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Abstract: Major André-Louis Cholesky was killed in action during the First World War on 31st August 1918. The
centenary of his death in action is an opportunity to pay tribute to this outstanding scientist. Linear regression methods
used in France at the time of his death are recalled. An early algorithm which Augustin-Louis Cauchy introduced to
alleviate the computational burden in multiple linear regression is revisited. This algorithm iteratively builds an upper-
triangular system of linear equations whose solution estimates the regression coefficients. It turns out that in the case
of least-squares the upper-triangular system which is constructed is exactly that obtained by applying a closely related
variant of the Cholesky decomposition to the normal equations.

Résumé : Le chef d’escadron André-Louis Cholesky a été tué sur le front durant la Première Guerre mondiale le 31
août 1918. Le centenaire de sa mort au combat est une occasion de rendre hommage à cet éminent scientifique. Les
méthodes de régression linéaire utilisées en France au moment de son décès sont rappelées. Un algorithme ancienne-
ment introduit par Augustin-Louis Cauchy pour alléger le fardeau des calculs numériques à effectuer en régression
linéaire multiple est revisité. Cet algorithme construit itérativement un système linéaire diagonal supérieur dont la
solution estime les coefficients de régression. Il apparaît que dans le cas des moindres carrés ce système diagonal
supérieur est exactement celui obtenu en appliquant une variante très proche de la décomposition de Cholesky aux
équations normales.
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1. Introduction

Despite an eastern European sounding name, André-Louis Cholesky was a French citizen, a
French officer and a French military cartographer. Cholesky (1875 - 1918) was born in France
and died from his wounds in the last months of the First World War, just a hundred years ago. In
this commemorative essay, I will very briefly outline his career and that of Ernest Benoit (1873 -
1956) who coined the name Cholesky’s method (la méthode du commandant Cholesky). I will

* I wish to express my deepest gratitude to the Basque Center for Applied Mathematics in Bilbao, and in particular
to Maria Xosé Rodriguez Álvarez, for having given me the wonderful opportunity to commemorate the hundredth
anniversary of Cholesky’s death in such positive environment. My warm thanks to Professor Claude Brezinski who
kindly encouraged me to write my statistically biased vision of a particular work of Cholesky. I understood from
his book on Cholesky that the invention of the decomposition was just a topic in his wide spectrum of interests.
My deep gratitude goes to Camilla Collis who greatly helped me to structure this article. I wish also to thank the
anonymous referees for their many helpful suggestions or remarks. Errors or approximations remain absolutely
mine.

1 Honorary reserve artillery lieutenant. Retired senior lecturer in statistics, université de Toulouse (III).
E-mail: antoine@falguerolles.net

Journal de la Société Française de Statistique, Vol. 160 No. 2 83-96
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238

mailto:antoine@falguerolles.net


84 Antoine de Falguerolles

also recall some landmarks in the history of regression in France at the dawn of the First World
War. The position adopted in this paper is that Augustin-Louis Cauchy (1789-1857) computed
approximations of what the Cholesky decomposition would have obtained years before the birth
of Cholesky. Actually, his algorithm consists of estimating the unknown coefficients of a multiple
regression by repeated use of simple regressions (and repeated recalculations of the variables).
In this process a system of linear equations in upper-triangular form is produced whose solu-
tion gives the estimated regression coefficients. It thus mimics the triangular system obtained by
applying a closely related variant of the Cholesky decomposition to the normal equations when
performing least-squares estimation in regression and, under some implementation, derives it
exactly. This recycling of Cauchy’s computing strategy for multiple regression will not revolu-
tionize the actual numerical computation of Cholesky’s decomposition. At most, it will throw a
statistical interpretation on computations usually hidden in the backstage of statistical packages.
It must be emphasized that this paper does not consider the numerical aspects involved in modern
regression analysis of large data sets.

I will also call onto the stage Moise-Emmanuel Carvallo (1856-1945), the author of a use-
ful book on statistics and probability (1912), whose path may have crossed that of Cholesky at
the École polytechnique. Carvallo proved that Cauchy’s approach led to the least-squares solu-
tion under suitable specification. In this case, it turns out that the triangular system obtained by
Cauchy’s algorithm is exactly the triangular form of the normal equations obtained by applying
a closely related variant of a variant of the Cholesky decomposition.

