
Journal de la Société Française de Statistique
Vol. 160 No. 2 (2019)

Conditional inference in parametric models
Titre: Inférence conditionnelle dans les modèles paramétriques
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Résumé : Cet article propose une nouvelle approche d’inférence statistique, fondée sur la simulation d’échantillons
conditionnés par une statistique des données. L’approximation de la vraisemblance conditionnelle de longues séries
d’échantillons sachant la statistique des données admet une forme explicite qui est présentée. Lorsque la statistique
de conditionnement est exhaustive par rapport à un paramètre fixé, on montre que la densité approchée est également
invariante par rapport à ce même paramètre. Une nouvelle procédure de Rao-Blackwell est proposée et les simulations
réalisées montrent que le théorème de Lehmann Scheffé reste valide pour cette approximation. L’inférence condition-
nelle sur les familles exponentielles avec paramètre de nuisance est également étudiée, menant à des tests de Monte
Carlo, dont les performances sur échantillonnage conditionnel sont comparées à celles sur bootstrap paramétrique.
Enfin, on s’intéresse à l’estimation du paramètre d’intérêt par la vraisemblance conditionnelle.

Abstract: This paper presents a new approach to conditional inference, based on the simulation of samples condi-
tioned by a statistics of the data. Also an explicit expression for the approximation of the conditional likelihood of
long runs of the sample given the observed statistics is provided. It is shown that when the conditioning statistics
is sufficient for a given parameter, the approximating density is still invariant with respect to the parameter. A new
Rao-Blackwellisation procedure is proposed and simulation shows that Lehmann Scheffé Theorem is valid for this ap-
proximation. Conditional inference for exponential families with nuisance parameter is also studied, leading to Monte
Carlo tests; comparison with the parametric bootstrap method is discussed. Finally the estimation of the parameter of
interest through conditional likelihood is considered.
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1. Introduction and context

This paper explores conditional inference in parametric models. A comprehensive overview on
this area is the illuminating review paper by Reid (1995) [29]. Our starting point is as follows:
given a model P defined as a collection of continuous distributions Pθ on Rd with density pθ

with respect to the Lebesgue measure where the parameter θ belongs to some subset Θ in Rs

and given a sample of independent copies of a random variable with distribution PθT for some
unknown value θT of the parameter, we intend to provide some inference about θT conditioning
on some observed statistics of the data. The situations which we have in mind are of two different
kinds.

The first one is the Rao-Blackwellisation of estimators, which amounts to reduce the variance
of an unbiased estimator by conditioning on any statistics; when the conditioning statistics is
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complete and sufficient for the parameter then this procedure provides optimal reduction, as
stated by Lehmann-Scheffé Theorem. These facts yield the following questions.

1. is it possible to provide good approximations for the density of a sample conditioned on
a given statistics, and, when applied for a model where some sufficient statistics for the
parameter is known, does sufficiency w.r.t. the parameter still holds for the approximating
density?

2. in the case when the first question has positive answer, is it possible to simulate samples
according to the approximating density, and to propose some Rao-Blackwellised version
for a given preliminary estimator? Also we would hope that the proposed method would
be feasible, that the programming burden would be light, that the run time for this method
be short, and that the involved techniques would keep in the range of globally known ones
by the community of statisticians.

The second application of conditional inference pertains to the role of conditioning in models
with nuisance parameters. There is a huge bibliography on this topic, some of which will be
considered in details in the sequel. The usual frame for this field of problems is the exponential
families one, for reasons related both with the importance of these models in applications and
on the role of the concept of sufficiency when dealing with the notion of nuisance parameter.
Conditioning on a sufficient statistics for the nuisance parameter produces a new exponential
family, which gets free of this parameter, and allows for simple inference on the parameter of
interest, at least in simple cases. This will also be discussed, since the reality, as known, is not
that simple, and since so many complementary approaches have been developed over decades in
this area. Using the approximation of the conditional density in this context and performing sim-
ulations yields Monte Carlo tests for the parameter of interest, free from the nuisance parameter;
comparison with the parametric bootstrap will also be discussed. Also conditional maximum
likelihood estimators will be produced. The present paper relies on an approximation result for
conditional distributions developed in [4], where some of the present statistical applications are
merely sketched.

This paper is organized as follows. Section 2 describes a general approximation scheme for the
conditional density of long runs of subsamples conditioned on a statistics, with explicit formulas.
The proof of the main result of this section is presented in [4]. Discussion about implementation
is provided. Section 3 presents two aspects of the approximating conditional scheme: we first
show on examples that sufficiency is kept under the approximating scheme and, second, that this
yields to an easy Rao-Blackwellisation procedure. An illustration of Lehmann-Scheffé Theorem
is presented. Section 4 deals with models with nuisance parameters in the context of exponential
families. We have found it useful to spend a few paragraphs on bibliographic issues. We address
Monte Carlo tests based on the simulation scheme; in simple cases its performance is simi-
lar to that of parametric bootstrap; however conditional simulation based tests improve clearly
over parametric bootstrap procedure when the test pertains to models for which the likelihood
is multimodal with respect to the nuisance parameter; an example is provided. Finally we con-
sider conditioned maximum likelihood based on the approximation of the conditional density;
in simple cases its performance is similar to that of estimators defined through global likelihood
optimization; however when the preliminary estimator of the nuisance is difficult to obtain, for
example when it depends strongly on some initial point for a Newton-Raphson routine (this is
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indeed a very common situation), then, by the very nature of sufficiency, conditional inference
based on the proxy of the conditional likelihood performs better; this is illustrated with examples.

