depend on one or several parameters, whose optimal
data-driven choice is often a challenge. In this survey, we focus on a single parameter C that is a
multiplicative constant in front of a penalty, and we show that in several settings:

(i) an observable phase transition occurs for the estimator ŝ
m̂(0)

min(C)
around C =C?, and

(ii) C? can be used for the optimal calibration of ŝ
m̂(1)

opt(C)
through Algorithm 5.

If a similar phenomenon occurs for other types of tuning parameters, this would lead to highly
interesting generalizations of Algorithm 5. This subsection collects partial theoretical results —
using the notation (β ), (β ′), (γ) and (γ̃ ) defined in Sections 4.1–4.4— and experiments going
into this direction, as well as several conjectures and open problems.

8.5.1. Goldenshluger-Lepski’s and related procedures

Goldenshluger-Lepski’s method (Goldenshluger and Lepski, 2011; Bertin et al., 2016) is a clas-
sical estimator-selection procedure, which does not rely on penalization of an empirical risk but
on pairwise comparisons between estimators.

Goldenshluger-Lepski’s method For choosing the bandwidth h of kernel density estimators
with a fixed kernel, in order to minimize the least-squares risk, Lacour and Massart (2016) study a
slightly simplified version of Goldenshluger-Lepski’s method, that depends on a single parameter
a that can be interpreted as a constant in front of a penalty. If we define the complexity by
Ch = ‖K‖2/(nh), as usual for kernel density estimation, Lacour and Massart (2016, Theorem 3)
prove an equivalent of (β−) and (β ′−) if a < 1, and (γ̃ ) if a > 1. Simulation experiments suggest
that there is indeed a phase transition for the selected bandwidth around some value a? of a
—hence, (β+) should also hold true— and that the optimal value of a is slightly above a?.
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Despite the theoretical results showing that a? → 1 as n→ +∞, for a finite sample size a? is
not necessarily close to 1. This leads to a minimal-penalty algorithm for estimating a?, hence
calibrating (a simplified version of) Goldenshluger-Lepski’s method. The numerical experiments
of two papers show the interest of this algorithm, with â defined similarly to Ĉmaxj. : for estimating
the stationary distribution of a bifurcating Markov chain on Rd (Bitseki Penda and Roche, 2017),
and for state-by-state inference of the emission densities of a hidden Markov model (Lehéricy,
2018). Although Lehéricy (2018) takes a penalty multiplied by a = 2â for defining the final
estimator —similarly to the slope heuristics—, Bitseki Penda and Roche (2017) take a just above
â, by selecting the estimator immediately after the jump of Ch . This choice is supported by the
fact that the minimal and optimal penalties are almost equal in the results of Lacour and Massart
(2016).

Penalized comparison to overfitting (PCO) In the same framework, with a possibly multi-
variate bandwidth h∈Rd , Lacour et al. (2017) propose a new procedure called penalized compar-
ison to overfitting (PCO), which lies between penalization and Goldenshluger-Lepski’s method.
PCO depends on a parameter λ which is a multiplicative factor in front of one of the two terms
of some kind of penalty. Considering again the complexity Ch = ‖K‖2/(nh), PCO satisfies an
equivalent of (β−) if λ < 0 (Lacour et al., 2017, Theorems 3–4), (β ′+) if λ > 0, and (γ) around
λ = λ ? = 1 (Lacour et al., 2017, Theorems 2 and 5). The optimality of λ ? = 1 is assessed by
numerical experiments on synthetic data (Varet et al., 2019).

Although PCO does not seem to require a data-driven calibration of λ according to the above
result, λ = 1 may not always be a good choice outside the least-squares density estimation set-
ting. Therefore, the theoretical results of Lacour et al. (2017) suggest the following minimal-
penalty algorithm for calibrating PCO: first, detect λ̂ around which λ 7→ Cĥ(λ ) jumps, then, take

(a) λ = λ̂ +1 or (b) λ = 2(λ̂ +1)−1 = 2λ̂ +1

for defining the final estimator. Option (a) is suggested by the fact that the difference between
the minimal λ —zero— and the optimal λ —one— is equal to 1 (Varet et al., 2019, Re-
mark 3.1). Option (b) is suggested by the slope heuristics, since the penalty λ pen0 is equiva-
lent to C pen0−pen0 with C = λ + 1, for which the minimal penalty occurs at C = 1 and the
(asymptotically) optimal penalty occurs for C = 2 —hence a factor 2 between the minimal and
the optimal penalty.

The experiments of Comte et al. (2017, Section 5) suggest that a similar way to calibrate
PCO works well for selecting the bandwidth of a kernel estimator of the stationary density of
the solution of a stochastic differential equation. For state-by-state inference of the emission
densities of a hidden Markov model, Lehéricy (2018, Section 4.3.2) proposes a variant of PCO
that can be well calibrated by a minimal-penalty algorithm according to numerical experiments.

A full theoretical validation of this calibration strategy remains an open problem. Provid-
ing theoretical guidelines for choosing between options (a) and (b) would also be interesting.
Another natural question is to generalize PCO to other settings where Goldenshluger-Lepski’s
method applies, such as density estimation with the Lp risk or regression; to the best of our
knowledge, this remains an open problem.
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8.5.2. Choice of a threshold

For some thresholding estimators, with a threshold depending (non-linearly) on some parameter
γ ∈ (0,+∞), an equivalent of (β ′) is proved —for a particular basis and assuming that s? is equal
to 1[0,1]—, as well as an equivalent of (γ̃ ) in the general case, in two settings: density estimation
on R (Reynaud-Bouret et al., 2011) and estimation of a Poisson intensity on R (Reynaud-Bouret
and Rivoirard, 2010).

For some Dantzig estimator (given some dictionary), with a parameter γ > 0 appearing in the
Dantzig constraints, Bertin et al. (2011) prove an equivalent of (β ′) —for a particular dictionary
and assuming that s? = 1[0,1]—, as well as an equivalent of (γ̃ ) in the general case.

In all the above results (Reynaud-Bouret and Rivoirard, 2010; Bertin et al., 2011; Reynaud-
Bouret et al., 2011), an equivalent of Algorithm 5 is proposed for a data-driven choice of γ , and
numerical experiments suggest that the optimal γ is often very close to the minimal γ . Therefore,
a generalization of the slope heuristics (γopt ≈ 2γmin) probably does not hold here.

8.5.3. Generalization

The above results, obtained for two different kinds of problems, suggest that phase transitions
could be used much more generally for estimator selection, including the optimal calibration of
learning algorithms. Section 8.3.3 proposes it for the Lasso and related procedures. We conjec-
ture that the same idea can be used fruitfully in several other settings.

The key question is to find the good parametrization of the estimator collection. The successes
of minimal-penalty algorithms rely on the parametrization by the constant C in front of a well-
chosen penalty shape pen0 —that is, chosen following the theoretical guidelines of Section 5.1,
possibly combined with the practical hints referenced in Section 7.6.

Finding an appropriate parametrization for the Lasso, for instance, remains an open problem
to the best of our knowledge.

8.6. Related challenges in probability theory

Addressing the statistical open problems listed above mostly relies on a few corresponding open
problems in probability theory. As detailed in Section 5, for each estimator ŝm considered, given
some deterministic s?m —which can be the best estimator in the associated model, or the expec-
tation of ŝm , for instance—, the key theoretical quantities are the following:

– the excess risk p1(m) = R(ŝm)−R(s?m),
– the excess empirical risk p2(m) = R̂n(s?m)− R̂n(ŝm),
– the empirical process at s?m , δ (m) = R(s?m)− R̂n(s?m).

Since the empirical process is well understood in general, the main challenges are about p1(m)
and p2(m). One either has to show that |p1(m)− p2(m)|/p1(m) is small on a large-probability
event —using Proposition 2 in Section 5.2.2—, or to show non-asymptotic concentration inequal-
ities for p1(m) and p2(m) around deterministic quantities that are known up to a multiplicative
factor.

