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Titre: Comment identifier un mélange gaussien en pratique ? Une étude comparative de tests

Didier Chauveau1 , Bernard Garel2 and Sabine Mercier3

Abstract: We consider univariate Gaussian mixtures theory and applications, and particularly the problem of testing
the null hypothesis of homogeneity (one component) against two components. Several approaches have been proposed
in the literature during the last decades. We focus on two different techniques, one based on the Likelihood-Ratio Test
(LRT), and another one based on estimation of the parameters of the mixture grounded on some specific adaptation
of the well-known EM algorithm often called the EM-test. We propose in particular a novel methodology allowing
application of the LRT in actual situations, by plugging-in estimates that are assumed known in asymptotic setup. We
aim to provide useful comparisons between different techniques, together with guidelines for practitioners in order to
enable them to use theoretical advances for analyzing actual data of realistic sample sizes. We finally illustrate these
methods in an application to real data corresponding to the number of days between two events concerning ovarian
response and lambing for ewes.

Résumé : Après une présentation générale de la problématique des mélanges, dans le but de déterminer leur nombre
de composantes, nous envisageons plus précisément les mélanges gaussiens univariés. Une abondante littérature a été
consacrée à ce domaine. Mais les procédures de mise en œuvre des résultats théoriques et les études comparatives des
diverses procédures font cruellement défaut. Nous souhaitons apporter une contribution en ce sens, afin de faciliter
les applications. Pour tester une hypothèse d’homogénéité contre une hypothèse de mélange à deux composantes,
nous avons retenu deux grandes familles de tests : les tests du rapport des vraisemblances (LRT) et les tests EM.
Nous proposons notamment pour le LRT une approche par plug-in de certains paramètres supposés connus dans la
théorie asymptotique, ce qui rend ces tests utilisables en pratique. Pour les quatre cas de mélanges envisagés ici, nous
fournissons les valeurs critiques et comparons les performances de ces tests en termes de puissance. Nous illustrons
leur mise en œuvre sur des données réelles qui se rapportent au temps qui sépare les périodes d’ovulation et d’agnelage
chez des brebis dans le cadre d’un projet en Région Centre.
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Testing for univariate Gaussian mixture in practice 87

1. Introduction

The aim of always producing the better models for data analysis can partly explain the present
craze for probability distributions which can be written as a mixture. Mixture models are able to
help in many circumstances. Indeed, whenever a population is constituted of K homogeneous sub
populations, a K-component mixture can be proposed as an attractive model for this population.
However there exist other important reasons which justify the increasing use of these models.
Recently published books are entirely devoted to mixture of distributions. In particular, the books
by Everitt and Hand (1981), Titterington et al. (1985), McLachlan and Basford (1988), Lindsay
(1995), McLachlan and Krishnan (1997), McLachlan and Peel (2000), Böhning (2000), Frühwirth-
Schnatter (2006), Schlattmann (2009) contributed to an already rich bibliography. We also have to
stress that from the theoretical point of view, analysis of mixture involves many mathematical
topics such as estimation and maximization for non regular models, Bayesian analysis, asymptotic
distribution, stochastic processes, and so on. Among the many problems raised by mixture we
find the non-identifiability of parameters, the degeneracy of the Fisher information matrix around
particular points or the non-differentiability with respect to another parametrization. Then it is not
surprising that we obtain non-standard asymptotic distributions for testing problems.

Beginnings of mixture models go back to the 19th century mainly with the contributions by A.
Quetelet, L.A. Bertillon, S. Newcomb and K. Pearson. Behind the writings of Quetelet (1846)
we find the idea that a normal distribution can be generated by a great number of other normal
distributions. Analysing the heights of 9002 conscripts, Bertillon (1874) and Bertillon (1876)
noted that the graphical representation of these heights gave two modes which constituted a
surprise. Then he claimed that this phenomenon was due to the presence of two distinct ethnic
groups. The figure he presented seems to be the first graphical representation leading to the
assumption of a normal mixture. Newcomb (1882) and Newcomb (1886) addressed the problem
of outliers in astronomical data. He observed that the tails of the distribution were fatter than the
normal ones. He explained this non-normality by the combination of data with different scales
and so, invented the contaminated normal distribution. Pearson (1894) analyzed data that the
zoologist Walter F. Weldon submitted to him, in particular crab forehead sizes. In his 1894 paper
he graphically showed the evidence of a mixture. For him, to adjust a two-component Gaussian
mixture is equivalent to carve a skewed curve into two Gaussian distributions. A way of doing
so is to estimate five parameters from the five first moments. This is feasible because seeing
that a mixture is a convex combination of densities, its moments are convex combination of the
moments of these densities. Then Pearson found its famous ninth degree equation, a negative root
of which is necessary to solve the problem. Pearson’s contribution is generally thought of as the
starting point of the analysis of mixtures. Then, during quite a while, the research on mixture
models concentrated around improvements of this method of moments.

These contributions are related to the problem of estimation in mixture model. Another very
important issue is the determination of the number of components of the mixture, which is the
topic addressed in this paper. Graphical procedures have been developed. Simple examination
of the histogram can bring some information. A more elaborated method has been proposed by
Bhattacharya (1967). The method starts from two statements. First the logarithm of a normal
density is a concave quadratic in the variable, so that its derivative is linear with negative slope.
Then, when there is a lot of data and the grouping imposed by the histogram is quite fine, the
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88 D. Chauveau, B. Garel and S. Mercier

histogram heights are proportional to the density. Thus, a plot of first differences of the logarithms
of the histogram frequencies should display a sequence of negatively sloped linear plots, one
corresponding to each components.

This concern can also be treated as a testing problem: a set of tests of k components against
k+1 components, for instance using the likelihood ratio. After Wilks (1938), Chernoff (1954)
gave the asymptotic distribution of the likelihood ratio test in the case of a regular model. Above,
we gave a few reasons why mixtures do not belong to regular models. However, a few researchers
began to privilege likelihood ratio for determining the number of components of a mixture and
particularly the problem of testing H0 : homogeneity (k = 1), against a two-component mixture.
This is the very problem upon which we are going to work.

Likelihood Ratio Test

Consider, for example, the model :

(1−π)N (µ1,σ
2
1 )+πN (µ2,σ

2
2 ) (1)

which characterizes a univariate two-component Gaussian mixture both on the means and on
the variances. In this model, homogeneity can be specified by π = 0 or1, or by µ1 = µ2 and
σ1 = σ2. In a first attempt to test H0 against this mixture, conjectures and simulation results about
the distribution of the likelihood ratio statistic have been published.

Wolfe (1971) suggested that (n−1−m)λn/n is approximately distributed as a χ2
2m, where n

is the sample size, λn is the usual likelihood ratio test statistic (LRTS) and m is the number of
parameters which are different for the two components of the mixture. This gives a χ2

2 distribution
for a univariate normal mixture with equal variance and a χ2

4 distribution for a normal mixture
with different means and different variances.

In the case of univariate normal mixture with unknown but common variance, see Model M9
below, McLachlan (1987) and Thode et al. (1988) suggested that for n≤ 1000 the distribution
of λn is close to a χ2

2 , the latter having a less heavy tail. In the case of a normal mixture with
different means and different variances, McLachlan (1987) found that a χ2

6 fits well for a sample
size n = 100. Hall and Stewart (1985) suggested using the restriction

min
1≤i, j≤2

(σi/σ j)≥ c≥ 0

and Feng and McCulloch (1996) used min(σ2
1 ,σ

2
2 )≥ c′≥ 0. For n= 100, they found a distribution

between a χ2
4 and a χ2

5 when c′ = 10−6 and between a χ2
5 and a χ2

6 when c′ = 10−10. The
preceding results, which are given without other restrictions on the parameters, rely on Monte
Carlo simulations and concern essentially finite sample distributions. Indeed, without assuming
that the mixture parameter belongs to a bounded interval, λn tends to infinity in probability when
n goes to infinity.

