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Abstract: The aim of this paper is to propose an extension of Multiblock Linear Discriminant Analysis (MLDA) for
analyzing a set of contingency tables which have been observed in different occasions and have the same number
of rows and the same number of columns. This extension, Multiblock Linear Discriminant Analysis of Three-way
Contingency Tables (MLDA-TCT, is midway between correspondence analysis and linear discriminant analysis;
MLDA-TCT computes one or several variables for each data table, such that these variables take into account re-
lationships between rows and columns of the contingency tables in one hand, and in the other hand, take into account
relationships between contingency tables.

Résumé : L’objet de cet article est de proposer une extension de l’analyse factorielle discriminante de tableaux
multiples à la description d’un ensemble de tableaux de contingence qui ont été observés à différentes occasions et
qui ont le même nombre de lignes et le même nombre de colonnes. Cette méthode, MLDA-TCT, est un compromis
entre l’analyse factorielle des correspondances et l’analyse discriminante linéaire. MLDA-TCT détermine une ou
plusieurs variables auxiliaires pour chaque tableau de données, de telle manière que ces variables prennent en compte
à la fois les relations entre les lignes et les colonnes des tableaux de contingence et les relations entre les tableaux de
contingence.
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1. Introduction

Canonical Correlation Analysis (CCA; Hotelling (1936)) describes the relationship between two
sets of variables observed on the same individuals. When each of these two sets of variables
is constituted by the indicators of a categorical variable, CCA is the Correspondence Analysis
(CA,Benzécri (1980); Black et al. (1998)) of the contingency table which displays the frequency
distribution of the two categorical variables.

These two categorical variables may be observed at different times, for instance imports and
exports tables calculated for different countries or different years, or at different occasions, for
instance statistics by age, by level of education and by gender; a set of these contingency tables
which have all the same number of columns and the same number of rows is named three-way
contingency table.
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Methods for analyzing a set of contingency data tables have first been developed by French
statisticians (Leclerc (1975); Saporta (1976); Cazes (1981)) and consist of correspondence anal-
ysis of the juxtaposition or of the sum of contingency data tables. Alternative factorial methods
are MFACT method (Escofier and Pagès (1994); Bécue-Bertaut and Pages (2004); Kostov et al.
(2013)), STATIS method (Lavit (1988); Vallejo-Arnadela et al. (2007)) or Simultaneous Analysis
(Zarraga and Goitisolo (2002, 2003, 2009)).

Three-way contingency table is a particular case of multiple contingency table; specific meth-
ods have been developed to analyze three-way contingency tables (Kroonenberg and Lombardo
(1999); Lombardo (2011); Kateri and Petros Dellaportas (2012); Beh and Lombardo (2014);
Kang et al. (2015); Aktas (2016); Beh et al. (2018); Taneichi and Toyama (2019)).

Recently, methods for analyzing data which are structured both in blocks of variables and in
groups of individuals (for an overview of these methods, see Tenenhaus and Tenenhaus (2014))
have been applied to sets of contingency tables ; on one hand, generalizations of STATIS (Vallejo-
Arnadela et al. (2007); Sabatier et al. (2013)), have been developped in order to take into account
of both structure of each data table and evolutions in the different time points or occasions. In
the other hand, among the other methods of multivariate analysis of multiblock and multigroup
data, see ( Eslami et al. (2014); Bougeard et al. (2017); Kang et al. (2015); Bougeard et al. (2011,
2018))

Multiblock Linear Discriminant Analysis (MLDA, Casin (2015, 2017)), a method for analyz-
ing bi-partitioned data tables, computes one or several new variables for each data table, such that
these new variables take into account both relationships between sets of variables and canonical
correlation and relationships between each block of variables and the partition of individuals in
groups.

The aim of this paper is to extend principles of MLDA to three-way contingency table ; this
new method, named MLDA-TCT, points out the differences between several contingency tables.