We strongly encourage further work on these questions, especially on the concentration of the
excess risk p1(m) and the excess empirical risk p2(m), which are difficult theoretical problems
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of interest for statisticians beyond minimal penalties.
Indeed, concentrating the excess risk provides lower bounds on the risk of the estimator ŝm for
a given statistical problem —and not in the minimax sense, as most statistical lower bounds—,
which can be much informative for practicioners. This problem has attracted some attention in
the last few years, and we review the recent work on this topic in Section 5.3.
When ŝm is the empirical risk minimizer over some model Sm , the excess empirical risk can be
rewritten as the supremum of an empirical process

p2(m) = sup
t∈Sm

{
R̂n(s?m)− R̂n(t)

}
,

which is an object of interest for empirical process theory in general. Its concentration can also be
seen as a non-asymptotic version of the Wilks phenomenon, which is another reason for tackling
the theoretical challenge of proving that p2(m) concentrates around some deterministic quantity.
Section 5.2.3 reviews such theoretical results.

Handling large collections of estimators —see Sections 4.7 and 8.3.4— induces additional
issues, since we cannot expect p1(m), p2(m), and δ (m) to concentrate tightly uniformly over all
m ∈M . This raises the challenge of understanding precisely their uniform deviations among
such large collections, with high-probability upper and lower bounds on these deviations. In the
case of model selection, by grouping models of the same dimension as explained in Section 4.7,
this problem reduces to concentrating p1(m) and p2(m) for empirical risk minimizers over mod-
els that are unions of a large number of vector spaces of the same dimension. Note that the same
probabilistic challenge arises in the problem of understanding the overpenalization phenomenon
—see Section 8.4—, for both large and small collections of estimators.
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Appendix A: Some proofs

A.1. Proof of Proposition 1

Proof of Eq. (61) and (62) By definition of m̂(0)
min(C), for every m ∈M ,

R
(

s?
m̂(0)

min(C)

)
−δ

(
m̂(0)

min(C)
)
+(C−1)p2

(
m̂(0)

min(C)
)
6 R(s?m)−δ (m)+(C−1)p2(m)

hence

(1−C)p2

(
m̂(0)

min(C)
)
> R

(
s?

m̂(0)
min(C)

)
−R(s?)−

[
R(s?m)−R(s?)

]
+δ (m)−δ

(
m̂(0)

min(C)
)
+(1−C)p2(m)

which implies, using Eq. (60), that

(1−C)p2

(
m̂(0)

min(C)
)
>−2

[
R(s?m)−R(s?)

]
+(1−C)p2(m)− ε

′
δ

hence Eq. (61) by dividing by (1−C). Eq. (62) is a straightforward consequence of Eq. (61)
since p2(m1)> 0.

General proof of Eq. (60) Let us assume that ξ1, . . . ,ξn ∈ X are i.i.d. and some contrast
function γ : Ξ×S→ R and constants A,L > 0 exist such that Eq. (63)–(65) hold true. Then, for
every x > 0, with probability at least 1−2card(M )e−x, for every θ > 0, Eq. (60) holds with

εδ = θ and ε
′
δ
= 2

(
L

2θ
+

2A
3

)
x
n
.
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Indeed, for every fixed m ∈M ,

δ (m)−
[
R(s?)− R̂n(s?)

]
=

1
n

n

∑
i=1

(
Xi,m−E[Xi,m]

)
where Xi,m = γ (ξi,s?)− γ (ξi,s?m)

are i.i.d. random variables satisfying |Xi,m|6 2A almost surely. Therefore, by Bernstein’s inequal-
ity (Boucheron et al., 2013, Theorem 2.10), for every x > 0, with probability at least 1−2e−x,∣∣∣δ (m)−

[
R(s?)− R̂n(s?)

]∣∣∣6√2xvar(Xi,m)

n
+

2Ax
3n

6 θ
(
R(s?m)−R(s?)

)
+

(
L

2θ
+

2A
3

)
x
n

and the result follows by the union bound.

Extension Note that assuming only that (1− ε0)p2(m) 6 pen0(m) 6 (1+ ε0)p2(m) for some
ε0 ∈ [0,1) with C(1− ε0)< 1 —which implies p2(m)> 0—, instead of Eq. (61) we get that

p2

(
m̂(0)

min(C)
)
> sup

m∈M

{
1− (1+ ε0)C
1− (1− ε0)C

p2(m)−
2
[
R (s?m)−R(s?)

]
1− (1− ε0)C

}
−

ε ′
δ

1− (1− ε0)C
.

If in addition some m1 ∈M exists such that R(s?m1
) = R(s?) and p2(m1) > 0, we get that for

any α ∈ (0,1),

p2

(
m̂(0)

min(C)
)
> (1−α)p2(m1)

if

C 6 1−ηα where ηα := 1−
(

1−
ε ′

δ

α p2(m1)

)[
1+ ε0

(
2
α
−1
)]−1

.

A.2. Proof of Proposition 2

By definition of m̂(0)
min(C), for every m ∈M and C > 1,

R
(

ŝ
m̂(0)

min(C)

)
− p1

(
m̂(0)

min(C)
)
−δ

(
m̂(0)

min(C)
)
+(C−1)p2

(
m̂(0)

min(C)
)

6 R(ŝm)− p1(m)−δ (m)+(C−1)p2(m)

hence, using Eq. (66),

R
(

ŝ
m̂(0)

min(C)

)
−R(s?)+

[
(C−1)(1− εp)−1

]
p1

(
m̂(0)

min(C)
)

6 R(ŝm)−R(s?)+
[
(C−1)(1+ εp)−1

]
p1(m)+δ

(
m̂(0)

min(C)
)
−δ (m) .

By Eq. (60), we get that for every m ∈M and C > 1,

R
(

ŝ
m̂(0)

min(C)

)
−R(s?)+

[
(C−1)(1− εp)−1

]
p1

(
m̂(0)

min(C)
)
− εδ

[
R
(

s?
m̂(0)

min(C)

)
−R(s?)

]
6 R(ŝm)−R(s?)+

[
(C−1)(1+ εp)−1

]
p1(m)+ εδ

[
R(s?m)−R(s?)

]
+ ε
′
δ
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that is, (
1−max

{
1− (C−1)(1− εp) , εδ

})[
R
(

ŝ
m̂(0)

min(C)

)
−R(s?)

]
6
(

1+max
{
(C−1)(1+ εp)−1 , εδ

})
inf

m∈M

{
R(ŝm)−R(s?)

}
+ ε
′
δ

which proves Eq. (67). Using again Eq. (66), we get

p2

(
m̂(0)

min(C)
)
6 (1+ εp)p1

(
m̂(0)

min(C)
)
6 (1+ εp)

[
R
(

ŝ
m̂(0)

min(C)

)
−R(s?)

]
6 K(C)(1+ εp) inf

m∈M

{
R(ŝm)−R(s?)

}
+K′(C)(1+ εp) .

Extension Note that if pen0(m) = p2(m) is replaced by

(1− ε0)p2(m)6 pen0(m)6 (1+ ε0)p2(m)

for some ε0 > 0 with C(1− ε0)> 1, and if Eq. (66) is replaced by

∀m ∈M , −ε
′
p + ε

−
p p1(m)6 p2(m)6 ε

+
p p1(m)+ ε

′
p (84)

for some ε−p ,ε
+
p > 0 and ε ′p > 0, the same proof shows that Eq. (67) holds true with

K(C) :=
max

{
[C(1+ ε0)−1]ε+

p , 1+ εδ

}
min

{
[C(1− ε0)−1]ε−p , 1− εδ

}
and K′(C) :=

ε ′
δ
+2(C−1)ε ′p

min
{
[C(1− ε0)−1]ε−p , 1− εδ

} ,
and Eq. (68) replaced by

p2

(
m̂(0)

min(C)
)
6 K(C)ε+

p inf
m∈M

{
R(ŝm)−R(s?)

}
+K′(C)ε+

p + ε
′
p . (85)

A.3. Proof of Proposition 3

We first state two general lemmas for Ĉthr. and Ĉwindow , as defined by Eq. (20) and (19) in Sec-
tion 2.5, respectively. These lemmas do not assume a specific definition for m̂(C) and Dm , so
they apply to Algorithms 1, 3, 4, and 5 (possibly up to a rescaling of Cm for Lemma 2 and
Algorithm 5).

