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Abstract:
The consideration of experimental uncertainties is a key element in the quantification of uncertainties and pre-

diction by simulation. While particular attention is paid to experimental uncertainties on simulation outputs, little
work is done on uncertainties on simulation inputs, arguing that they are negligible or small enough to be aggregated
with uncertainties on outputs via Taylor development. However, these uncertainties on inputs are not always low and,
depending on the structure of the code, linearization around them is not always possible. The objective of this work is
therefore twofold. First, it introduces a general Bayesian framework for integrating input uncertainties into the cali-
bration of code parameters. It then proposes several approaches to effectively solve this inference problem, depending
on the regularity of the code and the type of inputs considered. The advantages and disadvantages of the different
methods are finally illustrated on an analytical example, as well as on a ballistic problem.

Résumé : La prise en compte des incertitudes expérimentales est un élément clé de la quantification des incertitudes
et de la prévision par la simulation. Bien qu’une attention particulière soit accordée aux incertitudes expérimentales
sur les sorties de simulation, peu de travaux s’intéressent aux incertitudes concernant les entrées de simulation, sous
pretexte qu’elles sont négligeables ou suffisamment petites pour être agrégées avec les incertitudes sur les sorties par
développement de Taylor. Toutefois, ces incertitudes sur les entrées ne sont pas toujours faibles et, selon la structure
du code, la linéarisation autour de celles-ci n’est pas toujours possible. L’objectif de ce travail est donc double.
Premièrement, il introduit un cadre bayésien général permettant l’intégration des incertitudes sur les entrées pour
le calage de paramètres du code. Il propose ensuite plusieurs approches pour résoudre efficacement ce problème
d’inférence, en fonction de la régularité du code et du type d’entrées considérées. Les avantages et les inconvénients
des différentes méthodes sont finalement illustrés sur un exemple analytique, ainsi que sur un problème balistique.
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1. Introduction

Simulation currently plays a major role in the design, optimization and certification of complex
systems. To predict the behavior of these systems, computer codes are introduced, which are gen-
erally based on two types of inputs. On the one hand, system parameters refer to the quantities
used to define the system and its environment, such as the dimensions of the system, the mate-
rials of which it is made, the temperature, the pressure, etc. On the other hand, the calibration
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parameters correspond to the code constants that must be set for the code to be executed. These
quantities are considered universal, in the sense that they are supposed not to depend on the pa-
rameters characterizing the system, and generally refer to physical law parameters or numerical
thresholds.

For the code to be predictive, these calibration parameters must be identified from experi-
mental data representative of the system’s operating conditions. To make this estimate robust
to potential experimental uncertainties, a Bayesian formalism is generally considered (Kennedy
and O’Hagan (2001)), which consists of modeling calibration parameters by random quantities
and seeking their posterior distribution according to available data.

Sampling methods such as Markov Chain Monte-Carlo (MCMC) approaches are generally
considered to construct approximations of this latter distribution (see Rubinstein and Kroese
(2008); Tian et al. (2016) for more details). To solve the inference problem, the code must there-
fore be evaluated a very large number of times (Berliner (2001); Kaipio and Somersalo (2004)),
which can be prohibitive from a computational point of view when using simulators that take
time. To overcome this problem, a classical approach is to build surrogate models (also called
emulators) for real code to speed up the MCMC procedure. Such alternative models can be used
to adapt the distribution of proposals, as done in Rasmussen (2003); Fielding et al. (2011); Con-
rad et al. (2016, 2018). Therefore, the number of code evaluations per MCMC step can be signifi-
cantly reduced, while asymptotically sampling the exact posterior distribution. Alternatively, the
real code can be directly replaced by its emulator in the MCMC procedure. In this case, we obtain
samples associated with an approximation of the true posterior distribution since the probabil-
ity has been modified, but the cost to solve the inference problem is usually much lower. More
details on this second approach can be found in Marzouk and Najm (2009); Marzouk and Xiu
(2009); Wan and Zabaras (2011); Li and Marzouk (2014); Tsilifis et al. (2017) when polynomial
representations are considered for substitution models, in Kennedy and O’Hagan (2001); Santner
et al. (2003); Higdon et al. (2008); Bilionis and Zabaras (2015); Sinsbeck and Nowak (2017);
Damblin et al. (2013); Perrin (2019) when the substitution modeling is based on the Gaussian
process regression, or in Higdon et al. (2003); Chen and Schwab (2015) when the substitution
models correspond to code evaluations at different resolution levels.

In this work, we do not consider model discrepancy. This does not mean that the computer
codes we are interested in are perfect representations of reality, but that once their calibration
parameters have been correctly identified, the predictions they provide are sufficiently accurate
for their intended uses. Therefore, the main source of uncertainty for the estimation of calibration
parameters is experimental uncertainties, which can be divided into two groups: uncertainties on
code inputs and uncertainties on code outputs. Whereas the output experimental uncertainties
play a central role in the formerly cited papers, few words are said about experimental input
uncertainties. Indeed, they are often considered negligible or small enough to be directly mixed
with experimental output uncertainties through Taylor expansion. However, these experimental
input uncertainties are not always low and it is not always possible to linearize the code around
them.

Therefore, depending on the magnitude and complexity of the experimental input uncertain-
ties, the objective of this paper is to present methods that can be used to effectively address input
uncertainties when we are in one of the former problematic cases.

The outline of this work is as follows. Section 2 presents the theoretical framework for the
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26 G. Perrin and C. Durantin

Bayesian procedure we consider. Section 3 introduces several approximations that can be used
to efficiently solve the inference problem when confronted to time-consuming simulators. At
last, the advantages and the limits of the different approximations are discussed when analyzing
two examples in Section 4.