2. The approximate conditional density of the sample

Most attempts which have been proposed for the approximation of conditional densities stem
from arguments developed in [18] for inference on the parameter of interest in models with
nuisance parameter; however the proposals in this direction hinge at the approximation of the
distribution of the sufficient statistics for the parameter of interest given the observed value of
the sufficient statistics of the nuisance parameter. We will present some of these proposals in
the section devoted to exponential families. To our knowledge, no attempt has been made to ap-
proximate the conditional distribution of a sample (or of a long subsample) given some observed
statistics.

However, generating samples from the conditional distribution itself (such samples are of-
ten called co-sufficient samples, following [22]) has been considered by many authors; see for
example [14], [19] and references therein, and [20].

In [14], simulating exponential or normal samples under the given value of the empirical
mean is proposed. For example under the exponential distribution Exp(θ), the minimal sufficient
statistics for θ is the sum of the observations, say tn; a co-sufficient sample x∗ can be created by
generating an x

′
-sample from Exp(1) and taking x∗i = x

′
itn/x′. However, this approach may be at

odd in simple cases, as for the Gamma density in the non exponential case.
Lockhart et al. [22] proposed a different framework based on the Gibbs sampler, simulating

the conditioned sample one at a time through a sequential procedure. The example which is
presented is for the Gamma distribution under the empirical mean; in these examples it seems
to perform well for location parameter, when the true parameter is in some range, therefore not
uniformly on the model. Their paper contains a comparative study with the global maximum
likelihood method. In a simple case, they argue favorably for both methods. We will turn back
to global likelihood maximization in relation with conditional likelihood estimators, in the last
section of this paper.

Other techniques have been developed in specific cases: for the inverse Gaussian distribution
see [24], [8]; for the Weibull distribution see [23]. No unified technique exists in the literature
which would work under general models.

2.1. Approximation of conditional densities

2.1.1. Notation and hypotheses

For sake of clearness we consider the case when the model P is a family of distributions on R.
Denote Xn

1 := (X1, ..,Xn) a set of n independent copies of a real random variable X with
density pX,θT on R. Let xn

1 := (x1, ...,xn) denote the observed values of the data, each xi resulting
from the sampling of Xi. Define the r.v. U := u(X) and U1,n := u(X1)+ ...+u(Xn) where u is a
real-valued measurable function on R, and, accordingly, u1,n := u(x1)+ ...+u(xn) . Denote pU,θT

the density of the r.v. U. We consider approximations of the density of the vector Xk
1 =(X1, ..,Xk)

on Rk when U1,n = u1,n. It will be assumed that the observed value u1,n is "typical", in the sense
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that it satisfies the law of large numbers. Since the approximation scheme for the conditional
density is validated through limit arguments, it will be assumed that the sequence u1,n satisfies

lim
n→∞

u1,n

n
= Eu(X) . (1)

We propose an approximation for

pu1,n,θT

(
xk

1

)
:= pθT (x

k
1|U1,n = u1,n)

where xk
1 := (x1, ..,xk) and k := kn is an integer sequence such that

lim
n→∞

n− k = ∞ (K)

which is to say that we may approximate pu1,n,θT

(
xk

1

)
on long runs. The rule which defines the

value of k for a given accuracy of the approximation is stated in section 3.2 of [4]. Note that (K)
is a very weak assumption in the context of approximation of conditional distributions; indeed it
implies

0≤ lim sup
n→∞

k/n≤ 1.

Cases when limsupn→∞ k/n < 1 have been considered in the literature (see e.g. [10] and [9]) but
do not address approximations on long runs, whose application to statistics is the focus of the
present paper.
The hypotheses pertaining to the function u and the r.v. U = u(X) are as follows.

1. u is real valued and the characteristic function of the random variable U is assumed to
belong to Lr (λ ) where λ denotes the Lebesgue measure on R for some r ≥ 1.

2. The r.v. U is supposed to fulfill the Cramer condition: the domain N of the moment
generating function

φU(t) := E exp tU

contains a non void neighborhood of 0.

Define the functions m(t),s2(t) and µ3(t) as the first, second and third derivatives of logφU(t).
Let α belong to the support of PU,θT , the distribution of U. Assume that the mapping t→ φU(t)

is steep (see [1], p153 and followings). Under steepness the mapping m is a diffeomorphism from
N onto the support of U. It follows that the correspondence (α, t) defined through m(t) = α is
one to one. For such a couple (α, t) denote

π
α
u,θT

(x) :=
exp tu(x)

φU(t)
pX,θT (x) .

