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Closed-form Bayesian inference of graphical
model structures by averaging over trees
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Abstract: We consider the inference of the structure of an undirected graphical model in a Bayesian framework. To
avoid convergence issues and highly demanding Monte Carlo sampling, we focus on exact inference. More specif-
ically we aim at achieving the inference with closed-form posteriors, avoiding any sampling step. To this aim, we
restrict the set of considered graphs to mixtures of spanning trees. We investigate under which conditions on the
priors – on both tree structures and parameters – closed-form Bayesian inference can be achieved. Under these con-
ditions, we derive a fast an exact algorithm to compute the posterior probability for an edge to belong to the tree
model using an algebraic result called the Matrix-Tree theorem. We show that the assumption we have made does not
prevent our approach to perform well on synthetic and flow cytometry data.

Résumé : Nous nous intéressons à l’inférence de la structure d’un modèle graphique non orienté dans une cadre
bayésien. Pour éviter de recourir à des méthodes de Monte-Carlo coûteuses et aux problèmes de convergence associés,
nous nous concentrons sur des méthodes exactes. Plus précisément, nous menons l’inférence au moyen de lois a
posteriori explicites, évitant ainsi toute étape d’échantillonnage. Dans ce but, nous restreignons l’espace des graphes
à des mélanges d’arbres recouvrants. Nous étudions sous quelles condition sur les lois a priori – à la fois sur les
arbres et sur les paramètres – une inférence bayésienne exacte peut être menée. Dans ce cadre, nous proposons un
algorithme exact et rapide permettant de calculer la probabilité a posteriori pour qu’une arête appartienne au graphe,
en utilisant un résultat algébrique connu sous le nom de théorème Arbre-Matrice. Nous montrons que la restriction
aux arbres n’empêche pas d’obtenir de bons résultats aussi bien sur des données simulées que sur des données issues
de cytométrie de flux.

Keywords: graphical models, hyper Markov, matrix-tree theorem, spanning trees
Mots-clés : arbres recouvrants, hyper-Markov, modèles graphiques, théorème arbre-matrice

1. Introduction

Statistical models are getting more and more complex and can now involve very intricate depen-
dency structures. Graphical models are both a natural and powerful way to depict such structures.
Inferring a graphical model based on observed data is hence of great interest for many fields of
applications. From a statistical point-of-view, considering the inference of a graphical model re-
quires to consider the graphical model itself as a parameter, among others. The Bayesian frame-
work is a convenient way to perform the inference of the structure while taking into account
the uncertainty on the parameters. This requires to define a full model and, more specifically,

1 Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: loic.schwaller@ens-lyon.org

2 UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
E-mail: stephane.robin@agroparistech.fr

3 Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London, United Kingdom
E-mail: m.stumpf@imperial.ac.uk

Journal de la Société Française de Statistique, Vol. 160 No. 2 1-23
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238

http://arxiv.org/abs/1504.02723
mailto:loic.schwaller@ens-lyon.org
mailto:stephane.robin@agroparistech.fr
mailto:m.stumpf@imperial.ac.uk


2 One, Two and Three

a prior distribution on graphical models (therefore on graphs themselves) as well as a prior on
parameters. For the inference to remain efficient, these priors need to combine nicely.

Regardless of whether we consider directed or undirected graphs, their sheer number make
them difficult to deal with. Limiting ourselves to Bayesian approaches, Markov Chain Monte
Carlo (MCMC) methods have for instance been used to sample from some sets of graphs, such
as Directed Acyclic Graphs (DAGs) (Madigan et al., 1995; Friedman and Koller, 2003; Niin-
imäki et al., 2016) or decomposable graphs (Green and Thomas, 2013). The decomposability
assumption for undirected graphical models, also called Markov random fields, is commonly
made , although some interest has been devoted to the less easy to handle non-decomposable
graphs (Roverato, 2002; Atay-Kayis and Massam, 2005). The sampling schemes developed in
the aforementioned papers are often subject to standard issues related to MCMC sampling in
high-dimensional spaces, namely slow mixing and difficulty to get to the stationary distribution.
This motivates our choice to focus on closed-form Bayesian inference whenever possible.

In this paper, we refer to closed-form Bayesian inference, as Bayesian inference that does
not rely on a sample from the posterior distribution. For classical parameters, the usual way is
to resort to conjugate priors. Theoretically, closed-form posterior distributions on graphs can be
computed, but the combinatorial complexity becomes prohibitive as soon as there are more than
thirty or so variables of interest (Parviainen and Koivisto, 2009). For larger problems, closed-
form approaches can be considered at the price of a restriction on the structure space. When a
subset of graphs is considered, it becomes possible to get access to the full posterior distribution
on graphs, provided that the integration over the whole space of graphs can be achieved with a
reasonable computational burden. In that perspective, trees have been of particular interest as a
subset of both decomposable graphs and DAGs (Chow and Liu, 1968; Meilă and Jordan, 2001;
Meilă and Jaakkola, 2006; Kirshner, 2007; Lin et al., 2009; Burger and Van Nimwegen, 2010).

In this paper, we consider tree-based structure inference and we discuss under which condi-
tions closed-form Bayesian inference can be achieved. Broadly speaking, we are interested in
the posterior distribution of the unknown tree structure T given the data D while integrating over
parameter distribution π:

p(T |D) =
p(T,D)

p(D)
=

p(T )
∫

p(π|T )p(D|π)dπ

∑T p(T )
∫

p(π|T )p(D|π)dπ
.

Our first contribution is to provide a well-defined fully Bayesian framework for graphical model
inference based on trees in which fast and efficient inference is possible. We use the work of
Dawid and Lauritzen (1993) on hyper Markov laws to define priors on distribution parameter
that can easily be marginalised over to get p(D|T ) =

∫
p(D|π)p(π|T )dπ . This framework spares

us from requiring likelihood equivalence between Markov-equivalent directed tree models, like
Meilă and Jaakkola (2006) did building on the work of Heckerman and Chickering (1995). We
also point out that it fits within the recent work of Byrne and Dawid (2015) on structurally
Markov graph distributions.
We then go through a series of typical models befitting this framework, namely tree-structured
copulas (Kirshner, 2007), multinomial distributions (Meilă and Jaakkola, 2006) and Gaussian
distributions.

