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Résumé : Les difficultés de mise en œuvre d’expériences de terrain ou de laboratoire, ainsi que les coûts associés,
conduisent les sociétés industrielles à se tourner vers des codes numériques de calcul. Ces codes, censés être représenta-
tifs des phénomènes physiques en jeu, entraînent néanmoins tout un cortège de problèmes. Le premier de ces problèmes
provient de la volonté de prédire la réalité à partir d’un modèle informatique. En effet, le code doit être représentatif
du phénomène et, par conséquent, être capable de simuler des données proches de la réalité. Or, malgré le constant
développement du réalisme de ces codes, des erreurs de prédiction subsistent. Elles sont de deux natures différentes.
La première provient de la différence entre le phénomène physique et les valeurs relevées expérimentalement. La
deuxième concerne l’écart entre le code développé et le phénomène physique. Pour diminuer cet écart, souvent qualifié
de biais ou d’erreur de modèle, les développeurs complexifient en général les codes, les rendant très chronophages dans
certains cas. De plus, le code dépend de paramètres à fixer par l’utilisateur qui doivent être choisis pour correspondre
au mieux aux données de terrain. L’estimation de ces paramètres propres au code s’appelle le calage. Ce papier propose
une revue des méthodes de calage bayésien et s’appuie sur un cas d’application qui permet de discuter les divers
choix méthodologiques et d’illustrer leurs divergences. Cet exemple s’appuie sur un code de calcul servant à prédire la
puissance d’une centrale photovoltaïque.

Abstract: Field experiments are often difficult and expensive to carry out. To bypass these issues, industrial companies
have developed computational codes. These codes are intended to be representative of the physical system, but come
with a certain number of problems. Despite continuous code development, the difference between the code outputs and
experiments can remain significant. Two kinds of uncertainties are observed. The first one comes from the difference
between the physical phenomenon and the values recorded experimentally. The second concerns the gap between
the code and the physical system. To reduce this difference, often named model bias, discrepancy, or model error,
computer codes are generally complexified in order to make them more realistic. These improvements increase the
computational cost of the code. Moreover, a code often depends on user-defined parameters in order to match field data
as closely as possible. This estimation task is called calibration. This paper proposes a review of Bayesian calibration
methods and is based on an application case which makes it possible to discuss the various methodological choices and
to illustrate their divergences. This example is based on a code used to predict the power of a photovoltaic plant.
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1. Introduction

Numerical experiments have become increasingly popular in many (if not all) industrial fields, as
setting up field experiments can represent a huge investment for a company. Numerical simulations
are generally considered as a substitute to bypass physical or field experiments (Santner et al.,
2013; Fang et al., 2005). However, the complexity of the computer codes used in such simulations
increases with the capacity of computer processors, and sometimes at a much higher rate. As a
result, some codes have become greedy in computational time (Sacks et al., 1989). Moreover, a
gap between computer code outputs and field measures of the physical process that the code seeks
to simulate is routinely observed. Checking the accuracy of the code by confronting it with field
experiments is called validation (Bayarri et al., 2007). This task is difficult since the requisite field
data are scarce and it is based on a computational code that often has a long runtime. Throughout
this paper, we will use the word “code” as a proxy for numerical code, sometimes also called
numerical model, simulator or computational code and field experiment for real world experiment.

The code generally depends on two kinds of inputs: variables and parameters. The variables
are input variables (observable and often controllable) which are set during a field experiment
and can encompass environmental variables that can be measured. The parameters are generally
interpreted as physical constants defining the mathematical model of the system of interest, but
can also contain so-called tuning parameters, which have no physical interpretation. They have to
be set by the user to run the code and need to be chosen carefully to make the code mimic the
real physical phenomenon. The code can be mathematically represented by a function fc. Let us
note, in what follows, θθθ ∈Q ⊂ Rp to represent the parameter vector and x ∈H ⊂ Rd for the
variable vector. The space Q is called the input parameter space and H the input variable space.
The physical phenomenon is denoted by ζ and only depends on variables in vector xxx ∈H , the
parameter vector θθθ having no counterpart in field experiments.