We introduce a positive sequence εn which satisfies

lim
n→∞

εn
√

n− k = ∞ (E1)

lim
n→∞

εn (logn)2 = 0. (E2)
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2.2. The proxy of the conditional density of the sample

The density gu1,n,θT (x
k
1) on Rk, which approximates pu1,n,θT

(
xk

1

)
sharply with relative error

smaller than εn (logn)2 is defined recursively as follows.
Set

m0 := u1,n/n

and
g0(x1) := π

m0
u,θT

(x1)

and for 1≤ i≤ k−1 define the density g(xi+1|xi
1) in the following way.

Set ti the unique solution of the equation

mi := m(ti) =
u1,n−u1,i

n− i
(2)

where u1,i := u(x1)+ ...+u(xi).

The tilted adaptive family of densities π
mi
u,θT

is the basic ingredient of the derivation of ap-
proximating scheme. Let us briefly recall two main properties of tilted distributions in order to
motivate the notation, which may seem cumbersome. Firstly conditional distributions with re-
spect to sums are invariant under any tilting, whenever defined. For any sequence of iid rv’s
Z1,Z2, .. with common density pZ wrt the Lebesgue measure,

pZ1(z|Z1 + ..+Zn = s) = π
t
Z(z|Z1 + ..+Zn = s).

Hence sampling under pZ or under any π t
Z leaves the conditional marginal distribution invariant,

whatever t, where π t
Z (z) := etz pZ(z)/

∫
etz pZ(z)dz. Secondly convolutions of tilted densities

can be approximated sharply by Gaussian distributions through Edgeworth expansions, which
involve moments of higher orders. In the current approximation, conditioning upon u1,i, in order
to get a proxy of the density of Xi+1 given u(X1)+ ..+ u(Xi) = u1,i we are led to introduce the
tilted density

π
mi
u,θT

(x) :=
etiu(x)

φU(ti)
pX ,θT (x)

with ti defined in (2). The moment generating function of this tilted distribution is

φU,i(t) : = E
π

mi
u,θT

etu(X)

=
φU(ti + t)

φU(ti)

and its first three cumulants are

mi = m(ti) =
d
dt

logφU,i(0),

s2
i :=

d2

dt2 logφU,i(0) = s2(ti)

Journal de la Société Française de Statistique, Vol. 160 No. 2 48-66
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



53

and

µ
i
3 :=

d3

dt3 logφU,i(0) = µ3(ti).

. Let
g(xi+1|xi

1) =Ci pX,θ T
(xi+1)n(αβ +m0,β ,u(xi+1)) (3)

where n(µ,τ,x) is the normal density with mean µ and variance τ at x. Here

β = s2
i (n− i−1) (4)

α = ti +
µ i

3

2s4
i (n− i−1)

(5)

and the Ci is a normalizing constant.
Define

gu1,n,θT (x
k
1) := g0(x1|x0)

k−1

∏
i=1

g(xi+1|xi
1). (6)

It holds

Theorem 1. Assume (K) together with (E1,E2). Then (i)

pu1,n,θT (x
k
1) = gu1,n,θT (x

k
1)(1+oPu1,n ,θT

(εn (logn)2))

and (ii)
pu1,n,θT (x

k
1) = gu1,n,θT (x

k
1)(1+oGu1,n ,θT

(εn (logn)2)).

(iii) The total variation distance between Pu1,n,θT and Gu1,n,θT goes to 0 as n tends to infinity.

For the proof, see [4].
Statement (i) means that the conditional likelihood of any long sample path Xk

1 given
(U1,n = u1,n) can be approximated by Gu1,n,θT (Xk

1) with a small relative error on typical real-
izations of Xn

1.
The second statement implies that typical samples Xk

1 simulated under gu1,n,θT are also typical
under the conditional density pu1,n,θT .

2.3. Comments on implementation

The simulation of a sample Xk
1 with density gu1,n,θT is fast as easy. Indeed the r.v. Xi+1 with

density g
(
xi+1|xi

1

)
is obtained through a standard acceptance -rejection algorithm. When U1,n is

sufficient for pu1,n,θ it is nearly sufficient for its proxy gu1,n,θ (see next section); indeed changing
the value of this preliminary estimator does not alter the value of the likelihood of the sample; as
shown in the simulations developed here after, any value of θ can be used; call θ ∗ the value of
θ chosen as initial value , using henceforth pX,θ ∗ instead of pX,θT in (3). In exponential families
the values of the parameters which appear in the Gaussian component of g

(
xi+1|xi

1

)
in (3) are

easily calculated; note also that due to (1) the parameters in n(αβ ,β ,u(xi+1)) are such that the
dominating density can be chosen for all i as pX,θ ∗ . The constant in the acceptance rejection
algorithm is then Ci/