If we now consider asymptotic results, a first stage has been undertaken by Redner (1981).
He proved that if W denotes a fixed neighborhood of the set Γ corresponding to H0 in the global
parameter space, associated to the general model (2), then the probability that the maximum
likelihood estimator (MLE) is found in W tends to one when n goes to infinity. Redner calls it
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Testing for univariate Gaussian mixture in practice 89

convergence of the MLE in the topology of the quotient space obtained by collapsing Γ into a
single point; see Ghosh and Sen (1985). The first correct expression of the asymptotic distribution
was given by Ghosh and Sen (1985) for a mixture model with two components:

h(x;π,µ1,µ2) = (1−π)g(x,µ1)+πg(x,µ2), (2)

where the component density g is general, but satisfying some regularity conditions; 1− π

and π ∈ [0,1] are the respective weights and µ1 (resp. µ2) is the parameter of the first (resp.
the second) component; π,µ1 and µ2 are unknown. First they needed the assumption that the
mixture parameters µ1 and µ2 belong to a bounded interval. Indeed, Hartigan (1985) proved that
a statistic close to the LRTS for testing homogeneity against a Gaussian mixture of the means
converges towards infinity in probability when n tends to infinity if the range of the unknown
mean is unbounded. Bickel and Chernoff (1993) revisited this problem and showed that if the
parameter set is unbounded, Hartigan’s statistic approaches infinity with order log logn. Note that
the equivalence between Hartigan’s statistic and the LRTS, when H0 is reduced to a single scalar
parameter, has been proved not before quite recently by Liu and Shao (2003).

Ghosh and Sen also imposed a separation condition on the parameters of the mixture mainly in
order to restore identifiability and to get an answer. They have assumed that |µ2−µ1| ≥ c0 > 0.
Therefore, under this constraint, H0 is described by π = 0 or π = 1. Removing this separation
condition presented a real challenge and many statisticians offered a solution, for instance,
Dacunha-Castelle and Gassiat (1997), Lemdani and Pons (1999), Liu and Shao (2003), Garel
(2005a). Garel (2001), Chen and Chen (2001), Garel and Goussanou (2002), Liu and Shao (2004)
addressed specific mixtures in the Gaussian case. The LR approach has also being studied in a
recent work Maciejowska (2013): the author proposes new hypothesis to test the homogeneity
against two-component mixture model which allow to avoid the problem of identifiability.

When the parameter upon which relies the mixture is multivariate, for instance in the model (1)
above, where the mixture relies both on the means and on the variances, the asymptotic distribution
of the likelihood ratio is related to a Gaussian random field and the computation of percentile
points becomes tricky or impossible. That is why other tests or methods have been proposed
in order to assess the number of components. Let us mention, here, the seminal contribution
by Donoho and Jin (2004) which provides conditions allowing a separation of the null and the
alternative hypotheses. They called the associated procedure: "The Higher Criticism Method",
not investigated in this paper. If we are only interested by the detection of a gap from normality,
classical tests of normality could be used; but it is easy to make evidence of a lack of power of
these tests in our context.

EM-Test

For a two-component mixture model, Chen et al. (2001), Chen et al. (2004) modified the LRTS
and derived its limiting distribution. They used a penalized likelihood, with a penalty depending
on the mixture proportion π . Then, Li et al. (2009) proposed an EM-test for homogeneity, that
Chen and Li (2009) mentioned in the case of a two-component Gaussian mixture. Chen and Li
(2011) propose a refined method for computing a tuning parameter in the penalty used in previous
papers on this EM-test approach. Then Chen et al. (2012) proposed an EM-test for testing the null
hypothesis of some arbitrary fixed order under a finite mixture model.
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90 D. Chauveau, B. Garel and S. Mercier

Among the advantages of the EM-tests claimed by the authors, we find a limiting distribution
under the null hypothesis which does not depend on the finiteness of the Fisher information on
the mixing parameter direction. For Model (1) above, Chen and Li (2009) characterize H0 by:

π(1−π) = 0 or (µ1,σ
2
1 ) = (µ2,σ

2
2 ).

Then the penalized log likelihood function is defined by:

pln(π,µ1,µ2, σ1,σ2) = ln(π,µ1,µ2, σ1,σ2)+ p(π)+ pn(σ1)+ pn(σ2),

where ln is the usual log likelihood function, pn(σ) is bounded when σ is large, but goes to
negative infinity as σ goes to 0, and p(π) is maximized at π = 0.5 and goes to negative infinity as
π goes to 0 or 1. The exact form of the penalty functions will be discussed later in Section 5.2.

To construct the EM-test, first choose a set of π j ∈ (0,0.5], j = 1, ...,J, and a positive integer
K (quite often π j ∈ {0.1,0.3,0.5} and K = 2 or 3). For each j = 1,2, ...,J, let π

(1)
j = π j then

compute:
(µ

(1)
j1 ,µ

(1)
j2 , σ

(1)
j1 ,σ

(1)
j2 ) = argmax

µ1,µ2,σ1,σ2

pln(π
(1)
j ,µ1, µ2, σ1, σ2).

Let f (x; µ,σ) be the density function of the normal N (µ,σ2). For i = 1,2, ...,n and the current
k, use the E-step to compute:

w(k)
i j =

π
(k)
j f (xi; µ

(k)
j2 , σ

(k)
j2 )

(1−π
(k)
j ) f (xi; µ

(k)
j1 , σ

(k)
j1 ) + π

(k)
j f (xi; µ

(k)
j2 , σ

(k)
j2 )

and use the M-step to update π and other parameters:

π
(k+1)
j = argmax

π

{(
n−

n

∑
i=1

w(k)
i j

)
log(1−π) +

n

∑
i=1

w(k)
i j log(π) + p(π)

}
and

(µ
(k+1)
j1 ,µ

(k+1)
j2 ,σ

(k+1)
j1 ,σ

(k+1)
j2 ) = argmax

µ1,µ2,σ1,σ2

2

∑
h=1

[
n

∑
i=1

w(k)
i j log[ f (xi; µh, σh)] + pn(σh)

]
.

The E-step and the M-step are iterated K−1 times. For each k and j define:

M(k)
n (π j) = 2{pln(π

(k)
j , µ

(k)
j1 , µ

(k)
j2 , σ

(k)
j1 , σ

(k)
j2 )− pln(1/2, µ̂0, µ̂0, σ̂0, σ̂0)}

where (µ̂0, σ̂0) = argmax
µ,σ

pln(1/2, µ, µ, σ , σ). The EM-test statistic is then defined as:

EM(K)
n = max{M(K)

n (π j) : j = 1, ...,J}.

Reject the null hypothesis when EM(K)
n exceeds some critical value to be determined.

We focus in this paper on these two different techniques, namely the LRT and the EM-test
based on the EM algorithm. We aim to provide useful comparisons between these techniques in
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Testing for univariate Gaussian mixture in practice 91

several (more or less general) Gaussian mixture models, and guidelines for practitioners in order
to enable them to use these methods for analysing actual data of realistic sample sizes. As detailed
in Sections 4 and 5, practical implementation of the LRT in the case of Models M6 and M9 will
require an intermediate step for estimating some parameters known in an asymptotic framework.
For this, we will make use of some constrained versions of the EM algorithm for gaussian mixture.
It is important to distinguish our usage of EM to estimate some parameters in what will be called
plug-in estimation, from the E and (penalized) M steps used a few number of iterations (K = 2
or 3 times) in the computation of the EM-test statistics presented above.