2. Cholesky’s decomposition for Dummies

Let S be a positive definite matrix. The Cholesky decomposition states that there is a unique de-
composition of S into the product AA′ where A is a lower–triangular matrix and A′ its transpose.
This decomposition goes back to the 2nd December 1910 as it can be read from a hand-written
manuscript of André-Louis Cholesky deposited by his family in the Archives of the École poly-
technique. The manuscript is reproduced and discussed in Brezinski (2005). The manuscript
had not been previously published before and the decomposition was known from secondary
sources. A referee remarked that one of the numerical difficulty in the Cholesky decomposition
is the computing of square roots. In Cholesky’s time, the use of a logarithmic table was certainly
a possibility. But this would have slowed the numerical burden which was then alleviated by
the use of rudimentary calculators. Therefore Cholesky used a more manageable numerical ap-
proximation (ascribed to Heron of Alexandria) which is also detailed with its implementation in
Brezinski (2005, p. 218–220).

A closely related variant of the classical Cholesky decomposition, which avoids the difficulty
above, is the LDL′ decomposition where L is a lower–triangular matrix with all elements on its
main diagonal equal to 1, L′ its transpose, D a diagonal matrix of strictly positive elements.

As an old applied statistician I often had to solve, either by hand or with early numerically
unreliable computer programs, linear systems of the form Sb = s where S was positive definite.
A direct attack was to compute the inverse S−1 of S and then the product S−1s. An alternative
strategy was to compute a equivalent upper-triangular system Ub̃ = u, where the tilde on the b
means that the coordinates of b were possibly reordered in the process. The values of b̃ (and
consequently b) were then easily obtained by bottom-up computation. The introduction of the
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Cholesky and the Cholesky decomposition 85

variant of the Cholesky decomposition of S simplifies the procedure above. The upper-triangular
system looked for is then given by L′b = ` where ` = (LD)−1s. This may look like a typical
recipe in numerical analysis which nowadays statisticians use without their knowledge most of
the time. The situation will hopefully be reversed hereafter: elementary statistical considerations
do lead to construct upper-triangular systems of the form above.

3. The characters on the stage

3.1. Cholesky (1875 - 1918) and Benoit (1873 - 1956)

In Leonore, the web database of the Légion d’honneur, Archives Nationales (2018), Artillery
Squadron Commander André-Louis Cholesky 1 is reported killed in action on the 31 August
1918 near Bagneux (Aisne, France) during the First World War. The terminology of Cholesky
decomposition comes from the name given in 1924 by a colleague, Ernest Benoit 2 a Colonial Ar-
tillery Major in a published article, to a transformation useful in cartography (see Benoit, 1924).
The title of Benoit’s publication translates as follows: Note on a method for solving the normal
equations arising in the application of least-squares to a system of linear equations the number
of which is lower than that of unknowns - [. . . ] (method of Major Cholesky). Both officers had
graduated from the École Polytechnique and the École d’Artillerie et du Génie (Artillery and
Engineers Academy). Both held alternately regimental positions and detachments to the Service
Cartographique des Armées with missions in Algeria, Tunisia and Romania, for the former, and
in Africa, Indochina, and Greece for the latter. Cholesky’s life and work (published and unpub-
lished) are thoroughly documented by Brezinski in several papers (see for instance Brezinski,
2005; Brezinski and Gross-Cholesky, 2005), and in the only existing book on Cholesky which
he has co-authored with Dominique Tournès (see Brezinski and Tournès, 2014). Here I will just
extract from Claude Brezinski’s publications that Cholesky never published what is known nowa-
days as his decomposition (although he had introduced it the geographic services of the army)
and that the British Professor John (Jack) Todd (1911 - 2007), a numerical mathematics pioneer,
was central in disseminating the decomposition outside geodetic circles.

As a former graduate of the École Polytechnique, often nicknamed l’X, X 1895 is attached to
Cholesky’s name to indicate the year of his admission to this prestigious military school. Benoit
is X 1892. Both were awarded the order of the Légion d’Honneur: Cholesky in 1915, Benoit in
1913.

In the nomadic life of an officer and a cartographer, the protestant community of La Roche-
Chalais was a fixed point for the household of André-Louis Cholesky 3. His civil marriage to

1 André-Louis Cholesky (Montguyon, 15 October 1875 – Mort pour la France au Nord de Bagneux (Aisne) à la
Carrière, August 1818 is the son of André Cholesky, innkeeper, and Marie Garnier.