√
2πβ . The constant Ci need not be evaluated since it cancels in the ratio

defining the acceptance-rejection rule.
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In order to simulate Xi+1 with density g(xi+1|xi
1), the acceptance/rejection algorithm thus runs

as follows: the proposal density is pX,θ ∗ .
Set k = 1. Simulate Zk with density pX,θ ∗ . Simulate U uniform(0,1) independent on Z j, 1 ≤

j ≤ k
If

U/
√

2πβ ≤ n(αβ +m0,β ,u(Zk)) (7)

then set Xi+1 := Zk. Else increase k by 1 and repeat.
When (1) holds, β does not tend to 0 as n increases, and the runtime is short; indeed under

(1) sup1≤i≤n ti does not go to infinity as n→ ∞ which implies that (7) is fulfilled for small k. .
This is in contrast with the case when the conditioning value is in the range of a large devi-

ation with respect to pX,θT ; in this case, which appears in a natural way in Importance sampling
estimation for rare event probabilities, the simulation algorithm is more complex ; see [5].

3. Sufficient statistics and approximated conditional density

3.1. Keeping sufficiency under the proxy density

The density gu1,n,θT (y
k
1) is used in order to handle Rao -Blackellisation of estimators or statistical

inference for models with nuisance parameters. The basic property is sufficiency with respect
to the nuisance parameter. We show on some examples that the family of densities gu1,n,θ (y

k
1)

defined in (6), when indexed by θ , inherits of the invariance with respect to the parameter θ

when conditioning on a sufficient statistics.
Consider the Gamma density

fr,θ (x) :=
θ−(r+1)

Γ(r+1)
xr exp−x/θ for x > 0. (8)

As r varies in (−1,∞) and θ is positive, the density runs in an exponential family with param-
eters r and θ , and sufficient statistics t(x) := logx and u(x) := x respectively for r and θ . Given
a data set x1, ...,xn obtained through sampling from i.i.d. r.v’s X1, ...Xn with density frT ,θT the
resulting sufficient statistics are respectively t1,n := logx1 + ...+ logxn and u1,n := x1 + ...+xn.
We consider two parametric models ( frT ,θ ,θ ≥ 0) and ( fr,θT ,r >−1) respectively assuming rT

or θT known.
We first consider sufficiency of U1,n := X1 + ... + Xn in the first model. The density

gu1,n,(rT ,θT )(y
k
1) should be free of the current value of the true parameter θT of the parameter

under which the data are drawn. However as appears in (6) the unknown value θT should be used
in its very definition. We show by simulation that whatever the value of θ inserted in place of θT

in (6) the value of the likelihood of xk
1 under gu1,n,(rT ,θ) does not depend upon θ . We thus observe

that U1,n is "sufficient" for θ in the conditional density approximating pu1,n,(rT ,θ) , as should hold
as a consequence of Theorem 1 . Say that U1,n is quasi sufficient for θ in gu1,n,(rT ,θ) if this loose
invariance holds.

Similarly the same fact occurs in the model ( fr,θT ,r >−1) .
In both cases whatever the value of the parameter θ (Figure 1) or r (Figure 2), the likelihood

of xk
1 remains constant.
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FIGURE 1. Proxy of the conditional likelihood of Xk
1 under gu1,n,(rT ,θ) as a function of θ for n = 100 and k = 80 in the

Gamma case.

We also consider the Inverse Gaussian distribution with density

fλ ,µ(x) :=
[

λ

2π

]1/2

exp−λ (x−µ)2

2µ2x
for x > 0

with both parameters λ and µ be positive. Given a data set x1, ...,xn generated from the i.i.d.
r.v’s X1, ...,Xn with density fµ,λ , the resulting sufficient statistics are respectively t1,n := x1 +

...+ xn and u1,n := x−1
1 + ...+ x−1

n . Similarly as for the Gamma case we draw the likelihood of
a subsample xk

1 under gu1,n,(λ ,µT ) with T1,n := X1 + ...+Xn,which is a sufficient statistics for µ

(Figure 3), and upon U1,n := X−1
1 + ...+X−1

n which is sufficient for λ (Figure 4). In either cases
the other coefficient is kept fixed at the true value of the parameter generating the sample. As for
the Gamma case these curves show the invariance of the proxy of the conditional density with
respect to the parameter for which the chosen statistics is sufficient.

3.2. Rao-Blackwellisation

Rao-Blackwell Theorem holds regardless of whether biased or unbiased estimators are used,
since conditioning reduces the MSE. Although its statement is rather weak, in practice the im-
provement is often enormous. New interest in Rao-Blackwellisation procedures have risen in the
recent years, conditioning on ancillary variables (see [15] for a survey on ancillaries in condi-
tional inference); specific Rao-Blackwellisation schemes have been proposed in [6], [7], [28],
[30] and [16], whose purpose is to improve the variance of a given statistics (for example a tail
probability) under a known distribution, through a simulation scheme under this distribution; the
ancillary variables used in the simulation process itself are used as conditioning ones for the Rao-
Blackwellisation of the statistics. The present approach is more classical in this respect, since we
do not assume that the parent distribution is known; conditioning on a sufficient statistics U1,n
with respect to the parameter θ and simulating samples according to the approximating density
gu1,n,θ will produce the improved estimator.
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FIGURE 2. Proxy of the conditional likelihood of Xk
1 under gt1,n,(r,θT ) as a function of r for n = 100 and k = 80 in the

Gamma case.
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FIGURE 3. Proxy of the conditional likelihood of Xk
1 under gt1,n,(λT ,µ) as a function of µ for n = 100 and k = 80 in the

Inverse Gaussian case.
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FIGURE 4. Proxy of the conditional likelihood of Xk
1 under gu1,n,(λ ,µT ) as a function of λ for n = 100 and k = 80 in

the Inverse Gaussian case.