A code output is then written as fc(xxx,θθθ) whereas ζ (xxx) denotes the output of the physical
phenomenon for the same variable xxx. This is of course an idealized formalization, in which we
assume that the code variables xxx are exhaustive to describe the phenomenon of interest, in that
the quantity to be predicted can take a single deterministic value ζ (xxx) for a given xxx. In this paper,
the quantity of interest is assumed to be a scalar but extensions with high dimension outputs are
possible (Higdon et al., 2008). Therefore, in what follows, the outputs of ζ and fc lie in R.

We consider that a vector of field data (yyyexp), which are noisy measurements of ζ , is observed
as a realization of the statistical model:

M0 : ∀i ∈ J1, . . . ,nK yexpi = ζ (xxxi)+ εi

where ∀i ∈ J1, . . . ,nK εi
iid∼N (0,σ2

err). The corresponding values of the variables xxxi are also
observed.

Calibrating the code consists in making the parameter vector θθθ consistent in some sense with
these n field data. In an industrial framework, uncertainty quantifications (Rocquigny, 2009) can
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be decomposed into a step by step procedure and calibration is identified as a key element of the
so-called step B’. As illustrated in Damblin (2015), this step concerns calibration, verification and
validation (V&V). V&V can be further split into 3 phases described in Roache (1998), Bayarri
et al. (2007) and Oberkampf et al. (1998). Calibration then aims at finding the "best" parameter
vector θθθ = θθθ

∗ such that the error term made by the code in a statistical model is minimal. Several
statistical modeling strategies have been proposed in the literature. When only measurement
errors are considered, Cox et al. (2001) use a rather simple model, considering that the code does
not differ from the phenomenon under study while Higdon et al. (2004), Kennedy and O’Hagan
(2001) and Bayarri et al. (2007) advocate for some extensions which encompass a model bias or a
model error term, also dubbed as discrepancy in the following. All of these models are reviewed
and discussed in Section 3. The identifiability issues between the parameter θθθ and the discrepancy
were already discussed in the written discussions of Kennedy and O’Hagan (2001). Tuo et al.
(2015) consider the calibration task as a minimization of a loss function between the code and the
physical reality. In Tuo and Wu (2016), they show that this loss function leads to an estimation of
θθθ depending on the chosen prior distribution of the discrepancy. Then, Plumlee (2017) advises an
orthogonality specification for the discrepancy i.e. the discrepancy should be orthogonal to the
gradient of the computer code with respect to a loss function.

As an industrial illustration, we will focus, in this paper, on predicting the energy production
from a photovoltaic (PV) plant (Martin and Ruiz, 2001). The industrial context is that of an
electricity producer and supplier who has to consider bids from PV plants. The selling price
announced by the industrial company has to be competitive enough to be successful in the bidding
process. Of course, the building costs and the production over the plant lifetime have to be known
to evaluate the profit margins. Although a best guess-estimate, the deterministic evaluation of
PV production through a sophisticated computer code does not fulfill the needs of a financial
investor in PV projects. To evaluate the financial risks of the investment and consequently to
make a decision, the investor needs to assess the uncertainty around the expected production
estimation. To do so, all the sources of uncertainties have to be identified and treated in their
current form. Calibration will be useful for hunting down the uncertainties related to the modeling
and quantifying the range of the main potential errors made in predicting the profit ratio. This real
case study will allow us to emphasize the differences between the statistical models used for ca-
libration in a context where the validity of the statistical hypotheses usually made is not guaranteed.

