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Résumé : La caractérisation des altérations du nombre de copies dans le génome est d’importance capitale pour

développer une médecine personnalisée en cancérologie. Les puces à SNPs (Single Nucleotide Polymorphism), une

variante de puce à ADN, sont toujours utilisées pour mesurer les profils d’altération du nombre de copies. Parmi

les méthodes d’analyse de profil de SNPs, la méthode GAP (Genome Alteration Print) de Popova et al, basée sur

une segmentation préliminaire de profils issus de puces SNPs, utilise une approche déterministe pour déterminer le

profil du nombre absolu de copies. Nous développons un modèle probabiliste pour la méthode GAP et définissons

un modèle de mélange gaussien dont les centres sont contraints d’appartenir à un réseau dépendant de paramètres

inconnus tels que la proportion de tissu tumoral dans le prélèvement. L’estimation est effectuée à l’aide d’un algorithme

EM (expectation-maximization) permettant d’accéder non seulement aux paramètres mais aussi au nombre altéré de

copies le plus probable sur chaque segment ainsi que la proportion tumorale inconnue. Nous proposons de déduire la

ploïdie tumorale en utilisant un critère pénalisé de choix de modèle. Notre modèle est testé sur des données simulées et

appliqué à un exemple de données de cancer du côlon.

Abstract: Characterizing the genomic copy number alterations (CNA) in cancer is of major importance in order

to develop personalized medicine. Single nucleotide polymorphism (SNP) arrays are still in use to measure CNA

profiles. Among the methods for SNP-array analysis, the Genome Alteration Print (GAP) by Popova et al, based on

a preliminary segmentation of SNP-array profiles, uses a deterministic approach to infer the absolute copy numbers

profile. We develop a probabilistic model for GAP and define a Gaussian mixture model where centers are constrained

to belong to a frame depending on unknown parameters such as the proportion of normal tissue. The estimation is

performed using an expectation-maximization (EM) algorithm to recover the parameters characterizing the genomic

alterations as well as the most probable copy number change of each segment and the unknown proportion of normal

tissue. We claim to deduce the tumor ploidy from penalized model selection criterion. Our model is tested on simulated

and real data.
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1. Introduction

Recent research reveals that personalized medicine is arguably one major way to treat cancer

because of, for example, the immense diversity of underlying genomic alterations. In order
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to develop personalized medicine, characterizing the genomic copy number alterations (CNA)

is a vital component. One way to characterize this alteration is to use a Single Nucleotide

Polymorphism (SNP) array. A SNP is a variation in a single nucleotide (at one given locus in

the genome) showing appreciable variability in the population : namely, >1% occurrence for the

minor allele for the common SNPs, see Figure 1.

FIGURE 1. A SNP example. Credit : https: // fr. wikipedia. org/ wiki/ Polymorphisme_ nucléotidique

Arbitrarily, two variants are denoted as A- and B-allele. Since human chromosomes come in

pairs, three genotypes AA, BB, AB (=BA) are possible to be called for each SNP in the individual

genome. AA or BB genotypes refer to homozygous SNP, and AB (=BA) genotype refers to

heterozygous SNP. SNP-arrays are used to measure the polymorphism in the predefined positions

on a whole genome scale.

Using SNP-arrays in cancer, one can detect genomic alterations such as copy-number change

(when a part of the chromosome is either deleted or duplicated more than once) and allelic

imbalance (when part of chromosome has more copies of one allele). Copy number (CN) esti-

mation is based on the signal intensity from the two alleles (A+B), while allelic imbalance (AI)

is characterized by the “ratio” of signals (A/(A+B)). SNP-array analysis of a cancer sample is

complicated by (1) presence of normal tissue, which diminishes the amplitude of CN and AI

variation ; (2) technical issues affecting signal-to-noise ratio ; and (3) absence of “reference” point

and relative nature of copy number alteration (CNA) profile. Measuring paired tumor-normal

SNP-arrays allows overcoming the issues of signal-to-noise ratio and improving the detection of

unknown proportion p of normal DNA in the tumor sample.

But now, recognition methods have been developed that perform CNA annotation without the

normal pair. They proceeds in two steps : first, CN and AI profile segmentations, and second,

annotation of each segment to have the actual CN and AI discrete states. GenoCNA (Sun et al.,

2009), OncoSNP (Yau et al., 2010), and GPHMM (Li et al., 2011) employ a Hidden Markov

Model (HMM) integrating both profile segmentation and CNA characterization in a single step.