Our second contribution focuses on structure inference as opposed to Meilă and Jaakkola
(2006) and Kirshner (2007) who were more interested in the joint distribution of the observations.
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Closed-form Bayesian inference of graphical models using trees 3

More specifically, we focus on local features such as the posterior mean and variance of the
degree of a given node or the posterior probability for two given nodes to be connected. The
latter amounts to compute

P({k, l} ∈ T |D) =
∑T3{k,l} p(T )p(D|T )

∑T p(T )p(D|T )

where the sum in the numerator is restricted to the trees containing an edge between nodes k
and l. Most works on tree-structured graphical model inference rely on an algebraic result called
the Matrix-Tree theorem that allow to compute the sums above as determinants. As noticed by
Kirshner (2007), the computation of posterior probabilities for all the edges in this setting can be
achieved with cubic complexity with respect to the number of variables. We provide a new proof
of this result relying on a generalization of the Matrix-Tree theorem to forests. We also derive a
closed-form expression for the entropy of the posterior distribution on trees.

Our last contribution is a simulation study which addresses the influence of the tree assumption
on the accuracy of structure inference for non-tree-structured graphical models. Indeed, the ‘true’
graph is unlikely to be a spanning tree, so computing a maximum a posteriori (MAP) estimate of
the whole graph would for instance yield a systematically wrong answer. However, our approach
is not designed to assess the global structure all at once but to separately assess a collection of
local features of the graph (typically, edges). The rationale is that the inference of such features
is weakly affected by the restriction to spanning tree. In the simulation study, we demonstrate
that, as long as edge inference is concerned, the tree-based approach provides similar results as
this obtained when considering a larger class of graphs, but with a dramatic reduction of the
computational time.

An R-language package saturnin implementing the approach presented here is available from
the Comprehensive R Archive Network at https://cran.r-project.org/web/packages/
saturnin/.

In Section 2, we provide some background on graphical models and Markov properties be-
fore writing down the full model in which the inference is performed. Priors for tree structures
and distributions are defined in Section 3. Section 4 deals with the inference of the model. In-
tegrations with respect to distributions and structures are respectively discussed in Sections 4.1
and 4.2. The simulation study and its results are described in Section 5. An application to flow
cytometry data is presented in Section 6.

2. Background & model

2.1. Markov properties & graphical models

Let V = {1, ..., p} and let X = (X1, ...,Xp) be a random vector indexed by V and taking values in
a product space X =

⊗p
i=1 Xi. We let F denote the set of distributions on X . For any subset

A of V , XA stands for the subvector of X indexed by A. We also let P2(V ) denote the subsets of
V of size 2. For E ⊆P2(V ), G = (V,E) is the undirected graph with vertices V and edges E. In
the following, the notation of Dawid and Lauritzen (1993) will be used. We refer the reader to
the appendix of their article for a quick introduction to graph terminology and graphical models,
or to (Lauritzen, 1996) for a more detailed overview.

Journal de la Société Française de Statistique, Vol. 160 No. 2 1-23
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238

https://cran.r-project.org/web/packages/saturnin/
https://cran.r-project.org/web/packages/saturnin/


4 One, Two and Three

A pair (A,B) of subsets of V is said to be a decomposition of G if V = A∪B, if the subgraph
induced by G on A∩B is complete (i.e. fully connected) and if A∩B separates A from B (i.e. any
path from A to B goes through A∩B). When A and B are both proper subsets of V , the decompo-
sition is said to be proper. Here we restrain our attention to decomposable graphs, namely graphs
that are either complete or for which there exists a proper decomposition into two decomposable
subgraphs. For graphs, the decomposability property is equivalent to the chordality property (see
Lauritzen, 1996).

Definition 1. A distribution π ∈F is said to be Markov with respect to (w.r.t.) a decomposable
graph G if, for any decomposition (A,B) of G, it holds that XA |= XB|XA∩B under π .

Proposition 1. (Hammersley and Clifford, 1971) Let π ∈F . If π is a positive distribution (for
all x∈X , π(x)> 0), being Markov w.r.t. a decomposable graph G is equivalent to the existence
of a factorisation of π on the (maximal) cliques of G.

We will focus on distributions that are Markov w.r.t. to connected graphs without any cycles.
Such graphs are called spanning trees and their maximal cliques are of size 2. Thus, a positive
distribution that is Markov w.r.t. a tree T = (V,ET ) can be factorised on the edges of the tree,
using the marginal distributions of order 1 and 2, denoting πi and πi j, respectively, for i 6= j both
in V :

∀x ∈X , π(x) = ∏
i∈V

πi(xi) ∏
{i, j}∈ET

πi j(xi,x j)

πi(xi)π j(x j)

(see e.g. Meilă and Jaakkola, 2006). Such distributions will be referred to as tree distributions in
the following.

Definition 2. A graphical model mG
..= (G,FG) is given by a decomposable graph G and a

family of distributions FG ⊆F that are Markov w.r.t. G.

Let mG = (G,FG) be a graphical model. To avoid any confusion, distributions on a set of
distributions will be called hyperdistributions. For π ∈FG and A,B ⊆ V , we let πA denote the
marginal distribution obtained from π on the variables XA, and πB|A denote the collection of
conditional distributions of XB|XA under π . If ρ is a hyperdistribution on FG, we also let ρA and
ρB|A respectively denote the marginal hyperdistribution induced by ρ on πA and the collection of
hyperdistributions induced by ρ on πB|A.

Definition 3. A hyperdistribution ρ is said to be strong hyper Markov w.r.t. G if, for any decom-
position (A,B) of G, it holds that πA |= πB|A under ρ .

Such hyperdistributions will be useful to define priors on distribution spaces.

2.2. Model for Bayesian inference of graphical models based on trees

Let T denote the set of spanning trees on V . For any tree T ∈T , we consider a graphical model
mT = (T,FT ) with a family of positive distributions FT ⊆F Markov w.r.t. T . As we consider
a Bayesian framework, we need to define prior distributions for T and for π conditionally on T .
This is dealt with in Section 3. The full Bayesian model is hierarchically described as follows.
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Closed-form Bayesian inference of graphical models using trees 5

We first draw a random tree T ∗ in the set of spanning trees, then a distribution π in FT and
finally X according to π . Defining a prior on tree distributions could be especially troublesome
since it needs to be defined for every graphical model mT . The idea is to require these hyper-
distributions to be strong hyper Markov w.r.t. to their trees, so that they can be built from local
hyperdistributions defined on the edges and chosen once and for all trees. This choice of priors
and the fact that we only consider trees as possible structures make the inference of the graph in
our model tractable in an exact manner.

3. Priors on tree structures & distributions

The cardinality of T is pp−2. Thus, restraining possible structures to spanning trees still leaves
us with a large collection of graphical models to consider. Nonetheless, a suitable choice of
priors on tree structures and parameters leads to a tractable situation. Meilă and Jaakkola (2006)
define what they call decomposable priors under which parameters can be dealt with at the edge
level. The integration over the set of trees can then be performed exactly using algebra. We will
make use of strong hyper Markov hyperdistributions (Dawid and Lauritzen, 1993) to define our
priors, but the idea is basically the same. Let D = (x(1), ...,x(n)) be an independent sample of size
n≥ 1 drawn from X. Our goal is to define a prior distribution ξ on (T,π) such that the posterior
distribution on trees ξ (·|D) factorises over the edges, i.e.