2. Bayesian calibration

We are interested in predicting the behavior of a system S using a time-consuming computer
code g, such that:

g :
{

X×B → R
(x,b) 7→ g(x;b) . (1)

Here, x ∈X gathers the Nx parameters that are used to characterize system S , whereas b ∈ B
gathers the Nb calibration parameters, which are a priori unknown, but need to be specified for
the code to be run. For the sake of simplicity, only real-valued computer codes are considered in
this paper. The true value of b, written β , is supposed to be a real-valued vector such that B is a
subset of RNb . On the contrary, there is a priori no restriction on the nature of the components of
x, which can be scalar or functions for instance.

The prior information about β is a density over B, which is denoted by fβ . It is assumed to
be known from expert judgement (Marin and Robert (2007)). To identify β , we have access to N
measured values of the system output, (yn)1≤n≤N , such that for all 1≤ n≤ N,

yn = g(xtrue
n ;β )+ εn. (2)

Here, εn ∈ R is the output measurement uncertainty, while xtrue
n gathers the true values of the

system parameters for the nth measurement. This true value being unknown, it is modeled by a
random quantity, whose prior mean is written xn, and whose random deviation towards this mean
is denoted by ζn ∈ X:

xtrue
n = xn +ζn, 1≤ n≤ N. (3)

According to Eq. (2), the simulator is supposed to have no model discrepancy. As no computer
code can virtually be said to be a perfect representation of reality, this only means that the predic-
tions provided by the calibrated code are accurate enough (compared to the measurement error)
for its intended use. In particular, it can exploit error compensation to maximize its predictive
capabilities, and can therefore not necessarily perfectly fit reality. Denoting by y = (y1, . . . ,yN)
the vector of observations, it comes:

y = g(ζ ;β )+ ε, (4)

with g(ζ ;β ) = (g(x1 +ζ1;β ), . . . ,g(xN +ζN ;β )), ζ = (ζ1, . . . ,ζN) and ε = (ε1, . . . ,εN).

In this work, we moreover assume that:
– the mean values x1, . . . ,xN are known,
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Taking into account input uncertainties in the Bayesian calibration of time-consuming simulators 27

– β , ε and ζ are statistically independent,
– ε admits a known density, denoted by fε ,
– it is possible to generate (at a negligible computational cost) independent realizations of ζ .
Using the Bayes’ formula, we deduce that for all b in B:

fβ |y,ζ (b) ∝ fβ (b)× fε(y−g(ζ ;b)), (5)

fβ |y(b) ∝ fβ (b)×E [ fε(y−g(ζ ;b))] . (6)

In the general case, this posterior distribution is not explicit, and sampling procedures, such
as a Monte Carlo (MC) within MCMC method, have to be used to generate samples that are ap-
proximately distributed according to fβ |y. In that case, the number of code evaluations required
to get one sample of β |y can be very high. When each code evaluation is time-consuming, addi-
tional assumptions and/or simplifications are needed, which will be detailed in the next section.
In particular, the Gaussian case will rely on the following assumption.

Assumption 1. ε and ζ are supposed to be centered and normally distributed:

ε ∼N (0,Σε), ζ ∼N (0,Σζ ), (7)

where Σε and Σζ are two symmetric positive-definite matrices.

3. Approximated methods

In this work, the following assumption is considered.

Assumption 2. The experimental measurements are statistically independent: for all 1 ≤ i 6=
j ≤ N, (ζi,εi) is independent of (ζ j,ε j).

Under this assumption, which is often verified in practice, we have:

E [ fε(y−g(ζ ;b))] =
N

∏
n=1

E [ fεn(yn−g(xn +ζn;b))] , (8)

where for all 1 ≤ n ≤ N, fεn is the density of the nth component of ε . Hence, the evaluation of
fβ |y in each b ∈ B only requires the estimation of N integrals in dimension Nx, when an integral
in dimension N×Nx was needed for the direct estimation of E [ fε(y−g(ζ ;b))]:

fβ |y(b) ∝ fβ (b)×
N

∏
n=1

E [ fεn(yn−g(xn +ζn;b))] . (9)

The following of this section presents different assumptions that can be introduced to allow
efficient evaluations of fβ |y (up to a multiplicative constant) in each b∈B, which is a prerequisite
for using MCMC approaches.
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28 G. Perrin and C. Durantin

3.1. Linear approximation of the code

Input experimental uncertainties are most of the time assumed to be small, such that it is possible
to linearize the code output around them.

Assumption 3. The computer code can be linearized around the input uncertainties, such that
for all (n,b) in {1, . . . ,N}×B,

g(xn +ζn;b)≈ g(xn;b)+δ
x(xn,b)T

ζn + εn, δ
x(xn,b) :=

∂g
∂x

(xn;b). (10)

Assumption 3 strongly reduces the number of code evaluations required for the estimation of
fβ |y. Indeed, for each (b,n) in B×{1, . . . ,N}, once quantities g(xn;b) and δ x(xn,b) have been
computed, quantity E [ fεn(yn−g(xn +ζn;b))] can be estimated at (almost) no additional cost.
For instance, if ζn(θ1), . . . ,ζn(θM) denote M independent realizations of ζn,

E [ fεn(yn−g(xn +ζn;b))]≈ 1
M

M

∑
m=1

fεn

(
yn−g(xn;b)−δ

x(xn,b)T
ζn(θm)

)
. (11)

In the Gaussian case, that is to say if Assumption 1 is fulfilled, we obtain:

E [ fεn(yn−g(xn +ζn;b))] = φ(yn−g(xn;b);σ
2
εn,ζn

(b)), (12)

where σ2
εn
= (Σε)n,n is the variance of εn, Σζn is the covariance matrix of ζn, σ2

εn,ζn
(b) := σ2

εn
+

δ x(xn,b)T Σζnδ x(xn,b), and φ is given by the following expression:

φ(u;v) =
1√
2πv

exp
(
−u2

2v

)
, u ∈ R,v > 0. (13)