GAP (Popova et al., 2009) and ASCAT (Van Loo et al., 2010) adopt a such two-steps approach

in which the CN and AI profiles are first segmented followed by an optimization step of a

deterministic quality criterion with respect to proportion of normal DNA p. Taking into account

AI and CN profiles, the criterion used in ASCAT (Van Loo et al., 2010) measures a weighted

discrepancy based on several heuristics. Noticing that, for a given p, all possible alterations are

precisely localized in a bi-dimensional plane (CN,AI), the GAP method (Popova et al., 2009)

Journal de la Société Française de Statistique, Vol. 160 No. 1 130-148

http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



132 Keribin, Liu, Popova et Rozenholc

recovers manually the corresponding positions and allocates the mutated segments to a center

given a predefined proximity criterion. Comparison of these methods (Mosén-Ansorena et al.,

2012) shows that the two-steps approaches have better performance.

Using the pattern of CN and AI in the bi-dimensional plane introduced by Popova et al. (2009),

we develop a family of parametric probabilistic models, each driven by the unknown proportion of

normal tissue, and perform the estimation of its parameters, providing not only the most probable

alteration types of each segment, but also a probabilistic distribution of these alterations. In each

model, the estimation uses the maximization of the log-likelihood function with respect to p

together with the estimation of the other parameters such as the variances of the observations.

Moreover, our approach does not use any heuristic or any given tuning parameter. We expect

our strategy to be not only satisfying from a mathematical point-of-view but also brings to the

clinicians an expected probabilistic model for the alterations in a cancer genome.

After this introduction, section 2 describes the biological model and precises how the CNAs

can be localized in a bi-dimensional plane. Section 3 defines the probabilistic model and the

methodology to implement the EM algorithm in this case. Section 4 presents the results on

synthetic and real data sets. The last section is devoted to a discussion.

2. Describing tumor CNA with SNP-arrays

For a given genomic locus, the tumor copy number state is characterized by the number of

replicates of each alleles denoted u and v, with u,v≥ 0 (the value 0 corresponding to a deletion).

At each SNP, given a germline (i.e. normal) status (AA, AB, or BB) characterized by the number

n
g
A of allele A and n

g
B of allele B, the tumor genotype depends on the number of each alleles in

tumor denoted nt
A and nt

B, which could be non-zero if and only if their normal counter part is also

non-zero, as illustrated in Table 1.

germline→ tumoral n
g
A n

g
B nt

A nt
B

(AA→ uAvA) 2 0 u+ v 0

(BA→ uBvA) 1 1 v u

(AB→ uAvB) 1 1 u v

(BB→ uBvB) 0 2 0 u+ v

TABLE 1. Allele counts from u and v replicates of each strand

The tumor genotype is characterized by the overall number of alleles, i.e. copy number (cn),

and the number of B alleles or proportion of B alleles in the genotype, i.e. B-allele frequency (baf)

for allelic imbalance. Measured tumor sample usually represents a mixture of tumor and normal

cells. Hence, denoting the proportion of normal DNA as p, we have :

cn = 2p +(1− p)(nt
A +nt

B) = 2p+(1− p)(u+ v),

baf =
pn

g
B +(1− p)nt

B

2p +(1− p)(nt
A +nt

B)
.

Journal de la Société Française de Statistique, Vol. 160 No. 1 130-148

http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



133

SNP-arrays SNP-arrays are a particular case of CGH-arrays. In the late 1990s, Solinas-Toldo

et al. (1997) and Pinkel et al. (1998) demonstrated that it is possible to perform a Comparative

Genome Analysis (CGH) on DNA fragments called probes fixed on glass slides, called chips.

But this method needs to have two distinct samples, one containing normal cells while the other

contains tumor cells, each of them being marked with a different fluorochrome (in general, tumor

cell DNA is labeled in green with fluorescein and normal cell DNA is red with rhodamine).

With SNP-arrays, it becomes possible to have only one sample (Carr et al., 2008). Probes

are oligonucleotides which are complementary fragments of the different alleles for each SNP.

Fluorescently-tagged genomic DNA fragments combine preferentially to those oligonucleotides

with which they are perfectly complementary. A computer reads the position of the fluorescent

tags and identifies heterozygote SNP (two fluorescent tags) and homozygote SNP (one fluorescent

tag), as well as the involved nucleotides (A, T, G, C). Hence, SNP-arrays are series of 4x1 vectors,

grouped in 4x4 arrays (four SNP locii per 4x4 array), themselves grouped in more larger arrays.