On the computational side, since EM-tests are intended to provide answers to practitioners, and
since they require some sort of heavy computations, the availability of public codes is important.
Several versions of these EM-tests have been made publicly available in the recent MixtureInf
package (Li et al., 2016) for the R statistical software (R Core Team, 2016). Two successive
versions of this package have been proposed, and we used in this work the most recent one
available (version 1.1, March 2016) 1. In this current version, the function emtest.norm is
dedicated to the test of the order of a normal mixture model. The linked references are precisely
Chen and Li (2009), that was limited to the homogeneous null model vs. a two-component mixture,
and Chen et al. (2012) which generalize this EM-test approach to a mixture of arbitrary order
under the null hypothesis. We have also developed numerical procedures for the EM approach for
some of the models that are not available in the MixtureInf package, such as Models M2 and M9,
in Table 1.

Since there exists (up to our knowledge) no public codes for the LRT approach, we develop
numerical procedures that will be publicly available in an upcoming version of the mixtools
package (Benaglia et al., 2009) for the R statistical software (R Core Team, 2016). We compare
these LRT codes with some of the codes proposed in the MixtureInf package (Li et al., 2016) (see
above).

The rest of the paper is organized as follows: Sections 2 to 5 are dedicated to further presentation
of models and analyses for models M2, M6, M8 and M9 respectively. Section 6 presents some
applications based on actual data collected for a research project from the French National Institute
for Agricultural Research (INRA) 2: we study the so-called “ram effect” on data corresponding to
number of days between two events concerning ovarian response and lambing for ewes of several
kinds. For such data, a mixture is sometimes suspected for biological reasons, but with not great
evidence coming from the empirical distribution. Section 7, a discussion summarizes the results
and derives some practical suggestions for users. Note that all the figures in the paper are sharing
the same legend convention: point types are associated to tests, colors to levels or quantile orders,
and line types to sample sizes when appropriate.

2. Description of the models and study of Model M2

Table 1 describes the models studied from the perspective of testing homogeneity vs. mixture
in the literature, where the model indices (M1, M2, . . . ) are borrowed from previous literature.
The models we actually investigate in this paper are in boldface.

1 We first tried another version (1.0-1 published in 2015) in which we found several errors or inconsistencies, such as
negative values for the EM-test statistic and p-values 1 for Model M8 in Table 1.

2 Projet de Recherche d’Intérêt Régional DURAREP2.
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92 D. Chauveau, B. Garel and S. Mercier

TABLE 1. Description of the models studied from the perspective of testing homogeneity vs. mixture in the literature
(models investigated in this paper are in boldface).

Models H0 H1
1- Contaminated

Models
M1 g(α0) (1−π)g(α0)+πg(α)

α ∈ A⊂ R
M2 N (0,1) (1−π)N (0,1)+πN (µ,1)

µ ∈ A⊂ R
M3 N (0,1) (1−π)N (0,1)+πN (0,σ2)

σ2 ∈ [a,A]⊂]0,2[
M4 N (0,1) (1−π1−π2)N (0,1)+

π1N (µ1,1)+π2N (µ2,1)
2- One population

against two
M5 g(x,α) (1−π)g(x,α1)+πg(x,α2)

α ∈ A⊂ R
M6 N (µ,1) (1−π)N (µ1,1)+πN (µ2,1)

µ ∈ A⊂ R
M7 N (0,σ2) (1−π)N (0,σ2

1 )+πN (0,σ2
2 )

σ2
2 < 2σ2

1
M8 N (µ,σ2) (1−π)N (µ1,σ

2
1 )+πN (µ2,σ

2
2 )

3- Presence of a
structural parameter

M9 N (µ,σ2) (1−π)N (µ1,σ
2)+πN (µ2,σ

2)
σ2 unknown

M10 N (µ,σ2) (1−π)N (µ,σ2
1 )+πN (µ,σ2

2 )
µ unknown

Model M1 is a contaminated model. Generally, g is a smooth density, with derivatives at least
up to the second order; the value of α0 is known. As we concentrate on the Gaussian case, we
study model M2 which is a special case of M1. Like M2, Model M3 is a Gaussian contaminated
model but on the variance. It has been studied in his Ph.D. by Saint Pierre (2003). Model M4 is
also a contaminated model, but testing a three-component mixture. It has been addressed by Garel
and Goussanou (2002).

Model M5 is one of the models upon which a lot of researchers spent a lot of time. The
density g is a smooth function with derivatives up to the fourth oder for Dacunha-Castelle and
Gassiat (1997) but only up to the second order for Garel (2005a). Model M6 is the corresponding
Gaussian case where the parameter is the mean. Model M7 is the case where the parameter is the
variance. Model M8 is the general model for a two-component Gaussian mixture with respect
to the mean and the variance. Models M9 and M10 are mixture models with the presence of a
structural parameter, the value of which is unknown. For all these models, Garel (2001) proved
or conjectured the LRT statistic, without separation condition. Tabulations are given in Garel
(2005b).
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Testing for univariate Gaussian mixture in practice 93

2.1. Model M2

This simplest model is the standard normal N (0,1) contaminated by a normal distribution shifted
by a mean µ ,

H0 : N (0,1) vs. H1 : (1−π)N (0,1)+πN (µ,1). (3)

This model is obviously rather artificial from a practical point of view. We start our study with it
since it is the first time, up to our knowledge, that the actual quantiles for finite (realistic) sample
size n are compared to the asymptotic quantiles obtained by Garel (2001). The Likelihood Ratio
Test statistic (LRT) proposed by Garel (2001), Theorem 2.1, is

λn = sup
µ∈[−a,a]\{0}

T 2
n (µ)1{Tn(µ)≥0} (4)

where

Tn(µ) =
1√

n(eµ2−1)

n

∑
i=1

[
e(Xiµ−µ2/2)−1

]
, µ 6= 0,

and

lim
µ→0

T 2
n (µ) = nX̄2, X̄ =

1
n

n

∑
i=1

Xi.

Our purpose in this section is to compute Monte-Carlo quantiles of this test statistic for
realistic n (and up to “asymptotic” sample sizes), and evaluate the asymptotic behavior w.r.t. the
theoretical results. This allows us to evaluate the power of this LR-Test using these Monte-Carlo or
asymptotic quantiles. We are also comparing it with an EM-test we derived using the methodology
in Chen and Li (2009). Note that this particular model has not been handled by these authors.

2.2. Model M2 Monte-Carlo simulation for quantiles

2.2.1. Quantiles for the LR Test

For computing the statistic, we have to define a suitable compact [−a,a]. Following Garel (2001),
we first tried values a ∈ {1,2.5,5}. The test statistic λn is easy to compute, the supremum over
µ ∈ [−a,a]\{0} being obtained by discretizing the interval in k = 100 or k = 200 steps. Figure 1
shows some typical behavior of µ 7→ T 2

n (µ)1{Tn(µ)≥0}, for which we choose a = 2.5. It allows to
see the global behavior of the statistic by simulating several samples and retaining the different
shapes obtained. In particular the discontinuity in 0 where the statistic jumps to its opposite value
is visible.

Figure 2 shows the comparison between asymptotic, previously published quantiles, and Monte-
Carlo quantiles computed from a large-scale experiment with 10,000 replications, and several
sample sizes from n = 100 up to n = 100,000. This experiment shows that the convergence is
rather slow, but happened for a = 1, whereas the usage of the asymptotic quantile is questionable
in cases where a = 2.5 or larger is used. This study hence suggests to use the Monte-Carlo
quantiles in practice for any realistic (hence small) n. This very slow convergence is somehow
in accordance with the rate in log(logn) claimed by other authors as, eg, Bickel and Chernoff
(1993). Note that using a > 2.5 is not realistic in practice for this model since, for contamination
mean µ so distant from 0, the mixture structure becomes visible just looking at an histogram of
the data. A more detailed explanation about the setting and impact of a is given in Section 6.1.
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FIGURE 1. Some typical behavior of µ 7→ T 2
n (µ)1{Tn(µ)≥0} for a = 2.5 and simulated samples of size n = 1000 under

H0 for M2. The red dot is the limiting behaviour T 2
n (0), when Tn(0)≥ 0.