Lemma 1. Let Tn ∈R, m̂ : [0,+∞)→M some function, and Ĉthr.(Tn) := inf
{

C > 0/Dm̂(C) 6 Tn
}

.
If Γ1 > 0 and Dm̂(C) > Tn for all C < Γ1 , then, Ĉthr.(Tn)> Γ1 .
If Γ2 > 0 and Dm̂(Γ2) 6 Tn , then, Ĉthr.(Tn)6 Γ2 .

Proof. The proof is straightforward from the definition of Ĉthr. .
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Lemma 2. Let η > 0, m̂ : [0,+∞)→M some function, and

Ĉwindow(η) ∈ argmax
C>0

{
Dm̂(C/[1+η ])−Dm̂(C[1+η ])

}
.

Assume that 0 6 Dm 6 n for every m ∈M . Assume in addition that an,bn ∈ R and Γ2 > Γ1 > 0
exist such that an−bn > max{n−an,bn},

∀C 6 Γ1, Dm̂(C) > an , ∀C > Γ2, Dm̂(C) 6 bn , and (1+η)2 >
Γ2

Γ1
.

Then, we have
Γ1

1+η
< Ĉwindow(η)< Γ2(1+η) .

Proof. First, for C =
√

Γ1Γ2, we have C/(1+η) 6 Γ1 and C(1+η) > Γ2 , hence we obtain
Dm̂(C/[1+η ])−Dm̂(C[1+η ]) > an− bn . Second, for every C 6 Γ1/(1+η), we have the inequality
Dm̂(C/[1+η ])−Dm̂(C[1+η ]) 6 n−an . Third, for any C > Γ2(1+η), Dm̂(C/[1+η ])−Dm̂(C[1+η ]) 6 bn .
The result follows since an−bn > max{n−an,bn}.

Let us now prove Proposition 3.
By Eq. (30) and Eq. (35) in the proof of Theorem 1, for all x > 0, on the event Ωx which has

a probability larger than 1−4card(M )e−x, we have

∀C 6C1(x;an), Dm̂(C) > an and ∀C >C2(x;bn;cn), Dm̂(C) 6 bn , (86)

whatever 0 6 cn < bn 6 n and 0 6 an < n, provided that M contains at least one model of
dimension at most cn .

Proof of Eq. (75) First, note that

C1

(
x;

2n
3

)
= σ

2
[

1−
(

12
√

x
n
+18

x
n

)]
> 0

since
√

x/n 6 (
√

6−2)/6. Therefore, by continuity of C1 and using that cn < n/3, there exists
some ε1 ∈ (0,min{1/2,1−3cn/n}) such that C1(x; 2n

3 (1+ε))> 0 for any ε ∈ [0,ε1]. Let us take
any ε ∈ (0,ε1], an = 2n

3 (1+ ε) ∈ (2n/3,n), and bn = n
3(1− ε) ∈ (cn,n/3). By Lemma 2 with

an,bn as above, Γ1 = C1(x;an), and Γ2 = C2(x;bn;cn), on Ωx , since Eq. (86) holds true, we get
that

∀η >

√
C2
(
x; n

3(1− ε);cn
)

C1
(
x; 2n

3 (1+ ε)
) −1 ,

C1
(
x; 2n

3 (1+ ε)
)

1+η
< Ĉwindow(η)<C2

(
x;

n
3
(1− ε);cn

)
(1+η) .

Now, since z 7→C1(x;z) is continuous and different from zero at z = 2n/3, and since the mapping
z 7→C2(x;z;cn) is continuous at z = n/3 (using that cn < n/3), for any

η >

√
C2
(
x; n

3 ;cn
)

C1
(
x; 2n

3

) −1 ,
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some ε2 ∈ (0,ε1] exists such that

∀ε ∈ (0,ε2] , η >

√
C2
(
x; n

3(1− ε);cn
)

C1
(
x; 2n

3 (1+ ε)
) −1 .

So, for such η , on Ωx , for every ε ∈ (0,ε2],

C1
(
x; 2n

3 (1+ ε)
)

1+η
< Ĉwindow(η)<C2

(
x;

n
3
(1− ε);cn

)
(1+η) .

Making ε tend to zero in the above inequality yields the result.

Proof of Eq. (76) For any an ∈ (Tn,n), by Eq. (86), on Ωx , we have Dm̂(C) > an > Tn for every
C 6C1(x;an), hence Ĉthr.(Tn)>C1(x;an) by Lemma 1 with Γ1 =C1(x;an). So, on Ωx ,

Ĉthr.(Tn)> sup
an∈(Tn,n)

{
C1(x;an)

}
=C1(x;Tn) .

By Eq. (86) with bn = Tn > cn , on Ωx we have Dm̂(C) 6 Tn for every C > C2(x;Tn;cn), hence
Ĉthr.(Tn)6C2(x;Tn;cn) by Lemma 1 with Γ2 =C2(x;Tn;cn).

Proof of Eq. (77) Let α = log(4cardM )> log(8), since card(M )> 2 under the assumptions
of Proposition 3. For every z > 0, by Eq. (76) with x = z+α and cn replaced by Tn/2,

P

((
Ĉthr.−σ

2
)2

> 4max

{(
1− Tn

n

)−2

,

(
Tn

2n

)−2
}

×

[
B

(
Tn

2

)
+2σ

2

(√
z+α

n
+

2(z+α)

n

)]2
6 e−z .

(87)

Then, integrating Eq. (87) with respect to z —that is, using Lemma 3 below— we get that Eq. (77)
holds true. Note that much smaller constants can be obtained by assuming that card(M ) is
large enough, or that log(cardM )/n is small enough. For instance, under the assumption that
100 6 card(M )6 exp(n/100), we get

E
[(

Ĉthr.−σ
2
)2
]
6 max

{(
1− Tn

n

)−2

,

(
Tn

2n

)−2
}[

12B

(
Tn

2

)2

+
102σ4 log(cardM )

n

]
.

Lemma 3. For a real-valued random variable Z, if some a,b,c > 0 exist such that for every
z > 0,

P
(
Z > a+bz+ cz2)6 e−z ,

then, E[Z]6 a+2b+4c .

Lemma 3 is a classical integration exercise.

Journal de la Société Française de Statistique, Vol. 160 No. 3 1-106
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



Minimal penalties and the slope heuristics: a survey 91

A.4. Computations about σ̂2
m0

The following proposition gives a general formula for the variance and MSE of the residual-
variance estimator σ̂2

m0
defined by Eq. (71) in Section 6.1. Note that Proposition 4 and Lemma 4

below are classical results (see for instance Ullah and Zinde-Walsh, 1992, Eq. (5), or Dette et al.,
1998, Eq. (6)). We state and prove them here for completeness.

In this subsection, for any matrix M ∈Mn(R), diag(M) denotes the diagonal matrix of the
diagonal elements of M and 1 = (1, . . . ,1) ∈ Rn.

Proposition 4. Let Π ∈Mn(R) some orthogonal projection matrix such that D = tr(Π) < n,
ε ∈ Rn some random vector with independent components, and F ∈ Rn. Assume that for all
i ∈ {1, . . . ,n},

E[εi] = 0 , E
[
ε

2
i
]
= σ

2 , E
[
ε

3
i
]
= m3 , and E

[
ε

4
i
]
= m4 .

Let
σ̂

2 :=
1

n−D

∥∥(In−Π)(F + ε)
∥∥2

.

Then,

var
(
σ̂

2)=V +
4
∥∥(In−Π)F

∥∥2
σ2

(n−D)2 +
4
〈
F, (In−Π)diag(In−Π)1

〉
(n−D)2 m3 (88)

where V :=
1

(n−D)2

(
n

∑
i=1

(1−Πi,i)
2

)(
m4−3σ

4)+ 2
n−D

σ
4 ,

and E
[(

σ̂
2−σ

2)2
]
=V +

4
∥∥(In−Π)F

∥∥2
σ2

(n−D)2 +

∥∥(In−Π)F
∥∥4

(n−D)2 (89)

+
4
〈
F, (In−Π)diag(In−Π)1

〉
(n−D)2 m3 .