ξ (T |D) =
1
Z ∏
{i, j}∈ET

ωi j, ∀T ∈T , (1)

where ω = (ωi j)(i, j)∈V 2 is a symmetric matrix with non-negative values and Z =

∑T∈T ∏{i, j}∈ET ωi j is a normalising constant. Both ω and Z obviously depend on the data D,
but we drop the dependence in the notations for the sake of clarity.

3.1. Prior on tree structures

Let β = (βi j)(i, j)∈V 2 be a symmetric matrix with non-negative values such that the support graph
Gβ = (V,Eβ ) of β , where Eβ

..=
{
{i, j} ∈P2(V ) : βi j > 0

}
, is connected. We consider a prior

distribution ξ on T that factorises over the edges,

ξ (T ) =
1
Z0

∏
{i, j}∈ET

βi j, ∀T ∈T . (2)

The assumption about β is here to serve as a guarantee that β induces a proper distribution on
trees; ξ can typically be taken as a uniform distribution on T .

3.2. Prior on tree distributions

As Bayes’ rule states that ξ (T |D) ∝ ξ (T )p(D|T ), we are now interested in the marginal likeli-
hood of the data under a tree model mT ,

p(D|T ) =
∫

FT

p(D|π)p(π|T )dπ. (3)
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6 One, Two and Three

For every T ∈T , we have to define a prior distribution on FT such that the marginal likelihood
p(D|T ) can also be factorised on the edges.

Let T be a tree and ρT be a strong hyper Markov hyperdistribution on FT . Such hyperdistri-
butions have an interesting property regarding the marginal likelihood p(D|T ).

Proposition 2. (Dawid and Lauritzen, 1993, Prop. 5.6) If ρT is strong hyper Markov w.r.t. T ,
then the marginal likelihood p(D|T ) is Markov w.r.t. to T .

This means that the marginal likelihood can be factorised on the edges of T . For i ∈ V , let
Di = {x(1)i , ...,x(n)i } be the observed data restricted to Xi. The integral given in (3) can then be
rewritten as

p(D|T ) =
∫

π(D)ρT (π)dπ = ∏
i∈V

p(Di|T ) ∏
{i, j}∈ET

p(Di,D j|T )
p(Di|T )p(D j|T )

(4)

where, for all (i, j) ∈V 2,

p(Di,D j|T ) =
∫

πi j(Di,D j)ρ
T
i j(πi j)dπi j; (5)

p(Di|T ) =
∫

πi(Di)ρ
T
i (πi)dπi.

The calculation of these integrals will be addressed in Section 4.1.
We now explain how to choose ρT for all T so that the hyperdistributions of {πi j}{i, j}∈P2(V )

do not depend on T . Let us consider a general hyperdistribution ρ on F such that, for any A⊆V ,
under ρ ,

πA |= πV\A|A. (6)

This means that ρ is strong hyper Markov w.r.t. the complete graph over V .

Proposition 3. (Dawid and Lauritzen, 1993, §6.2) For any tree T ∈ T , there exists a unique
hyperdistribution ρT on FT that is strong hyper Markov w.r.t. T and such that, for every edge
{i, j} ∈ ET , ρT

i j = ρi j. The collection {ρT}T∈T is said to be a (hyper) compatible family of strong
hyper Markov hyperdistributions.

Proposition 3 guarantees that all ρT are strong hyper Markov w.r.t. T . By Proposition 2, for
all T ∈ T , the marginal likelihood under ρT is Markov w.r.t. T . Moreover, the compatibility of
the family {ρT}T∈T makes the dependence on T in the local marginal distributions given in (5)
irrelevant. They can be computed once and for all for every {i, j} ∈P2(V ). With this choice of
hyperdistributions, the factorisation property needed for the posterior tree distribution (Eq. 1) is
satisfied with

ωi j = βi j
p(Di,D j)

p(Di)p(D j)
, ∀(i, j) ∈V 2. (7)

A full description of the model is given in Figure 1.
Proposition 3 shows that we do not need to have access to the full basis hyperdistribution

to specify a compatible family of strong hyper Markov hyperdistributions. It is indeed enough
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Closed-form Bayesian inference of graphical models using trees 7

to provide a consistent family of pairwise hyperdistributions {ρi j}P2(V ), where the consistency
property must be understood in the sense that two hyperdistributions involving a common vertex
should induce the same marginal hyperdistribution on this vertex. This is automatically satisfied
when {ρi j}{i, j}∈P2(V ) is obtained from a fully specified hyperdistribution ρ . In order to obtain
strong hyper Markov hyperdistributions when combining these pairwise hyperdistributions, we
shall additionally require that, for all i, j ∈ V , πi| j |= π j under ρi j (Dawid and Lauritzen, 1993,
Prop. 3.16), meaning that ρi j is strong hyper Markov w.r.t. the graph on {i, j} where vertices i
and j are connected.

4. Inference in tree graphical models

Different inference tasks can be performed on graphical models. One might be interested in
estimating the emission distribution of X . Chow and Liu (1968) described an algorithm that can
be used to get the tree distribution maximizing the likelihood of discrete multivariate data in
the frequentist equivalent of the model given in the previous section. It can easily be adapted to
MAP estimation in a full Bayesian framework (Meilă, 1999). It is also possible to look at the
posterior predictive distribution p(x|D) = ∑T∈T p(x|T )ξ (T |D) (Meilă and Jaakkola, 2006). In
some other situations, the dependence structure between the variables, that is the graph G, might
be the only object of interest. Lin et al. (2009) were for instance interested in the probability of an
edge appearing in a tree. They looked out for the matrix β maximising the likelihood of the data
under a mixture of all possible tree models, where the probability of a tree model is defined just
as in (2). In their approach, the parameters of the models are estimated with plug-in estimators.
Even if the distribution on trees cannot be called a prior in the traditional sense, the likeness to
the model that we have described is obvious.

Here we are also interested in the probability for edges to appear in a tree, but in a full Bayesian
framework. Formally, we would like to compute, for any edge {k, l},

P({k, l} ∈ ET ∗ |D,ξ ) = ∑
T∈T :ET3{k,l}

ξ (T |D). (8)

The previous section shows that achieving this requires two things. First, we have to get access
to ω by computing local marginal likelihoods, which amounts to integrating w.r.t. π (Section
4.1). Then comes in the integration over the set of trees, that can be performed exactly using an
algebraic result called the Matrix-Tree theorem (Section 4.2).