2.2.2. Quantiles for the EM-test

We present here the quantiles calculated from Monte-Carlo simulation for the statistic EM(k)
n of

the EM-test proposed in Chen and Li (2009). M2 corresponds to Example 2 in Li et al. (2009)
but it seems that they do not provide the asymptotic distribution. We did not find a definition
and implementation of the EM-test for this model in the package MixtureInf (Li et al., 2016)
proposed by these authors, so we defined our implementation. These quantiles are computed from
experiments with 10,000 replications of size n. Each experiment have been computed three times
to evaluate the accuracy of the number of replications.

We choose K = 3 for the number of iterations in the EM algorithm and (0.1, 0.3, 0.5) for
initial values for π as proposed in, e.g., Chen and Li (2009). The maximization of the initial step
is done using the R function optimize() for this simple case. We use the penalization proposed
in Chen and Li (2009), p(π) = log(1−|1−π|). Our results are in Table 2. From our Monte-Carlo
experiment, a χ2(1) limit distribution for the EM-test statistic EM(K)

n for M2 seems valid, even
though the convergence appears to be very slow.

2.3. Model M2 power evaluation

We have simulated under H1 the mixture:

X ∼ (1−π)N (0,1)+πN (µ,1), (5)
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FIGURE 2. M2: Empirical quantiles for λn based on 10,000 Monte-Carlo replications vs. Asymptotic theoretical values
from Garel (2013) (dotted lines) for three percentiles (90%, 95% et 99%) and two compact sets with a = 1 (left) and
a = 2.5 (right). The x axis is in log scale, for 100≤ n≤ 100,000.

with parameters µ = 0.7 and π = 0.3, already used in (Garel, 2001). These settings result in
a severely overlapping mixture, as illustrated in Figure 3. Our motivation for choosing such a
non-obvious mixture model is based on the idea that, if a simple histogram of the data already
reveals a multi-modal distribution, then the test itself is not needed. Figure 4 shows that the
estimated power of the LRT for model (5) is very good, even for small sample sizes, considering
the difficulty of this severely overlapping mixture. However, one should be aware that this good
behaviour is also a consequence of the simplicity of the model, with very few unknown parameters
and a completely known distribution under H0. Our implementation of the EM-test for M2 shows
a comparable behavior.

Since the null hypothesis for models in this paper is “homogeneous Gaussian population”, one

TABLE 2. Mean (and standard deviations) of three percentiles of the statistic EM(K)
n for different probabilities and

different values of n.

n/α 90% 95% 99%
100 2.81 (5.97 10−2) 3.97 (1.77 10−2) 6.6 (8.78 10−2)
200 2.75 (5.8 10−2) 3.94 (8.71 10−2) 6.89 (22.8 10−2)
500 2.75 (3.47 10−2) 3.93 (3.98 10−2) 6.75 (7.22 10−2)

1000 2.68 (0.47 10−2) 3.83 (1.90 10−2) 6.48 (17.6 10−2)
5000 2.73 (4.63 10−2) 3.90 (10 10−2) 6.56 (17.6 10−2)
104 2.71 (0.54 10−2) 3.87 (2.30 10−2) 6.65 (10.3 10−2)

χ2(1) 2.71 3.84 6.63
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FIGURE 3. Typical empirical distribution of a n = 200 sample from the mixture model (5), with the true distributions
for the two components (red, green) and the mixture (black).
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FIGURE 4. Power estimates for M2. LRT: using the quantiles obtained by Monte-Carlo as in Figure 2, for a = 1 (left)
and a = 2.5 (right), 10,000 replications. EM-test (left): for n = 100,200 and 500, 2000 replications.
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FIGURE 5. Power estimates for M2: LRT vs. the KS and SW normality tests, 10,000 replications.

may suggest to use a standard normality tests. Intuitively, such a test with a general alternative
hypothesis such as “non gaussian distribution”, should be less powerful than a test dedicated to
capture a mixture as the alternative. To confirm this, we have also compared the proposed tests for
mixture against standard normality tests. The most common methods are Kolmogorov-Smirnov
(KS) and Shapiro-Wilk (SW) tests. The standard KS test is for a null hypothesis restricted to a
single, arbitrary but completely known density H0 : X ∼ F0 (i.e. F0 does not require any parameter
estimation). The SW test is restricted to normality test, but for a null corresponding to the Gaussian
family. In the case of M2, the null hypothesis is the single density N (0,1), so that the KS test is
more appropriate, i.e., comparison with the LRT proposed by Garel (2001) is fair, in the sense
that both tests are considering the same single distribution under the null hypothesis.

Results in Figure 5 show that the LRT achieves a better power than the KS test in this case.
The conclusion holds as well for the EM-test when comparing with Figure 4. Indeed, this shows
empirically that it is preferable in practice to use a test dedicated to capture an alternative
hypothesis specifying a mixture, when this is expected to be the case. We have also ran the SW
which achieve a very poor performance, with a power approximately equal to its level: the SW
test, which tests a gaussian family, is not an option when H0 is a single normal distribution.

3. Model M6

This model corresponds to a location mixture with same and known variance, set to 1 without loss
of generality.

M6 H0 : N (µ0,1) vs. H1 : (1−π)N (µ1,1)+πN (µ2,1).
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3.1. Model M6: LRT with plug-in estimate

Garel (2001) Equation (11) page 335 proposed the following LRT statistic for this model:

λn = sup
µ∈Θ\{µ0}

T 2
n (µ)1{Tn(µ)≥0}+op (1) , (6)

where op (1) is a quantity which tends to 0 as n tends to infinity uniformly with respect to µ ∈Θ,
where Θ is a bounded open interval and Θ its closure. For µ 6= µ0 we have:

Tn (µ) =
n−1/2

D(µ)
×

n

∑
i=1

{
exp
[
−(1/2)(Xi−µ)2

]
exp [−(1/2)(Xi−µ0)2]

−1− (µ−µ0)(Xi−µ0)

}
,

where D2 (µ) = exp
[
(µ−µ0)

2
]
−1− (µ−µ0)

2, and µ0 is the true value of µ under H0. We have
also:

lim
µ−→µ0

Tn(µ) = (2n)−1/2
n

∑
i=1

[
(Xi−µ0)

2−1
]
.

This statistic is in its principle similar to the one detailed for M2, and is given up to a remainder
term Rn which is op(1) under H0. Then, it is not surprising that this statistic includes the knowledge
of the mean µ0 under H0. We denote the LRT statistic λn(xxx,µ0) here, where xxx = (x1, . . . ,xn) is the
n-sample available to perform the test. The distribution of λn has been studied only asymptotically,
i.e. when µ0 is available. Of course, when one works with real data, this value is unknown and
have to be estimated from the data. We propose in this work a methodology allowing for a practical
application of this test in actual situations.

Our approach consists in plugging-in an estimate of µ0, i.e. computing some µ̂0 and using it
in λn(xxx, µ̂0). There are several issues when using such a plug-in estimate, in particular (i) How
to estimate µ0, and under which constraint (H0 or the general model); (ii) shall we separate the
available sample in two subsamples, or use the whole sample twice?