The current generation of chips includes more than 250 000 oligonucleotides.

FIGURE 2. Principle of SNP-array from Carr et al. (2008). Left : the nucleotide probes for a given SNP ; top right : the

4x4 array grouping the results for 4 different SNPs ; lower right : 256-oligo chip for 64 SNPs .

Figure 2 sketches an example of a 256-oligo chip for 64 SNPs. The probes to combine alleles

for a given SNP are represented on the left : an allele with a T binds to the oligonucleotide ending

by A, and an allele with a C binds to the nucleotide oligonucleotide ending with a G, revealing a

C/T heterozygote locus (first column of the 4x4 array). Similarly, the single spots in the other three

columns of the 4x4 array indicate that the individual is homozygous at the three corresponding

SNP positions. The 4x4 array fits into one corner of a 256-oligo chip for 64 SNPs.

The advantage of these arrays is to detect situations of loss of hererozygosity.These chips also

give information on the number of copies of DNA at the loci studied.

Allelic imbalance and copy number signals from SNP-arrays The SNP-array technology

provides measured baf profile related to the direct proportion of the B-allele signal. The value

characterizing cn is log-R-ratio lrr, which is linked to the copy number by the relation

lrr = α log2 cn+β ,

where α is a contraction factor depending on the SNP-array platform and normalization methods.

This parameter also depends on the experimental conditions and this is why it is not possible

to have a general calibration. The parameter β is a constant shift due to unknown tumor ploidy

(number of complete sets of chromosomes in a cell).
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FIGURE 3. Example of tumoral measurements, from Popova et al. (2009)

Measured profiles from SNP-array data involve hundreds of thousands of SNPs characterized

by values estimating cn and baf (Figure 3). Since neighboring SNPs tend to have the same B-allele

and CN status, the baf and lrr signals in SNP-arrays are assumed to follow piece-wise constant

distributions corresponding to the "large-scale" CNA profile in the tumor. "Large-scale" relates to

the fact that SNPs are on average separated by a hundred to thousand nucleotides, and segments

may have several ten thousands nucleotides.

Pattern of genomic alterations Hence, the profiles can be segmented into intervals with the

same CNA and characterized by actual u and v. In a given segment with copy number cn, baf is 0

or 1 for a homozygous germline SNP AA or BB ; for a germline heterozygous SNP AB, tumoral

alteration uAvB gives baf = p(1− p)v/cn (see Table 1) and for a germline heterozygous SNP

BA, tumoral alteration uBvA gives baf = p(1− p)u/cn : these two baf values are symmetrical

with respect to 0.5. Labels A and B being attributed at random (their order is non informative)

along a given segment, there are two symmetrical profiles that are observed on the BAF signal, as

in Figure 3. The two symmetrical profiles are then aggregated to the (0.5,1) interval, leading to

consider only CNAs with 0≤ u≤ v.

One genomic segment with CNA k, characterized by 0≤ u≤ v, is associated with two centers

c0
k = (baf0

k , lrrk) and c1
k = (baf1

k , lrrk) in the (baf, lrr) plane (Figure 4). The point c0
k corresponding

to the germline heterozygous SNPs from the genomic segment k, satisfies

baf0
k =

p+(1− p)v

2p+(1− p)(u+ v)

and is denoted as (AB,uAvB). Similarly, the point c1
k corresponds to the germline homozygous

SNPs with baf1
k = 1 and denoted as (BB,(u+ v)B). Two CNAs k and k′ leading to the same

copy number share the same homozygous center on the (baf, lrr) plane, ie c1
k = c1

k′ . For example,

the CNAs (u = 2,v = 2) and (u = 1,v = 3), having the same cn = 4− 2p, occupy different

heterozygous CNA centers (AB,2A2B) and (AB,A3B), respectively, and share homozygous

center (BB,4B) (Figure 4).

Note that the positions of the points (AB,uAvB) and (BB,(u+ v)B) in the (baf, lrr) plane are

uniquely defined by the unknown parameters p, α , and β .
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FIGURE 4. Schematic illustration of the correspondence between the tumoral mutation and the (baf, lrr) values

assuming 0≤ u≤ v. Mutations of germ line homozygous are in red. Mutations of germ line heterozygous are in black

and blue. The blue centers characterize a loss of heterozygosity (LOH).