Since U1,n is quasi sufficient for the parameter θ in gu1,n,θ it can be used in order to obtain
improved estimators of θT through Rao Blackwellization. We shortly illustrate the procedure
and its results on some toy cases. Consider again the Gamma family defined here-above with
canonical parameters r and θ .

First the parameter to be estimated is θT . A first unbiased estimator is chosen as

θ̂2 :=
X1 +X2

2rT
.

Given an i.i.d. sample Xn
1 with density frT ,θT the Rao-Blackwellised estimator of θ̂2 is defined

through
θRB,2 := E

(
θ̂2

∣∣∣U1,n

)
whose variance is less than Varθ̂2. Given the data set x1, ...xn the estimate of θRB,2 is produced
through simulation of as many θ̂2’s as wished, under gu1,n,(rT ,θT ). Denote θ̂RB,2 the resulting Rao-
Blawellised estimator of θ̂2.

Consider k = 2 in gu1,n,(rT ,θT )(y
k
1) and let (Y1,Y2) be distributed according to gu1,n,(rT ,θT )(y

2
1);

note that any value θ can be used in practice instead of the unknown value θT , by quasi suffi-
ciency of U1,n. Replications of (Y1,Y2) produce an estimator θ̂RB,2 for fixed u1,n; we have used
1000 replications (Y1,Y2). Iterating on 1000 simulations of the runs Xn

1 produces, for n = 100 an
i.i.d. sample with size 1000 of θ̂RB,2’s and VarθRB,2 is estimated. The resulting variance shows a
net improvement with respect to the estimated variance of θ̂2. It is of some interest to confront
this gain in variance as the number of terms involved in θ̂k increases together with k. As k ap-
proaches n the variance of θ̂k approaches the Cramer-Rao bound. The graph below shows the
decay in variance of θ̂k. We note that whatever the value of k the estimated value of the variance
of θRB,k is constant. This is indeed an illustration of Lehmann-Scheffé’s theorem.

Remark 2. Lockhart and O’Reilly ([21]) establish, under certain conditions and for fixed k,
the asymptotic equivalence of the plug-in estimate for the distribution PθML

(
Xk

1 ∈ B
)

and the
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FIGURE 5. Variance of θ̂k, the initial estimator (dotted line), along with the variance of θRB,k, the Rao-Blackwellised
estimator (solid line) with n = 100 as a function ok k.

Rao-Blackwell estimate P
(

Xk
1 ∈ B

∣∣U1,n
)

where θML is the maximum likelihood estimator of θT

based on the whole sample Xn
1 (this result is known as Moore’s conjecture (see [25])). They also

provide rates for this convergence.

4. Exponential models with nuisance parameters

4.1. Conditional inference in exponential families

We consider the case when the parameter consists in two distinct subparameters, one of in-
terest denoted θ and a nuisance component denoted η . As is well known, conditioning on
a sufficient statistics for the nuisance parameter produces a new exponential family which is
free of it. Assuming the observed dataset xn

1 := (x1, ...,xn) resulting from sampling of a vector
Xn

1 := (X1, ...,Xn) of i.i.d. random variables with distribution in the initial exponential model,
and denoting U1,n a sufficient statistics for η , simulation of samples under the conditional distri-
bution of Xn

1 given U1,n = u1,n and θ = θ0 for some θ0 produces the basic ingredient for Monte
Carlo tests with H0 : θT = θ0 where θT stands for the true value of the parameter of interest.
Changing θ0 for other values of the parameter of interest produces power curves as functions of
the level of the test. This is the well known principle of Monte Carlo tests, which are considered
hereunder. We consider a steep but not necessarily regular exponential family exponential family
P := {PX,(θ ,η),(θ ,η) ∈N } defined on R with canonical parametrization (θ ,η) and minimal
sufficient statistics (t,u) defined through the density

pX,(θ ,η)(x) :=
dPX,(θ ,η) (x)

dx
= exp [θ t(x)+ηu(x)−K(θ ,η)]h(x). (9)

For notational convenience and without loss of generality both θ and η belong to R. Also the
model can be defined on Rd , d > 1, at the cost of similar but more involved tools. The natural
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parameter space is N (which is a convex set in R2) defined as the effective domain of

k(θ ,η) := exp [K(θ ,η)] =
∫

exp [θ t(x)+ηu(x)]h(x)dx. (10)

As above denote xn
1:=(x1, ...,xn) be the observed values of n i.i.d. replications of a general

random variable X with density (9). Denote

t1,n :=
n

∑
i=1

t(xi) and u1,n :=
n

∑
i=1

u(xi). (11)

Basu [3] discusses ten different ways for eliminating the nuisance parameters, among which
conditioning on sufficient statistics and consider UMPU tests pertaining to the parameter of
interest. In most cases, the density of T1,n given U1,n = u1,n is unknown. Two main ways have
been developed to deal with this issue: approximating this conditional density of a statistics or
simulating samples from the conditional density. These two approaches are combined hereunder.