3.2. Non-linear approximation of the code

As presented in the former section, the linear approximation allows a strong reduction of the
computational cost associated with the inference of the posterior distribution of the calibration
parameters. However, when confronted with simulators that take a long time, this calculation
cost may still be too high. Indeed, in the positive configuration when each code evaluation also
provides partial derivatives δ x, each MCMC step requires at least N code evaluations for the
computation of fβ |y. In the negative configuration, this computational cost can be multiplied
by a factor Nx + 1 if finite differentials are used to numerically estimate the values of δ x. To
circumvent this problem, a first approach consists in assuming that there exists a reference value
for β , denoted by β ∗, such that for all 1≤ n≤ N,

yn ≈ g(xn;β
∗)+δ

β (xn,β
∗)T (β −β

∗)+δ
x(xn,β

∗)T
ζn + εn, (14)

δ
β (xn,β

∗) :=
∂g
∂β

(xn;β
∗). (15)
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Taking into account input uncertainties in the Bayesian calibration of time-consuming simulators 29

Here, the linearization is only assumed in the vicinity of β ∗. Hence, once quantities g(xn;β ∗),
δ x(xn,β

∗) and δ x(xn,β
∗) have been estimated, no additional code evaluation is needed for the

computation of ∏
N
n=1E [ fεn(yn−g(xn +ζn;b))] in each b ∈ B.

Even if iterative procedures can be proposed to sequentially adapt the value of β ∗, this as-
sumption is often too strong. As an alternative, it is generally proposed to directly construct a
non-linear surrogate model of mapping (x,b) 7→ g(x;b) to speed up the MCMC procedure (see
Liu et al. (2009)). In this work, we focus on the Gaussian Process Regression (GPR) surrogate
model, as it provides a formalism that is particularly adapted to Bayesian calibration. It is based
on Assumption 4.

Assumption 4. Mapping (x,b) 7→ g(x;b) is a particular realization of a Gaussian stochastic
process, (x,b) 7→ γ(x;b), whose mean and covariance functions are denoted by µg and Cg re-
spectively:

µg(x,b) = E [γ(x;b)] , Cg((x,b),(x′,b′)) = Cov
(
γ(x;b),γ(x′;b′)

)
. (16)

In this work, we assume that functions µg and Cg have been identified from a finite set of
T ≥ 1 code evaluations using one of the classical procedures presented in Rasmussen (2003);
Santner et al. (2003). Hence, they respectively correspond to the mean function and the covari-
ance function of a conditioned Gaussian process. The relation between the code outputs and the
experimental results becomes:

y = Γ(ζ ;β )+ ε, (17)

Γ(ζ ;β ) = (γ(x1 +ζ1;β ), . . . ,γ(xN +ζN ;β )). (18)

Equation (6) can finally be rewritten as:

fβ |y(b) ∝ fβ (b)×E [ fε(y−Γ(ζ ;b))] . (19)

It is important to notice that the expectation in Eq. (19) is carried out over the variability of
Γ and ζ . And even if the generation of independent realizations of Γ(ζ ;β ) is fast, it poses some
difficulties. Indeed, even though the elements of (ζn,εn)1≤n≤N are statistically independent, there
is no reason for γ(xm+ζm;β )+εm and γ(xn+ζn;β )+εn to be still independent for any 1≤ n 6=
m ≤ N. This a priori prevents us from writing the N-dimensional integral associated with this
expectation as a product of N integrals as it is done in Eq. (8). This means that the estimation of
E [ fε(y−Γ(ζ ;b))] in each value of b∈B is likely to require huge sets of independent realizations
of ζ and Γ(ζ ;b). To circumvent this problem, it is interesting to notice that if

– Assumption 2 is valid,
– ε is a centered Gaussian random vector whose covariance matrix is a diagonal matrix de-

noted by Σε ,
– the metamodeling uncertainties are small compared to the experimental errors, in the sense

that

(Σg(ζ ,b)+Σε)
−1 ≈ D(ζ ,b)−1, (20)
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30 G. Perrin and C. Durantin

det(Σg(ζ ,b)+Σε)≈ det(D(ζ ,b)) , (21)

where Σg(ζ ,b) is the covariance matrix of Γ(ζ ;b)|ζ ,

Σg(ζ ,b) :=

 Cg((x1 +ζ1,b),(x1 +ζ1,b)) · · · Cg((x1 +ζ1,b),(xN +ζN ,b))
...

. . .
...

Cg((xN +ζN ,b),(x1 +ζ1,b)) · · · Cg((xN +ζN ,b),(xN +ζN ,b))

 , (22)

and D(ζ ,b) := diag(Σg(ζ ,b)+Σε), then we obtain:

E [ fε(y−Γ(ζ ;b))]≈
N

∏
n=1

E [φ (yn−µg(xn +ζn;b);(Σg(ζ ,b)+Σε)nn)] , (23)

where function φ is defined by Eq. (13).

In practice, the approximations given by Eqs. (20) and (21) have only to be true in the regions
of high probability for β |y. This can guide the choice of the new points where to evaluate the
code for an adaptive enrichment of the surrogate model of g as it is done in Damblin et al. (2013)
and Perrin (2019).