3. Constrained mixture model for SNP tumoral mutations

Having at hand a segmentation into n intervals with homogeneous CNA, for the i-th interval

(i = 1, . . . ,n) with Ni SNPs, we denote the number of heterozygous SNPs by N0
i and the number

of homozygous SNPs by N1
i = Ni−N0

i . Three summary variables are extracted from the SNP

observations of the i-th interval : LRRi the average over the Ni lrr observations, BAF0
i (resp.

BAF1
i ) the average over the N0

i heterozygous (resp. N1
i homozygous) baf observations. Under

the simple underlying assumption that the measurements coming from individual SNPs in an

homogenous interval follow a distribution having finite first two moments and are independent,

we can propose a Gaussian model for these measurements

BAF0
i = baf0

k(i)+
σ√
N0

i

ε0
i ,

BAF1
i = baf1

k(i)+
σ√
N1

i

ε1
i , with baf1

k(i) = 1,

LRRi = lrrk(i)+
η√
Ni

ξi, with lrrk(i) = α log2(cnk(i))+β ,

where ε0
i , ε1

i , and ξi are Gaussian random variables with zero mean and unit standard deviation,

and k(i) denotes the CNA type of the i-th interval. Notice that BAF and LRR refer to random

variables while baf and lrr refer to the deterministic unknown center coordinates.

The triplet (BAF0
i ,BAF1

i ,LRRi) is recomposed into two bi-dimensional observations, corres-
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ponding respectively to the heterozygous and homozygous observations in the (baf, lrr) plane :

Y
j

i = (BAF
j
i ,LRRi) = c

j

k(i)+ζ
j

i , j = 0,1

c
j

k(i) = (baf
j

k(i), lrrk(i)) is the theoretical unknown position of the homozygous ( j = 1) or heterozy-

gous ( j = 0) CNA of segment i and ζ
j

i is a bi-dimensional centered Gaussian distribution with

covariance matrix

Σ
j
i :=

(
σ2
/

N
j

i 0

0 η2
/

Ni

)
.

Define K(L) the count of all different centers occurring with the maximum copy number

L. We model the Y
j

i observation with a Gaussian mixture model of centers ck := (bafk, lrrk),
k = 1, . . . ,K = K(L). The probability density function is

f (Y j
i ) =

K(L)

∑
k=1

πkφ(Y j
i ;ck(α,β , p),Σ j

i (σ
2,η2)).

where φ(.,c,Σ) is the pdf of a bi-dimensional Gaussian random variable centered on c with

covariance matrix Σ and πk ≥ 0, k = 1, . . . ,K(L), ∑k πk = 1, are the mixture proportions. The

centers are depending on p,α,β , and the parameter to estimate is

θ = (p,σ2,η2,α,β ,{πk,k = 1, . . . ,K(L)}).

Using the independence of the observations Y =
{

Y
j=0,1

i=1,...,n

}
between segments, the log-likelihood

is

L (θ ;Y ) =
1

∑
j=0

n

∑
i=1

log

(
K(L)

∑
k=1

πkφ(Y j
i ;ck(α,β , p),Σ j

i (σ
2,η2))

)
.

Comments on the assumptions In developing the model, we made the following assumptions :

(i) the noises in B-allele frequency and log ratio individual measurements have a finite second

moments ; (ii) the contraction factor α and shift constant β of LRR is the same for all measure-

ments ;(iii) the variance of B-allele frequency and of the log ratio individual measurements do not

depend on the mutation type.

The first assumption is very weak in that no assumption about the form of the underlying

distributions is used, and is thus applicable to a wide range of measurement platforms. The

Gaussian mixture model follows from the central limit theorem when obtaining the segmented

data by averaging over the homogeneous intervals. In the second assumption, the correction of

GC content is neglected since this can be treated in the segmentation step (Staaf et al., 2008).