The subsampling strategy consists in separating the available data in two samples, say xxx1 and
xxx2, compute the estimate µ̂0(xxx1) using the first sample, and plug it to compute the LRT statistic
λn(xxx2, µ̂0(xxx1)). On the other way, using the same sample twice means that the data xxx are used first
to get the estimate µ̂0(xxx), and then re-used to compute the statistic i.e. λn(xxx, µ̂0(xxx)). This solution
is more appealing since the sample size used in both procedure is n instead of n/2 (if 50% of the
initial sample is selected for xxx1). But it implies a dependence between the plug-in estimate and the
test statistic, that may have unpredictable effects. In the case of the LRT for M6, the theoretical
properties (asymptotic distribution of λn under H0) is preserved since the weak consistency of the
estimate µ̂0 is the only required condition. We thus choose to use the sample xxx twice here, but we
had also experiment the subsampling procedure for comparisons that are not presented here.

3.1.1. Estimation of µ0

Since µ0 is the expectation of the data under H0, a straightforward procedure suggests to estimate
it by the classical Maximum Likelihood Estimate (MLE) under H0, that is the sample empirical
mean µ̂0(xxx) = x̄n. This will work perfectly if the data come from homogeneity. However, if
the data come from a mixture, this estimate will not converge to µ0 and the power of the test
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collapse dramatically. This fact has been verified by a simulation experiment that shows a power
approximately equal to the level of the test (the results are not provided here for brevity). Instead,
we thus propose to estimate µ0 by the mean associated to the largest component weight of the
fitted mixture, i.e. the one representing the “prominent gaussian” closest to the model under H0.
This estimation needs consequently to be performed with a version of the EM algorithm for a
two-component Gaussian mixture, with the constraint σ2 known (and set to 1), imposed in M6.
Hence the parameter of the model is θθθ = (π,µ1,µ2). It is well known that the EM algorithm fits
the parameter of a mixture up to a permutation of the labels (the “label-switching” problem). Thus
we define the estimate

µ̂0(xxx) = µ̂11{π̂<1/2}+ µ̂21{π̂≥1/2}.

Several constrained EM-algorithm have been proposed in Chauveau and Hunter (2013), and are
already available in the mixtools package (Benaglia et al., 2009) for the R statistical software (R
Core Team, 2016), including this very simple situation (known and same variance for the two
components).

Initialization of EM algorithms for µ0 estimation A crucial remaining question is the EM
initialization, which is known to influence the estimates. See, e.g., Bordes and Chauveau (2016),
Section 5.1 for a discussion about several initialization methods depending on the complexity
of the model. For a bimodal and univariate mixture the simplest procedure, called splitting the
data, consists in breaking the data in two blocs (left and right) associated to the two components
ideally using a visible separation between two modes from an histogram, and using as initial-
ization the estimates of the component parameters from these blocs. An automatic, data-driven
implementation when the histogram is not obviously bimodal (as in our case here) is as follows:

– Define a finite set S of k points within the observations range (typically a grid)
– for each s ∈S :

1. Split the data xxx into two subsamples xxx1 = {xi : xi ≤ s} and xxx2 = {xi : xi > s}
2. Compute the MLE from each subsample, the empirical mean µ0

j of sample j in the
present normal case. Set π0 = #{xi : xi ≤ s}/n, to obtain an initial parameter
θθθ 0 = (π0,µ0

1 ,µ
0
2 ) = θθθ 0(s)

3. Run the EM algorithm from that θθθ 0(s) to get an estimate θ̂θθ(s).

– retain the estimate achieving the largest log-likelihood: θ̂θθ = argmaxs∈S `xxx(θ̂θθ(s)).
In all our experiments below, we choose a grid of k = 10 points between the empirical quantiles
of order 10% and 90% of the data xxx. This means that 10 EM algorithms are ran until convergence
for each replication of the data.

3.1.2. Quantiles for the LRT with plug-in estimate

For the setting a = 1, i.e. the compact [0,a] as in Garel (2013), the empirical quantiles for
λn(xxx, µ̂0(xxx)) are given in Figure 6 (Left). We have also computed and displayed in Figure 6 (Right)
the quantiles for λn(xxx,µ0) with µ0 known (for more replications since the code runs faster: there
are no EM algorithms involved). In both cases, the empirical quantiles are slowly converging to the
asymptotic ones from Garel (2013) (as in M2), but the effect of adding a plug-in estimate increases
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the difference even more. All this suggests that the empirical quantiles should be preferred in
practice in any actual situation.
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FIGURE 6. M6 Empirical quantiles of the LRT statistic for three percentiles (90%, 95% et 99%), a = 1. Left: for
λn(xxx, µ̂0(xxx)), 2000 replications; Right: for λn(xxx,µ0), 10,000 replications. Dotted lines are asymptotic values from
Garel (2013). The n axis is in log scale.

3.2. Model M6 power evaluation

We have evaluated the power of the EM-test and the LRT for M6, on the same model under H1
as for M2, Equation (5), and same sample sizes and test levels. An EM-test for M6 is provided
in Li et al. (2009), since it is a special case of their general result for a scalar parameter θ , and
a general density f satisfying regularity assumptions. Their theorem 2 says that the limiting
distribution (in n) of the test statistic is EM(K)

n → 0.5δ0 +0.5 χ2(1) for any K. This EM-test has
been implemented in the package MixtureInf (Li et al., 2016), in the function emtest.norm0 in
the last available version we tried (1.0-1). We have checked numerically that the statistic actually
converges to the claimed distribution for realistic sample sizes. However, we noticed that the
discrete part 0.5δ0 comes in their code from the fact that any negative value of the statistic are
simply replaced by 0, which is a procedure not in accordance with the theory, and for which we
have no explanations.

We have compared the EM-test and the two LRT options, the asymptotic strategy i.e. with µ0
known and statistic λn(xxx,µ0), and the plug-in strategy with the statistic λn(xxx, µ̂0(xxx)) detailed above.
In each case we used the quantiles obtained by our Monte-Carlo experiment for the corresponding
strategy. The results in Figure 7 (Left) show that our strategy for building a plug-in estimate of µ0
in the LRT statistic preserves most of the power of the test: the LRT using the n-sample twice,
statistic λn(xxx, µ̂0(xxx)), is very comparable to the EM-test. Figure 7 (Right) shows that the power of
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FIGURE 7. Monte-Carlo estimation of the power for M6, H1 as in Equation (5). Left: LRT with plug-in estimate based
on the same sample, compared with the EM-test. Right: LRT using asymptotic definition of the statistic, i.e. µ0 known.

the LRT when µ0 is known, is superior to that of the EM-test.
Our advice is then that the LRT is a better option if the mean under homogeneity (H0) is

known from previous experiments, expert prior information, or as a standard from some area of
expertise. If µ0 has to be estimated from the data, then LRT and EM-test are comparable. In all
cases, the LRT should be applied using the corresponding Monte-Carlo quantiles. Note also that
the comparison with model M2, Figure 4, is not meaningful since M2 is an even simpler model
with all parameters known under H0.

4. Model M8

This model is actually the general one, in particular more general than M9 that will be considered
later, since all the parameters are unknown and unconstrained under both H0 and H1.

H0 : X ∼N (µ,σ2) vs. H1 : X ∼ λN (µ1,σ
2
1 )+(1−λ )N (µ2,σ

2
2 ),

i.e. the test for H0 : “Gaussian distribution” vs. H1 : “Two-component Gaussian mixture”. For
this model, the LRT-based strategy only proposed a test statistic as a conjecture (Garel, 2001).
Chen and Li (2009) Section 3 handles this model with the EM-test, and claims that the limiting
distribution is χ2(2). The code for the EM-test in M8 is provided by the function emtest.norm
in the last available update of the R package MixtureInf (Li et al., 2016). This code also handles
these authors recent extensions to higher order tests, namely a mixture with m0 components for
the null hypothesis versus a mixture with m > m0 components, see Chen et al. (2012).