T | β ∼ ξ ;

π| T,ρ ∼ ρ
T ;

X | π ∼ π. π

ρ

T X

β

Figure 1: Compatible strong hyper Markov tree model.
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8 One, Two and Three

4.1. Integration with respect to π

Thanks to the strong hyper Markov property required for the hyperdistributions, the integration
on π can be performed locally and the compatibility ensures that these local integrated quantities
can be passed from one tree graphical model to another whenever they are needed. Thus, the
integrations are always carried out on sets of bivariate distributions, with p(p+ 1)/2 of them
to be computed. The small dimension of each of the involved problems makes it possible to
consider numerical or Monte Carlo integration. We begin by describing a framework based on
tree-structured copulas where it might be needed, depending on the choice of local copulas. We
then present two settings where the local integrated likelihood terms can be computed exactly by
using conjugate priors for the local distributions.

4.1.1. Tree-Structured Copulas

Let us assume that X = [0,1]p. If we make the assumption that the marginal distribution of each
variable is uniform, the joint distribution for X is called a copula. Here we are interested in a
subset of these distributions called the tree-structured copulas (Kirshner, 2007). We let U denote
the uniform distribution on [0,1] and we assume that, for all i ∈ V , Xi ∼ U . We are basically
considering a copula model where the marginal data distributions have been dealt with in a
relevant manner, independently from our model. For any i ∈ V , the marginal hyperdistribution
ρi for πi is then a Dirac distribution concentrated on U , denoted by δU . Defining a compatible
family of hyperdistributions requires that we consider pairwise hyperdistributions with marginals
equal to δU . Such hyperdistributions are in fact defined on bivariate copulas.

As an example, we consider the particular class of Archimedean copulas (Nelsen, 2006). The
cumulative distribution function (cdf) of such copulas admit a simple expression. Let ψ : [0,1]→
R+ ∪{∞} be a continuous, strictly decreasing function such that ψ(1) = 0. Its pseudo-inverse
ψ [−1] : R+∪{∞}→ [0,1] is the continuous function defined by

∀t ∈ R+∪{∞}, ψ
[−1](t) =

{
ψ−1(t) if 0≤ t ≤ ψ(0),
0 otherwise.

Let us remark that if ψ(0) = ∞, ψ [−1] = ψ−1. The cdf of the Archimedean copula generated
by ψ is given by Cψ(xi,x j) = ψ [−1](ψ(xi)+ψ(x j)). Function ψ is said to be a generator of the
copula Cψ . There is an extensive list of commonly used families of generators, many of them
being governed by one or more parameters. Once again, we refer the reader to Nelsen (2006)
for a detailed list of such generators. We can mention the well-known Gumbel copulas as an
example.

Let {i, j} be a given edge. If we consider an identifiable parametric family of Archimedean
copulas {Cθ}θ∈Θ, Θ⊆R, defined by parametric generators {ψθ}θ∈Θ, there is a one-to-one map-
ping ϒ between θ and the distributions πi j on (Xi,X j). A pairwise hyperdistribution ρi j for πi j

is then defined by any distribution κ for θ through the identity ρi j(πi j) = κ
(
ϒ−1(πi j)

)
and the

integrated pairwise distribution p(xi,x j) is given by

p(xi,x j) =
∫

Θ

∂ 2Cθ

∂xi∂x j
(xi,x j)κ(θ)dθ , ∀(xi,x j) ∈ [0,1]2. (9)
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Closed-form Bayesian inference of graphical models using trees 9

Such a family of pairwise hyperdistributions is bound to be consistent since all marginals are
equal to δU . Morever, the global hyperdistributions that we obtain from this family are strong
hyper Markov since it holds that, for i, j ∈V , πi| j |= π j under ρi j.

The integrals given in (9) shall be computed exactly or through numerical integration depend-
ing on the choice of the copula family. This choice needs not be the same for all the edges.
In the case of Gumbel copulas, a numerical or Monte Carlo integration is required. Bivariate
Gaussian copulas would also be a valid choice. The pairwise hyperdistributions could then be
specified through Wishart distributions for the precision matrices of the copulas, just like in the
full Gaussian case described in Section 4.1.3.

4.1.2. Multinomial Distributions

We now consider the case where all Xi are discrete, taking values in finite spaces Xi of size ri

respectively. Let X be the Cartesian product of spaces Xi. A distribution for X is given by a
probability vector θ in

Θ =

{
θ ∈ [0;1]|X |

∣∣∣∣∣ ∑
x∈X

θ(x) = 1

}
.

This is the set of multinomial distributions on X . It happens that the conjugate Dirichlet dis-
tribution is satisfying the condition given in (6) necessary to build a compatible family of
strong hyper Markov hyperdistributions. Let λ = (λ (x))x∈X be a family of positive numbers
indexed by X . For θ ∈ Θ, we let D(λ ) denote the Dirichlet distribution, with density f (θ |λ ) ∝

∏x∈X θ(x)λ (x)−1.

Proposition 4. (Dawid and Lauritzen, 1993, Lemma 7.2) Let A ⊆ V and B = V \ A. For all
xA ∈XA, we define λA(xA) ..= ∑y,yA=xA

λ (y). If θ ∼D(λ ), then θA ∼D(λA) and θA |= θB|A.

It results from the fact that, if {Yk}K
k=1 are independent random variables distributed as Γ(λk,θ)

respectively and if V ..= ∑
K
k=1Yk, then (Y1/V, ...,YK/V ) ∼ D(λ ). Proposition 4 states that any λ

gives rise to a hyperdistribution ρ on the multinomial family of distributions from which we can
build a family of compatible strong hyper Markov hyperdistributions and that the marginal hy-
perdistributions are also Dirichlet distributed. The conjugacy can then be used locally to compute
ω . These hyperdistributions were referred to as hyper-Dirichlet laws in (Dawid and Lauritzen,
1993, §7.2.2).