2 Ernest Benoit (Morez, 15 July 1873 – La Garde, 28 February 1956) is the son of Charles Benoit, house painter, and
Louise Romand.

3 I wish to express my warmest gratitude to Mrs. Dominique Mignon, president of the Society for the History of
Protestantism in the Dordogne Valley. With her help, I was able to contact one of André-Louis Cholesky’s grand-
son, Pastor Philippe Gross now retired and living near Bordeaux. Very kindly he sent me copies of documents
establishing the close ties that the Cholesky family had with the small city of La Roche-Chalais and its Protestant
community. The Protestant church (temple protestant) is nowadays a city cultural hall. When used as a church, a
plaque commemorating André-Louis Cholesky’s death in action in August 1918 was affixed on its walls. My thanks
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Henriette Brunet, a first cousin, took place in the Town Hall of La Roche-Chalais (10 May 1907).
Their respective mothers, Marie and Jeanne Garnier, were born in La Roche-Chalais in a protes-
tant family. (The wedding was duly approved by the military authorities. The head of the Ministry
of War was then General Georges Picquart, a central character in the Affaire Dreyfus and in the
2013 historical fiction thriller by Robert Harris entitled An Officer and a Spy.) The blessing of
their marriage took place on the following day in the protestant church (temple protestant) of La
Roche-Chalais (11 May 1907). As carefully inscribed in the Bible that was given to them on this
occasion, three of their four children were baptized at La Roche-Chalais.

3.2. Cauchy (1789 - 1857)

Augustin Cauchy is here the central character who introduced in multiple linear regression an al-
gorithm for constructing an upper-triangular system whose solution gave the estimations looked
for. A devout catholic and a royalist legitimist (faithful to the divine right of the current King and
to the rule of dynastic succession in the eldest branch to the French crown), he could not swear
the administrative oath of fidelity to the new King, from a lower- branch, elevated in France after
the 1830 July Revolution. Like the dethroned king and family, Cauchy went into exile. While
in Prague, he eventually took the position of preceptor to the true heir to the French throne.
There, Cauchy investigated a multiple linear regression problem (Cauchy, 1836, page 195) for
which he proposed a general algorithm based on the repetitive fit of simple linear regressions
(without intercept) and a simplified computation of the slope estimate. Cauchy’s exile did not
last long and he returned to France where he resumed official teaching and researching activities
(Falguerolles, 2012).

Rarely considered nowadays, Cauchy’s approach was nevertheless used in parallel with least-
squares for some years. An example is given by Vilfredo Pareto (Pareto, 1897, page 371) . (This
is also the paper where he describes Iteratively (re-)Weighted Least-Squares in the presence of a
logarithmic link function.)

3.3. Carvallo (1856 - 1945)

Moïse-Emmanuel Carvallo 4 is the son of Jacob-Jules Carvallo and Élodie-Sara Rodrigues.
Both parents came from Marrano families who had obtained regular French citizenship under
Napoléon (décret de Bayonne, 28 juillet 1808). These families had emigrated earlier from the
Iberian peninsula and had settled in the Bordeaux region. They belonged to a talented network
with strong connections to the Saint-Simon utopists: Olinde Rodrigues (1795 - 1851), the Pereire

also go to the town hall of La Roche-Chalais for sending me a full copy of the marriage certificate of André-Louis
Cholesky and Henriette Brunet.

Montguyon was André-Louis Cholesky’s birthplace and the place where his parents currently lived. In Montguyon,
Mr. Raymond Nuvet played a central role for giving the name of André-Louis Cholesky to the cultural centre and
for having a plaque affixed on the First World War memorial. I thank him for sending me details and a picture of the
plaque. My thanks also to Mr. Nicolas Champ who informed me that Pastor Pierre Guiraud had presided over the
funeral services of the parents of André-Louis Cholesky. They both died in 1929 in Montguyon and were buried in
La Roche-Chalais.

4 Narbonne, 17 october 1856 – Unknown, 30 janvier 1945.
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Cholesky and the Cholesky decomposition 87

brothers Émile (1800 -1875) and Isaac (1806 - 1880), . . . who did much for the development of
banking, insurance and railways in France (see Altmann and Ortiz, 2005). Emmanuel’s father, X
1840 and École des ponts et chaussées, was a renowned civil engineer (see Cohen, 1988, note 30
on page 209) with an international career in France, Spain, and Italy.