3.3. Approximation of the joint density

When the linearization of g with respect to ζ is not valid, and when it is not possible to construct
an emulator of it at a reasonable computational time, the formalism presented in the two former
sections can not be applied to efficiently estimate PDF fβ |y. This can be due to the fact that ζ lives
in a too high-dimensional space (let us think about the case where ζ corresponds to a random
field for instance). In that case, it can be more efficient to directly work on the identification of
the dependence structure between β and y. To this end, let {ζ (1), . . . ,ζ (M)}, {β (1), . . . ,β (M)}
and {ρ(1) := g(ζ (1);β (1)), . . . ,ρ(M) := g(ζ (M);β (M))} be three sets gathering M independent
realizations of random vectors ζ , β and ρ := g(ζ ;β ) respectively (the realizations of β being
drawn from its prior distribution). From this information, it is indeed possible to approximate the
joint density of (ρ,β ), which we write fρ,β , using any parametric or non-parametric inference
technique. However, when the dependence structure associated with the components of (ρ,β )
is complex, which is likely to be the case here, the definition of a relevant parametric class to
represent fρ,β can become very difficult. In that case, nonparametric approaches are generally
preferred to these parametric constructions (Wand and Jones (1995); Scott and Sain (2004)). In
particular, we focus in this work on the multidimensional Gaussian kernel-density estimation (G-
KDE) method, which approximates the PDF of (ρ,β ) as a sum of M multidimensional Gaussian
PDFs, which are centered at each available independent realization of (ρ,β ):

fρ,β (y,b)≈ f̂ρ,β (y,b) :=
1
M

M

∑
m=1

Φ((y,b);(ρ(m),β (m)),h2R), (24)

where:
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Taking into account input uncertainties in the Bayesian calibration of time-consuming simulators 31

– R is the empirical estimation of the covariance matrix of (ρ,β ), whose block decomposition
is written as:

R̂ =

[
R̂ρ R̂ρβ

R̂T
ρβ

R̂β

]
, (25)

– h is a normalisation constant to be identified from the data (see Perrin et al. (2018) for more
details about the estimation of h),

– Φ is the multidimensional Gaussian density, such that for any vector a ∈ RQ and any (Q×
Q)-dimensional positive definite matrix A,

Φ(u;a,A) :=
exp
(
−1

2(u−a)T A−1(u−a)
)

(2π)Q/2
√

det(A)
, u ∈ RQ. (26)

By Gaussian conditioning, we deduce, for all b ∈ B:

fρ|β=b(y)≈
f̂ρ,β (y,b)∫

B f̂ρ,β (y,b′)db′
=

M

∑
m=1

αm(b)
∑

M
m′=1 αm′(b)

Φ(y; µm(b),Ry), (27)

αm(b) := exp
(
− 1

2h2

(
b−β

(m)
)T

R−1
β

(
b−β

(m)
))

, (28)

µm(b) := ρ
(m)+Rρβ R−1

β
(b−β

(m)), (29)

Ry := h2
(

Rρ −Rρβ R−1
β

RT
ρβ

)
. (30)

Additionally, if ε is a Gaussian random vector that is independent of β , such that ε ∼N (0,Σε),
using Eq. (4), it is straightforward to check that:

fy|β=b(y)≈
M

∑
m=1

αm(b)
∑

M
m′=1 αm′(b)

Φ(y; µm(b),Ry +Σε), (31)

from which we can deduce an explicit approximation of the posterior PDF of β recalling that:

fβ |y(b) ∝ fβ (b)× fy|β=b(y). (32)

The main drawback of this approach comes from the fact that the number of code evaluations
that is needed to correctly approximate the PDF of (ρ,β ) can quickly become extremely high
when the number of experiments increases. However, in the same manner than in Section 3.1 and
3.2, if Assumption 2 is fulfilled, that is, if the components ε1, . . . ,εN and ζ1, . . . ,ζN are statisti-
cally independent, the components of (ρ|β ) are, by construction, also statistically independent.
For all y = (y1, . . . ,yN) ∈ RN , it comes:

fρ|β=b(y) =
N

∏
n=1

fρn|β=b(yn), (33)
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32 G. Perrin and C. Durantin

fρn|β=b(yn) =
fρn,β (yn,b)∫

B fρn,β (yn,b)db
. (34)

Hence, even if the dimension of (ρ,β ) is N +Nb, its PDF can be constructed from the aggre-
gation of N PDFs in dimension 1+Nb only, whose identifications are likely to be much easier.

Remarks
– In this section, there is no restriction for the distribution of ζ . This is particularly interesting

when confronted to cases where the dimension of ζ is high. Of course, the more complex
ζ is, and the more difficult the identification of the PDF of (ρ,β ) is likely to be.

– The interest of considering a Gaussian kernel for the approximation of fρ,β is double: it
allows explicit derivations of the PDF of ρ|β , but also of the conditioned PDF of β |y
when ε is Gaussian. If ε was not Gaussian, the computation of fβ |y would be based on the
convolution product between the PDFs of ε and ρ|β , and there is no denying that other
kernels could be more adapted depending on the PDF of ε .

3.4. Input uncertainties and model error

The three former sections are based on the assumption that there exists non-negligible input
uncertainties, which are relatively well-known in the sense that it is possible to generate inde-
pendent realizations of ζ . However, even if there is no information about these input uncertain-
ties, it is crucial not to ignore them. Indeed, in that case, the calibration results could become
overconfident around values that are potentially biased, and the uncertainty bands in the model
prediction may not be large enough to adequately capture the true value of the quantity of inter-
est we want to predict. To circumvent this problem, conventional Bayesian calibration generally
introduces an error term, which is explicitly represented by a function x 7→ εerr(x), such that for
all 1≤ n≤ N:

yn = g(xn;β )+ εn + ε
err(xn). (35)

This error term is often modeled by a Gaussian process with a covariance function Cerr, the
parameters of which being estimated in a chosen class of covariance kernels, such as the nugget,
the squared exponential or the Matern classes (Kennedy and O’Hagan (2001)). This choice of
covariance class is not easy, while playing a major role in the calibration results. Indeed, by
choosing to make this covariance depend on x, potential error compensations may prevent us
from recovering the correct value of β . On the other hand, by proposing covariances independent
of x, it is not possible to integrate potential amplifications or reductions of uncertainties by the
code. In this case, since the uncertainties explaining the difference between the measurement and
the simulation are not correct, there is no reason why the uncertainties on β should be clearly
identified.