The classical technique is to approximate this conditional density using some expansion. Then
integration produces critical values. For example, Pedersen [26] defines the mixed Edgeworth-
saddlepoint approximation, or the single saddlepoint approximation. However, the main issue of
this technique is that the approximated density still depends on the nuisance parameter. In order
to obtain the expansion, some suitable values for the parameter of interest and for the nuisance
parameter have to be chosen. In the method developed here, as seen before, the conditional
approximated density inherits of the invariance with respect to the nuisance parameter when
conditioning on a sufficient statistics pertaining to this parameter.

Rephrasing the notation of Section 2 in the present setting the MLE (θML,ηML) satisfies

∂K (θ ,η)

∂η

∣∣∣∣
θML,ηML

= u1,n/n

and therefore u1,n/n converges to
(

∂K(θT ,η)
∂η

)−1
(ηT ) .

For notational clearness denote µ the expectation of u(X1) and σ2 its variance under (θT ,ηT )
, hence

µ := µ(θT ,ηT ) := ∂K(θT ,ηT )/∂η σ
2 := σ

2
(θT ,ηT )

:= ∂
2K(θT ,ηT )/∂ r2

Assume at present θT and ηT known. It holds

φ(r) := E(θT ,ηT ) exp[ru(X)] = exp [K(θT ,ηT + r)−K(θT ,ηT )]

and

m(r) = µ(θT ,ηT+r)

s2(r) = σ
2
(θT ,ηT+r)

µ3(r) = ∂
3K(θT ,ηT + r)/∂η

3 .

Further

π
α
u,θT ,ηT

(x) :=
expru(x)

φ(r)
pX,(θT ,ηT ) (x) = pX,(θT ,ηT+r) (x) (12)
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for any given α in the range of PX,(θT ,ηT ). In the above formula (12) the parameter r denotes the
only solution of the equation

m(r) = α.

For large k depending on n, using Monte Carlo tests based on runs of length k instead of n does
not affect the accuracy of the results.

4.2. Application of conditional sampling to MC tests

Consider a test defined through H0 : θT = θ0 versus H1 : θT 6= θ0. Monte Carlo (MC) tests aim at
obtaining p−values through simulation when the distribution of the desired test statistics under
H0 is either unknown or very cumbersome to obtain; a comprehensive reference is [17].

Recall the principle of those tests: denote t the observed value of the studied statistic based on
the dataset and let t2, .., tL the values of the resulting test statistics obtained through the simulation
of L− 1 samples Xn

1 under H0. If t is the Mth largest value of the sample (t, t2, ..., tL), H0 will
be rejected at the α = M/L significance level, since the rank of t is uniformly distributed on
the integer 2, ...,L when H0 holds. The present MC procedure uses simulated samples under
the proxy of pu1,n,(θ0,ηT ). Using quasi-sufficiency of U1,n we may use any value in place of ηT ;
we have compared this simple choice with the common use, inserting the MLE η̂θ0 in place of
ηT in gu1,n,(θ0,ηT ). This estimate η̂θ0 is the MLE of ηT in the one parameter family pX,(θ0,η)

defined through (9); this choice follows the commonly used one, as advocated for instance in
[26] and [27]. Innumerous simulation studies support this choice in various contexts; we found
no difference in the resulting procedures.

Consider the problem of testing the null hypothesis H0 : θT = θ0 against the alternative H1 :
θT > θ0 in model (9) where η is the nuisance parameter.

When pu1,n,(θ0,ηT ) is known, the classical conditional test H0 : θT = θ0 versus H1 : θT > θ0
with level α is UMPU.

Substituting pu1,n,(θ0,ηT ) (X
n
1 = xn

1 |U1,n = u1,n ) by gu1,n,(θ0,ηT )

(
xk

1

)
defined in (6), i.e. substitut-

ing the test statistics Tn
1 by Tk

1 and pθ0

(
Xk

1 = xk
1 |U1,n = u1,n

)
by gu1,n,(θ0,ηT )

(
xk

1

)
i.e. changing

the model for a proxy while keeping the same parameter of interest θ yields the conditional test
with level α

ψα(xk
1) :=


1 if t1,k > tα
γ if t1,k = tα
0 if t1,k < tα

and
EGu1,n ,(θ0 ,ηT )

[ψα(Xk
1 )] = α

i.e. α :=
∫
1t1,k>tα gu1,n,(θ0,ηT )

(
xk

1

)
dx1...dxk. Its power under a simple hypothesis θT = θ is defined

through
βψα

(θ |un) = EGu1,n ,(θ0 ,ηT )
[ψα(Xk

1)].