Emmanuel Carvallo is X 1877. He defended a doctorate thesis in mathematics (theoretical
optics) in 1890. In this work he came across regression problems (Carvallo, 1890). He carefully
investigated the least-squares and the Cauchy approaches to regression (see below subsection
6.1). Although not completely convinced by the conclusions of Carvallo, Henri Poincaré wrote
in his report: “his thesis is likely to help making a serious progress for two of the most interesting
branches of mathematics, probability calculus on the one hand, and mathematical physics on the
other hand” (Publication des archives Henri Poincaré, 2007, Chapter 62, p.384). (Sa thèse est de
nature à faire faire un progrès sérieux à deux parties les plus intéressantes des mathématiques,
au calcul des pobabilités d’une part, et d’autre part à la physique mathématique.)

Emmanuel Carvallo spent most of his career teaching and in particular at l’X of which he be-
came Director of Studies. He was appreciated by the students who nicknamed their school carva
rather than l’X. This is recalled in particular by Benoit Mandelbrot, X 1944, in his posthumous
memoirs (see Mandelbrot, 2013, page 86).

Carvallo also entertained scientific relations with Spain and became a corresponding member
of the Royal Academy of Madrid (1893). He published a useful and successful statistical text-
book 5 which, as he wrote in the Preface, could well be the answer to the competition launched
by the Royal Academy in 1910 for a book on probability and statistics addressed to anyone with
a general education (see Carvallo, 1912, Préface, p. VI).

4. Why multiple linear regression?

The title of the article announces that the views adopted here are those of an applied statistician.
One frequent task in applied statistics is that of regression. Regression expresses a relationship
between some explanatory variable(s) and the expected value of a response variable. Still regres-
sion may arise in different contexts worth examining.

4.1. Different paradigms?

For an applied statistician it is common say that observed = model + error (or observed =
expected+ error) which can be reformulated as observed = theoretical+ error. For a cartogra-
pher true value = observed+error which can be reformulated as theoretical = observed+error.
Note that in the formulas above the error is assumed to be symmetrically distributed with respect
to 0.

Both the statistician and the cartographer want to estimate the theoretical. The former knows
that, even in the case of an exact estimation, the theoretical will never be observed in non triv-

5 This book is difficult to read today because of the notations and the computational approach. Carvallo’s reference
distribution law is the normal with mean 0 and variance 1

2 . This simplifies the density of the associated folded
distribution ( 2√

π
exp(−t2) for t > 0 and 0 elsewhere). The price to pay is the introduction of an index of deviation

(écart étalon) which is equal to
√

2 times the standard deviation commonly defined nowadays.
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ial cases while the latter assume that it could be observed under perfect conditions. Still the
estimating tools are the same, the error term just changing side.

4.2. Linearization

How does linearity arise in the general problem of regression? In many situations, the theoretical
is a non-linear function, say f , of several unknowns parameters, say b, and of several known
parameters. Under some regularity conditions, the first order Taylor expansion of f about a start-
ing approximation b0 of b gives f (b)≈ f (b0)+∇ f (b0)

′(b− b0), where the value of ∇ f (b0)
also depends on the known parameters. This is of the general form x′b (possibly at the price of
introducing an unknown intercept parameter). Usually there are several (n) observations with
different values of the known parameters such that x′ib ≈ yi for i ∈ {1, . . . ,n}. These define the
linear system considered in linear regression: Xb≈ y.

Attached to each observation i, i ∈ {1, . . . ,n}, is possibly a positive weight which often de-
pends on its precision. If considered, the weights will be denoted by wi.

When solved, the linearization process can be reiterated to obtain more precise values of
the unknown parameters. A typical example is the case of generalized linear models where the
expected value for the observed response yi is of the form f (x′ib), e.g. exp(x′ib), and the associated
reciprocal function is called the link function, log in the given example. In this case the well-
known Iteratively (re-)Weighted Least Squares (IWLS) algorithm does the trick (see McCullagh
and Nelder, 1991). But the computational aspects of IWLS will not be discussed further for
simplification purpose.