However, looking at Eqs. (35) and (10), if Assumption 3 is valid, εerr(xn) ≈ δ x(xn,b)T ζn.
Hence, a trade-off between minimizing error compensations and integrating the sensitivity of the
quantity of interest to system parameters seems possible by considering covariance functions in
the following form:
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Taking into account input uncertainties in the Bayesian calibration of time-consuming simulators 33

Cerr(x,x′) =
∂g
∂x

(x;β
∗)T

Λ
∂g
∂x

(x′;β
∗)δx,x′ , x,x′ ∈ X, (36)

with δx,x′ = 1 if x = x′ and 0 otherwise, β ∗ a reference value for β in B, and Λ a (Nx×Nx)-
dimensional positive definite and symmetrical matrix (which may be diagonal for simplicity) to
be identified. By construction, Λ would correspond to the covariance matrix of ζ1, . . . ,ζN under
the assumption that they are identically distributed.

Remarks.
– If the code was also replaced by a Gaussian process γ , as it is done in Section 3.2, it would be

important to consider well-distinct covariances for γ and εerr for the sake of identifiability.
– If the distribution of ε was unknown, error term εerr could aggregate at the same time input

and output experimental uncertainties.

4. Application

The objective of this section is to illustrate on two examples the pros and cons of the different
methods presented in the former sections. In each case, the same Metropolis-Hastings algo-
rithms, based on the same parameters, were used to get realizations of the posterior distributions.

4.1. Analytical example

In this section, we are interested in predicting a quantity of interest ytrue. To this end, we assume
that we have access to the following simulator:

g :

{
[0,1]×R2

(x;b = (b1,b2))
→
7→

R
10b1x

exp(b2
√

x)
. (37)

This simulator is perfect in the sense that for all x ∈ [0,1], ytrue(x) = g(x;β ? = (0.3,−0.4)).
Vector β ? being a priori unknown, it is modeled by a random vector β , whose a priori PDF is
given by:

fβ (b) =

{
1/4 if −1≤ b1,b2 ≤ 1,

0 otherwise.
(38)

The available information is made of N = 10 noisy observations gathered in the vector y =
(y1, . . . ,yN), which are given by:

yn = ytrue(xtrue
n )+ εn, xtrue

n = xn +ζn, 1≤ n≤ N. (39)

There, x1, . . . ,xN are fixed values of x in [0,1], the input uncertainties ζ1, . . . ,ζN correspond to
N independent realizations of the Gaussian random variable ζ ∼N (0,0.1), whereas the output
uncertainties ε1, . . . ,εNare supposed to be N independent realizations of the Gaussian random
variable ε ∼N (0,0.1). Assumptions 1 and 2 are therefore valid for this application.
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FIGURE 1. Comparison between the evolutions of x 7→ ytrue(x) (in black continuous line) and x 7→ g(x;β MC =
(0.21,−0.88)) (in red dotted line). The points (xn,yn) are represented by red dots, which defines the available in-
formation for the identification, whereas the blue diamonds and the green triangles correspond respectively to the
points (xn,ytrue(xtrue

n )) and (xn,ytrue(xn)).

To emphasize the role of these two sources of uncertainties, Figure 1 compares a particular
set of observed values of yn, and the associated values of ytrue(xtrue

n ) and ytrue(xn). It also shows
the evolution of ytrue and x 7→ g(x;β MC), where β MC is the least-squares estimate of β ? when
neglecting the uncertainties:

β
MC := arg min

b∈R2

N

∑
n=1

(yn−g(xn;b))2. (40)

Six configurations are compared for the identification of fβ |y:

1. f ref
β |y is the Monte Carlo approximation of fβ |y based on Eq. (9), and will be seen as the

reference for the comparison of the different methods. For each value of b, it is computed
from N× 104 code evaluations in independent values of ζ to guarantee a satisfying con-
vergence of the expectations.

2. f without
β |y corresponds to the case where the input uncertainties are not taken into account.

Using the notations of the former sections, this PDF is simply given by:

f without
β |y (b) ∝ fβ (b)× fε(y−g(0;b)), b ∈ [−1,1]2. (41)

By construction, each evaluation of f without
β |y requires only N code evaluations.
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Taking into account input uncertainties in the Bayesian calibration of time-consuming simulators 35

3. f lin
β |y is the approximation of fβ |y based on the linearization of g presented in Section 3.1.

If the gradient function was not directly provided by the code, N(Nx +1) code evaluations
would be needed for each evaluation of f lin

β |y.

4. f GP
β |y is the approximation of fβ |y based on the emulation of function g using a Gaussian

process as explained in Section 3.2. Two variants of this approximation are compared :
– the PDF associated with the case where quantity E [ fε(y−Γ(ζ ;b))] is directly approx-

imated using a Monte Carlo approach in dimension N will be denoted by f GP,full
β |y . It is

based on 103 independent realizations of Γ(ζ ;b), each of them being associated with
the same trajectory of Gaussian process γ ;

– the PDF associated with the case where this multidimensional integral is approximated
by a product of one-dimensional integrals will be denoted by f GP,1D

β |y . Once again, it is
estimated by a MC approach based on 102 independent realizations of Γ(ζ ;b). In the
following results, each realization of Γ(ζ ;b) is also associated with the same trajectory
of γ , even if, looking at Eq. (23), it was not necessary.

In both cases, the number of calls to the simulators that is needed to solve the inference
problem is strongly reduced, as once the GP emulator has been constructed, no additional
code evaluation is required to compute f GP,full

β |y or f GP,1D
β |y . In the following, the number of

code evaluations used for the construction of the GP surrogate is T .
5. f KDE

β |y is the approximation of fβ |y relying on the nonparametric approximation of the joint
PDF of (g(ζ ;β ),β ) described in Section 3.3. In the same manner than for the GP-based
approximation, once the approximation of this PDF has been computed, no additional code
evaluation is needed to compute f KDE

β |y in any b ∈ B. The total number of code evaluations
used for the construction of the N kernel density approximations of the PDFs of (g(xn +
ζn;β ),β ) is T .