As mentioned in Section 3.2, specifying a full set of hyperparameters λ is in fact not neces-
sary to define the family of hyperdistributions {ρT}T∈T . We only need a consistent family of
{λi j}(i, j)∈V 2 , in the sense that, for (i, j,k) ∈ V 3, λi j and λik should induce the same λi. A pos-
sibility is to use an equivalent sample size N and to set, for all (i, j) ∈ V 2, λi j

..= N/rir j and
λi

..= N/ri. If all Xi are of equal size r, one can choose N = r2/2 so that all λi j are equal to 1/2
to mimic Jeffreys priors for the bivariate distributions on the edges. However, this choice will not
induce global Jeffreys priors, which do not belong to hyper-Dirichlet hyperdistributions (York
and Madigan, 1992). For an edge {i, j}, we let λ ′i j denote the updated hyperparameters for the
edge {i, j} given by λ ′i j(`,`

′) = λi j(`,`
′)+∑

n
k=1 δxk

i ,`
δxk

j ,`
′ , ∀(`,`′) ∈Xi×X j, where δx,` = 1 if
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10 One, Two and Three

x = ` and 0 otherwise. The matrix ω defined in (7) is then given by (Meilă and Jaakkola, 2006)

ωi j =βi j ∏
`∈Xi

Γ(λi(`))

Γ(λ ′i (`))
∏

`′∈X j

Γ(λ j(`
′))

Γ(λ ′j(`
′)) ∏

(`,`′)∈Xi×X j

Γ(λ ′i, j(`,`
′))

Γ(λi, j(`,`′))

where Γ denotes the gamma function. If R = maxi∈V ri, computing ω requires O(np2R2) opera-
tions (Meilă and Jaakkola, 2006).

4.1.3. Gaussian Distributions

Whenever X is real-valued, one might work under the assumption that X is Gaussian-distributed
with mean µ and inverse covariance matrix Λ. The conjugate normal-Wishart distribution is then
a natural choice of prior for (µ,Λ). We let nW (ν ,λ ,α,Φ) denote the normal-Wishart distribu-
tion hierarchically defined by

Λ∼W (α,Φ), µ|Λ∼N (ν ,(λΛ)−1),

where W (α,Φ) stands for the Wishart distribution with α > p− 1 degrees of freedom and
positive-definite parametric matrix Φ. Geiger and Heckerman (2002) showed that the normal-
Wishart distribution satisfies the parameter independence property given in (6). They fur-
ther proved that this property coerces the distribution to be normal-Wishart whenever p ≥ 3.
It can thus be used to build a compatible family of strong hyper Markov hyperdistribu-
tions. Moreover, for any partitioning (A,B) of V , XA ∼ N (µA,

(
ΛA−ΛABΛ

−1
B ΛT

AB

)−1
) and

(µA,ΛA − ΛABΛ
−1
B ΛT

AB) is also normal-Wishart-distributed with parameters (νA,λ ,α − p +
l,ΦA−ΦABΦ

−1
B ΦT

AB) where all indices are understood as partitioning of the corresponding vec-
tors and matrices according to (A,B).

The pairwise marginal likelihoods can then be computed by updating the hyperparameters of
the basis hyperdistribution to (ν ′,λ ′,α ′,Φ′), applying classical Bayesian updating formulæ. The
locally updated hyperparameters are then derived from the globally updated ones and

p(Di,D j) ∝
|Φ{i, j}|

α−p+2
2

|Φ′{i, j}|
α ′−p+2

2

, p(Di) ∝
|Φi|

α−p+1
2

|Φ′i|
α ′−p+1

2

, (10)

where, for a matrix M and i, j ∈ V , M{i, j} denotes the submatrix of size 2 corresponding to
vertices i and j. This result is given in the work of Kuipers et al. (2014) as a correction to the
erroneous result stated in Geiger and Heckerman (2002).

The compatible hyperdistributions built on (µ,Λ) are called hyper-normal-Wishart distribu-
tions. One can notice that Λ−1 follows a hyper-inverse-Wishart distribution (Dawid and Lau-
ritzen, 1993, §7.3.2).

4.2. Integration with respect to T

We assume that we have knowledge of ω . The computation of ω has a typical complexity of
O(np2). The complexities mentionned in this section leave out this prior computation step. Given
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Closed-form Bayesian inference of graphical models using trees 11

ω , we know ξ (·|D) up to the normalising constant Z. For an edge {k, l}, gaining access to
P({k, l} ∈ ET ∗ |D,ξ ) means being able to sum the posterior tree distribution over the trees that
borrow edge {k, l}. Because we are only considering trees, these summations can be efficiently
performed.

Let ω = (ωi j)(i, j)∈V 2 be a symmetric weight matrix such that, for all i ∈ V , ωii = 0, and with
non-negative off-diagonal terms. The weight of a graph G = (V,EG) is defined as the product of
the weights of its edges, ωG

..= ∏{i, j}∈EG
ωi j. The Laplacian ∆ = (∆i j)(i, j)∈V 2 of ω is given by

∆i j =−ωi j if i 6= j and ∆ii = ∑ j∈V ωi j for i∈V . For U ⊆V , we defined ∆U as the matrix obtained
from ∆ by removing the rows and columns corresponding to U , with rows and columns indexed
by V \U .

Theorem 1 (Chaiken, 1982). Let ∆ be the Laplacian of a weight matrix ω . Then all minors
|∆{u}|, u ∈V , are equal and |∆{u}|= ∑T∈T ωT .

We directly get the normalising constant of ξ (T |D) from this result.
There is a more general version of this theorem concerning graphs whose connected compo-

nents are spanning trees on their respective sets of vertices. Such graphs are called forests.

Theorem 2 (All Minors Matrix-Tree theorem, Chaiken, 1982). Let ∆ be the Laplacian of a
weight matrix ω and U ⊆ V . Let FU be the set of forests on V with |U | connected components
such that, for any two vertices u1,u2 ∈U, u1 and u2 are not in the same connected component.
Then |∆U |= ∑F∈FU ωF .

Briefly speaking, U can be seen as a set of “roots" (even though the models are not directed)
for the trees of the forests in FU . If U is taken equal to a single vertex, then the forests in FU

only have one connected component which is a tree and we get Theorem 1. This theorem will be
used in the proof of the following result that was first stated by Kirshner (2007).

Theorem 3 (Kirshner, 2007). Let ω be defined as in (7) and ∆ be the associated Laplacian. Let
u be a vertex in V . We define matrices Q and M respectively by

Qkl =

{ [(
∆{u}

)−1
]

kl
if k, l 6= u,

0 otherwise,
(11)

Mkl = Qkk +Qll−2Qkl. (12)

Then, for all {k, l} ∈P2(V ),

P({k, l} ∈ ET ∗ |D,ξ ) = ωkl ·Mkl (13)

A proof of this result is provided in the extended version of (Kirshner, 2007) available online.
We provide a shorter version relying on the generalized version of the Matrix-Tree theorem given
above.

Proof. Let {k, l} be an edge in P2(V ). Let Z, Z+
kl and Z−kl respectively denote the sums of ωT

over the sets T , {T ∈ T : {k, l} ∈ ET} and {T ∈ T : {k, l} 6∈ ET}. It is immediate to see
that Z = Z+

kl +Z−kl . Lemma 3 of (Meilă and Jaakkola, 2006) states that ∂Z
∂ωkl

= Mkl|∆{u}| = MklZ
where M is defined as in (12). It is easy to see that Z−kl can be obtained by applying Theorem 1

Journal de la Société Française de Statistique, Vol. 160 No. 2 1-23
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



12 One, Two and Three

to a weight matrix equal to ω except for the terms ωkl and ωlk that are set to 0. This means that
Z−kl does not depend on ωkl and ∂Z

∂ωkl
=

∂Z+
kl

∂ωkl
.