This paper first presents the illustrative case study (Section 2). The issues at stake are described
with the explanation of the code and the source of the experimental data. Section 3 deals with the
presentation of the many different statistical models one can find in the literature which have been
developed for calibration. Then, the different likelihoods and conditional densities needed for
parameter estimation are highlighted. In Section 4, the different statistical models are implemented
and tested for the PV application case, in order to illustrate the various ways of reasoning behind
calibration and point out their differences.
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2. Production estimation from a PV plant

2.1. Stakes

The electricity production market has become increasingly competitive. Environmental issues
have brought changes in such a way that producing electricity by exploiting solar power has
become a popular and a major vector of green production. However, building a PV plant represents
a considerable financial risk. Many factors must be taken into account before computing the
return rate. The overall building cost is the first figure needed but can easily be estimated. Once
it is evaluated, a prediction of the PV plant production will set up the return rate. To compute
such a prediction, a code has been developed, implementing a mathematical model which aims at
reproducing the physical system of the plant.

However, there are two major sources of uncertainty linked to this method. The first one is the
meteorological data which are difficult to predict, especially in an environment that is changing
due to global warming. In a project framework, we will usually use the meteorological data based
on the previous years with past scenarios adjusted if necessary to take into account the temperature
increase. The second source of uncertainties comes from the modeling errors. The code may
encounter difficulties in mimicking the physical system. As discussed above, this can be explained
by the fact that the mathematical model implemented is only a simplified representation of the
physical world, which might not take into account all the existing influential variables, and also
depends on uncertain physical constants, which are precisely the parameters we wish to estimate.

Consequently, the error made by the output of the code directly impacts the uncertainty on the
estimation of production. In this article, we will focus only on the modeling errors. In practice,
these errors are responsible for one half (4%) of the error made on the total energy given by the
plant (8%).

2.2. Source of the code

To understand how the phenomenon has been coded, some explanation about how the PV cell
works is needed. A PV cell is mainly composed of a semi-conductor material. For most techno-
logies, this material is silicon (Luque and Hegedus, 2011). The energy supply from the sun is
remarkable at a quantum level since the energy from the light spectrum will modify the energy
levels of the silicon atoms until one electron appears. In a single semiconductor crystal, two parts
are visible. The “p” (positive) side which contains an excess of holes and the "n" side which
contains an excess of electrons. A hole is an excess of a positive charge. The electron is attracted
to the hole by diffusion, creating an electron/hole pair. The principle is to capture enough solar
energy to create such an electron/hole pair. The displacement of an electron is directly translated
into electric current. The so called “energy gap” corresponds to the difference between the energy
of the conduction band and the valence band. To create electricity, the incident solar ray on the PV
cell has to have an energy spectrum higher than the energy gap. That is why cloudy days are not
favorable for PV plant production. The PV cell has a plastic film and a glass cover to protect the
silicon. Otherwise, the lifetime of the cell would be too short because of its degradation. These
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protections act as a filter for the sun’s rays and some of the energy spectrum is lost. All in all,
many conditions have to be met and only 20% of the initial spectrum is at best transformed into
electricity (Martin and Ruiz, 2001).

The code, hereafter considered as a “black box”, is a solver of the main equations mimicking
the electrical behavior of the PV plant. In this article the code will represent a PV test stand
with 12 panels connected together. The power considered will be the one before the inverter
(multiplication of the continuous current and continuous voltage). Fortunately, for an in-depth
exploration of the complete range of situations encountered in the domain of Bayesian calibration
of computer codes, the “black box” code fc appears to be fast for the case study (one launch needs
only 39µs to run). To investigate what happens when the code is time consuming, we will simply
slow it down by restructuring the number of runs allowed for the computer code fc. The code
depends on some parameter vector θθθ and input variables xxx detailed as follows (also called general

inputs in Plumlee (2017)) : θθθ =



η

µt

nt

al
ar

ninc

 and xxx =



t
L
l
Ig

Id
Te

.