6. At last, f mod,Matern
β |y , f mod,diff

β |y and f mod,nugget
β |y are the approximations of fβ |y based on the

model error formalism presented in Section 3.4. The covariance function chosen for f mod,Matern
β |y

is a Matern-5/2, it is equal to (x,x′) 7→σ2 ∂g
∂x (x,β

MC) ∂g
∂x (x

′,β MC)δx,x′ for f mod,diff
β |y , while the

covariance chosen for f mod,nugget
β |y is equal to (x,x′) 7→ σ2δx,x′ . The parameters associated

with these three covariance functions are estimated by their maximum likelihood estima-
tors. For this approach, the computational cost is double. It is first given by the number
of code evaluations associated with the estimation of β MC and the parameters of the co-
variance functions. Then, at least N code evaluations are required for each evaluation of
f mod,Matern
β |y , f mod,diff

β |y and f mod,nugget
β |y . This second cost could however be reduced by replac-

ing the true code by the surrogate model associated with f GP
β |y.

The results are summarized in three groups of figures. Figure 2 first compares the approaches
for which each approximation of fβ |y needs at least N code evaluations. In this figure, we confirm
the fact that there is a risk that the calibrated results be overconfident around biased values when
neglecting the input uncertainties. Indeed, PDF f without

β |y is for this example almost a Dirac-like
distribution while being centered far from the true value of β ?. For this first example, we also see
that f lin

β |y is very close to f ref
β |y, which is due to the fact that function x 7→ g(x;b) is almost linear

for each b in B. The approaches based on the linearization of g and the model error with the

Journal de la Société Française de Statistique, Vol. 160 No. 2 24-46
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



36 G. Perrin and C. Durantin

covariance function (x,x′) 7→σ2 ∂g
∂x (x,β

MC) ∂g
∂x (x

′,β MC)δx,x′ give also very close results. This was
expected as the likelihood on which they are based present very similar expressions. Finally, we
observe that considering a generic covariance function, as it is done for f mod,Matern

β |y or f mod,nugget
β |y ,

can either underestimate or overestimate the scattering of β |y. This is also not surprising as
information is missing for a precise identification of fβ |y.

Then, Figure 3 presents the results associated with the replacement of the true code by a GP
surrogate. The figures on the left are based on T = 100 code evaluations, whereas the figures on
the right are based on T = 500 code evaluations. In both cases, the points where the code is to be
called are chosen to fill as much as possible the input domain X×B (see Perrin and Cannamela
(2017) for further details about the construction of space-filling designs). Looking at the four
figures at the top, we see that for these two values of T , f GP,1D

β |y is much closer to fβ |y than f GP,full
β |y .

This can be explained by the difficulty to approximate an integral in dimension N = 10 using
a MC approach based on a reduced number of points. This lays stress on the importance of the
approximation given by Eq. (23), which writes this N-dimensional integrals as a product of N
one-dimensional integrals that is much easier to estimate using samples-based approaches. To
quantify the error due to this approximation, the images at the bottom of Figure 3 compare the
quantities q1(z,b) and q2(z,b) in 100 values of z and b randomly chosen in XN and B, where:

q1(z,b) =
exp
(
−1

2(y−µg(z;b))T (Σg(z,b)+Σε)
−1 (y−µg(z;b))

)
det(Σg(z,b)+Σε)

1/2 , (42)

q2(z,b) =
N

∏
n=1

1

(Σg(z,b)+Σε)nn
1/2 exp

(
−

(yn−µg(zn;b))2

2(Σg(z,b)+Σε)nn

)
, (43)

µg(z;b) := (µg(z1;b), . . . ,µg(zn;b)). (44)

We therefore verify that by increasing T , we improve the relevance of the GP-based emulator
and make the points (q1(z,b),q2(z,b)) be closer to the first bisectrix at the same time, and
therefore increase the relevance of f GP,1D

β |y .
At last, Figure 4 presents the results associated with the KDE-based approach presented in

Section 3.3. As explained in Section 3.3, estimating a PDF being often more difficult than ap-
proximating a deterministic function, the convergence of f KDE

β |y to fβ |y is relatively low compared
to the former approaches, in the sense that the value of T needs to be high to get a satisfying
approximation.

4.2. Ballistic example

The second application deals with the prediction of the trajectory of reconnaissance drones that
are catapulted from the ground. To this end, we have access to a model coupling point mechanics
and aerodynamics in two dimensions, which is based on the following equations:

mp̈ =−mgrez +‖ṗ− sw‖(ex(−β1αx−β2αz)+ ez(−β1αz +β2αx)) ,

αx = 〈ṗ− sw,ex〉 , αz = 〈ṗ− sw,ez〉 ,
ṗ(t = 0) = s0, p(t = 0) = (0,0),
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(a) f ref
β |y (b) f without

β |y

(c) f lin
β |y (d) f mod,Matern

β |y

(e) f mod,diff
β |y (f) f mod,nugget

β |y

FIGURE 2. Comparison of several approximations of fβ |y. In each figure, the red point corresponds to the value of
β ?.
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(a) f GP,full
β |y , T = 100 (b) f GP,full

β |y , T = 500

(c) f GP,1D
β |y , T = 100 (d) f GP,1D

β |y , T = 500

(e) T = 100 (f) T = 500

FIGURE 3. Approximations of fβ |y when replacing the true code by a GP surrogate. In the four top figures, the red
point corresponds to the value of β ?. The two bottom figures compares the values of q1(z,b) and q2(z,b), which are
defined by Eqs. (43) and (44), the red lines being the first bisectrix.
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(a) f KDE
β |y , T = 500 (b) f KDE

β |y , T = 2500

(c) f KDE
β |y , T = 5000 (d) f KDE

β |y , T = 10000

FIGURE 4. Approximations of fβ |y using a KDE of the-based approach. In each figure, T is the number of code
evaluations that was used to construct approximation f KDE