We then use Theorem 2 to get an expression of Z+
kl . Indeed, there is a one-to-one correspon-

dence between the set of forests rooted in k and l (denoted by F{k,l}) and the set of trees borrow-
ing edge {k, l}. Going from one to the other is just a matter of adding or removing edge {k, l}.
Then, by Theorem 2,

Z+
kl = ωkl ∑

F∈F{k,l}
ωF = ωkl · |∆{k,l}|. (14)

|∆{k,l}| does not depend on ωkl since the only terms of ∆ that depend on ωkl are ∆kl , ∆lk, ∆kk, ∆ll
and these terms are all withdrawn in ∆{k,l}. Therefore,

|∆{k,l}|=
∂Z+

kl
∂ωkl

=
∂Z

∂ωkl
= Mkl ·Z. (15)

Combining (14) and (15) with the fact that P({k, l} ∈ ET |D,ξ ) = Z+
kl/Z, we get the claimed

result.

Theorem 3 shows that posterior probabilities can be computed for all edges at once by
inverting a matrix of size p−1, amounting to a total complexity of O(p3).

4.2.1. Posterior moments of node degrees

The aim of structure inference is to decipher the dependency structure of a set of random variable.
In this perspective, the degree of vertex k (i.e. its number of neighbors) in the graph informs us
about the centrality of the corresponding variable Xk in the system. Denoting Nk this degree, we
can easily derive the posterior mean of Nk from the end of the proof of Theorem 3 as

E[Nk|D] = ∑
l 6=k

Z+
kl/Z = ∑

l 6=k
P({k, l} ∈ ET ∗ |D,ξ )

The posterior variance of Nk can also be computed for all vertices with total complexity O(p3).
The proof of this result is based on the following lemma giving some the second-order derivatives
of the normalising constant Z.

Lemma 1. Let ω be defined as in (7) and ∆ be the associated Laplacian. Let u be a vertex in V
and Q defined as in Theorem 3. For k ∈V , let M(k) be the matrix whose general term is given by

M(k)
l1l2 = Mkl1Mkl2−M2

k,l1,l2 ,

where Ml1l2 is defined as in (12) and Mk,l1,l2
..= Qkk +Ql1l2 −Qkl1 −Qkl2 . Then, for k, l1, l2 ∈ V

that are pairwise distinct, it holds that

∂ 2Z
∂ωkl1∂ωkl2

= Z ·M(k)
l1l2 .
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Closed-form Bayesian inference of graphical models using trees 13

The proof of this lemma is given in the Appendix.

Theorem 4. Let ω be defined as in (7) and ∆ be the associated Laplacian. Let u be a vertex in
V and Q be defined as in Theorem 3. Then, for all k ∈ V , we let V(Nk|D) denote the posterior
variance of Nk and it holds that

V(Nk|D) = E[Nk|D] (1−E[Nk|D])+ ∑
l1 6=k,l2 6=k

l1 6=l2

ωk,l1ωk,l2M(k)
l1,l2 . (16)

Proof. We have that

E[N2
k |D] = ∑

l1 6=k
l2 6=k

E[1{k,l1}1{k,l2}|D].

Let l1, l2 ∈ V \ {k} such that l1 6= l2. There is a one-to-one correspondence between the set of
trees borrowing edges {k, l1} and {k, l2}, and the forests rooted in {k, l1, l2}. Using Theorem 2
and Lemma 1, we deduce that

E[1{k,l1}1{k,l2}|D] = ωk,l1ωk,l2M(k)
l1,l2

by a reasoning similar to the one used in the proof of Theorem 3. The expression given in (16) is
then easily derived.

Theorem 4 shows that the posterior variance for the degree of all vertices can be obtain di-
rectly at virtually no extra cost once posterior edge probabilities have been computed, since both
computations rely on the inversion of the same matrix.

4.2.2. Posterior entropy

In a Bayesian framework, the posterior entropy gives insight about the concentration of the poste-
rior distribution, which is for instance of particular interest when a MAP approach is considered.
The computation of this quantity is not always straightforward, but here, it can be obtained at
small cost once posterior probabilities for the edges have been computed.

Proposition 5. The entropy of the posterior distribution on trees ξ (·|D) can be computed with
complexity O(p3).

Proof. We show that the entropy has a simple expression depending on Z and (P({k, l} ∈
ET ∗ |D,ξ )){k,l}∈P2(V ) which can both be computed with complexity O(p3) through Theorems
1 & 3. Indeed,

H(ξ (·|D)) =− ∑
T∈T

ξ (T |D) log(ξ (T |D))

= ∑
T∈T

1
Z ∏
{i, j}∈ET

ωi j

(
log(Z)− ∑

{k,l}∈ET

log(ωkl)

)

= log(Z)− ∑
{k,l}∈P2(V )

log(ωkl)

Z ∑
T3{k,l}

∏
{i, j}∈ET

ωi j

= log(Z)− ∑
{k,l}∈P2(V )

log(ωkl)P({k, l} ∈ ET ∗ |D,ξ ).
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14 One, Two and Three

4.2.3. Controlling prior edge probability

If the distribution on trees is not strongly peaked, the prior probability for an edge to appear
in a random tree can be quite small. For instance, the uniform distribution on T leads to any
edge appearing with probability 2/p. Indeed, no edge is favoured and each tree borrows p− 1
of the p(p− 1)/2 possible edges. We consider an edge {k, l} ∈P2(V ) and the event Ekl

..=
{T : {k, l} ∈ ET}. We let p0

kl and pkl respectively denote the prior and posterior probabilities of
event Ekl . These probabilities are obtained through Theorem 3.

In a decision perspective, it might be desirable to allow some control on the prior probability
of Ekl . To this aim, we use a binary random variable εkl ∼B(λkl) explicitly controlling the status
of edge {k, l} in the random tree:

p(T |εkl,ξ ) =

{
ξ (T |Ekl) if εkl = 1
ξ (T |E kl) if εkl = 0

.

In particular, the choice λkl = 1/2 takes us back to a non-informative prior configuration regard-
ing Ekl . We obtain the model represented in Figure 2 in which the fully marginal likelihood can
be written as

p(D) = λkl p(D|Ekl)+(1−λkl)p(D|E kl).

We are now interested in the posterior distribution of εkl .