3.1. Estimation

We first assume that the maximum copy number is known. Maximum likelihood estimation for

mixture models is traditionally performed with an expectation-maximization (EM) algorithm

(Dempster et al., 1977), and we introduce the latent variables z
j
ik such that z

j
ik = 1 if (BAF

j
i ,LRRi)

is from mutation center ck, 0 otherwise.
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In our case, the E step that computes the expectation, conditionally to the observations and

under a given current parameter, of the complete log-likelihood

Lc(θ ;Y,Z = {z j
ik}) =

n

∑
i=1

1

∑
j=0

K

∑
k=1

z
j
ik

[
logπk + logφ(Y j

i ;ck(α,β , p),Σ j
i (σ

2,η2))
]

is standard and reduces to compute the conditional expectation of the labels z
j
ik. However, if the

M step is also straightforward and closed form for parameters (σ2,η2,α,β ), it is not the case for

p, that introduces non linearity. As using a nonlinear optimization procedure inside the M step did

not give satisfactory results, we designed a two nested levels procedure :

max
θ

L (θ ;Y ) = max
p

max
(α,β ,π,σ2,η2)

L
(

p,σ2,η2,α,β ,π;Y
)
.

Hence, we use an EM algorithm to deal with the maximization over (α,β ,π,σ2,η2) nested in a

gradient descent over p.

EM for fixed p and fixed range of mutations Given a fixed number of CNA centers corres-

ponding to copy numbers belonging to the interval [0,L] and a fixed p value, the EM iterates two

steps.

The expectation step computes the conditional expected value of z
j
ik given the parameter

obtained in the previous iteration denoted θ̆ = (ᾰ, β̆ , σ̆2, η̆2, p),

τ
j

ik← E(z j
ik|Y ; θ̆) =

π̆kφ(Y j
i ; c̆k, Σ̆

j
i )

∑k π̆kφ(Y j
i ; c̆k, Σ̆

j
i )
.

Using this updated value of τ
j

ik, the maximization leads to update the parameters according to

πk ←
∑i, j τ

j
ik

∑i, j,k τ
j

ik

,

σ2 ← ∑i, j,k τ
j

ikN
j

i (BAF
j
i −bafk)

2

∑i, j,k τ
j

ik

,

α ← CD−BE

AC−B2
,

β ← BD−AE

B2−AC
,

η2 ← ∑i, j,k τ
j

ikNi(LRRi−α log2 cnk−β )2

∑i, j,k τ
j

ik

,
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where

A = ∑
i, j,k

τ
j

ikNi(log2 cnk)
2,

B = ∑
i, j,k

τ
j

ikNi log2 cnk,

C = ∑
i, j,k

τ
j

ikNi,

D = ∑
i, j,k

τ
j

ikNiLRRi log2 cnk,

E = ∑
i, j,k

τ
j

ikNiLRRi.

The above two steps are repeated until convergence criterion is met.

Initialization of the parameters Because the log-likelihood function in the mixture model is

not globally convex, the performance of the EM algorithm is sensitive to the choice of initial

values of parameters. In our implementation, σ2 and η2 are initialized with the observed variance

of the BAF and LRR signals :

(σ2)0 = var(BAF)

(η2)0 = var(LRR)

As the minimum and maximum values of the BAF signal are roughly delineated by the centers

position of the minimum and maximum copy numbers, one initial value for α can be set as

α0 =
LRRmax−LRRmin

log2 cnmax− log2 cnmin

and provides good results when minimum and maximum copy numbers are known. If it is not

the case, it is interesting to use all combinations of cnl and cnh such that 0 ≤ cnl < cnh ≤ L to

provide different initial values for α

α0 =
LRRmax−LRRmin

log2 cnh− log2 cnl

.

The initial values for β are then derived according to

β 0 = LRRmax−α0 log2 cnh.

Now, using the knowledge of p, α0 and β 0, we compute the centers ck and affect each Y
j

i to the

closest center ck, giving access to an estimation of the mixing weights πk, k = 1, . . . ,K.

Maximization with respect to p The behavior of the expectation, conditionally to the observa-

tions, of the complete log-likelihood viewed as a function of p is smooth though not necessarily

convex globally. Hence we use a grid to start the search of the optimal value of p.
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Probabilistic mutation characterization per segment The Maximum A Posteriori rule from

the conditional expectations τ
j

ik is a natural way to characterize the segment mutation, by attributing

each segment to its most probable mutation center.

This is a real added value compared to Popova et al. (2009) : their hand made process is not

only automated by using our mixture model, but also improved, as the segments are not attributed

to the nearest center, but to the most probable CNA.

3.2. Model selection with penalized log-likelihood

As so far, the estimation is performed with all CNA centers corresponding to copy numbers

belonging to the interval [0,L]. Two model selection cases may be considered : (1) for a given

copy number, are there CNA centers that do not appear? (2) Which are the minimum and

maximum copy numbers appearing in the sample? As the positions of the centers depend on the

proportion of normal DNA p, targeting these two goals simultaneously can lead non identifiable

situations that cannot be distinguished. This situation has already be discussed and Popova et al.