β |y , while the red point corresponds to the value of β ?.
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FIGURE 5. Description of the experimental protocol for the ballistic example.

n V0 (m/s) θ0 (rad) m (kg)
1 logN(59.8,0.400) logN(0.614,0.00523) logN(1.82,0.0100)
2 logN(124,0.400) logN(0.329,0.00523) logN(1.51,0.0100)
3 logN(146,0.400) logN(0.525,0.00523) logN(1.31,0.0100)
4 logN(76.2,0.400) logN(0.465,0.00523) logN(1.00,0.0100)
5 logN(101,0.400) logN(0.407,0.00523) logN(1.76,0.0100)

TABLE 1. Description of the input experimental uncertainties. For all a,b, logN(a,b) and N (a,b) respectively
correspond to the lognormal and to the normal distributions with mean a and standard deviation b.

where (see Figure 5 for a graphical representation of the experimental protocol):
– p(t) = px(t)ex + pz(t)ez is the position at time t of the center of inertia of the system,
– gr is the gravity that is supposed to be constant and known,
– m is the mass of the system,
– sw(t) is the wind speed at time t,
– s0 =V0(cos(θ0)ex + sin(θ0)ez) is the initial speed,
– β1 and β2 are respectively the drag and the lift coefficients.
Using an explicit scheme in time, the system of equations defined by Eq. (4.2) can be solved

numerically. For given values of x = (m,V0,θ0,{sw(t), t ≥ 0}) and β = (β1,β2), let g(x;β ) be
the landing position of the drone, which corresponds to the horizontal component of p(t) when
〈p(t),ez〉 = 0. Whereas the components of x can directly be measured, experiments are carried
out to assess the true value of β , which is chosen equal to β ? = (0.1,0.05) in the following
numerical analyses. We assume that the same drone is launched N = 5 times for different values
of V0 and θ0, with different loadings, such that m also varies from one experiment to another.
These values of m,V0,θ0 are affected by uncertainties, whose characteristics are detailed in Table
1.

To better compare the pros and cons of the different approximations introduced, two cases are

n yn (m, no wind) yn (m, presence of wind)
1 N (320,1) N (322,1)
2 N (862,1) N (858,1)
3 N (1140,1) N (1122,1)
4 N (417,1) N (414,1)
5 N (678,1) N (678,1)

TABLE 2. Description of the output experimental uncertainties. For all a,b, N (a,b) corresponds to the normal
distributions with mean a and standard deviation b.
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moreover distinguished concerning the wind speed. On the one hand, the wind speed is equal
to zero: sw(t) = 0 for all t ≥ 0. On the other hand, the wind speed is modeled by the following
centered Gaussian process:{

sw(t) = S(t)ex,

E
[
S(t),S(t ′)

]
= 25exp(−2|t− t ′|), t, t ′ ≥ 0.

(45)

In this example, the wind speed is included in the system parameters as it can be seen as a
particular boundary condition. It is expected to play a major role on the relevance of the cali-
bration results associated with the different simplifications introduced in Section 3. In particular,
it is introduced on purpose to lay stress on the difficulty for most of the presented methods to
take into account functional inputs. The true evolution of the wind speed for each measurement
is supposed to be unknown, but we assume it is possible to generate independent realizations of
it.

In both cases, there are uncertainties on the landing positions, denoted by yn, 1≤ n≤ N (see
Table 2 for a listing of the considered values of yn). As these uncertainties only depend on the
measurement device, their amplitudes are independent of the presence of wind.

In the same manner than in Section 4.1, six cases are now compared.

1. f ref
β |y is the Monte Carlo approximation of fβ |y based on Eq. (9). It is based on the coupling

of a Monte Carlo approach for the estimation of the expectation, and a MCMC procedure
to generate values of β that can approximately be seen as independent realizations of β |y.
For this approach, the presence of wind is naturally taken into account, and should only
tend to make the uncertainties on the calibration results be higher.

2. f without
β |y corresponds to the case where the input uncertainties are not taken into account.

3. f lin
β |y is the approximation of fβ |y based on a linearization of g with respect to b, V0, θ0 and

m. As the relationship between the values of b and (V0,θ0,m), and the associated value of
the landing position is not explicit, the derivatives are estimated using finite differentials.
For this approach, everything is made as if there was no wind.

4. f GP,1D
β |y is the approximation of fβ |y based on the emulation of function g using a Gaussian

process as explained in Section 3.2. The presence of a functional input is however not
really adapted to this formalism, as it was explained in Section 3.3. Hence, in the same
manner than for the linear case, the wind speed is here neglected. Consequently, the GPR
approximation is based on the evaluation of g in a (T×5)-dimensional space-filling design
in X×B, where X= [50,150]× [π/10,π/5]× [1,2] denotes the input space of (V0,θ0,m)
only. For this application, we notice in Table 2 that the variance of yn is small compared to
its mean. This means that a high value of T is likely to be needed for the metamodel error
to be smaller than the experimental error, which is a prerequisite for the approximation
of the multidimensional integral by a product of one-dimensional integrals to be valid. In
practice, the value of T was gradually increased until 103, where satisfying results were
obtained for this approximation.
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5. f KDE
β |y is the approximation of fβ |y relying on the nonparametric approximation of the joint

PDF of (g(ζ ;β ),β ) described in Section 3.3. For each 1≤ n≤N, the KDE approximations
were based on 200 code evaluations, such that the total computational cost is equivalent
to the GPR case. To integrate the potential presence of wind, for each realization of β , a
realization of the wind speed was drawn at random to compute the associated realization
of g(ζ ;β ).

6. At last, f mod,Matern
β |y , f mod,diff

β |y and f mod,nugget
β |y are the approximations of fβ |y based on the

model error formalism presented in Section 3.4. Here, as the input uncertainties are aggre-
gated in a global additive error term for the output, the presence of wind should not be a
problem.