In particular, if the εi are Gaussian,

var
(
σ̂

2)= 2σ4

n−D
+

4
∥∥(In−Π)F

∥∥2

(n−D)2 σ
2 (90)

E
[(

σ̂
2−σ

2)2
]
=

2σ4

n−D
+

4
∥∥(In−Π)F

∥∥2

(n−D)2 σ
2 +

∥∥(In−Π)F
∥∥4

(n−D)2 . (91)

Proof of Proposition 4. Applying Lemma 4 below with M = In−Π yields Eq. (88), since we
have σ̂2 = Z/(n−D) and M is an orthogonal projection matrix with tr(M) = n−D. Eq. (89)
follows, in combination with Eq. (72), since

E
[(

σ̂
2−σ

2)2
]
=
(
E
[
σ̂

2]−σ
2
)2

+var
(
σ̂

2) .
In the Gaussian case, m3 = 0 and m4 = 3σ4, hence

V =
2σ4

n−D
,

which leads to Eq. (90) and (91).
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Lemma 4. Let F ∈ Rn, M ∈Mn(R) a symmetric matrix, ε ∈ Rn some random vector with
independent components such that for all i ∈ {1, . . . ,n},

E[εi] = 0 , E
[
ε

2
i
]
= σ

2 , E
[
ε

3
i
]
= m3 , and E

[
ε

4
i
]
= m4 .

Then, if Z =
〈
F + ε, M(F + ε)

〉
,

var(Z) =W +4‖MF‖2
σ

2 +4
〈
F, M diag(M)1

〉
m3 (92)

where W := tr
(
diag(M)2)(m4−3σ

4)+2tr(M2)σ4

satisfies 0 6W 6
(
2σ

4 +m4
)

tr(M2) . (93)

Proof of Lemma 4. First note that

Z = 〈F, MF〉+ 〈ε, Mε〉+2〈MF, ε〉 .

Then,
E[Z] = 〈F, MF〉+E

[
〈ε, Mε〉

]
= 〈F, MF〉+σ

2 tr(M) .

Furthermore,

E
[
Z2]= 〈F, MF〉2 +E

[
〈ε, Mε〉2

]
+4E

[
〈MF, ε〉2

]
+2〈F, MF〉σ2 tr(M)+4E

[
〈ε, Mε〉〈MF, ε〉

]
= 〈F, MF〉2 +

(
n

∑
i=1

M2
i,i

)(
m4−3σ

4)+[tr(M)2 +2tr(M>M)
]
σ

4

+4‖MF‖2
σ

2 +2〈F, MF〉σ2 tr(M)+4

(
n

∑
i, j=1

Mi,iMi, jFj

)
m3

where we used that

E
[
〈ε, Mε〉2

]
= E

(∑
i, j

εiMi, jε j

)2
= ∑

i, j,k,`
Mi, jMk,`E[εiε jεkε`]

=

(
n

∑
i=1

M2
i,i

)(
m4−3σ

4)+(tr(M)2 + tr(M2)+ tr(M>M)
)

σ
4

and for any G ∈ Rn (here, G = MF),

E
[
〈G, ε〉2

]
= ‖G‖2

σ
2

and E
[
〈ε, Mε〉〈G, ε〉

]
= E

[
∑
i, j,k

εiMi, jε jGkεk

]
=

(
n

∑
i=1

Mi,iGi

)
m3 .

Eq. (92) follows since M is symmetric, var(Z) = E[Z2]−E[Z]2,

n

∑
i, j=1

Mi,iMi, jFj =
〈

F, M> diag(M)1
〉

and
n

∑
i=1

M2
i,i = tr

(
diag(M)2) .
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For proving Eq. (93), we remark that

W = tr
(
diag(M)2)(m4−σ

4)+2
[
tr(M2)− tr

(
diag(M)2)]

σ
4 ,

m4 > σ
4 , and 0 6 tr

(
diag(M)2)6 tr(M2)

since M is symmetric.

Appendix B: Algorithms

B.1. Computation of the full path (m̂(C))C>0 in Algorithms 1, 3, 4, and 5

One can formulate the first step in Algorithms 1, 3, 4, and 5 as computing, for every C > 0,

m̂(C) ∈ argmin
m∈M

{
f (m)+Cg(m)

}
(94)

for some functions f ,g : M → R, where M is assumed to be finite. In the most general case
(Algorithm 5), f (m) = R̂n(ŝm) and g(m) = pen0(m). Particular cases (Algorithms 1, 3, and 4)
follow.

This subsection explains how to compute the full path (m̂(C))C>0 defined by Eq. (94), given
( f (m))m∈M and (g(m))m∈M , with at most O([cardM ]2) operations, and much less in practice.
The material presented here is adapted from Arlot and Massart (2009, Section 3.2). Similar
results —with a bit less details and formulated in specific frameworks where M ⊂ N— have
been proved earlier by Lebarbier (2002, Lemma 4.4.1), Lavielle (2005, Proposition 2.1) and
Zwald (2005, Section 6.4.3).

First, remark that the definition (94) of m̂(C) can be ambiguous. Let us choose a strict total
order ≺ on M such that g is non-decreasing, which is always possible since M is finite. Then,
by convention, for every C > 0, m̂(C) is defined as

m̂(C) = min
≺

E (C) where E (C) := argmin
m∈M

{
f (m)+Cg(m)

}
. (95)

The main reason why the whole trajectory (m̂(C))C>0 can be computed efficiently is its particular
shape. Indeed, the proof of Proposition 5 below shows that C 7→ m̂(C) is piecewise constant and
non-increasing for ≺. Then, the whole trajectory (m̂(C))C>0 can be written as

∀i ∈ {0, . . . , imax} , ∀C ∈ [Ci,Ci+1) , m̂(C) = mi (96)

where imax ∈ {0, . . . ,card(M )−1} is the number of jumps, (Ci)06i6imax+1 is an increasing se-
quence of non-negative reals (the location of the jumps) with C0 = 0 and Cimax+1 = +∞, and
(mi)06i6imax is a non-increasing sequence of elements of M .

Algorithm 7. Input: ( f (m))m∈M , (g(m))m∈M , and ≺ some strict total order on M such that
g is non-decreasing.
Initialization: C0 := 0 and m0 := min≺ argminm∈M

{
f (m)

}
.

Step i, i > 1: Let

G (mi−1) :=
{

m ∈M s.t. f (m)> f (mi−1) and g(m)< g(mi−1)
}
.
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If G (mi−1) = /0, then put Ci =+∞, imax = i−1 and stop. Otherwise, define

Ci := min
{

f (m)− f (mi−1)

g(mi−1)−g(m)
s.t. m ∈ G (mi−1)

}
(97)

and mi := min
≺

Fi with Fi := argmin
m∈G (mi−1)

{
f (m)− f (mi−1)

g(mi−1)−g(m)

}
.

Output: (Ci)06i6imax+1 and (mi)06i6imax , which describe according to Eq. (96) the full trajectory
(m̂(C))C>0 defined by Eq. (95).

Proposition 5 (Correctness of Algorithm 7). For every C > 0, let m̂(C) be defined by Eq. (95).
Assume M is finite. Then, Algorithm 7 terminates and imax 6 card(M )−1. Furthermore, Algo-
rithm 7 is correct, that is, (Ci)06i6imax+1 is increasing and ∀i ∈ {0, . . . , imax−1}, ∀C ∈ [Ci,Ci+1),
m̂(C) = mi .

Proposition 5 also gives an upper bound on the computational complexity of Algorithm 7:
since the complexity of each step is O(cardM ), the complexity of Algorithm 7 is upper-bounded
by O(imax cardM )6O([cardM ]2). In general, this upper bound is pessimistic since we usually
have imax� card(M ) in practice.