(2009) proposes to choose the configuration with the lower maximum copy number in such case.

We adopt a penalized log-likelihood approach to select the maximum copy number, and first

use BIC as it is known to be a suited model section criterion for simple mixture models (Keribin,

2000). The only parameter depending on the copy number being the mixing weights π , the model

complexity is K(L). We deduce the following expression of BIC :

BIC(L) =−L (θ̂ ;Y )+
log(2n)

2
K(L)

where 2n stands for the number of observations, two times the number n of segments, to take into

account the homozygous and heterozygous sites. The model with the smallest BIC is chosen.

BIC is an asymptotic approximation of the logarithm of the integrated likelihood in a Bayesian

context. As an alternative, Birgé and Massart (2001), Birgé and Massart (2007) proposed a non-

asymptotic method called the slope heuristics, a data-driven method which allows to calibrate a

multiplicative constant κ > 0 in the penalized criterion defined in our context as follows :

crit(L;κ) =−L (θ̂ ;Y )+ κ K(L)

Indeed, the log-likelihood in expectation should behave linearly with respect to the complexity for

large models, as more complex models do not provide any further improvement of the bias. An

effective choice for the constant κ is shown to be twice the slope provided by this linear behavior.

An equivalent methodology is to use twice the penalty which brings the most abrupt change in the

complexity of the selected model. See Baudry (2009) for application to mixtures and Arlot (2019)

for a comprehensive survey.

Finally, we propose to deduce the tumoral ploidy as a weighted average of the copy numbers :

∑i, j,k τ
j

ik N
j

i cnk

∑i, j,k τ
j

ik N
j

i

.

Note that we do not intend, for a given copy number, to refine the model by suppressing CNA

centers, but consider that the identity card of the tumor is described by the estimated mixture

weights π̂ once the maximum copy number is selected by the model criteria.
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4. Results

We first test our methodology on simulated data, then apply it to a real cancer data set.

4.1. Simulated data

To evaluate the performance of the algorithm, we devised a strategy to generate simulated data

with a maximum copy number up to cnmax = 8 for the tumor tissues and compared the estimation

results with the real parameter used to generate the data sets. Once given values for θ , the data

generation strategy is as follows :

1. Generate randomly n segments on a profile of N SNPs. We choose n= 200 and N = 261976

as values of the real SNP-array experiment.

2. For each segment, generate independently the number (u or v) of each allele following a

multinomial distribution M (1,µ) on {0,1,2,3,4} with µ = (0.15,0.5,0.2,0.1,0.05).

3. Compute baf and lrr correspondingly and symmetrize baf into the interval [0.5,1].

4. On each segment, generate the number of homozygous SNPs following a binomial distribu-

tion of P(homozygous) = 0.8.

5. Add noise to the baf and lrr values and form the final observations with given α and β .

A data set was generated with parameter θ = (p = 0.1,α = 1,β = 0,σ2 = 0.04,η2 = 0.25)
and maximum copy number 8. Some centers are not occupied (Figure 5 top left).

Models with cnmax ∈ [3,10] were used for the estimation. Using the BIC criterion, the model

with maximum copy number 8 is selected, corresponding to the underlying parameter. The same

holds with the adaptive penalized criterion based on the slope heuristics. With this model, the

parameter estimation gives θ̂ = ( p̂= 0.1, α̂ = 1, β̂ =−0.00316, σ̂2 = 0.0404, η̂2 = 0.255), which

is in good agreement with the underlying data (Figure 5 top right). Also, the classification error

rate based on the MAP rule is 0.025 and the selected CNAs are displayed on Figure 5 bottom

right.

4.2. Influence of the normal DNA proportion

To study the influence of the proportion of normal DNA p on the previous example, we generated

a series of tumor samples with the same CNA profile but with different proportions of normal cells,

similar to a diluted cell line samples. Nine samples were generated with p = (0.1,0.2, . . . ,0.9)
respectively. The other parameters were set to be σ2 = 0.04, η2 = 0.25, α = 1, and β = 0 in all

the data sets. Among copy number from 3 to 14, both BIC and slope heuristic criterion choose

the model with maximum copy number 8 in all nine data sets, and the parameter estimation is

good even with a high normal tissues contamination (p = 0.9) for which the inference is more

difficult, see Table 2. In this case, our method still shows a relatively consistent behavior and the

MAP classification error is 0.13.