5. Multiple linear regression: combining or compensating

Two situations arise which impact the estimation of the unknown coefficients. In the first, the
most common to statisticians, which will be called here combining, the design matrix X has
more rows (n) than columns (q) and in most situations many more; the symbol ≈ means that the
associated system of equations is (usually) inconsistent. In the second, X has strictly fewer rows
than columns and is named compensating; the symbol ≈ can then be read as an equality but
the associated system of equation is indeterminate. This is exactly the case treated by Cholesky
which Ernest Benoit published in 1924.

In this section, several available regression methods will be considered. Most of them had
arisen in discussions following its oral presentation 6.

5.1. Combining: X is n≥ q and rank(X) = q

5.1.1. Least-squares

Minimizing ||Xb− y||22 leads to the normal equations X ′Xb = X ′y where X ′ denotes the trans-
pose of X . The normal equations have a unique solution with well-known properties: linearity,
unbiasedness, . . . There are several ways to solve the latter depending on the length of b and

6 A preliminary version of this paper was also presented at the Journées de Statistique 2018, Paris-Saclay.
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Cholesky and the Cholesky decomposition 89

the technology at hand. A standard method is to construct an equivalent upper-triangular linear
system Ub = u. Indeed there are several ways of doing it. The Cholesky decomposition or its
variant offer one possibility at least theoretically.

Note that if the method of least-squares is the automobile of statistics, as humorously written
by Stephen Stigler (see Stigler, 1999, page 320), Adrien-Marie Legendre (1755-1833) is certainly
its Henry Ford. The French Adrien-Marie Legendre is indeed a pioneer in the use least-squares
for estimating the unknown parameters of a linear model of regression: in 1805 he did publish
an analytical description of the method of least-squares along with a sophisticated example with
several explanatory variables (see Falguerolles and Pinchon, 2006). .

5.1.2. Least absolute values and minimax value

The idea of minimizing ||Xb− y||1 preceded that of least-squares. The Dalmatian Jesuit Roger-
Joseph Boscovich (1711-1787) and Pierre-Simon Laplace (1749-1827) had considered simple
cases of L1 regression. A century and a half latter the foundation of linear programming and,
in particular, the insight provided by the Simplex method have greatly facilitated the use of
this choice of objective function and its implementation for large statistical problems. Still the
solution may not be unique.

A referee recalled that minimizing ∑ |x′ib−yi| could be also obtained by a simple use of IWLS:
∑

1
|x′ib(k)−yi|

(x′ib
(k+1)− yi)

2.

The minimax approach, namely minimizing the maximum value of the |x′ib− yi| over i ∈
{1, . . . ,n}, is also ascribed to Laplace (see Chapter 4 in Farebrother, 1999). It also absorbs into
linear programming.

5.1.3. Total least-squares

The total least-squares approach consists of minimizing the Frobenius norm of a matrix obtained
by concatenation of a matrix Ξ and a vector ξ of same dimensions as X and y, Z = ||[Ξ|ξ ]||2F ,
subject to (X +Ξ)b = y+ξ . Total least squares was also discussed as early as the last quarter of
the 19th century. For a historical account see Markovsky and Van Huffel (2007).

5.2. Compensating: X is n < q and rank(X) = n

5.2.1. Least-squares

Confronted with the non uniqueness of solutions of Xb= y and therefore of the normal equations,
cartographers minimize ||b||22 subject to Xb− y = 0. Thus they introduce Lagrange multipliers
λ the values of which are obtained by solving XX ′λ = y. Thus λ = (XX ′)−1y and b = X ′λ . In
passing, it can be seen that λ minimizes ||(XX ′)λ−y||22, a linear regression problem with unusual
definite positive design matrix XX ′ and associated normal equations (XX ′)(XX ′)λ = (XX ′)y
which obviously simplifies into XX ′λ = y. Again, the use of Cholesky decomposition or its
variant for solving the linear systems involved is a good choice.
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5.2.2. Least absolute values

A similar approach could be entertained but is not used in practice. One of its drawbacks would
be that minimizing ||b||1 subject to Xb−y = 0 would lead in general to a solution with at most n
non null regression coefficients.

5.3. Remarks

The now well-known Lasso regression and Ridge regression share some vague common features
with the situation above. Lasso regression attempts to contract the number of non null regression
coefficient. Ridge regression is more in line with the above. By substituting X ′X +ρIq for the
rank deficient X ′X in the normal equations, Ridge regression leads to unique solutions bρ which
depend on the tuning parameter ρ , ρ > 0. However compensating offers a closed-form solution.
Their comparison is not pursued further since it is not central to the matter presented in this
article.