Proof of Proposition 5. First, since M is finite, G (mi−1) is also finite and mi is well-defined as
soon as G (mi−1) 6= /0, which holds for every i6 imax . Moreover, by construction, g(mi) decreases
with i, so that all the mi ∈M are different; hence, Algorithm 7 terminates and we have the
inequality imax + 1 6 card(M ). Notice also that Ci can always be defined by Eq. (97) with the
convention min /0 =+∞.
We now prove by induction that the following property holds true for every i ∈ {0, . . . , imax},
which implies that Proposition 5 holds true:

Pi : Ci <Ci+1 and ∀C ∈ [Ci,Ci+1), m̂(C) = mi .

P0 holds true By definition of C1 , since M is finite, C1 > 0. Note that C1 may be equal to
+∞ if G (m0) = /0. For C = C0 = 0, the definition of m0 is the one of m̂(0), so that m̂(C) = m0 .
For C ∈ (0,C1), Lemma 5 below shows that either m̂(C) = m̂(0) = m0 or m̂(C) ∈ G (m0). In the
latter case, by definition of C1 ,

f
(
m̂(C)

)
− f (m0)

g(m0)−g
(
m̂(C)

) >C1 >C

hence
f
(
m̂(C)

)
+Cg

(
m̂(C)

)
> f (m0)+Cg(m0)

which contradicts the definition of m̂(C). Therefore, P0 holds true.

Pi⇒Pi+1 for every i ∈ {0, . . . , imax−1} Assume that Pi holds true. First, we have to prove
that Ci+2 > Ci+1 . If i = imax− 1, this is clear since Cimax+1 = +∞. Otherwise, Ci+2 < +∞ and
mi+2 exists. Then, by definition of mi+2 and Ci+2 (resp. mi+1 and Ci+1), we have

f (mi+2)− f (mi+1) =Ci+2
[
g(mi+1)−g(mi+2)

]
(98)

f (mi+1)− f (mi) =Ci+1
[
g(mi)−g(mi+1)

]
. (99)
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Moreover, mi+2 ∈G (mi+1)⊂G (mi) and mi+2≺mi+1 (because g is non-decreasing). Using again
the definition of Ci+1 , we have

f (mi+2)− f (mi)>Ci+1
[
g(mi)−g(mi+2)

]
(100)

(the inequality is strict: otherwise, we would have mi+2 ∈Fi+1 and mi+2 ≺ mi+1 = min≺Fi+1 ,
which is not possible). The difference of Eq. (100) and (99) yields

f (mi+2)− f (mi+1)>Ci+1
[
g(mi+1)−g(mi+2)

]
.

By Eq. (98), we deduce that

Ci+2
[
g(mi+1)−g(mi+2)

]
>Ci+1

[
g(mi+1)−g(mi+2)

]
,

hence Ci+2 >Ci+1 since g(mi+1)> g(mi+2).
Second, we prove that m̂(Ci+1) = mi+1 . From Pi , we know that for every m ∈M , for every

C ∈ [Ci,Ci+1), f (mi)+Cg(mi)6 f (m)+Cg(m). Taking the limit when C tends to Ci+1 , it follows
that mi ∈ E (Ci+1). By Eq. (99), we then have mi+1 ∈ E (Ci+1). Now, let m′ be any element of
E (Ci+1). By Lemma 5 with C =Ci , m = mi = m̂(Ci) ∈ E (Ci) and C′ =Ci+1 >Ci , we have either
(a) f (m′) = f (mi) and g(m′) = g(mi) or (b) m′ ∈ G (mi); case (c) is excluded since mi = m̂(Ci).
In case (a), g(m′) = g(mi)> g(mi+1), hence mi+1 ≺ m′ because g is non-decreasing. In case (b),
notice that mi,m′ ∈ E (Ci+1) implies f (m′)+Ci+1g(m′) = f (mi)+Ci+1g(mi). Since m′ ∈ G (mi),
we get that m′ ∈Fi+1 . Then, by definition of mi+1 , we have mi+1 �m′. Overall, we have proved
that mi+1 belongs to E (Ci+1) and is smaller than any element m′ of E (Ci+1), which proves that
mi+1 = min≺E (Ci+1) = m̂(Ci+1).

Let C′ ∈ (Ci+1,Ci+2). It remains to prove m̂(C′) = mi+1 . From the last statement of Lemma 5
with C =Ci+1 , we have either m̂(C′) = m̂(Ci+1) = mi+1 or m̂(C′) ∈ G (m̂(Ci+1)) = G (mi+1). In
the latter case (in which G (mi+1) 6= /0 hence Ci+2 < ∞), by definition of Ci+2 ,

f
(
m̂(C′)

)
− f (mi+1)

g(mi+1)−g
(
m̂(C′)

) >Ci+2 >C′

so that
f
(
m̂(C′)

)
+C′g

(
m̂(C′)

)
> f (mi+1)+C′g(mi+1)

which contradicts the definition of m̂(C′). Therefore, m̂(C′) = mi+1 , which ends proving Pi+1 .

The following lemma is used in the proof of Proposition 5 above.

Lemma 5. With the notation of Proposition 5 and its proof, if we have 0 6 C < C′, m ∈ E (C),
and m′ ∈ E (C′), then one of the following statements holds true:

(a) f (m) = f (m′) and g(m) = g(m′).

(b) f (m)< f (m′) and g(m)> g(m′).

(c) C = 0, f (m) = f (m′) and g(m)> g(m′), hence m 6= m̂(0).

In particular, for any 0 6C <C′, we have either m̂(C) = m̂(C′) or m̂(C′) ∈ G (m̂(C)).
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Proof of Lemma 5. By definition of E (C) and E (C′),

f (m)+Cg(m)6 f (m′)+Cg(m′) (101)

and f (m′)+C′g(m′)6 f (m)+C′g(m) . (102)

Summing Eq. (101) and (102) gives (C′−C)g(m′)6 (C′−C)g(m) so that

g(m′)6 g(m) . (103)

Since C > 0, Eq. (101) and (103) give f (m)+Cg(m)6 f (m′)+Cg(m), that is

f (m)6 f (m′) . (104)

If g(m) = g(m′), Eq. (102) and (104) imply f (m′) = f (m) hence (a) is satisfied. Otherwise,
g(m) > g(m′) by Eq. (103), and Eq. (101) implies f (m) < f (m′) or C = 0. If f (m) < f (m′),
(b) holds true. Otherwise, f (m) = f (m′) and C = 0. Since g(m′) < g(m), we get m′ ≺ m hence
m 6= m̂(0).

The last statement follows by taking m = m̂(C) and m′ = m̂(C′), which excludes case (c). In
case (a), E (C) = E (C′) hence m̂(C) = m̂(C′). In case (b), m̂(C′) ∈ G (m̂(C)).

B.2. Computation of Ĉwindow in step 2 of Algorithms 1, 3, 4, and 5

Step 2 of Algorithms 1, 3, 4, and 5 require to localize a jump in the trajectory (Cm̂(C))C>0 , given
the path (m̂(C))C>0 and some complexity measure (Cm)m∈M . Although the maximal jump is
straightforward to localize, Theorem 1 suggests to look for the largest jump over a geometrical
window of values of C, that is, Ĉwindow as defined by Eq. (19) in Section 2.5. This section ex-
plains how Ĉwindow can be computed efficiently given the path (Cm̂(C))C>0 , with a complexity
O(imax log imax) = O(cardM log(cardM )).

Let us consider a slightly more general problem: given some α > β > 0, compute

Ê gal
window := argmax

C>0

{
Cm̂(βC)−Cm̂(αC)

}
. (105)

Note that Ê gal
window is usually not reduced to a singleton, but can be an interval or a finite union of

intervals.
From Eq. (96) in Appendix B.1, the path (Cm̂(C))C>0 is piecewise constant and can be fully

described with a small number of parameters: writing Ci = Cmi ,

∀i ∈ {0, . . . , imax} , ∀C ∈ [Ci,Ci+1) , Cm̂(C) = Ci . (106)

Given this description of (Cm̂(C))C>0 , Algorithm 8 below determines the set Ê gal
window , as proved

by Proposition 6 .