The physical meaning of the parameters is explained below (Duffie and Beckman, 2013):
— η : module photo-conversion efficiency,
— µt : module temperature coefficient (the efficiency decreases when the temperature rises) in

%/°C,
— nt : reference temperature for the normal operating conditions of the module in °C,
— al: reflection power of the ground (albedo),
— ar: transmission of the radiation as a function of the incidence angle of solar rays, which

depends on optical properties and the cleanliness,
— ninc: transmission factor for normal incidence.

The input variables contain all measurable data:
— t: the UTC time since the beginning of the year in s,
— L: the latitude in °,
— l: the longitude in °,
— Ig: global irradiation (normal incidence of the sun ray to the panel) in W/m2,
— Id : diffuse irradiation (horizontal incidence of the sun ray to the panel) in W/m2,
— Te: ambient temperature in °C.

Note that the temporal aspect is taken into account to a certain extent through the input variables.
We do not consider any delay in the PV reaction to the forcing conditions. Time t indicates here a
snap shot corresponding to the instant when the power has to be computed. This code only focuses
on a specific time and if the evolution of the power over a day is what we look for, a repetition
over the specific duration has to be made. This operation has to consider the number of time steps
available. For example, if 300 configurations of xxx are accessible for one day, the code will have to
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be executed 300 times to obtain the power evolution over a day. For the rest of the article, we will
denote the code output referring to the ith time step by fc(xxxi,θθθ) and by fc(X,θθθ) the code outputs
corresponding to the whole time frame contained in matrix X.

A sensitivity analysis performed according to the screening method of Morris (Morris, 1991)
showed that only the variations of η , µt and ar have a significant impact on the power. This
sensitivity analysis consists in evaluating with elementary displacements in a normalized input
space, the impacts of these displacements on the output. To demonstrate that η , µt and ar have a
significant impact over a whole duration but not instantaneously a PCA (Principal Component
Analysis) is performed on all outputs generated for the duration and for all combinations of
the design of experiments (DOE) of Morris. On the new uncorrelated basis of the space, the
information is summed up by a new Morris plot. This representation makes it possible to visualize
all the information summarized over the duration on one plot. However, to implement such a
method, the input space parameter needs to be well defined. That is why the work of the experts
is extremely important. They have to define the range of each parameter as best they can.

2.3. Available data

As mentioned above, the code represents a test stand of 12 panels. Data are available over 2
months and instantaneous power is collected every 10s, which makes around 777,600 points to
process. When the recording facilities are interrupted for some reason, a specific data processing
is carried out. Figure 1 shows the kind of data collected from the stand over one month (on the
left) and detailed for one day (on the right). On certain days the production remains stuck at 0.
This typically happens when recording errors occur. In fact, the power saved is aberrant with
too much high or negative power. These errors can be detected and sorted by data cleaning. The
panel on the right in Figure 1 shows the typical behavior of an assembly of solar panels. When the
irradiation of the sun is high, so is the production. As expected, the maximum production happens
around noon when the irradiation is high.

2.4. Estimation of the error

So far, experts have used the code with some parameter values with the knowledge that these
parameters are uncertain (the so called reference values). They can also provide more expertise
on the nature of the parameter. For example for ar, the nominal value is 0.17 and experts state
that the parameter lies within the 95% confidence interval [0.05,0.29]. We chose to consider ar

as Gaussian with ar ∼N (µ = 0.17,σ2 = 3.6.10−3). The standard deviation is chosen equal
to 0.06 because we considered the upper bound and the lower bound of the given interval as
respectively the quantiles ar0.975 and ar0.025 . Similarly, η and µt are taken as Gaussian such that
η ∼N (µ = 0.143,σ2 = 2.5.10−3) and µt ∼N (µ =−0.4,σ2 = 10−2). If 100 realizations are
drawn from the joint distribution of η , µt and ar, the production curve and the prior credibility
interval can be simultaneously plotted on the same graph to see how uncertain the predicted power
is over a day. Figure 2 illustrates on the left the distribution of η , µt and ar and on the right the
production curve obtained for reference values and the prior credibility interval at 90%. On the
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FIGURE 1: Power production by PVzen for August 2014 (left) and
for August 25th 2014 (right)

right side, experiments collected that same day are also displayed. Figure 2 shows that the prior
credibility interval, built thanks to the experts, looks coherent with respect to the experimental data.
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credibility interval of the instantaneous power (right panel)