The results are summarized in Figure 6. In this figure, focusing first on the results associated
with the absence of wind, we see that in the same manner than in Section 4.1:

– very interesting results are obtained when considering the GPR approximation of the code
response;

– when neglecting the input uncertainties, we obtain results that are overconfident around
biased values;

– when trying to directly learn the dependence structure between β and y using a KDE-based
approach, the calibration results are a bit too conservative, in the sense that the area of the
95% confidence ellipse is too big.

However, we notice strong differences for the other cases. First, the results associated with
the linearization of the code are much less accurate this time. And not surprisingly, poor re-
sults are also obtained by considering an error term whose covariance function depends on this
linearization. When introducing general covariance functions (see f mod,Matern

β |y and f mod,nugget
β |y ) to

characterize this error term, not really satisfying results are obtained, in the sense that the true
value of β does not belong to the 95% confidence ellipses. This may be due to an amplifica-
tion phenomenon from the input uncertainties to the final output uncertainty, which can also be
attributed to the non-linearity of x 7→ g(x;b).

Looking at the ellipses associated with f ref
β |y, we notice that considering a non zero wind speed

adds another source of uncertainty, and therefore increases the uncertainty on the value of β .
Without surprise, this new source of uncertainty does not help f without

β |y , f lin
β |y and f mod,diff

β |y to be

closer to f ref
β |y. However, we notice an important increase in the distance between f GP,1D

β |y and
f ref
β |y. This is also not surprising : by not taking into account the presence of wind, the GP-based

calibration underestimates the uncertainty on the value of β . On the contrary, the wind speed
variability being integrated in the construction of f KDE

β |y , f mod,Matern
β |y and f mod,nugget

β |y , better results

are obtained for these three approaches. Whereas f KDE
β |y and f mod,nugget

β |y seem to correctly capture

the true covariance between the components of β while being a bit too conservative, f mod,Matern
β |y

allows us to construct a 95% confidence ellipse that contains the true value of β .
To go further, Figure 7 compares, for n ∈ {1, ...,5}, the 95% prediction intervals for g(xn;β )

associated with the different identified posterior distributions of β in the case where the wind
speed is not zero. In order to focus on the influence of the uncertainty associated with β only, a
fixed realization of the wind speed has been chosen for all the simulations to compute the results
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(a) Absence of wind (b) Absence of wind

(c) Presence of wind (d) Presence of wind

FIGURE 6. In each figure, the red point indicates the position of β ?, and the ellipses correspond to 95% confidence
ellipses, in the sense that the integration of each posterior PDF over the domain corresponding to its ellipse is
near 0.95. In each figure, the reference ellipse is represented in red thick continuous line. In the left figures, the
ellipses associated with the case where the input uncertainties are not taken into account is represented in black thin
continuous line, the GPR-based approximations correspond to the green twodashed line ellipses, and the KDE-based
approximations correspond to the blue thick dashed line ellipses. In the right figures, the approximations based on a
linearization of the code correspond to the green twodashed line ellipses, and the approximations based on the model
error formalism are shown in black thin continuous line for f mod,diff

β |y , in blue thick dashed line for f mod,Matern
β |y , and in

cyan dotted line for f mod,nugget
β |y .

Journal de la Société Française de Statistique, Vol. 160 No. 2 24-46
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



44 G. Perrin and C. Durantin

of Figure 7. In this series of figures, the grey horizontal line corresponds to the value of g(xn;β ?),
the red dotted lines are the upper and lower bounds of the credible interval associated with f ref

β |y,

and the other cases correspond to f without
β |y , f GP,1D

β |y , f KDE
β |y , f mod,diff

β |y , f lin
β |y, f mod,Matern

β |y and f mod,nugget
β |y .

The same conclusions can be made: whereas the results associated with f without
β |y , f lin

β |y and f mod,diff
β |y

are not relevant for this application, f GP,1D
β |y , f KDE

β |y , f mod,nugget
β |y and f mod,Matern

β |y provide interesting

results for the prediction of g(xn;β ?). More precisely, as it was previously observed, f GP,1D
β |y tends

to underestimate the uncertainties, when f KDE
β |y and f mod,nugget

β |y tend to overestimate them. At last,

f mod,Matern
β |y provides results that are a little bit biased compared to the ones of f ref

β |y.

5. Conclusion

In this work, two examples were presented to highlight the importance of properly taking into ac-
count input uncertainties for the calibration of parametric simulators, in the sense that neglecting
these uncertainties can lead to predictions that are too confident around biased values. However,
this integration quickly becomes extremely difficult in terms of computation time when con-
fronted with time-consuming simulators. Approximations have therefore been presented in this
paper to obtain satisfactory results at a reasonable computation time. For example, if the ampli-
tude of input uncertainties is low, working with an approximate likelihood based on a lineariza-
tion of the code output presents a good compromise between accuracy and resolution efficiency.
Non-linear approximations of code output based on Gaussian Process Regression (GPR) also
provide interesting solutions to the inference problem, at a controlled computational cost. How-
ever, when the system parameters gather high-dimensional vectors or functions, it may not be
possible to construct such approximations. In that case, it has been shown that working directly
on the dependency structure between the parameters to be calibrated and the code outputs, using
kernel density estimates for example, presents an interesting alternative, even if the associated
computational cost is generally higher.

All these developments are based on the assumption that there are significant and relatively
well known input uncertainties. If information on these input uncertainties were missing, con-
ventional statistical approaches would capture this discrepancy between model predictions and
observational data by adding to the quantities of interest an external error term with an ad hoc
covariance structure. This is clearly suboptimal, as the error term will not take into account
the physical constraints imposed by the model. Proposing covariance functions that are better
adapted to the input-output relationship is therefore an interesting perspective for this work. Sim-
ilarly, the adaptation of the integrated model error representations presented in Sargsyan et al.
(2018) to the case of input uncertainties is a possible extension to this work.
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