The organization of the paper is as follows: Section 2 introduces the problem and Section
3 defines the notation. In section 4, MLDA-TCT is introduced; MLDA-TCT is compared with
others methods in Section 5. Section 6 is concened by plots and interpretation of results. A
concrete application of CMLDA-TCT is given in Section 7. Section 8 concludes.

2. The problem

Let us consider a set of K contingency tables Ck, for k = 1, . . . ,K. These tables have the rows and
columns in common, but their row margins and column margins are different.

The problem is to highlight the main differences between K contingency tables Ck, k =
1, . . . ,K, where Ck is a r×m matrix and classifies nk individuals with respect to two categor-
ical variables Xk and Yk.

Let G be the categorical variable (with n rows and K columns) which describes the partition

of the n =
K
∑

k=1
nk individuals into K situations.

Generally (Cazes (1981); Bécue-Bertaut and Pages (2004); Vallejo-Arnadela et al. (2007);
Zarraga and Goitisolo (2003)) categories of the variable G are not explicitly considered as active
variables and G is only used to reinforce the interpretation of the results of methods of analyzing
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MLDA of Three-way Contingency Tables 69

sets of contingency tables: categories of G are represented on the axes, but are excluded from the
construction of these axes.

On the opposite, here, in order to point out differences between contingency data tables, G is
an active variable: G is the logical response variable to the other variables which are the rows
and columns of contingency tables Ck. Consequently, the discriminant power of G is the first
criterion of determination of axes. The second criterion of determination of axes is the quality
of the description of contingency tables: axes must provide the best possible description of the

relationship between rows and columns of the average contingency table 1
K

K
∑

k=1
Ck.

To carry on this work, it is first necessarily to introduce the following proper representation of
the data.

3. The data and their representation

3.1. Notation

As mentionned Ck = X
′
kYk is a r×m matrix and classifies nk individuals, with respect to two

categorical variables Xk and Yk. Xk (resp. Yk) is a nk× r (resp. nk×m) matrix and describes the
partition of nk individuals into r (resp. m) groups ; its r (resp. m) columns (called indicators) are
dummy variables: a value of 1 indicates that the individual belongs to the group, a value of 0 that

it does not. n denotes the total sum of individuals: n =
K
∑

k=1
nk.

Let us consider the following data tables X and Y with n rows and respectively r and m
columns. The columns of these two matrices are dummy variables. X and Y are defined as fol-
lows:

X =


X1
...

Xk
...

XK

 and Y =


Y1
...

Yk
...

YK


Z is the matrix Z =

[
X ,Y

]
.

Gk is the matrix with n rows and K columns whose all values equal 0 except those of the k−th
column which are all equal to 1. Then, the categorical variable G (with n rows and K columns)
describes the partition of the n individuals into K situations:

G =


G1
...

Gk
...

GK


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3.2. Representation of the data

Data may be represented as shown below:

G = Z =

Table 1
n1 individuals

- - -- - - - -- -- --- - - - - - -- - - - - - --

Table k
nk individuals

- - -- - - - - -- -- --- - - - - - -- - - - - - --

- - -- - - - - -- -- --- - - - - - -- - - - - - --

Table K
nK individuals GK

G1

Gk

XK

X1

Xk

YK

Y1

Yk

- - -- - - - - -- -- --- - - - - - -- - - - - - --

.

.

...

..

.

...

..

.

.

...

..

.

.

...

..

K indicators r indicators + m indicators

FIGURE 1. Representation of the data

Then VGX = G′X (resp. VGY = G′Y ) is the K×m (resp. K× r) contingency table which classi-
fies the n individuals with respect to the K situations and the r (resp. m) columns of the indicators
of the variable X (resp. Y ).

VGX (resp. VGY ) is the K × r data table of the row (resp. column) margins of contingency

tables Ck. VXY = X ′Y is the sum of the matrices Ck: VXY =
K
∑

k=1
Ck. VGG = G′G (resp. VXX = X ′X ,

VYY =Y ′Y ) is the K×K (resp.r×r, m×m) diagonal matrix of marginal sums of the K data tables
Gk(resp X , Y ).