If one is interested in the energy produced rather than the power (the energy in kWh is the power
in kW multiplied by a duration), one can easily compute the maximum and the minimum energy

Journal de la Société Française de Statistique, Vol. 160 No. 1 1-30
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



8 Carmassi, Barbillon, Chiodetti, Keller and Parent

for say 100 realizations. The energy for collected power is Wexp = 3.44kWh, the maximum energy
computed Wmax = 3.65kWh and the minimum energy Wmin = 2.93kWh. Wmin < Wexp < Wmax

which means that the experts’ interval seems correct for that day. With the considered uncertainty
on η , µt and ar, the error made is about 20% over only one day. Considering this error over a
day, the cumulative error over the lifetime of a plant could be too prejudicial. The aim of the
calibration is to quantify this error and, at the same time, increase the knowledge on the parameter
distribution. The calibration results for this application case are detailed in Section 4.

3. Calibration through statistical models

Calibration aims to find the “best fitting” parameters of a computational code, in order to minimize
the difference between the output and the experiments. It can be used in two cases. In a forecasting
context (Craig et al., 2001), where the code calibrated on data collected on site can be used to
compute the behavior of the power plant over the next time period. But also, in a prediction
context, where data from an experimental stand are used to predict the behavior of a non-existing
stand (assuming they have the same features).

A simple way to express calibration is to write down a first simple model. The computational
code is set up to entirely replace the physical system. Intuitively, we can assume that ∀xxx ∈
H ,ζ (xxx) = fc(xxx,θθθ) for some well-chosen θθθ , which leads to the following equation:

M1 : ∀i ∈ J1, . . . ,nK yexpi = fc(xxxi,θθθ)+ εi, (1)

with ∀i ∈ J1, . . . ,nK εi
iid∼N (0,σ2

err).

Calibration consists then in estimating θθθ in this statistical model. Moreover, the variance of the
measurement σ2

err error is also unknown and has to be estimated as well as the parameters but will
be considered as a nuisance parameter. The likelihood of such a model depends on fc. In methods
such as Maximum Likelihood Estimation (MLE) or Bayesian estimation (which resorts to many
MCMC iterations), it becomes intractable to work with a time consuming fc. For the sake of
simplicity we will consider the code as deterministic in what follows. It means that for the same
inputs, the output of the code is identical, which is generally the case. Even in a deterministic
context, a gap between the code and the physical system is often unavoidable. This gap is called
code error or discrepancy. Some papers advocate adding this discrepancy to statistical models
(Kennedy and O’Hagan, 2001; Higdon et al., 2004; Bayarri et al., 2007; Bachoc et al., 2014). In
the following, we present three other models which take into account a time consuming code
and/or an additional discrepancy.

3.1. Presentation of the models

3.1.1. A time consuming code

Let us consider a time consuming code. As said above, in this particular case, the computational
burden become too huge to perform calibration. That is why Sacks et al. (1989) introduced an
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emulation of the, not yet computed, outputs from the code by a random function, i.e. a stochastic
process. The common choice is a Gaussian process because the conditional Gaussian process is
still a Gaussian process (see Appendix A for more details). It is, parsimoniously, defined by its
mean and covariance functions. The first “simple” model was introduced by Cox et al. (2001)
which uses this emulation of fc.