By quasi-sufficiency of U1,n with respect to η any value can be inserted in gu1,n,(θ0,ηT ) in place
of ηT .
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Recall that the parametric bootstrap produces samples from a parametric model which is fitted
to the data, often through maximum likelihood. In the present setting, the parameter θ is set to
θ0 and the nuisance parameter η is replaced by its estimator η̂θ0 which is the MLE of ηT when
the parameter θ is fixed at the value θ0 defining H0. Comparing their exact conditional MC
tests with parametric bootstrap ones for Gamma distributions, Lockhart et al [21] conclude that
no significant difference can be noticed in terms of level or in terms of power. We proceed in
the same vein, comparing conditional sampling MC tests with the parametric bootstrap ones,
obtaining again similar results when the nuisance parameter is estimated accurately. However
the results are somehow different when the nuisance parameter cannot be estimated accurately,
which may occur in various cases.

4.3. Unimodal Likelihood: testing the coefficients of a Gamma distribution

Let Xn
1 be an i.i.d. sample of random variables with Gamma distribution frT ,θT and x1, ...,xn the

resulting data set. As r and θ vary this distribution is a two parameter exponential family. The
statistics T1,n := logX1 + ...+ logXn is sufficient for r and U1,n := X1 + ...+Xn is sufficient for
the parameter θ . Consider MC conditional test with H0 : rT = r0

Denote u1,n = ∑
n
i=1 xi and θ̂r0 the MLE of θT . Calculate for l ∈ {2,L}

tl :=
k

∑
i=0

log(Yi(l)) .

where the Y ′i are a sample from gu1,n,(r0,θ̂r0)
.

Consider the corresponding parametric bootstrap procedure for the same test, namely simulate
Zi(l), 2≤ l ≤ L and 0≤ i≤ k with distribution fr0,θ̂r0

; denote

sl :=
k

∑
i=0

log(Zi(l)) .

In this example simulation shows that for any α the Mth largest value of the sample (t, t2, ..., tL)
is very close to the corresponding empirical M/L-quantile of sl’s. Hence Monte Carlo tests
through parametric bootstrap and conditional compete equally. Also in terms of power, irre-
spectively in terms of α and in terms of alternatives (close to H0), the two methods seem to be
equivalent.

MC conditional test with H0 : θT = θ0 Denote t1,n = ∑
n
i=1 log(xi) and r̂θ0 the MLE of rT .

Calculate for l ∈ {2,L}

tl :=
k

∑
i=0

Yi(l)

where the Y ′i are a sample from gu1,n,(r̂θ0 ,θ0) and, as above define accordingly

sl :=
k

∑
i=0

log(Zi(l))
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where the Zi(l)’s are simulated under fr̂θ0 ,θ0 .

As above, parametric bootstrap and conditional sampling yield equivalent Monte Carlo tests
in terms of power function under alternatives close to H0.

In the two cases studied above the value of k has been obtained through the rule exposed in
section 3.2 of [4].

4.3.1. Bimodal likelihood: testing the mean of a normal distribution in dimension 2

In contrast with the above mentioned examples, the following case study shows that estimation
through the unconditional likelihood may fail to provide consistent estimators when the likeli-
hood surface has multiple critical points.

Sundberg [31] proposes four examples that allow likelihood multimodality. Two of them can
also be found in [11] and [12], and in [2], Ch 2. We consider the "Normal parabola" model which
is a curved (2, 1) family (see Example 2.35 in [2], Ch 2 ). Two independent Gaussian variates
have unknown means and known variances; their means are related by a parabolic relationship.

Let X and Y be two independent Gaussian r.v.’s with same variance σ2
T with expectation ψT

and ψ2
T . In the present example σ2

T = 1 and ψT = 2.
Let (xi,yi) , 1≤ i≤ n be i.i.d. realizations of (Xi,Yi) .

The parameter of interest is σ2 whilst the nuisance parameters is ψ. Derivation of the likeli-
hood function of the observed sample with respect to ψ yields the following equation

(u1,n−ψ)+2ψ
(
v1,n−ψ

2)= 0

with u1,n := x1+ ...+xn and v1,n := y1+ ...+yn. Define accordingly U1,n and V1,n.The following
table shows that the likelihood function is bimodal in ψ.

−4 −2 0 2 4

−
20

−
15

−
10

−
5

0

FIGURE 6. Bimodal likelihood in ψ.