VXG (resp. VY G) is the r×K (resp.m×K) matrix whose k-th column is the absolute frequency
of categories of X (resp. Y ).

Let WX (resp. WY , WX j , WY j ) be the space spanned by columns of X (resp. Y , G, X j, Yj) and PX

(resp. PY , PG,PX j , PY j ) be the orthogonal projector onto WX (resp. WY , WG, WX j , WYj ).

Matrices are represented in upper-case letters and vectors in lower-case letters.
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MLDA of Three-way Contingency Tables 71

4. Multiblock Linear Discriminant Analysis of Three-way Contingency Tables

4.1. Criteria used by MLDA-TCT

The principle of MLDA (Casin (2015, 2017)) is describing both the relationship between the
blocks of variables (here, X and Y ), using Carroll’s Canonical Generalized Analysis criterion
(Carroll (1968)), and the relationship between these blocks and the categorical variable (here,
G) which describes the partition in groups of individuals, using Fisher’s discriminant analysis
criterion(Fisher (1936)).

MLDA is not directly applicable to a set of contingency tables. That is the reason why a proper
representation of the data has been introduced in the previous section. In this way, MLDA can
be extented and used to simultaneously analyze contingency tables Ck, k = 1, . . . ,K. This new
method is named Multiblock Linear Discriminant Analysis of Three-way Contingency Tables
(MLDA-TCT).

4.1.1. The first step

At the first stage, MLDA-TCT computes an auxiliary variable z1, z1 ∈ Rn, such that:
- R2(z1,z1

X) and R2(z1,z1
Y ) which are correlation coefficients between z1 and its projections

onto the spaces WX and WY are as high as possible (it is Carroll’s criterion)
- µ1

X and µ1
Y , which are correlation ratios between these variables z1

X and z1
Y and the categorical

variable G, are as high as possible (it is Fisher’s criterion).
More specifically, MLDA optimizes a compromise between these two criteria and computes

z1 such that R2(z1,z1
X)µ

1
X +R2(z1,z1

Y )µ
1
Y has a maximum value, subject to ‖z j‖2 = 1.

4.1.2. Constraints of orthogonalization

Here, the aim is to describe X and Y and consequently the contingency table X ′Y = VXY =
K
∑

k=1
Ck, or, in other words, the aim is to describe the average contingency data table 1

K

K
∑

k=1
Ck.

Then, constraints are defined in order to compute an orthogonal basis of spaces WX and WY and
consequently, at the j− th step, the auxiliary variables z j

X (resp. z j
Y ) must be orthogonal to the

previous auxiliary variables zs
X (resp. zs

Y ) for s = 1, . . . , j−1.
Consequently X j (resp. Y j) is the data table corresponding to the subspace of X (resp. Y )

orthogonal to zs
X (resp. zs

Y ) for s = 1, . . . , j−1.

Z j is the super matrix Z j =
[
X j,Y j

]
, and z j = Z ja j, where

a j =

[
a j

X
a j

Y

]

Then, X j (resp. Y j) is the matrix of residuals of regression of X j−1 (resp. Y j−1) on z j
X =

X j−1a j
X (resp. z j

Y = Y j−1a j
Y ).
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4.1.3. The other steps

The search continues beyond the first step. At the j− th step, z j
X (resp.z j

Y ) is the projection of z j

onto WX (resp. WY ); z j is the solution of:
Max R2(z j,z j

X)µ
j

X +R2(z j,z j
Y )µ

j
Y

subject to ‖z j‖2 = 1
subject to for s = 1, . . . , j−1 R(z j

X ,z
s
X) = 0

subject to for s = 1, . . . , j−1 R(z j
Y ,z

s
Y ) = 0

4.2. The solution

4.2.1. The first step

At the first step (Casin (2015, 2017)), z1 is the first unit variance eigenvector of PX PGPX +
PY PGPY . Let us denote MX = (X ′X)−1X ′G(G′G)−1G′X(X ′X)−1 = V−1