Algorithm 8. Input: (Ci)06i6imax+1 an increasing sequence of non-negative reals with C0 = 0
and Cimax+1 =+∞, and (Ci)06i6imax a sequence of real numbers.

1. If imax = 0, define Ê gal
window := [0,+∞) and stop.
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2. Otherwise, proceed and compute C = (C1/β , . . . ,Cimax/β ,C1/α, . . . ,Cimax/α) ∈R2imax and
∆ = (C1−C0, . . . ,Cimax−Cimax−1,C0−C1, . . . ,Cimax−1−Cimax) ∈ R2imax .

3. Sort C and ∆ according to C, that is, find some permutation σ of {1, . . . ,2imax} such that
Cσ(1) 6 · · ·6Cσ(2imax) and compute Cσ = (Cσ(i))16i62imax and ∆σ = (∆σ(i))16i62imax .

4. Compute W := cumsum(∆σ ) ∈ R2imax , that is, for every i ∈ {1, . . . ,2imax},

Wi =
i

∑
j=1

∆σ
j .

5. Compute V ∈ R2imax such that, for every i ∈ {1, . . . ,2imax}, Vi = Wi if Cσ
i < Cσ

i+1, and
otherwise Vi =−∞.

6. Determine K := argmaxi∈{1,...,2imax}Vi .

7. Define Ê gal
window :=

⋃
k∈K [Cσ

k ,C
σ

k+1) with Cσ
2imax+1 =+∞.

Output: Ê gal
window .

Proposition 6 (Correctness of Algorithm 8). Algorithm 8 is correct, that is, it terminates and its
output Ê gal

window actually satisfies Eq. (105) provided Eq. (106) holds true.

Proof of Proposition 6. If imax = 0, C 7→Cm̂(C) is constant over [0,+∞) so Algorithm 8 is correct.
Otherwise, Eq. (106) can be rewritten as

∀C > 0 , Cm̂(C) = C0 +
imax

∑
i=1

(Ci−Ci−1)1C>Ci

hence, for every C > 0, using the notation of Algorithm 8,

Cm̂(βC)−Cm̂(αC) =
imax

∑
i=1

(Ci−Ci−1)1βC>Ci−
imax

∑
i=1

(Ci−Ci−1)1αC>Ci

=
2imax

∑
i=1

∆i1C>Ci
=

2imax

∑
i=1

∆σ
i 1C>Cσ

i
=

2imax

∑
i=1

Wi1C∈[Cσ
i ,C

σ
i+1)

=
2imax

∑
i=1

Vi1C∈[Cσ
i ,C

σ
i+1)

(107)

with the conventions Cσ
2imax+1 = +∞ and ∞1C∈ /0 = 0. For the last equality, we use the fact that

when [Cσ
i ,C

σ
i+1) is empty —which corresponds to values of Cσ

i that are equal to C j/β = Ck/α

for some j,k ∈ {1, . . . , imax}—, the value of Wi1C∈[Cσ
i ,C

σ
i+1)

is zero whatever Wi , hence Wi can be
changed into Vi .

By Eq. (107),
sup
C>0

{
Cm̂(βC)−Cm̂(αC)

}
= max

16i62imax
Vi

and the supremum is attained exactly at the values of C belonging to some interval [Cσ

k ,C
σ

k+1)
with k ∈K = argmaxiVi . In other words, Algorithm 8 is correct.

Appendix C: More figures and experimental results
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FIGURE 9. On the same sample, visualization of the three versions of Algorithm 1 and of Ĉslope . ‘Easy’ setting, see
Appendix D for details.
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FIGURE 10. Slope estimation Ĉslope vs. residual-based variance estimator σ̂2
m0

. See Appendix D for details.
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Ĉ E
[
Ĉ/σ2] √

var(Ĉ)/σ2 E
[
(Ĉ−σ2)2]/σ4 risk ratio

Ĉmaxj. 1.09 0.257 0.0749 1.309 ± 0.003

Ĉthr. , Tn = n/10 3.12 1.281 6.140 1.647 ± 0.004
Ĉthr. , Tn = n/ log(n) 1.60 0.469 0.584 1.310 ± 0.002
Ĉthr. , Tn = n/2 1.13 0.229 0.0683 1.278 ± 0.003
Ĉthr. , Tn = 9n/10 0.84 0.239 0.0826 1.621 ± 0.083

Ĉwindow , η = 1/n 1.09 0.257 0.0745 1.309 ± 0.003
Ĉwindow , η = 1/

√
n 1.10 0.256 0.0752 1.308 ± 0.003

Ĉwindow , η = 1.5/
√

n 1.10 0.258 0.0776 1.307 ± 0.003
Ĉwindow , η =

√
log(n)/n 1.12 0.263 0.0829 1.304 ± 0.003

Ĉwindow , η = 2
√

log(n)/n 1.17 0.286 0.110 1.294 ± 0.003

Ĉslope , D0 = n/10 1.15 0.181 0.0544 1.243 ± 0.002
Ĉslope , D0 = n/ log(n) 1.09 0.188 0.0437 1.260 ± 0.002
Ĉslope , D0 = n/2 1.05 0.228 0.0543 1.313 ± 0.003
Ĉslope , D0 = 9n/10 1.02 0.478 0.229 1.672 ± 0.009

CAPUSHE 1.05 0.291 0.0873 1.410 ± 0.005

median 1.08 0.229 0.0588 1.301 ± 0.003

consensus – – – 1.306 ± 0.003
consensus when no reject – – – 1.298 ± 0.003

σ̂2
m0

, Dm0 = n/10 1.23 0.180 0.0862 1.237 ± 0.002
σ̂2

m0
, Dm0 = n/ log(n) 1.12 0.176 0.0443 1.241 ± 0.002

σ̂2
m0

, Dm0 = n/2 1.05 0.211 0.0469 1.304 ± 0.003
σ̂2

m0
, Dm0 = n/2+1 1.05 0.213 0.0478 1.305 ± 0.003

σ̂2
m0

, Dm0 = 9n/10 1.02 0.455 0.2080 1.641 ± 0.008

Cp (known σ2) – – – 1.269 ± 0.003
Cp ×1.12 (known σ2) – – – 1.251 ± 0.002

TABLE 2. Algorithms 1–2, ‘easy’ setting: distribution of Ĉ and model-selection performance, with various
definitions for Ĉ and various parameters for each definition. The risk ratio is E[‖F̂m̂−F‖2/ infm∈M ‖F̂m−F‖2].
Reported values are empirical estimates obtained from N = 10000 independent samples. For the risk ratio, error
bars are equal to the standard deviation of the ratio ‖F̂m̂−F‖2/ infm∈M ‖F̂m−F‖2 divided by

√
N.
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(b) n = 2000

FIGURE 11. L-curve (log10‖Y − F̂λ ‖, log10‖F̂λ ‖)λ>0 in the ‘kernel ridge’ framework. See Appendix D for details.
The red star shows the position of the oracle (minimum of the risk n−1‖F− F̂λ ‖2). The “elbow” is clearly localized
for n = 2000 (and close to the oracle), but not for n = 100.