We have experimented this EM-test strategy under H0 first. The announced limiting distribution
of the Mn statistic as a χ2(2) is partially verified in practice, in the sense that, under H0 : N (0,1),
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FIGURE 8. Monte-Carlo estimation of the power for M8 based on 2000 replications, using the MixtureInf package:
Left, parameters as in (5) with µ2 = 0.7, Right: power as a function of µ2, the mean of the second component.

we always observed a small percentage (between 3% and 5%) of negative values. If we remove
these negative values, then the empirical distribution is reasonably fitted by a χ2(2).

We have also evaluated the power of the EM-test for M8 using a Monte-Carlo experiment as
before, for the same mixture model as in M2 and M6, i.e. with parameters as in Equation (5). The
results are rather disappointing, in comparison with, e.g., M6, even if the statistical problem is
obviously more difficult here. Figure 8 (Left) shows the empirical power using the same settings
as before. It is clear that a model with means 0 and 0.7 is too difficult for this test to capture the
(severely overlapping) mixture structure. Actually, the EM-test power here is approximately equal
to its level. We have thus conducted a second experiment, where the power is estimated when the
mean of the second component increases, i.e. the mixture becomes more and more easy to detect,
for the same range of sample sizes. Results are displayed in Figure 8 (Right).

Our advice to users for this general model is that a good power can only be obtained for “sepa-
rated enough” models. Figure 9 illustrates for instance the type of true and empirical distributions
one can expect, to achieve a power ≥ 90% with a sample of size n = 300. It shows in particular
that in this case the empirical distribution can be at least skewed, if not bimodal, so that H0 is
often not reasonable.

5. Model M9

This model is as before a mixture on the mean, with an unknown but equal variance, sometimes
called the structural parameter. Thus M9 is more general than M6, but less than M8:

H0 : N (µ0,σ
2) vs. H1 : (1−π)N (µ1,σ

2)+πN (µ2,σ
2). (7)
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FIGURE 9. Mixture M8 under H1 for µ2 = 2.5, and two examples for samples of size n = 300.

5.1. Model M9: LRT with plug-in estimate

The LRT statistic for this model has been proved under a separation condition and conjectured,
without this separation condition, by Garel (2001) section 3.3. The statistic λn is expressed as in
Equation (6), where here for µ 6= µ0 we have:

Tn (µ) =
n−1/2

D(µ)
×

n

∑
i=1

{
exp

[
1
2

d2
0(Xi)−

1
2

(
Xi−µ

σ0

)2
]
−1−d0 (µ)d0(Xi)−

1
2

d2
0 (µ)

[
d2

0(Xi)−1
]}

,

D2 (µ) = exp
[
d2

0 (µ)
]
−1−d2

0 (µ)−
1
2

d4
0 (µ) ,

d0 (u) =
u−µ0

σ0
,

where µ0 and σ0 are respectively the true values of µ and σ under H0. We have also:

lim
µ−→µ0

T 2
n (µ) = (6n)−1

{
n

∑
i=1

[
d3

0(Xi)−3d0(Xi)
]}2

.

LRT statistics are given up to a remainder term Rn which is op(1) under H0. This statistic includes
the knowledge of the mean µ0 under H0 (as for M6) but also of the structural parameter σ2.
Of course, when one works with real data, these values are unknown and have to be estimated
from the data. Again, as for M6, applying here the MLE’s under H0 results in a test with very
low power. We thus develop here also a LRT with plugged-in estimates of (µ0,σ

2), in the spirit
of what we did for M6. We use the whole sample both for estimation and computation of the
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LRT statistic, that is consequently denoted λn(xxx, µ̂0(xxx), σ̂2(xxx)). Estimation of (µ0,σ
2) in this

model requires a different version of the EM algorithm, precisely for a two-component Gaussian
mixture and equal but unknown variances σ2

1 = σ2
2 = σ2, so that the model parameter is now

θθθ = (π,µ1,µ2,σ)∈ΘΘΘ. This specific EM is also available in the mixtools package (Benaglia et al.,
2009). As for M6, µ0 is estimated by the mean associated to the largest component weight of the
fitted mixture. For initialization and optimization of the EM algorithm, we use a more general
scheme than for M6, since the model is more complicated (four parameters instead of three, and
more flexibility due to the unknown variance). This initialization, called exhaustive exploration
of the parameter’s space ΘΘΘ in Bordes and Chauveau (2016), consists in starting several (say k)
EM algorithms from k values of θθθ 0’s uniformly drawn from a compact inside ΘΘΘ, and retaining as
previously the estimate with the largest log-likelihood. Precisely, the EM algorithms were started
with initial π0 ∼U[0.05,0.5] and µ0

j ’s draws uniformly over [qα/2(xxx),q1−α/2(xxx)], where qα(xxx) is
the empirical quantile of order α obtained from the data, with α = 0.2.

We obtained empirical quantiles of this LRT, by Monte-Carlo simulation under H0, for the
simplest situation, i.e. (µ0,σ

2) known, and for the plug-in approach. We do not detail the results
here for brevity, and since these are behaving as for M6: the empirical quantiles are close to the
asymptotic ((µ0,σ

2) known and n = ∞) values from Garel (2013), and are much larger when
using the plug-in approach. As a consequence, it is important in practice to use the empirical
quantiles corresponding to the actual situation (and a value corresponding to the plausible range
for µ2).

We have then estimated the power of the LRT in the two settings: (µ0,σ
2) known, or using the

plug-in approach, and for the same alternatives as for M8 (see Figure 8, Right), i.e. for several
values of µ2 given easier mixtures. Results are displayed in Figure 10 and discussed below.

5.2. Model M9: EM-test

This model is also studied in Chen and Li (2009), Section 2, where the EM-test limiting distribution
is given by their Theorem 2: for any fixed number of iterations K of the EM algorithm using a
penalized log-likelihood,

P(EM(K)
n ≤ x)→ F(x−∆)[0.5+0.5F(x)] as n→ ∞,

where F(·) is the cdf of the χ2(1) distribution, and ∆ is a negative but fixed constant that depends
only on the penalty p(π) and the π j’s chosen in the initialization procedure (Chen and Li, 2009).
This distribution has its support in (∆,∞) and

P(EM(K)
n ≤ 0)→ 0.5F(−∆) for ∆ < 0.

In particular with the settings from Chen and Li (2009),

p(π) = log(1−|1−2π|), ∆ = 2 max
π∈{0.1,...,0.4}

(p(π)− p(0.5))≈−0.446,

so that it gives P(EM(K)
n ≤ 0)≈ 0.248.

We did not find any implementation of the EM-test in this case in the MixtureInf package, even
though the algorithm and the associated penalty functions (for p(π) and pn(σ)) are fully described
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FIGURE 10. Monte-Carlo estimation of the power of the LRT for M9, λn(xxx, µ̂0(xxx), σ̂2(xxx)), i.e. LRT with plug-in (Left),
and λn(xxx,µ0,σ

2), i.e. when (µ0,σ
2) are known (Right), as a function of the mean µ2 of the second component; a = 3,

1000 replications.

in Chen and Li (2009) section 2. A fundamental aspect is that the growth of the log-likelihood,
along iterations of the EM algorithm, must be preserved when we use a penalized log-likelihood.
The following conditions are assumed in order to derive the asymptotic properties of the EM-test:

– p(π) is a continuous function such that it is maximized at π = 0.5 and goes to negative
infinity as π goes to 0 or 1.

– sup{|pn(σ)| : σ > 0}= o(n).
– The derivative p′n(σ) = op(n1/4) at any σ > 0.
– pn (aσ ;aX1 +b, . . . ,aXn +b) = pn(σ ;X1, . . . ,Xn).