Initialization
Z = [E|y] n× (q+1) matrix concatenating matrix E and vector y

E (design matrix) and y (response)
M = [0] null matrix of size q× (q+1)

Algorithm
For I = 1, . . . ,q

M[I, I] = 1
For J = I +1, . . . ,q+1

Regress without intercept column J of Z onto column I
Extract slope b(I),J and residuals Z[,J]−b(I),JZ[, I]

M[I,J] = slope above
Z[,J] = residuals above

End J
End I

System in upper-triangular form Ub = u
U = M[,1 : q]
u = M[,q+1]

FIGURE 1. Cauchy’s algorithm

6. Cauchy’s algorithm for multiple linear regression

The algorithm is described in Figure 1. Cauchy introduced it for the case where n ≥ q (see
subsection 5.1). Cauchy’s aim was to obtain an upper-triangular system of linear equations (with
1 on the main diagonal) Ub = u obtained by cleverly repeating simple linear regressions without
intercept (one response y, one explanatory variable x, one unknown parameter also called slope
b, no constant term also called intercept: xib ≈ yi). Interestingly any parametric method can be
selected to perform the simple regressions.
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Cholesky and the Cholesky decomposition 91

Note that if there is a constant term in the starting multiple linear regression formula, the vari-
ables must be centered to their means, a property which is preserved for the residuals whatever
selection of parametric method. Then the constant term is given in fine by the usual formula:
y−∑

q
j=1 b jX [, j], where y, X [,1], . . . , X [,q] denote the arithmetic means of variables y, X [,1],

. . . , X [,q].

6.1. Estimator in simple linear regression

To speed up the algorithm and using centered explanatory variable x and response variable y,
Cauchy suggested that the least-squares estimation of the unknown parameter (slope parameter)

∑xiyi

∑x2
i

be approximated by
∑sign(xi)y

∑ |xi|
.

It turns out that this fast estimator (assuming no value of x equal to its mean 0) goes back to the
German Tobias Mayer (1723-1762) and followers like Simon de Laplace (1749 - 1827). Their
principle is to substitute the system LXb = Ly, where LX is q× n and rank q, for Xb ≈ y (see
Stigler, 1986, pages 147-148). The construction of L is central to the method. An obvious choice
for a modern statistician is L = X ′ but this is least-squares with its heavy computation of sum of
cross products. An alternative choice is to construct a matrix L with elements in {−1,0,1}. A
referee recalled the use of random matrices L to assess the variability of the estimations. For a
discussion of the simpler case of Mayer’s procedure in the context of classification and regression
trees see Falguerolles (2009).

Mayer’s method for simple linear regression is still mentioned in the second half of last cen-
tury in some elementary textbooks. In one (see Louquet and Vogt, 1971, page 45) the method is
called méthode des moyennes discontinues (method of discontinuous means).

Emmanuel Carvallo noticed that the two formulas above can be seen as particular cases of a
common weighted formula. Consider the weighted least-squares estimation formula, ∑wi xiyi

∑wi x2
i

, the

choice of either wi = 1 or wi =
1
|xi| for observations i leads to the first formula or to the second.

Consider now the weighted Cauchy estimation formula, ∑wi sign(xi)yi
∑wi |xi| , the choice of wi = 1 or wi =

|xi| for observations i leads to the second formula or the first. Had Carvallo in mind the difficult
question of sensitivity/robustness of the estimations with respect to the metric? Or simply the
ease of computation by hand or by rudimentary calculator? He suggests a compromise: using
as weights wi rounded values of the |xi| in the Cauchy approximation, e.g. wi = 5000 when
|xi|= 5274 (see Carvallo, 1890, page 14 ). This mixed strategy will not be further considered.

6.2. Algorithm

To formalize Cauchy’s algorithm, the real response (centered) is denoted by y a vector of size
n. E is a full rank matrix column (column centered) of size n (rows) and q (columns). E will be
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92 Antoine de Falguerolles

tailored to suit both situations (combining, n≥ q, and compensating, n < q). The algorithm, see
Figure 1, is simple and readily implementable in any mathematical software package.

Note that the method can be adapted to several uni-variate response variables with common
design matrix.