Ĉ E
[
Ĉ/σ2] √

var(Ĉ)/σ2 E
[
(Ĉ−σ2)2]/σ4 risk ratio

Ĉmaxj. 1.10 0.259 0.076 1.291 ± 0.003

Ĉthr. , Tn = n/10 3.38 1.390 7.57 1.661 ± 0.004
Ĉthr. , Tn = n/ log(n) 1.59 0.462 0.563 1.285 ± 0.002
Ĉthr. , Tn = n/2 1.13 0.231 0.0703 1.258 ± 0.002
Ĉthr. , Tn = 9n/10 0.86 0.236 0.077 1.566 ± 0.008

Ĉwindow , η = 1/n 1.09 0.257 0.0746 1.292 ± 0.003
Ĉwindow , η = 1/

√
n 1.10 0.257 0.0762 1.288 ± 0.003

Ĉwindow , η = 1.5/
√

n 1.11 0.258 0.078 1.288 ± 0.003
Ĉwindow , η =

√
log(n)/n 1.12 0.263 0.0827 1.287 ± 0.003

Ĉwindow , η = 2
√

log(n)/n 1.17 0.285 0.109 1.275 ± 0.003

Ĉslope , D0 = n/10 1.54 0.188 0.328 1.268 ± 0.002
Ĉslope , D0 = n/ log(n) 1.65 0.193 0.46 1.291 ± 0.002
Ĉslope , D0 = n/2 2.36 0.231 1.89 1.437 ± 0.003
Ĉslope , D0 = 9n/10 20.2 2.07 374 3.68 ± 0.016

CAPUSHE 2.77 1.66 5.87 1.562 ± 0.005

median 1.16 0.253 0.0911 1.260 ± 0.002

consensus – – – 1.285 ± 0.003
consensus when no reject – – – 1.266 ± 0.003

σ̂2
m0

, Dm0 = n/10 5.44 0.473 19.9 2.055 ± 0.006
σ̂2

m0
, Dm0 = n/ log(n) 1.12 0.176 0.0443 1.223 ± 0.002

σ̂2
m0

, Dm0 = n/2 8.94 0.828 63.7 2.577 ± 0.006
σ̂2

m0
, Dm0 = n/2+1 1.05 0.213 0.0478 1.285 ± 0.003

σ̂2
m0

, Dm0 = 9n/10 38.9 3.95 1450 6.11 ± 0.011

Cp (known σ2) – – – 1.252 ± 0.003
Cp ×1.12 (known σ2) – – – 1.232 ± 0.002

TABLE 3. Same as Table 2 for the ‘hard’ setting.
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Appendix D: Detailed information about figures and simulation experiments

This section provides all details necessary to reproduce the figures and simulation experiments
reported throughout the article.

D.1. Data and estimators

All experiments are made within the fixed-design regression framework described in Section 2.1,
with two main kinds of estimator collections and data.

Least-squares framework (‘easy’/‘hard’) All figures and tables, except Figures 3 and 11,
consider data and estimators as follows. Data satisfy

Y = F + ε ∈ Rn

with independent Gaussian noise ε ∼N (0,σ2In), σ2 = 1/4, n = 100,

Fi =
Cn

i
and Cn =

(
n

∑
i=1

1
i2

)−1/2

.

The choice of Cn ensures that n−1 ‖F‖2 = 1.
The estimators considered are least-squares (projection) estimators with one among the fol-

lowing two collections of models (Sm)16m6n :
– ‘easy’ setting: for every m ∈ {1, . . . ,n}, Sm = Seasy

m is the linear span of the first m vectors
of the canonical basis of Rn.

– ‘hard’ setting: for every m ∈ {1, . . . ,n}, Sm = Shard
m is the linear span of the first m vectors of

the canonical basis of Rn if m is odd, and Sm = Shard
m is the linear span of the last m vectors

of the canonical basis of Rn if m is even.
Both settings correspond to (ordered) variable selection with an orthogonal design, after having
transformed the data conveniently according to the design matrix. In the easy case, the variables
are ordered by decreasing order of magnitude. In the hard case, some uncertainty remains about
the correct order (ascending or descending), and the two options are considered alternatively
(depending on the parity of n). Of course, models Shard

m with m even are very poor, but this can
be unknown before seeing the data.

Kernel ridge framework Figures 3 and 11 consider data and estimators as follows. Data sat-
isfy

Y = F + ε ∈ Rn

with independent Gaussian noise ε ∼N (0,σ2In), σ2 = 1,

F1 =
1
2

and ∀i ∈ {2, . . . ,n} , Fi = sin
(
25πx3

i
)

with xi =
i−1
n−1

.

The family of estimators considered is the family of kernel ridge estimators (F̂λ )λ>0 where for
every λ > 0,

F̂λ = K(K +nλ In)
−1Y , K =

(
k(xi,x j)

)
16i, j6n , and ∀x,x′ ∈ R, k(x,x′) = exp

(
−α|x− x′|

)
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the Laplace kernel, with α = 8. In the experiments, only a finite set {λ0, . . . ,λn} of values of λ is
considered, chosen such that the degrees of freedom tr(K(K +nλiIn)

−1) are equal to i for every
i = 0, . . . ,n.

D.2. Procedures

The exact definitions of all procedures considered in the experiments for computing some Ĉ or
choosing some model m̂ are the following. For the procedures depending on some parameter,
its default value is used everywhere except in Tables 2–3. Note that the choice of the default
values was made prior to the simulations: we can check afterwards on Tables 2–3 that these
choices provide reasonably good results (which fortunately happened), so that results using only
the default values of the parameters (for instance, Table 1) are meaningful.

Maximal jump (Ĉmaxj. , ‘Max. jump’, ‘max j.’ or ‘max’) In Section 7.1, we define

Ĉmaxj. ∈ argmax
C>0

{
D

m̂(0)
min(C

−)
−D

m̂(0)
min(C

+)

}
,

that is, the location of the maximal jump of C 7→ D
m̂(0)

min(C)
, assuming it is unique. In our experi-

ments, when the argmax contains several values of C, we choose the largest one, that is, the last
largest jump; this choice is natural, since it means taking the less complex model among those
corresponding to a maximal jump, and it matches the choice made by Lerasle and Takahashi
(2011).

Note that for change-point detection, Lebarbier (2005, Section 4.2) suggests an opposite con-
vention —taking the smallest value of C in the argmax—, arguing from simulation experiments
that otherwise too small models are selected. Nevertheless, Lebarbier (2005, Section 4.2) also
reports that the latter convention can lead to taking Ĉmaxj. too small, so a rather complicated
method is suggested for choosing some threshold αthr and imposing Ĉmaxj. > αthr .

Threshold (Ĉthr. or ‘thr’) Eq. (20) in Section 2.5 defines

Ĉthr.(Tn) := min
{

C > 0/Dm̂(C) 6 Tn
}
,

which depends on some parameter Tn . The default value of Tn is n/2.
Note that Theorem 1 suggests that Tn = ρn works for any ρ ∈ (0,1), and previous theoretical

results (Arlot and Massart, 2009, Section 3.3) suggest to take Tn ∝ n/ log(n) or n/(logn)2. Nev-
ertheless, all these theoretical results involve pessimistic constants (as shown by the simulation
experiments), so they cannot be used for a fine tuning of Tn . It turns out that n/2 does very good
in the experiments of Tables 2–3, while other choices lead to much worse performance.

Window (Ĉwindow or ‘win’) Eq. (19) in Section 2.5 defines

Ĉwindow(η) ∈ argmax
C>0

{
Dm̂(C/[1+η ])−Dm̂(C[1+η ])

}
,

which depends on some parameter η > 0. Similarly to Ĉmaxj. , the argmax is usually not reduced
to a single point, so a more precise definition must be given for Ĉwindow . Actually, when η > 0,
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Appendix B.2 shows that argmaxC>0{Dm̂(C/[1+η ])−Dm̂(C[1+η ])} is a finite union of intervals.

Denoting by [Ĉ(1)
window,Ĉ

(2)
window) the last of these intervals —that is, the one corresponding to the

largest values of C— we define

Ĉwindow =

√
Ĉ(1)

windowĈ(2)
window .

Of course, other choices could be possible and we do not claim that our (arbitrary) choice is the
best one.

In Figures 5 and 9b, the interval represented by the two red vertical lines is [Ĉ(1)
window,Ĉ

(2)
window).

Note that this interval often looks like [Ĉwindow/(1+η),Ĉwindow(1+η)) but it can also be quite
different.

Taking the limit η → 0+ in the definition of Ĉwindow , we recover Ĉmaxj. . Theorem 1 suggests
to take η ∝ η+

n >
√

log(n)/n, that we consider in our experiments (see Tables 2–3). In our
experiments, the default value for η is n−1/2, a choice made to get a slightly smaller value than√

log(n)/n≈ 0.22 (we recall that n = 100 in the least-squares framework).