XX VXGV−1
GGVGXV−1

XX , MY =
V−1

YY VY GV−1
GGVGYV−1

YY and let M be the following matrix

M =

[
MX 0
0 MY

]
then z1 is the first unit variance eigenvector of ZMZ′. In other words, z1 is the first principal
component issued of a PCA with respect to the metric defined by the matrix M.

In practice, n, the total number of individuals of the K contingency tables, often takes large
values and diagonalization of a large dimension square matrix is not easy. Let us consider A1,the
following (m+ r)×2K matrix:

A1 =

[
A1

X 0
0 A1

Y

]
where A1

X = V−1
XX VXGV−0.5

GG and A1
Y = V−1

YY VY GV−0.5
GG ; V−0.5

GG is the diagonal matrix of squared
root of marginal frequencies of G. Consequently, A1

X A1′
X = MX , A1

Y A1′
Y = MY and A1A1′=M.

Let v1 be the first eigenvector of A1′Z
′
ZA1 then A1′Z

′
ZA1v1 = λ 1v1, ZA1A1′Z

′
ZA1v1 =

λ 1ZA1v1 and finally ZMZ
′
z1 = λ 1z1.

Consequenty v1 is the first eigenvector of a square matrix of order 2K, which is much smaller
than n, and z1 = ZA1v1.

Let a1 = A1v1 be the column vector with m+ r rows and a1
X (resp. a1

Y ) the element of this
vector, corresponding to the data table X (resp. Y ):

a1 =

[
a1

X
a1

Y

]
z1

X is the orthogonal projection of z1 and equals:
z1

X = PX z1 = X(X
′
X)−1X

′
Za1 = X(X

′
X)−1X

′
(Xa1

X +Ya1
Y ) and consequently z1

X = X(a1
X +

V−1
XX VXY a1

Y ) = Xb1
X . For the same reasons, z1

Y = Y (a1
Y +V−1

YY VY X a1
X) = Y b1

Y .
The first eigenvalue equals 2 corresponding to the trivial solution.
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4.3. The other steps

The problem is the same at the j− th stage as at the first stage, except that the auxiliary variables
z j

X (resp. z j
Y ) must be orthogonal to the previous auxiliary variables zs

X (resp. zs
Y ) for s = 1, . . . , j−

1.
Consequently z j is the first unit variance eigenvector of PX j PGPX j +PY j PGPY j .
Let A j be the following matrix

A j =

[
A j

X 0
0 A j

Y

]

where A j
X =V−1

X jX jVX jGV−0.5
GG and A j

Y =V−1
Y jY jVY jGV−0.5

GG and let Z j =
[
X j,Y j

]
.

Let v j be the j− th eigenvector of A j′Z j′Z jA j, and let a j = A jv1
j be the column vector with

m+ r rows and a j
X (resp. a j

Y ) the element of this vector, corresponding to the data table X j (resp.
Y j):

a j =

[
a j

X
a j

Y

]

then z j
X = X jb j

X where b j
X = a j

X +V−1
X jX j

VX jYj a
j
Y

and z j
Y = Y j(a j

Y +V−1
YjY j

VYjX j a
j
X) = Y j jb j

Y where b j
Y = a j

Y +V−1
YjYj

VYjX j a
j
X

4.4. The trivial solution

Let us consider the vector u whose all values equal 1. Because PGu = u, PX u = u and PY u = u:
‖w1

X‖2 +‖w1
Y‖2 = 2u, that means that the first eigenvalue equals 2, and consequently, z j, z j

X and
z j
Y , which are orthogonal to u are centered.