Proposition 6.

P(εkl = 1|D) = λkl
pkl

p0
kl
·
[

λkl
pkl

p0
kl
+(1−λkl)

1− pkl

1− p0
kl

]−1

Proof.

P(εkl = 1|D) =
p(D|εkl = 1)P(εkl = 1)

p(D)
= λkl

p(D|Ekl)

p(D)

= λkl p(D|Ekl) ·
[
λkl p(D|Ekl)+(1−λkl)p(D|E kl)

]−1

= λkl
pkl

p0
kl
·
[

λkl
pkl

p0
kl
+(1−λkl)

1− pkl

1− p0
kl

]−1

εkl T π X

β ρ

Figure 2: Model with variable εkl explicitly controlling the status of edge {k, l} in T .
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Closed-form Bayesian inference of graphical models using trees 15

The computation of P(εkl = 1|D) for all edges can be achieved in O(p2) time from the pos-
terior edge probability matrix {pkl}{k,l}∈P2(V ). We can notice that P(εkl = 1|D) is a strictly in-
creasing function of pkl . When the initial prior on trees ξ is uniform and all λkl are taken equal,
the order induced on the edges by {P(εkl = 1|D)}{k,l}∈P2(V ) is identical to the order induced by
the posterior edge probability matrix. The ROC and PR curves that are commonly used to assess
network inference accuracy therefore remain unchanged.

5. Behavior on synthetic data

In this section, we use synthetic data to meet a twofold objective. On one hand, the aim of this
study is to show that there is an advantage in averaging over trees rather than considering a sin-
gle MAP estimate. On the other hand, we show that assuming a tree structure is not substantially
more detrimental to the accuracy of the inference of non-tree-structured graphical models than
assuming a DAG structure. To do so, we compare our method with another fully Bayesian in-
ference method carried out on DAGs, described by Niinimäki et al. (2016) and implemented in
the BEANDisco software. Computations for our approach were performed with the R package
saturnin.

5.1. Simulation scheme

We have chosen three networks with p = 20 vertices. The first one is a spanning tree. The second
and third graphs are not spanning trees and respectively have as many and twice as many edges
as the first one. These graphs are shown in Figure 3. We then simulated data according to a
multinomial model with Xi = {1,2,3} for i ∈ V . For each graph G, we have chosen a DAG D
with skeleton equal to G. We let par(i,D) stands for the set made of the parents of vertex i in
DAG D. For X ∈ {1,2,3}p, we let ND

i (r;X) ..=
∣∣{ j ∈ par(i,D) : X j = r

}∣∣ denote the number of
parents of vertex i in D taking value r ∈ {1,2,3} in X. Then, conditionally on D, we used the
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Figure 3: Gold standard networks in the simulation study.
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16 One, Two and Three

following distribution for X: P(Xi = r) = 1/3 if par(i,D) =∅ and

P
(
Xi = r|Xpar(i,D)

)
∝ η ·ND

i (r;X)+1 if par(i,D) 6=∅.

As the variables at root vertices are drawn uniformly, it can be shown that all variables are
marginally uniformly distributed by a symmetry argument. Here, η was set to 0.5. For n = 25,
50, 75, 100 and 200, we generated 100 samples of size n.

We then considered the Multinomial/Dirichlet framework described in Section 4.1.2, setting
the prior on trees ξ to the uniform and the equivalent prior sample size N to 32/2 = 4.5 (see
Section 4.1.2). For each data set, we computed

— the MAP tree structure through a Maximal Spanning tree algorithm (Prim, 1957) applied
to ω;

— the matrix of posterior edge probabilities P({k, l} ∈ET ∗ |D) in our model. For all the edges,
the prior appearance probability was set to λkl = 1/2 (see Section 4.2.3);

— an estimation of the matrix of posterior edge appearance probabilities in a random DAG
obtained by MCMC sampling (Niinimäki et al., 2016). We refer the reader to this paper
for details on the prior distribution on DAGs. We ran the code provided by the authors
with default parameters. The sampling was performed for one minute on each dataset. The
direction of the edges of the sampled DAGs was not taken into account to get empirical
frequencies for all undirected edges.

The accuracy of the inference was evaluated against the true undirected adjacency matrix, ac-
cording to the yielded outputs. In the case of the MAP estimate, we calculated the True and False
Positives Rates (TPR, FPR) between the best tree and the true graph. These rates are constrained
by the fact that a spanning trees on p vertices has exactly p−1 edges. For the (estimated) poste-
rior edge appearance probability matrices, ROC and PR curves against the true adjacency matrix
are plotted and summarized by the area under the curves.

5.2. Results

Comparison with MAP Figure 4 simultaneously represents the (TPR, FPR) scores and the
ROC curves obtained for the MAP estimate and the tree posterior edge appearance probability
matrix respectively. It makes sense to plot both results on the same graph since a ROC curve is
just a succession of (TPR, FPR) points computed as more and more edges are selected, going
from the most to the least likely. When p−1 edges are selected, both methods behave similarly.
So, if there is external evidence that the true graph is in fact a tree, a MAP approach could be
considered but using posterior edge probabilities would do as well. Nonetheless, when the true
graph is not a tree, the MAP approach is penalised by its lack of flexibility. Computing posterior
appearance probabilities for the edges allows to retain an arbitrary number of edges. The balance
between selectivity and sensibility achieved by the MAP approach can obviously be improved by
selecting more edges. An other argument in favour of considering the whole posterior distribution
on trees instead of the MAP is presented in Figure 5. For all three simulation scenarios, posterior
tree distributions are not really peaked around their modes, especially for small samples. The
second most probable tree is always very close to the MAP. Moreover, the entropy of the posterior
distribution on trees behaves similarly across all simulation scenarios.
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Closed-form Bayesian inference of graphical models using trees 17

Tree Non-tree, low density Non-tree, high density

0.0 0.1 0.2 0.3

Figure 4: ROC curves for the posterior edge probabilities and (TPR, FPR) scores for the MAP
estimate on data sets of size 25, 100 and 200 (from top to bottom). For the ROC curves, the mean
curve is plotted in bold line. The color of a (TPR, FPR) point expresses its frequency within the
100 samples.
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Figure 5: Posterior probability of the MAP tree, ratio to the posterior probability of the second
best tree and entropy of the posterior tree distribution (normalised by the entropy of the uniform
distribution on T , i.e. (p−2) log(p)).
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Figure 6: Area under the ROC (top) & PR (bottom) curves computed for the output of our ap-
proach and of the MCMC sampling algorithm in the set of DAGs.
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Closed-form Bayesian inference of graphical models using trees 19

Influence of the tree assumption We now study the influence of the tree assumption on the
accuracy of structure inference when the true graphical model is not tree-structured. With this
end in view, we consider a similar model where DAGs are drawn instead of trees and use the
posterior edge appearance probabilities yielded by this model as gold standard, as it achieves
the same goal in terms of Bayesian inference within a larger class of graphs. Results are given
in Figure 6. Both algorithms seem to perform equally well in all three scenarios. The accuracy
of the inference expectedly increases with sample size. The results we get here indicate that the
posterior probabilities for the edges to belong to a random tree can be relevant even when the
true network is not a tree, with no clear evidence in favour of considering an inference within the
broader class of DAG structures.