Estimation of the nuisance parameter ψ is performed through the standard Newton Raphson
method. The Newton-Raphson optimizer of the likelihood function converges to the true value
when the initial value is larger than 1 and fails to converge to ψT = 2 otherwise. Henceforth
the ML estimation based on this preliminary estimate of the nuisance parameter may lead to
erroneous estimates of the parameter of interest. Indeed according to the initial value we obtained
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estimators of ψT close to 2 or to −2. When the estimator of the nuisance parameter is close
to its true value 2 then parametric bootstrap yields Monte Carlo tests with power close to 1
for any α and any alternative close to H0. At the contrary when this estimate is close to the
second maximizer of the likelihood (i.e. close to−2) then the resulting Monte Carlo test based on
parametric bootstrap has power close to 0 irrespectively of the value of α and of the alternative,
when close to H0. In contrast with these results, Monte Carlo tests based on conditional sampling
provide powers close to 1 for any α; we have considered alternatives close to H0 . This result
is of course a consequence of the quasi sufficiency of the statistics (U1,n,V1,n) for the parameter(
ψ,ψ2

)
of the distribution of the sample (xi,yi)i=1,...,n; see next paragraph for a discussion of

this point.

4.4. Estimation through conditional likelihood

Theorem 1 states that the density gu1,n,θT on Rk approximates pu1,n,θT on the sample Xn
1 generated

under Pu1,n,θT . However, in some cases, the r.v.’s Xi’s in Theorem 1 may at time be generated
under some other parameters, say under Pu1,n,θ0 . This is indeed required here, where a procedure
somehow similar to parametric bootstrap will be achieved. Theorem 11 in [4] states that the ap-
proximation scheme holds true in this case. The reason for this lies in the fact that approximation
schemes hold on typical paths generated by conditional distributions stemming from any basic
light tailed distributions P (i.e. with finite moment generating function in a non void neighbor-
hood of 0), and not only under those based on PθT ; this result is stronger than approximation in
total variation norm as stated in Theorem 1.

Theorem 3. With the same hypotheses and notation as in Theorem 1,

pθT

(
Xk

1 = Y k
1 |U1,n = u1,n

)
= gu1,n,θT (Y

k
1 )(1+oPu1,n,θ0

(εn (logn)2)).

An easy extension of the above result allows to change θ0 by any θn converging to θ0.
Considering model (9) we intend to perform an estimation of θT irrespectively upon the value

of ηT . Denote η̂θ the MLE of ηT when θ holds; the model pX,(θ ,η̂θ )
(x) is a one parameter

model which is fitted to the data for any peculiar choice of θ .The optimizer in θ of the resulting
likelihood function is the global MLE. Properties of the resulting estimators strongly rely on the
consistency properties of η̂θ at any given θ .

Consider the consequence of Theorem 3. Condition on the value of the sufficient statistics
U1,n, and consider the conditional likelihood of the observed subsample xk

1 under parameter
(θ , η̂θ ); recall that xk

1 is generated under (θT ,ηT ) . By Theorem 3 this likelihood is approximated
by gu1,n,(θ ,η̂θ )

(
xk

1

)
with a small relative error. Conditioned likelihood estimation is performed

optimizing gu1,n,(θ ,η̂θ )

(
xk

1

)
upon θ . Any value of the nuisance parameter η can be used in place

of η̂θ as seen in Section 3.1.
In most cases, as the normal, gamma or inverse-gaussian, estimations through the uncondi-

tional likelihood or through conditional likelihood give a consistent estimator.
We consider the example of the bimodal likelihood from the above subsection, inheriting of

the notation and explore the behavior of the proxy of the conditional likelihood of the sample
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(xi,yi) , 1≤ i≤ n when conditioning on u1,n and v1,n , as a function of σ2. This likelihood writes

L
(

σ
2∣∣u1,n,v1,n

)
= pu1,nσ2 (xn

1) pv1,nσ2 (yn
1)

where we have used the independence of the r.v.’s Xi’s and Yi’s.

0.6 0.8 1.0 1.2 1.4

−
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−
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−
6

−
4

−
2

FIGURE 7. Proxy of the conditional likelihood (solid line) along with the classical likelihood (dotted line) as function
of σ2 for n = 100 and k = 99 in the case where a good initial point in Newton-Raphson procedure is chosen.
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FIGURE 8. Proxy of the conditional likelihood (solid line) along with the classical likelihood (dotted line) as function
of σ2 for n = 100 and k = 99 in the case where a bad initial point in Newton-Raphson procedure is chosen.

Applying Theorem 1 to the above expression it appears that ψ cancels in the resulting densities
gu1,n,σ2 and gv1,n,σ2 . This proves that the proxy of the conditional likelihood provides consistent
estimation of σ2

T as shown on Figures 7 and 8 (see the solid lines).
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On Figure 7, the dot line is the likelihood function

L
(
σ

2) :=
n

∑
i=1

log pX,(σ2,ψ̂
σ2)(xi)

where ψ̂σ2 is a consistent estimator of the nuisance parameter; the resulting maximizer in the
variable σ2 is close to σ2

T = 1. At the opposite in Figure 8 an inconsistent preliminary estimator
of ψT obtained through a bad tuning of the initial point in the Newton-Raphson procedure leads
to inconsistency in the estimation of σ2

T , the resulting likelihood function being unbounded.
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