6.3. Initialization

Still what goes into E?
— E = X when n≥ q.
— E = XX ′ when n < q.

6.4. Interpretation

At the end of the iterative procedure, the first q columns of M contain the coefficients of an
upper-diagonal system U (U = M[,1 : q]) and the last column of M (the q+ 1th) a vector u
(u = M[,q+ 1]). These define a linear system Ub = u which mimics (or is in some cases) the
set of normal equations in upper-triangular form (see Figure 2). Furthermore, the last column of
Z (the q+ 1th) contains the residuals from the fitted values as obtained by solving Ub = u and
computing y−XU−1u, obviously zeros in the case of compensation.

Ub = u



1 b(1),2 b(1),3 b(1),4 . . . b(1),p . . . b(1),q
1 b(2),3 b(2),4 . . . b(2),p . . . b(2),q

1 b(3),4 . . . b(3),p . . . b(3),q
1 . . . b(4),p . . . b(4),q

. . .
...

...
1 . . . b(p),q

. . .
...
1





b1
b2
b3
b4
...
bp
...

bq


=



b(1),q+1
b(2),q+1
b(3),q+1
b(4),q+1

...
b(p),q+1

...
b(q),q+1



FIGURE 2. The ‘normal equations’ in upper-triangular form for the nested regressions (here p < q). The estimations
are not imbedded in most cases.

In particular any upper-left corner block of M of size p (p = 1, . . . ,q) and the associated
first p lines of the last column of M contain the upper-triangular system needed to compute the
coefficients of the regression of y onto the first p explanatory variables (see Figure 2).

6.5. Variable selection

Cauchy realized that his algorithm could be easily modified to do some sort of forward variable
selection. Indeed, for a fixed value I (I = 1, . . . ,q) and at the end of the nested J loop, columns
I + 1, . . . , q of Z contain the residuals from the regression of variables I + 1, . . . , q and of the
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response onto the first I explanatory variables. Any variable not yet introduced as a regressor
other than the pre-specified (I + 1)th in the next step could be considered. It would then suffice
to renumber these two variables and to permute the associated columns in matrix Z. What could
clarify this swap? Expertise? There is no definite answer.

7. Pros and cons; an example

The good news was that any parametric simple regression can be used in the process, e.g.
Cauchy’s. But there are at least two associated drawbacks. The numerical values of the final
estimations usually depend on the ordering of the columns of block E in matrix Z (see Figure 1).
Furthermore, when an overall method of fitting exists, e. g. L1 regression, the global estimates
may not coincide with those given by the algorithm, even when using the same method in the
q(q+1)

2 elementary linear regressions.
As an example, a data set investigated by Pareto is considered (Pareto, 1897, see page 378).

It consists of yearly data (1855-1895): number of weddings (the response) to be related to the
value of exports and coal production (the explanatory variables). The theme of this data set
certainly illustrates the emerging use of statistics in the quest for establishing the ‘laws’ of social
physics. Along this line Charles-Joseph Minard (1781-1870) in his short book La Statistique
(see Minard, 1869) mentions the work of the British Henry-Thomas Buckle (1821-1862) and
among other examples, his theory that marriages depends on the rate of salaries and income
(see Buckle, 1861). (Buckle supported an uncompromising determinism in the two volumes of
his History of Civilization in England!) Minard, negative about Buckle’s system, criticizes this
particular example on the ground that mores, thoughts, and common feelings, might be more
relevant (see his discussion on pages 12-14) and possibly more elusive too.

Pareto aptly computed the order-one differences of the data, centered the transformed data
to their means, and applied Cauchy algorithm. Table 1 presents the estimated regression coef-
ficients obtained according to different methods of simple regression (least-squares, Cauchy-
Mayer, least absolute value, total least-squares). Values obtained by direct multiple regression
are also reported, whenever possible. The absence of a proper metric to measure distances be-
tween the different estimations blurs an overall comparison. Still, one can check that the order
of introduction of the variables has often an impact on the estimated values and that Cauchy’s
algorithm does not always lead to the overall estimates. A noticeable exception is the use of
least-squares.