This last condition ensures that the EM-test has invariant property. The penalty can be dependent
on the data. For the penalty p(π) Chen and Li (2009) choose p(π) = log(1−|1−2π|), and

pn(σ) =−{s2
n/σ

2 + log(σ2/s2
n)}, where s2

n =
1
n

n

∑
i=1

(Xi−X)2,

which satisfies above conditions.
Hence we develop our implementation of this EM-test to compare it with M8. We were unable

to clearly validate the asymptotic distribution under H0, essentially because we observed a higher
estimated value for P(EM(K)

n ≤ 0), even for large samples up to n = 2000. Our estimated type
I error (Table 3) also did not exactly match the simulations provided by Chen and Li (2009)
Table 1. We finally also apply the EM-test for M9 with the same settings already used for M8, as
in Figure 8 (Right). Results are in Figure 11 and show a slightly better power, which is expected
since the model is simpler, but again good power is associated to somehow “easy to detect”
mixtures.
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FIGURE 11. Monte-Carlo estimation of the power of the EM-test for M9 based on our implementation and 2000
replications, as a function of the mean µ2 of the second component.

All these results show that (as for M6), if (µ0,σ
2) are available from prior experiments or

external (expert) information, then the LRT should be preferred, using the corresponding empirical
quantiles for the decision. If these parameters are unknown, then the EM-test achieves a slightly
better power and should be preferred.

TABLE 3. Estimated type I error (%) for M9, n = 200, K = 3 and π ∈ {0.1,0.2,0.3,0.4,0.5}; 20,000 replications.

Level 10% 5% 1%
Estimates 7.81 4.16 0.99

A note about CPU time and computing efficiency: our code of the EM-test for M9 uses C
calls for computing the E-step, borrowed from the mixtools package (Benaglia et al., 2009). We
noticed that for the Monte-Carlo simulations used in power estimations showed in Figures 8
(Right) and 11, our code is approximately 30 times faster than the EM-test for M8 provided by
the MixtureInf package.

6. An application to real data

To illustrate the application of some of the previous models, quantiles and power to actual data of
moderate sample sizes, we have applied it to data collected for a research project from the French
National Institute for Agricultural Research (INRA) 3. Briefly, these quantitative data correspond
to the number of days between two events concerning ovarian response and lambing for ewes
of several kinds (races), coming from actual farms or experimental situations, and years. The

3 Projet de Recherche d’Intérêt Régional DURAREP2.
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purpose is the study of the so-called “ram effect” (or male effect), see, e.g., Fabre-Nys et al. (2016).
A two-component mixture is sometimes suspected for the distributions of these datasets, and
the empirical distributions are not always giving evidence of it. Hence the test for homogeneity
comes as a natural technique, and the conclusions of the tests have important consequences for
the biological application.

We focus here on a dataset of n = 660 observations for a selected race (Romane), location
(Sapinière) and year (2009). Figure 12 shows the empirical distribution of the data, which does not
look very well bell-shaped, but is not obviously bimodal in the sense expected from the biological
context (a mode around 150 days and another mode about 6 days later). We have first added to
this plot a single normal fit (i.e., assuming homogeneity), and a two-component Gaussian mixture
fit using the plain normalmixEM() function of the Benaglia et al. (2009) mixtools package for
the R statistical software R Core Team (2016). From the empirical distribution of the data and
the biological context, equal variance among the components can reasonably be assumed. Since
this variance is unknown in this real data case without expert information, M9 can be used. The
general model M8 can also be used if we do not assume variance equality. In addition, we also
tried to use M6 with a prior estimation of this common variance, to illustrate and compare the
various available procedures, even though this is not theoretically correct.

6.1. Choosing the parameter a in practice

As mentioned in the previous sections, computing the LRT statistic requires the selection of a
parameter a, since a supremum over the mean µ of the second component in a suitable compact
set [µ0; µ0 + a] or [µ0− a; µ0 + a] around the null or first component mean µ0 is involved in
the computation of λn in all the models we studied. As seen before, if the interval to which
the parameter is assumed to belong is unbounded, the likelihood ratio test statistic converges in
probability to +∞ as n tends to +∞. This phenomenon has been highlighted, for the first time, by
Hartigan (1985). For a contaminated model on the mean, the value of a determines the interval
where the mean of the second component is likely to be. Our experience indicates that this value
has little effect on the result of the test, i.e. it will generally not modify the detection of a mixture.

Of course, from a methodological point of view, it is more satisfying to choose a large enough,
in a “reasonable” range deducted from the empirical distribution (histogram) of the data and the
selected model, to compute the observed value of the statistic λn(xxx) for a given dataset xxx. However,
a parameter a is involved in the computation of Monte-Carlo quantiles of λn under H0 as well,
and this could be an issue if one would have to compute these quantiles specifically for each new
experiment, data set and a value. Fortunately, in the Gaussian case, the LRT statistic is invariant
by a linear transformation of the data, so that ultimately what is needed is an approximation
of quantiles under a null model with (e.g.) µ0 = 0, σ0 = 1, and some values of a such that
a ≥ |µ2− µ1|/σ where µ2 is the larger likely value obtained from an examination of the data.
This is why we generally need only values such as a = 1, a = 2.5 or a = 5 in view of the null and
normalized model. We illustrate that below for this dataset and M6 and M9.
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FIGURE 12. Homogeneous and 2-components mixture fits for the data Romane Sapinière 2009.

6.2. Results and comparisons

Using M6. The prior estimation of σ required for applying M6 with the present dataset is
done under the general model using an EM algorithm with the constraint σ2

1 = σ2
2 (actually

similarly to what is done in M9 for the plug-in approach), resulting in the estimate σ̂ = 4.43. The
data are then normalized using this σ̂ . Note that normalizing the data using simply its empirical
standard deviation (over-estimated value of 5.65) is not appropriate: clearly, normalizing with
σ̂ = 4.43 better retains the features of the distribution depicted in Figure 12. Then the LRT for
M6 with plug-in strategy for µ0 (Section 3.1) and providing σ̂ as “known” is applied on the
normalized data yyy = xxx/σ̂ , with a supremum over a compact [µ0−a; µ0 +a] with a = 5, in view
of the range of the normalized data and the discussion above. We obtain an observed LRT statistic
λn(yyy, µ̂0(yyy)) = 3248. We then use the Monte-Carlo quantiles with the same setting (n = 660 and
a = 5) which leads to clear rejection of H0 at level 1% (the 99% quantile for λn in this case being
approximately 26). The approximate p-value has been computed from the same Monte-Carlo
experiment for a large number of replication, and gives p≈ 10−4. The EM-test for M6 with the
same normalization (using yyy) returns a p-value ≈ 10−28, leading to clear rejection as well. Note
that the code provided by the authors of the EM-test returns a p-value based on the asymptotic
χ2 distribution without control of the validity of this asymptotic, whereas our approach uses a
p-value based on the actual non asymptotic distribution of the LRT statistic. This may explain the
difference.

Using M9. The LRT for this model can be applied straightforwardly to these data, since the two
unknown parameters are handled by the plug-in approach, as explained in Section 5.1. We also do
not have to normalize the data. Looking at the possible modes in Figure 12 we choose a = 10.
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We then found λn(xxx, µ̂0(xxx), σ̂2(xxx)) = 3166, and the plugged-in estimates µ̂0(xxx) = 152.4 and
σ̂(xxx) = 4.428, consistent with the data. We obtain 2470 for the 99% quantile of λn(xxx, µ̂0(xxx), σ̂(xxx))
under H0 for n = 660 and a = 3 (since 10/σ̂ < 3, using the invariance discussed in 6.1). This
leads again to clear rejection. The estimated p-value is p≈ 0.0064.