We performed Monte Carlo sampling to assess the variability of the estimation for three

values of normal DNA proportion : p = 0.1125,0.5125,0.8125. Results in Table 3 show that the

algorithm is rather robust against the normal tissue proportion. A moderate proportion of normal
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FIGURE 5. Top left : representation of the simulated data with θ = (p = 0.1,σ = 0.2,η = 0.5,α = 1,β = 0) in the

(baf, lrr) plane. Black crosses represent the independent observations, blue dots the CNA centers used to generate

the observations, cyan dots non-occupied centers in the complete model. Top right : parameter estimation on the

simulated data. Blue crosses represent the position of the CNA centers and the relative proportion with its size. Red

circles represent the estimated position of the CNA centers and their relative proportion. Bottom left : the class label of

the simulated data. Bottom right : the class label based on maximum a posterior probability.
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p p̂ σ̂2 η̂2 α̂ β̂

0.1 0.1 0.0350 0.215 0.999 0.00180

0.2 0.2 0.0342 0.216 0.999 0.00191

0.3 0.3 0.0342 0.216 0.999 0.00202

0.4 0.4 0.0347 0.216 0.999 0.00216

0.5 0.5 0.0349 0.216 0.999 0.00235

0.6 0.6 0.0348 0.218 0.998 0.00271

0.7 0.7 0.0340 0.215 0.997 0.00353

0.8 0.8 0.0334 0.208 0.996 0.00466

0.9 0.9 0.0306 0.207 0.998 0.00231

TABLE 2. Estimates parameters on simulated diluted data sets with different proportions p of normal DNA.

DNA being even conducived for the estimation of genomic CNAs, which is in accordance with

Popova et al. (2009).

p | p̂− p| Error classification rate

0.1125 0.0125(1.80e−18) 0.0278(0.009)
0.5125 0.0125(5.10e−17) 0.013(0.0032)
0.8125 0.0125(5.10e−17) 0.056(0.014)

TABLE 3. Monte Carlo simulation for the estimation of p in three cases. The values are shown in the format mean

(standard-deviation).

4.3. Influence of nuisance parameters

Three values of the BAF standard error σ = 0.2,1.5,3 are used in the Monte Carlo sampling to

determine the influence of this parameter on the estimation. Results are shown in Table 4. This

parameter has a large influence on the quality of estimation result. This is because, contrary to the

LRR measurements which are fixed not only by the underlying mutation type and p, but also by

α and β , BAF measurements are uniquely determined by p and the mutation type. Thus a large

variance of BAF will deteriorate greatly the estimation result.

The LRR standard deviation η does not influence greatly the estimation result because the

BAF measurements still provide enough information for the mutation types and normal tissues

proportion in the data sets. This appears on results in Table 5, where Monte Carlo simulation are

done for three different values η = (0.5,5,10).

σ | p̂− p| Error classification rate

0.2 0.0125(1.80e−18) 0.0278(0.009)
1.5 0.281(0.353) 0.520(0.383)
3 0.21(0.34) 0.64(0.26)

TABLE 4. The estimation results for Monte Carlo simulation of different σ values. The values are shown in the format

mean (standard-deviation).
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η | p̂− p| Error classification rate

0.5 0.0125(1.80e−18) 0.0278(0.009)
5 0.0225(0.0387) 0.222(0.202)
10 0.0125(1.796e−18) 0.291(0.02)

TABLE 5. The estimation results for Monte Carlo simulation of different η values. The values are shown in the format

mean (standard-deviation).

FIGURE 6. Example of BAF and LRR segmentations of one chromosome in a colon cancer sample. Top : BAF

segmentation after mirroring around 0.5. Bottom : LRR segmentation. Middle : Resulting LRR segmentation.

4.4. Cancer sample data

The implementation is also tested on a real tumoral data sample. Colon cancer samples were

acquired using 250K Affymetrix SNP-arrays and made available after anonymization by Pr Pierre

Laurent-Puig, SIRIC CARPEM Director. BAF and LRR signals are first segmented using the

method developed by Comte and Rozenholc (2004). After mirroring around the 0.5 value, the

BAF signal is segmented as a bi-modal density where one mode is fixed to be 1, using a dynamic

programming algorithm on the penalized log-likelihood. The LRR signal is in turn segmented

with a dynamic programming algorithm on the penalized least square function. Combining both

segmentations leads to the input data of our method. An illustration is displayed on Figure 6.