8. Using least-squares in Cauchy’s approach

In this section, only the repeated use of least-squares simple regressions in Cauchy’s approach
to multiple regression is considered. This may seem odd since nowadays multiple regression
is well mastered theoretically and computationally. But this gives the opportunity to mention
further properties of Cauchy’s algorithm.
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b0 +b1∆u +b2∆t ≈ ∆v

b0 b1 b2
Cauchy’s algorithm with Cauchy-Mayer estimation

∆u, ∆t -0.57028 0.25798 0.05092
∆t , ∆u -0.37727 0.29514 0.04113

Cauchy’s algorithm with least-squares
∆u, ∆t -0.06820 0.22339 0.03876
∆t , ∆u -0.06820 0.22339 0.03876

full least-squares
∆u and ∆t -0.06820 0.22339 0.03876

Cauchy’s algorithm with least absolute values
∆u, ∆t -0.10749 0.23655 0.03865
∆t , ∆u 0.60129 0.18232 0.02203

full least absolute values
uncentered ∆u and ∆v -0.21853 0.24451 0.03760
∆u and ∆v -0.14260 0.26249 0.03711

Cauchy’s algorithm with total least-squares
∆u, ∆t 0.86074 0.22036 0.01008
∆t , ∆u -0.04692 0.24194 0.03621

full total least-squares
∆u, ∆t -0.07461 0.24169 0.03710

TABLE 1. Pareto’s investigation of the relationship between marriages and prosperity in England (1855-1895).
Proxy variables for prosperity are exports and coal production. Order one differenced annual data are considered.
The weddings annual variation (∆v) is regressed onto the annual variation of exports (∆u) and the annual variation
of coal extraction (∆t ). In all cases the estimated values for b1 and b2 are positive
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8.1. Carvallo’s contribution

Moïse-Emmanuel Carvallo has proven that the least-squares estimates obtained from the normal
equations and those obtained from the upper-triangular system produced by Cauchy’s algorithm
are identical (Chapter III, pp.103–143 Carvallo, 1912). Additionally it can be shown that this
upper-triangular system is exactly the system obtained by applying the Cholesky decomposition
to the normal equations. The proofs, quite elementary, rest upon properties of block matrix and
induction. They are not reported here.

8.2. Variable selection

If least-squares estimation is used, the variable selection aspect in Cauchy’s algorithm can be
reformulated. For a given I (I ∈ {1, . . . ,q}), and at the end of the nested loop J (J ∈ {I+1, . . . ,q+
1}), Z stores the residuals of the regression of J ∈ {I+1, . . . ,q+1} and y onto variables 1, . . . , I.
Then the q− I correlation coefficients between columns I +1, . . . , q of Z and column q+1 of Z
are the conditional correlation coefficients given the explanatory variables 1, . . . , I between these
variables and the response. Introducing the variable with the largest conditional correlation with
the response might then be a sensible choice. This is indeed very easy to implement in modern
computing environments.

9. Concluding remarks

In the light of the work of Claude Brezinski there are no reason to believe that the Cholesky
decomposition of a positive definite matrix S into a product AA′ where A is lower–triangular
matrix, is inaccurately named. It seems inconceivable nowadays that Cholesky never published
it although it was in use in the French military geographic circles as recalled by Ernest Benoit in
1924. Had André-Louis Cholesky not been killed in action during the First World War, his 1910
notes would have been eventually published. This is indeed a sad (mis)interpretation of academic
precept “publish or perish”.

Associated with Cholesky decomposition is the LDL′ decomposition. In a multiple regression
context (X ′i b≈ yi, i ∈ {1, . . . ,n}), the algorithm introduced by Cauchy computes an upper-linear
system whose solution gives an estimation of the unknown regression coefficients. This system
mimics the L′S = (LD)−1s re-expression of the normal equations considered in Least-squares.
Cauchy’s algorithm is appealing since it involves the repeated use of simple regressions (one
explanatory variable, no intercept but just a slope: xib ≈ yi, i ∈ {1, . . . ,n}) at the price of itera-
tive re-computation of the variables. Any parametric method can be used for these elementary
regressions. For computing ease, Augustin-Louis Cauchy proposed one. Emmanuel Carvallo re-
alized that if Cauchy had used least-squares for the simple regressions, he would have obtained a
linear system in upper-diagonal form (Ub = u) equivalent to the normal equations (Sb = s where
S = X ′X and s = X ′y). It turns out that this upper system is nothing else than L′b = (LD)−1s
where the decomposition LDL′ = S is associated to Cholesky.
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