4.5. The maximum possible number of steps

The problem is to compute eigenvectors of A′Z′ZA. Since the rank of X (resp.Y ) equals m (resp.
r) and since there is a trivial solution, the vector u, whose all values equal 1, then the maximum
possible number of steps of LDA equals (inf(m,r)−1).

4.6. Weighting of data tables

An alternative approach consists of ponderating the data tables. Weights can be different from
one table to an other. In particular, in order to accord equal importance to data tables, data weights
can be equal to 1/nk, the inverse of the number of individuals. 1/nkCk is then a table of proba-
bility (the sum of all its elements equals 1) ; VGG is the identity matrix, and the element at the
intersection of the j-th row and the k column of VXG is the marginal frequency of the j-category
for the k-th data table.
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4.7. The algorithm

Computation of results is based on matrices of small dimensions, B, X ′G, Y ′G and G′G and does
not need computation of projectors onto the spaces WX and WY .

step 1: compute VXX , VYY , VXG, VXY , VY G, VGG and

A1 =

[
A1

X 0
0 A1

Y

]
step 2: compute v1, the first eigenvector of A1′VZZA1 where ;

VZZ = Z
′
Z =

[
VXX VXY

VY X VYY

]
step 3: compute b1

X = a1
X +V−1

XX VXY a1
Y and b1

Y = a1
Y +V−1

YY VY X a1
X where

a1 = A1v1 =

[
a1

X
a1

Y

]
step 4: compute C1

X = Id−b1
X(b

1′
X VXX b1

X)
−1b1′

X VXX and C1
Yk
= Id−b1

Y (b
1′
Y VYY b1

Y )
−1b1′

Y VYY and
consider D1

X (resp. D1
Y ) the matrix whose columns are all columns of C1

X (resp. C1
Y ), except the

last.
step 5: replace X in calculations by X1 = XkD1

X and Y by Y 1 =YkD1
Y and consequently replace

VXX , VXY and VYY respectively by VX1X1 = D1′
X VXX D1

X , VX1Y 1 = D1′
X VXY D1

Y and VY 1Y 1 = YkVYY D1
Y ,

etc. Go to step 1. Etc...
step 6: computations stop after (inf(m,r)−1) steps.

5. Plots and interpretation of results

5.1. Orthogonality between the components

Let us consider two components zr and zs, and suppose, for convenience, that r > s.

zs =

[
zs

X
zs
Y

]
Because r > s, zs

X is a linear combination of columns of X r orthogonal to X rbr
X , and then

zs
X = X rds

X where ds
X is a column vector with m rows. Consequently ds′

X X r′X rbr
Y = ds′

X X r′X r(ar
X +

(X r′X r)−1X r′Y rar
Y ) = 0, and then ds′

X X r′X rar
X +ds′

X X r′Y rar
Y = 0.

For the same reasons, zs
Y = Y rds

Y and ds′
Y Y r′Y rar

Y + ds′
Y Y r′X rar

X = 0 where ds
Y is a colmumn

vector with r rows.
It follows that ds′

X X r′X rar
X + ds′

X X r′Y rar
Y + ds′

Y Y r′Y rar
Y + ds′

Y Y r′X rar
X = 0 and finally (X rds

X +
Y rds

Y )
′(X rar

X +Y rar
X) = 0. Consequently zr and zs are orthogonal.

5.2. Plots based on auxiliary variables

MLDA-JCT provides two different types of graphical representations:
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5.2.1. Plots based on the discriminant analysis

Like DA does, plots are based on variables z j and both represent categories of variables X and
variables Y . Moreover, these plots superimpose a representation of the K data tables whose co-
ordinates are the mean of categories for the corresponding data table.