Slope (Ĉslope or ‘slope’) In Algorithm 2, the definition of Ĉslope is rather vague; it is a bit
more precise in Section 7 where the range of models considered in the regression is defined by
pen0(m) ∈ [pmin, pmax] for some pmin < pmax to be chosen. In the experiments, since pen0(m) is
equal to Dm/n in the least-squares framework, we choose pmin = D0/n and pmax = 1 for some
parameter D0 ∈ [1,n).

In other words, given D0 ∈ [1,n), we consider only models of dimension Dm > D0 and we
perform a (standard) linear regression of the empirical risk n−1‖F̂m−F‖2 against −Dm/n, that
is, we solve

(â, b̂) ∈ argmin
(a,b)∈R2

∑
m∈M /Dm>D0

(
a−b

Dm

n
− 1

n

∥∥∥F̂m−F
∥∥∥2
)2

,

and we define Ĉslope as the resulting slope b̂. The default value of D0 is n/2.

Capushe (ĈCAPUSHE , m̂CAPUSHE or ‘CAP’) The procedure called ‘CAPUSHE’ throughout this
article is the one proposed by Baudry et al. (2012, Section 4.2) and implemented in the CAPUSHE

package for Matlab and R. For completeness, let us recall its definition —which depends on some
parameter pct ∈ (0,1)— in the least-squares framework.

– Step 1: If several models have the same dimension D, keep only the one with the smallest
empirical risk. This step does not change anything in our experimental setting since there
is exactly one model per dimension.

– Step 2: for all D ∈ [1,n− 2], compute by robust linear regression the slope Ĉs(D) of the
empirical risk n−1‖F̂m−F‖2 against −Dm/n, among models of dimension Dm > D.

– Step 3: for all D ∈ [1,n−2], compute the corresponding selected model

m̂D = m̂
(
2Ĉs(D)

)
= argmin

m∈M

{
1
n

∥∥∥F̂m−Y
∥∥∥2

+
2Ĉs(D)Dm

n

}
.
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Then, m̂1, . . . , m̂n−2 is piecewise constant, and some 1 = D1 < .. . < DI+1 = n− 1 and
m1, . . . ,mI+1 ∈M exist such that

∀i ∈ {1, . . . , I} , ∀D ∈ [Di,Di+1−1] , m̂D = mi

with m1 6= m2 , . . ., mI 6= mI+1 . The intervals [Di,Di+1−1] are called “plateau” (platforms)
by Baudry et al. (2012, Section 4.2) and their size is denoted by Ni = Di+1−Di .

– Step 4: Keep only the platforms of size Ni larger than pct times the total size ∑` N` = n−2,
and among these, define ı̂ the last platform, that is,

ı̂ = max
{

i ∈ {1, . . . , I} /Ni > pct× (n−2)
}

and select
m̂CAPUSHE = mı̂ .

Note that at step 4, it can happen that no platform is large enough. In such cases, we consider the
last platform among the ones of largest size, that is,

ı̂ = max
{

i ∈ {1, . . . , I} /Ni = max
j

N j

}
.

We always take pct = 0.15 in our experiments, that is, the default value proposed by Baudry
et al. (2012).

Note that Baudry et al. (2012) only provide a model-selection procedure m̂CAPUSHE , and not
a value Ĉ of the constant in front of the penalty. In order to help understanding better m̂CAPUSHE ,
we also report in our experiments the distribution of ĈCAPUSHE that we define as some median of{

Ĉs(Dı̂), . . . ,Ĉs(Dı̂+1−1)
}
.

This choice is arbitrary among many others that all lead to having m̂CAPUSHE = m̂(2ĈCAPUSHE).

Median (‘med’) As defined in the caption of Figure 6, ‘median’ refers to taking Ĉ as the
median of {

Ĉmaxj.,Ĉthr.,Ĉwindow,Ĉslope,ĈCAPUSHE

}
(with their default parameter values for Ĉthr. , Ĉwindow , and Ĉslope : Tn = n/2, η = n−1/2, D0 =

n/2), and m̂ = m̂(2Ĉ).
Remark that the set of procedures considered is arbitrary, and other choices could be made.

Nevertheless, it seems wise to keep an equilibrium between the jump and slope formulations;
here, the jump approach is slightly favored, but the slope definitions come into play when Ĉmaxj. ,
Ĉthr. , and Ĉwindow do not exactly coincide.

The idea of considering some median of several values of Ĉ could also be used when there is
some uncertainty about the parameter of some procedure (say, Tn for Ĉthr.), by considering the
median of the set of values obtained on a grid of values of the parameter.
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Residuals (σ̂2
m0

, ‘Residuals on m0’ or ‘resid’) The residual-based variance estimator σ̂2
m0

is
defined by Eq. (71) in Section 6.1:

σ̂
2
m0

:=
1

n−Dm0

∥∥∥Y − F̂m0

∥∥∥2

for some model m0 . In the experiments, there is one model per dimension, so m0 is given by
the value of its dimension Dm0 and the default choice is Dm0 = n/2. Since n = 100, the default
choice is Dm0 = 50 which is even, so the definition of Shard

m —in which models of odd dimension
are good and models of even dimension are very poor— is made on purpose.

Note that in Tables 2–3, the line “Dm0 = n/ log(n)” means “Dm0 = 21” (hence, for the ‘hard’
setting, it is a reasonably good model).

Consensus (‘cons’) As defined in the caption of Figure 7, the “consensus” procedure performs
a majority vote among{

m̂(2Ĉmaxj.), m̂(2Ĉthr.), m̂(2Ĉwindow), m̂(2Ĉslope), m̂CAPUSHE

}
with their default parameters values. If no majority emerges (that is, if we do not have at least
three of these procedures that agree), the default choice is m̂(2Ĉwindow). Remark that Table 1
shows that an agreement occurs for more than 96% of the samples in the ‘easy’ setting, and for
more than 89% of the samples in the ‘hard’ setting.

Consensus when no reject (‘no rej’) This actually refers to the same procedure as ‘consen-
sus’, but showing results (a boxplot or an estimation of the expectation of the loss ratio) only for
the samples for which a majority emerged. Again, Table 1 shows that this only removes a small
fraction of the N = 104 independent samples generated in our experiments.

Mallows’ Cp When the variance σ2 is known, a natural model-selection procedure for the
framework of Section 2 is Mallows’ Cp (Mallows, 1973), that is, selecting

m̂ = m̂(2σ
2) = argmin

m∈M

{
1
n

∥∥∥F̂m−Y
∥∥∥2

+
2σ2Dm

n

}
.

Its performance is shown in Tables 2–3 for comparison.
Mallows’ Cp is also considered for illustrating the overpenalization phenomenon in Figure 8

in Section 8.4. On the graph of Figure 8, what is plotted is, for C ∈ [0,4], the estimated value
(from N = 104 independent samples) of the expected risk ratio

E


∥∥∥F̂m̂(2Cσ2)−F

∥∥∥2

infm∈M

∥∥∥F̂m−F
∥∥∥2


when using Mallows’ Cp penalty multiplied by C; we recall that m̂(·) is defined by Eq. (10) in
Section 2.3. For plotting the graph of Figure 8, a linear grid of values of C with stepsize 1/100 is
considered. The optimal performance is obtained for C = 1.12 in the ‘easy’ and ‘hard’ settings,
and it is also included in Tables 2–3.
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D.3. Additional remarks

Repeated experiments show results obtained from N = 104 independent samples.
Illustrations made on a single sample in the least-squares framework are showed in Figures 2,

4, 5, 9, 10. The samples considered have been chosen manually in order to illustrate either typical
or rare (but still possible) configurations. The graphs of Figure 2, Figure 4, and Figure 10a are
made on the same sample (they correspond to a “typical” situation). The graph of Figure 5 is
made on a second sample (corresponding to a “rare” situation). The two graphs of Figure 9 are
made on a third sample (also corresponding to a “rare” situation, similar to the one shown in
Figure 5).

Figure 3 is taken from the article by Arlot and Bach (2011, top right graph of Figure 2). It is
made from a single sample generated as in the kernel-ridge framework (see Appendix D.1), with
a sample size n = 200.
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