Running time We conclude this section on synthetic data by mentioning running times. For
p = 25, 50 and 75, we respectively observed average running times of 11, 206 and 1393 seconds
for the MCMC approach on DAGs and of 0.2, 1 and 2.2 seconds for our method. While retaining
similar accuracy to the algorithm based on MCMC sampling in the space of DAGs used as
a point of comparison, our algorithm runs significantly faster than the MCMC sampling ran
with default parameters, especially for large networks. Of course, the accuracy of the MCMC
sampling approach could be improved by augmenting the number of samples at the cost of even
longer running times, but we have not observed any evidence going that way.

6. Application to cytometry data

This section presents an application of our approach to flow cytometry data. They have been
collected by Sachs et al. (2005) and were used by Werhli et al. (2006) in a review of network
inference techniques. They are related to the Raf cellular signalling network, which is involved
in many different biological processes, including the regulation of cellular proliferation in hu-
man immune cells. The activation levels of the 11 proteins and phospholipids that are part of this
pathway were measured by flow cytometry. The generally accepted structure of the Raf pathway
is given in Figure 7, but the true structure of this network is not fully understood, despite consid-
erable experimental and theoretical efforts, and may be more subtle. The undirected skeleton of
this network will, however, be used as the gold standard network in our study.

6.1. Data

In flow cytometry experiments, cells are suspended in a stream of fluid and go through a laser
beam one at a time. Different parameters are then measured on each cell by recovering the light
that is reemitted by diffusion or fluorescence. We are interested in the activation levels (also
called phosphorylation levels) of the involved proteins and phospholipids. Such experiments typ-
ically produce samples of several thousands observations. Since all biological network inference
problems are not met by such a profusion of data, Werhli et al. (2006) sampled down 5 samples
of size n = 100 from the data provided by Sachs et al. (2005). We discretised each sample into
r=3 bins and performed the inference on each of them with our algorithm (Tree) and the MCMC
sampling in DAGs algorithm (DAG), as described in the previous section. The accuracy of the
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inference was once again assessed by the area under the ROC and PR curves, averaged on all 5
samples.

6.2. Results

With the DAG approach, we got average areas under the ROC and PR curves of 0.767 and 0.725
respectively (with standard deviation of 0.068 and 0.070). With trees, we respectively got 0.729
and 0.690 for these areas (with standard deviation of 0.047 and 0.051). The DAG approach seems
to perform better than our inference based on trees. These results qualify those of the previous
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Figure 7: Raf pathway.
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(a) Most likely (left) and second most likely (right) trees in the posterior distribution on trees.
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(b) Posterior probabilities for the edges in the tree model (with change of prior probability to λkl = 1/2 for all edges).

Figure 8: Graphical representation of the results obtained on one of the five data sets. The edges
of the golden standard network are colored in blue.
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section. Nonetheless, we would like to make the following points. While not being as accurate,
our approach still provides good results and might in fact be more adapted to bigger problems
where MCMC sampling can hardly be contemplated. Moreover, unlike the simulation study, the
gold standard network against which the accuracy of the inference is assessed here, shown in
Figure 7, is not perfectly known and may still differ quite considerably from the truth.

Figure 8 gives a graphical representation of the results obtained on one of the five data sets,
offering a more detailed overview. We note that the gold standard network as defined here has 20
edges. The two likeliest trees in the posterior tree distribution are given in Figure 8a. Both trees
have 9 true positives out of the p−1 = 10 edges they respectively selected. As expected, most of
these edges also have strong posterior probabilities (Figure 8b). When the prior probabilities of
all edges is brought back to 1/2, we get 13 edges with posterior probabilities strictly greater than
1/2, among which the same true positives as in the MAP estimate. More generally, one could
consider using the histogram of posterior probabilities to empirically find a more appropriate
cut-off.

We did not represent the empirical edge frequencies obtained for DAGs since prior appearance
probabilities could not be easily accounted for in this case, thus making direct comparison with
posterior edge probabilities in trees impossible.

As a conclusion, these results lead us to believe that it might be preferable to favour inference
using DAGs for small problems. When that is no longer possible in a reasonable amount of time,
performing exact inference in a model based on trees is a computationally efficient alternative
that can be used at a limited cost on the accuracy.
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Appendix

Proof of Lemma 1. Let Q be the matrix obtained from Q when row and column u are removed.
Notice that Q =

[
∆{u}

]−1
. For convenience, we also let R ..= ∆{u} = Q−1. The rows and columns

of Q and R are indexed by V ..=V \{u}.
Let k, l1, l2 be pairwise distinct vertices in V . Using Theorem 1 and Lemma 3 of (Meilă and
Jaakkola, 2006), we get that

∂ 2Z
∂ωkl1∂ωkl2

=
∂ 2|R|

∂ωkl1∂ωkl2

=
∂

∂ωkl1
(|R| ·Mkl2)

= |R| ·
[

Mkl1Mkl2 +
∂Mkl2
∂ωkl1

]
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Assume that u 6∈ {k, l1, l2}. Then Mkl2 = Qkk +Ql2l2−2Qk,2 and

∂Qkk

∂ωkl1
= ∑

i, j∈V

∂Qkk

∂Ri j

∂Ri j

∂ωkl1
=− ∑

i, j∈V

QkiQ jk
∂Ri j

∂ωkl1
=−

(
Qkk−Qkl1

)2

where the last identity is obtained by noticing that the only terms of R = ∆{u} that depend on ωkl1
are Rkl1 , Rl1k, Rkk and Rl1l1 . We similarly obtain that

∂Ql2l2
∂ωkl1

=−
(
Ql1l2−Qkl2

)2
,

∂Qkl2
∂ωkl1

=
(
Qkk−Qkl1

)(
Ql1l2−Qkl2

)
.

Putting all pieces together, we get

∂ 2Z
∂ωkl1∂ωkl2

= |R| ·
[
Mkl1Mkl2−

(
Qkk−Qkl1−Qkl2 +Ql1l2

)2
]
,

= Z ·M(k)
l1l2 .

The cases k = u and l2 = u are dealt with similarly.
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