5.2.2. Plots of the rows and columns

MLDA-TCT provides an orthogonal basis of spaces spanned by data table X (resp. Yk) and con-
sequently a graphical representation of categories of rows (resp. columns) based on variables z j

X
(resp. zY

Y ).
z j

X = Xd j
X (resp. z j

Y = Ykd j
Y ), where d j

X (resp. d j
Y ) is the j− th vector of scores for the rows

(resp. columns) of this average contingency table. The coordinate of a data table on an axis is the
mean of coordinates of individuals of these data table: let f X

h,s (resp. f Y
h,t) be the relative frequency

of the s− th (resp. t− th) category of the rows (resp. columns) for the k− th data table Xk (resp.

Yk) equals
m
∑

s=1
f X
h,sd

j
X ,s (resp.

r
∑

t=1
f Y
h,td

j
Y,t where d j

X ,s (resp. d j
Y,t) is the score of the s−th (resp. t−th)

category of X (resp. Y ) at the j− th step.

5.3. Computing values of the criteria

Formulas for computing these values are as follows:

1. Discrimination using Fisher’s criterion

µ1
X =

Var(w1
X )

Var(z j
1)

=
z1′

X GV−1
GG G′z1

X

z1′
X z1

X
=

b1′
X VXGV−1

GGVGX b1
X

b1′
X VXX b1

X

Similarly,

µ1
Y =

b1′
Y VY GV−1

GGV j
GY b j

Y

b j′
Y VYY b j

Y

These two indicators are synthesized by the discrimination power of the variable z j which
equals:

µ1
z =

a j′VZGV−1
GGVGZa j

a j′VZZa j

2. Correspondence Analysis using Carroll’s criterion

R2(z1,z1
X) =

Var(z1
X )

Var(z1)
=

Var(X1b1
X )

Var(z1)
=

b1′
X VXX b1

X
a1′VZZa1 .

Similar formulas are obtained for the data table Y :

R2(z1,z1
Y ) =

b1′
Y VYY b1

Y
a1′VZZa1 .

and these two indicators can be synthesized by the following indicator, which is the crite-
rion to be maximized by CA:

R2(z1
X ,z

1
Y ) =

(b1′
X VXY b1

Y )
2

(b1′
X VXX b1

X )(b
1′
Y VYY b1

Y )
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5.4. Alternative constraints of orthogonalization

The auxiliary variables z j
X (resp. z j

Y ) are orthogonal to each other and consequently MLDA-TCT
provides an orthogonal basis of the space WX (resp. WY ); the following alternative constraints of
orthogonalization can be considered: for j 6= j′, z j is orthogonal to (z j)′. Then z j is the j− th
eigenvector of ZMZ′ and is easily computed. But, this approach does not provide an orthogonal
basis of spaces WX and WY .

6. Comparison with other methods

6.1. Comparison with correspondence analysis and related methods

Both MLDA-TCT and CA provide an orthogonal basis of WX and an orthogonal basis of WY

and then describe relation between X and Y ; moreover, both MLDA-TCT and CA are Principal
Component Analysis of the data table Z, but they are not associated with the same metric (Jollife
(2002)). The metric associated with MLDA-TCT is, at the first step:

A1 =

[
A1

X 0
0 A1

Y

]
where A1

X = V−1
XX VXGV−0.5

GG and A1
Y = V−1

YY VY GV−0.5
GG ; V−0.5

GG is the diagonal matrix of squared
root of marginal frequencies of G.

Since the matrix associated with CA is:

B =

[
BX 0
0 BY

]
where BX =V−1

XX and BY =V−1
YY .

Consequently, CA does not take into account the relationship between X and G on one hand,
and the relationship between Y and G on the other hand.

For same reasons, methods based on a CA of the sum of the contingency tables or on a CA
of the data table which juxtaposes contingency tables (Cazes (1981)) do not take into account
relationship between G and the independent variables X and Y .

6.2. Discriminant Analysis

In contrast to LDA, MLDA-TCT determines an independent variable structured in two blocks
and takes into account the correlation between z j

X and z j
Y which characterised these two blocks ;

MlDA-TCT also provides an orthogonal basis of spaces described by columns of X and Y . The
maximal number of steps equals g−1 for DA and (inf(m,r)−1) for MLDA-TCT.