Using M8. Finally, M8 can also be used straightforwardly in this case, but only (among the
various approaches we have detailed) using the EM-test approach. The function emtest.norm2
of the MixtureInf package returns a p-value of 5.10−9 indicating clear rejection, in accordance
with the conclusions using the other models and tests. Again this code returns a p-value based on
the asymptotic χ2 distribution. A Monte-Carlo quantile could give a slightly different result.

7. Discussion

7.1. A brief summary of our results and observations

M2 Results on the LRT statistic distribution is available (Garel, 2001). We have compared
the non asymptotic quantiles with the asymptotic ones, and showed the good power of the test,
even for a severely overlapping and non obvious mixture. To our knowledge, there is no EM-test
available in the literature for this case. Our derivation of the EM-test and its implementation
indicate a limiting distribution EM(K)

n → χ2(1) under the null hypothesis, and a power similar to
the results from the LRT test. Note that the convergence to the χ2(1) distribution seems very slow.

M6 The LRT approach for M6 gives asymptotic results on the statistic distribution, but the
expression of the test statistic includes the value of the true µ0 under H0. Quantiles and power are
evaluated in our work, in this set-up. We have also proposed a novel approach allowing this LRT
to be used in practice, by estimating µ0 under the general model with a constrained EM algorithm,
and plugging-in this estimate in the test statistic. Note that this strategy using the same sample
twice preserves the theoretical properties, but decreases the rate of convergence of the empirical
quantiles. For the EM-test approach, Li et al. (2009) Theorem 2, claim the limit distribution
EM(K)

n → 0.5δ0 +0.5 χ2(1). A code is available in the MixtureInf package. We however noticed
that values corresponding to the discrete part δ0 are forced in the code, where negative values
for EM(K)

n are checked and simply replaces by 0. Note also that the p-value of this EM-test is
computed from its asymptotic distribution. The limit distribution under H0 is recovered from our
Monte-Carlo investigation, except the convergence to the weight 0.5 even for large n. We observe
that the power of the EM-test is weaker than the LRT when µ0 is known. Our advice is then that
the LRT is a better option if the mean under homogeneity (H0) is known from external sources. If
µ0 is unknown, then the LRT with plug-in estimation achieves a power comparable to that of the
EM-test. The LRT should be applied using the corresponding Monte Carlo quantiles.

M8 In that model, a conjecture is proposed for the LRT statistic distribution but it has not been
investigated. In Chen and Li (2009) Section 3, the limiting distribution EM(K)

n → χ2(2) is given
for the EM-test statistic. Code for this case is available in the MixtureInf package. Following
our investigations, the message we deliver to potential users is that the power can be rather weak
for datasets from non-obvious mixture, i.e. non obviously bimodal (or multi-modal) empirical
distributions. M8 clearly deserves more study on actual datasets.
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TABLE 4. Powers of EM test at the 5% level for two higher order models and four alternatives for each, compared with
results from Chen et al. (2012) showed in (·) for the EM-test with 3 iterations; estimates based on 5000 replications.

H1 n = 200 n = 400
m0 = 2 vs. m = 4 1 16.2 (20.0) 43.9 (44.1)

(Table 4) 2 33.2 (33.5) 67.6 (70.2)
3 99.1 (40.5) 100 (60.2)
4 100 (100) 100 (100)

m0 = 3 vs. m = 5 1 13.0 (10.4) 25.9 (28.4)
(Table 6) 2 41.8 (40.7) 79.7 (84.6)

3 42.7 (44.8) 78.6 (83)
4 80.1 (82.3) 99.2 (99.5)

M9 Results on the LRT are available but as for M6, only asymptotically in the sense that the
computation of the test statistic requires the knowledge of both the mean µ0 under H0 and the
structural parameter σ2. As for M6, we have proposed here a plug-in approach, with an estimation
under the general (more complex) model and another type of constrained EM. These two LRT
have been compared. The EM-test for M9 has been studied in Chen and Li (2009) section 2 and
their Theorem 2 gives an asymptotic behaviour of the cdf of the statistic test EM(K)

n . One difficulty
is that there is no code available online (in the MixtureInf package or another). We thus develop
our own code considering the algorithm proposed in Chen and Li (2009). We did not recover
the asymptotic distribution under H0 claimed by the author; in particular, we noticed a higher
estimated value for P(EM(K)

n ≤ 0) and slightly different estimated type I errors. Using a similar
setting used for M8, we noticed that good power is reached for obvious mixtures. Our conclusion
is that for M9, if the parameters (µ0,σ

2) are known then the LRT achieves a better power than
the EM test. In the general case, our implementation of the EM-test achieves a slightly better
power than the LRT with plug-in estimation. Here again, the LRT shoud be applied using the
Monte Carlo quantiles.

A note about higher order models In view of our results for the power of the EM-test in the
case of a homogeneous null model, and since this model has been extended in Chen et al. (2012)
and in the MixtureInf package (Li et al., 2016), to higher order models i.e. for H0 : m0-component
mixture vs. H1 : m > m0-component mixture, we tried to re-run some of the experiments provided
in Chen et al. (2012), Section 4 (simulation study). We reproduced the experiments given by
these authors in their Table 4, bottom panel, corresponding to H0 : m0 = 2 vs. four instances
of H1 : m = 4, and their Table 6, bottom panel, corresponding to H0 : m0 = 3 vs. four instances
of H1 : m = 5. Results are summarized in our Table 4. We estimate the powers based on 5000
replications (instead of 1000 in Chen et al. (2012)), to achieve more precise estimates. The results
are often comparable, except for m0 = 2 vs. m = 4, case 3.

7.2. Conclusion

This paper brought a new insight towards the problem of testing a two-component Gaussian
mixture vs. the null hypothesis of homogeneity (no mixture). We compare two approaches, one
based on the Likelihood-Ratio Test, and the other on the EM-test; guidelines for practitioners
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are summarized in section 7.1, and an illustration of both approaches using different models is
proposed. Classical results obtained in the frame of Likelihood Ratio Test (Ghosh and Sen (1985),
Garel (2001)) rely on the true value of some parameters under H0. But this value is unknown and
may be difficult to obtain in a general framework. That is why we proposed new plug-in methods
for two models we consider, in order to use the corresponding statistics with real data.

One interesting question is related to the proximity of the mixture model to homogeneity; but
it is a tough problem. One aspect of this question can be described by: for a fixed π , the mean µ2
tends to µ1. This case has been thoroughly addressed by the Removing separation conditions in
mixture problems papers. The LRT statistic admits a limit and the completed statistic can be used
for detection.

A second aspect can be described by π → 0. Also allowing n→+∞, Donoho and Jin (2004)
found the separation curve between the two hypotheses which is in loglogn. At the practitioner
level, the problem consisting in working on samples of small or moderate size, i.e. one hundred
to one thousand of individuals, when π is small, has been described as “presence of outlying
observations”. Specific tests of hypotheses have been developed in this context. Basically, practi-
tioners use to assume π ≤ 0.05. Then a basic question remains : when is it possible or profitable to
make a distinction between homogeneity and two-component mixture ? The answer is not unique.
For instance, if the goal is to estimate parameters, such problems can be addressed by means of
robust techniques. If the problem is to make evidence of two populations inside the sample, very
sensitive tests are needed.

A surprising by-product of our research is the inaccuracy of our simulation results with respect
to the EM Test results in the case of M9. We have no clear explanation so that further investigations
would be needed. Finally, we stress that this work allowed us to add a few contributions as codes
implementing the LRT approach, that will be included in a future update of the mixtools package
(Benaglia et al., 2009) for the R statistical software (R Core Team, 2016).
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