Figure 7 shows the estimation results for two models, one with maximum copy number 4

(and estimated p̂ = 0.35), the other with maximum copy number 8 (and estimated p̂ = 0.525).
The red crosses represents the theoretical centers for the given model with the corresponding

estimated contamination rate p̂. One can see that some DNA centers are not present. Blue ellipses

are linked to the importance of each CNA center. The two representations are scale such that the

copy number lines are aligned.

Bottom graphs on Figure 7 draw the maximum log-likelihood as a function of the normal

tissues proportion p for the two models. Both curves are not globally convex. For a maximum

copy number L = 4, the representation shows a good regularity and a marked peak around the
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optimal value p̂, unlike the case L = 8 which is less regular.

Model selection performed with BIC chooses the model with maximum copy number L = 14,

with corresponding optimal value p̂ = 0.75. This result is questionable. Indeed, BIC is expected

to be a good model selector when the data are generated from one model of the collection, which

was the case in our simulations. However, BIC is also known to be not consistent when this is

not the case. Due to some assumptions of the statistical model, or due to heterogeneity context of

tumor DNA, it is likely that observations are not coming from one model of the collection. To

circumvent this issue, we use the slope heuristic criterion which provides a good control of the

quadratic risk, and performs a trade-off between bias and variance. This criterion does not need

for the observations to come from an existing model in the collection, and should be more suitable

in the tumor DNA context, which is confirmed by our results.

Indeed, top left graph on Figure 8 shows a linear trend of the log-likelihood against the

complexity K(L) for high complexity. The minimal penalty κmin (the slope) is usually chosen at

sight, providing in our case κmin = (930−700)/(83−30) = 4.34. It can also be determined with

the R package capushe (Baudry et al., 2012), leading here to κmin = 3.76.

The constant κopt is twice κmin, providing κopt = 8.68 at sight, and 7.5 with capushe. Both

values lead to select the same model L = 4, which is in agreement with Popova et al. (2009).

The dimension jump, illustrated on the bottom left sub-figure, confirms this model selection. In

comparison, the BIC penalty constant is log(2×200)/2 = 3 < κmin, which enlightens that BIC is

not adapted here.

5. Discussion

We developed a parametric probabilistic model for the characterization of genomic alterations

in tumors for segmented SNP-array data. We used a Gaussian mixture model where the centers

are constrained to belong to a grid of the (baf, lrr) plane. This automates the pattern recognition

method of the GAP method of Popova et al. (2009). The centers only depend on the normal DNA

contamination, the contraction factor of LRR measurements, and the shift in LRR due to tumor

ploidy. The parameter estimation is achieved by maximum likelihood estimation and no tuning

parameter is needed. There is no limit on the number of CNAs in the model, and theoretically we

can consider as many CN as necessary. This is particularly useful when the tumor sample has

genomic alterations with a very large copy number. A model selection procedure is applied to

choose an appropriate model complexity and the algorithms are robust against high normal DNA

contamination and measurement noises.

This work could be extended in several directions. If some assumptions on the model are quite

weak, one can think to relax the stronger ones as the homocedasticity of the B-allele frequency

and log-R ratio signals along the genome : these variances could depend on the mutation type for

example. A non constant homozygous proportion could be also considered. Our method, as the

GAP method, breaks the link between homozygous and heterozygous sites of a same segment.

An extension could be to keep this link tight.

Although an important and common phenomenon in tumor development, tumor heterogeneity

is not considered here. To be able to recognize such sub-clones around the main centers could be

a nice enhancement.
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FIGURE 7. Application to a real cancer sample. Black circles radius are linked to the size of the observed segment. Top

left : visualization of the model with maximum copy number 4. Top right : visualization of the model with maximum

copy number 8. Bottom left : optimal log-likelihood of proportion of healthy tissue obtained by models with a maximum

copy number of 4. Bottom right : optimal log-likelihood of proportion of healthy tissue obtained by models with a

maximum copy number of 8.
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FIGURE 8. Model selection on a real cancer sample. Top Left : Log-likelihood against the complexity K(L), from

maximum copy number L = 3 (first point) to L = 14 (last point). Top right : graph where the point with the smallest

penalty value is removed at each step. Bottom left : dimension jump plot. Bottom right : Comparison of different

criteria crit(L,κ), for κ calibrated with slope heuristics (κmin and κopt = 2κmin) or with BIC (κ = log(n)/2).
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