6.3. Discriminant Correspondence Analysis

Discriminant Correspondence Analysis (DCA)(Leclerc (1975)) is the correspondence analysis
of the data table

[
G′X , . . . ,G′Y

]
. This data table juxtaposes the contingency tables of margins of

data tables X and Y for the K occasions and does not take into account interactions among the
explanatory variables X and Y .
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6.4. Simultaneous Analysis, Multiple Factor analysis and STATIS

Simultaneous Analysis (Zarraga and Goitisolo (2002, 2003, 2009)) Multiple Factor analysis (Es-
cofier and Pagès (1994); Bécue-Bertaut and Pages (2004)) and STATIS (Lavit (1988); Vallejo-
Arnadela et al. (2007) ) consist on a weighted principal component analysis of the data tables, the
weights being first eigenvalues of CA of ad hoc contingency tables, and computed in a previous
step. The common feature of all these methods is that they search for structures common to all
contingency tables on study, whereas the main objective of MLDA-TCT is to determine main
differences between these contingency tables.

6.5. Methods of analysis of multiblock and multigroup data

Tenenhaus and Tenenhaus (Tenenhaus and Tenenhaus (2014)) present an overview of techniques
for analyzing data tables structured in blocks of variables or in groups of individuals ; these tech-
niques are based on generalizations of canonical analysis or on principal components analysis
; Eslami and al. (Eslami et al. (2014)) analyze data which are structured both in groups and in
blocks, but with multigroup Principal Components Analysis whereas Sabatier and al. (Sabatier
et al. (2013)) uses LDA criterion but associated with STATIS approach.

Bougeard and al.(Bougeard et al. (2017)) consider a set of predictor variables organized into
blocks, and a set of dependant variables using multiblock PLS and multiblock redundancy anal-
ysis (Eslami et al. (2014); Beh and Lombardo (2014)). Kang and all. (Kang et al. (2015)) use
the Discriminative Least Squares Regression (DLSR, a method proposed by Xiang et al (Xiang
et al. (2012)) and solutions are given by an iterative algorithm.

The main difference between all these methods and MLDA-TCT is that MLDA-TCT applies
classical criterion of correspondance analysis of individuals for blocks and Fischer’s classical
criterion of discrimination for groups to the proper representation of data exposed in Section 3.

7. An application

7.1. The data

The population under study consists of 20 819 men and 12 282 women. For each gender, a data
table relative to shoplifting among 350 Dutch stores and big textile shops (Israels (1987); Zarraga
and Goitisolo (2002)) describes relationships between 9 classe groups (0−11, 12−14, 15−17,
18−20, 21−29, 30−39, 40−49, 50−64, and 65+) and 13 kinds of stolen objects (CLOThes,
CLothing ACcessories, TOBAcco, WRITing accesories, BOOKs, RECOrds, HOUSehold acces-
sories, SWEEts, TOYS, JEWEllery, PERFums, HOBBies and OTHErs). The items described by
the columns of X are class groups since the stolen objects are described by columns of Y .

7.2. MLDA-TCT results

Because of the important difference in size between the two genders, each of the two data tables
is weighted by the inverse of the total number of its individuals.
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MLDA-TCT computes inf(13,9) = 9 eigenvalues: the first eigenvalue equals 2.000 and corre-
sponds to the trivial eigenvalue, the second eigenvalue equals 0.183, the third one and the fourth
one respectively equal 0.012, 5.0010−04, and the following eigenvalues are smaller than 10−13.

j λ j R2(z j
X ,z

j
Y ) µ

j
Z R2(z j,z j

X ) µ
j

X R2(z j,z j
Y ) µ

j
Y

j = 1 0.183 0.017 0.190 0.987 0.176 0.017 0.051
j = 2 0.012 0.003 0.012 0.034 0.001 0.003 0.012

TABLE 1. Values of criteria

The discriminant power of higher-order components is close to 0. Comparatively, first eigen-
values, which can be compared to R2(z j

X ,z
j
Y ), equal 0.321 , 0.046 , 0.004 , 0.002.

Discriminant analyzis results are represented on the first figure, where the first axis is the
discrimant variable z1 and the second axis the discriminant variable z2:

FIGURE 2. Plot of components z1 and z2

The second graphic provides a representation of variables z1
X and z2

X :
and the representation of variables z1

Y and z2
Y is given by the following figure:

The discriminant power of the first axis equals 0.128 and the correlation between the two
variables z1

X and z1
Y equals 0.187. CLOC, CLAC, 30-39, 40-49, 50-59, 65+ are on the left-hand

side of the first axis, and correspond to an over-representation of this kind of stolen objects
for women, and especially for oldest women ; on the opposite, RECO, WRIT, SWEE, BOOK,
OTHE and HOBB, 0-11, 12-14, 15-17 are on the right-hand side and correspond to an over-
representation of this kind of stolen objects for Men and especially youngest men.

The discriminant power of the second axis is much less important than those of the first axis:
this second axis points out higher proportions of old shoplifters for Women, independently of
kind object stolen, and higher proportions of young shoplifters for Men.
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FIGURE 3. Plot of components z1
X and z2

X

FIGURE 4. Plot of components z1
Y and z2

Y
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7.3. Comparison with results from other methods

Results of separate CA of the two data tables show that first axis of CA of male data table and
first axis of CA of female data table are close to each other: they both oppose 0-12 and 12-14,
TOYS, SWEET, WRITE, in one side to middle age people and CLOTH in the other side. For
men, the second axis highlights a low attraction for JEWE and RECO, for 0-12 and 65+, and
a strong attraction for 15-17 whereas women of 15-17 have a strong attraction for CLOT and
JEWE and women of 65+ a strong attraction for TOBA.

As mentioned by (Zarraga and Goitisolo (2002); Israels (1987)) considers CA of the data table
which juxtaposes the two contingency tables: the first axis opposes 0-14 to middle age classes,
and the second Women-JEWE and Women-CLOT to Men-HOBB. And the two first axes of CA
of the sum of the two contingency tables provide results close to CA of male data table (there are
twice as many men as women.)

Bécue-Bertaut and Pages (2004) introduce MFACT, an extension of CA which takes into ac-
count the particularities of each contingency table, ie differences between their margin and con-
sequently computes weights of columns in such a way that the influence of each of these columns
is comparable in a global analysis. Simultaneous analysis ((Zarraga and Goitisolo (2002, 2003,
2009)) is close to MFACT, but the allocation of weights attributed to each table is different.
Zarraga and Goitisolo (2002) compare results of these two methods for the joint study of con-
tingency tables of shoplifters. For the first axis, global representations are close to superposition
of plots given by separate CA of the two data tables; the second axis of MFACT highlights the
attraction for women from 21 to 39 to CLOT, and the second axis of simultaneous analysis the
attraction for women to JEWE and RECO and the attraction for women over to 65 to TOBA.

First axes of all these methods point common elements between contingency tables whereas
MLDA-TCT (which is partially based on a criterion of discrimination) highlights differences
between these contingency tables (see previous section). Moreover, MLDA-TCT provides two
supplementary graphics, and then a much accurate description of highlighted relationships be-
tween items of each data sets.

8. Concluding remarks

MLDA-TCT takes into account both relationships between the independent variables (as CA
does) and specificities of each data table (as DA does). MLDA-TCT’s rules for results interpre-
tation are close to those of DA and to those of CA, and MLDA-TCT quantifies the importance
of each independent variable in relation with the classification of individuals and the strength of
relationships between these variables. It is worth noting that this new technique can easily be
generalized to multi-way contingency data table, by adding other independent variables.
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