M2 : ∀i ∈ J1, . . . ,nK yexpi = F(xxxi,θθθ)+ εi, (2)

F(•,•) ∼ G P
(

mS(•,•),cS{(•,•),(•,•)}
)
,

where ∀i ∈ J1, . . . ,nK εi
iid∼N (0,σ2

err) and the random function F(xxxi,θθθ) stands for a Gaussian
process (GP) over the joint domain of xxxi and θθθ . For the following, we consider that the mea-
surement error is independent on the error made by the Gaussian process. The mean function
mS(xxxi,θθθ) is generally a linear form of simple functions of xxxi and θθθ . Its covariance function
cS{(xxx∗i ,θθθ

∗),(xxxi,θθθ)}= σ2
S rψψψS
{(xxx∗i ,θθθ

∗),(xxxi,θθθ)} is such that the function rψψψSSS
{(•,•),(•,•)} is the

correlation function with a parameter vector ψψψS. This parameter vector represents the scale and the
regularity of the kernel and where σ2

S represents the variance. The mean mS(xxxi,θθθ) can be written as

mS(xxxi,θθθ) = mβββ S
(xxxi,θθθ) = E[F(xxxi,θθθ)] = βS0 +

M

∑
j=1

βS j hS j(xxxi,θθθ) = hhhS(xxxi,θθθ)βββ S, (3)

where βββ
T
S = (βS0 , . . . ,βSM) is the coefficient vector to be estimated and hhhS(•,•) = (hS0(•,•), . . .

,hSM(•,•)) the row vector of regression functions where hS0 = 1. Similarly, we define the
n× (M + 1) matrix HHHS(XXX ,θθθ) such that its ith row is hhhS(xxxi,θθθ). The correlation function can
take multiple forms such as Gaussian or Matérn for instance (see Santner et al., 2013, for more
examples). We will consider, for now and for all theoretical developments, the general form of
cS{(•,•),(•,•)}= σ2

S rψψψS
{(•,•),(•,•)} where σ2

S is the variance and r is the correlation function
with a parameter vector ψψψS. The advantage of using an emulator for fc(XXX ,θθθ) is to alleviate the
computational burden, at the cost of adding an additional source of uncertainty, and of increasing
the number of uncertain parameters. Specific hypotheses, for instance a known smoothness of the
random field, may help to choose the size of the parametric family in which the correlation shape
is to be assessed.

When the code is time consuming, a fixed number N of simulations is set up. The ensuing
simulated data (we will call them yyyc) are usually the image of a design of experiments (DOE)
representative of the input space. Some interesting developments have been made on using the
fewest possible points in the input space with some judicious distributions (the Latin Hilbert
Space sampling is one example ; see Pronzato and Müller (2012) for helpful insights).

Let us call DDD a DOE, a set of N points sampled in the input space defined as the product of
H and Q. We can write DDD = {(xxxD

1 ,τττ
D
1 ), . . .(xxx

D
N ,τττ

D
N)} where ∀i ∈ J1, . . . ,NK (xxxD

i ,τττ
D
i ) are cho-

sen in H ×Q. The establishment of the DOE will lead to simulated data which are defined
as yyyc = fc(DDD). The error made by the emulator strongly depends on the numerical design of
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experiments used to fit the emulator. Adaptive numerical designs introduced in Damblin et al.
(2018) are a way to enhance the emulator when the goal is to calibrate the code. With this method,
based on a Gaussian process-based optimization called Efficient Global Optimization (Jones et al.,
1998), other points, judiciously chosen with respect to further calibration, can be added to the
original DOE.

3.1.2. With a code error

Considering the computational code as a perfect representation of the physical system may be
too strong a hypothesis and it is legitimate to wonder whether the code might differ from the
phenomenon. This error (called discrepancy and introduced above) is defined as:

δ (xxxi) = ζ (xxxi)− fc(xxxi,θθθ).

In all the papers cited above, this unknown discrepancy is modeled as an occurrence of a Gaussian
process that yields a random function over the domain H of input variables only. For the sake
of simplicity, we will denote by ms, cS (c

σ2
S ,ψψψS

) and rS (rψψψS
) the mean, covariance (with σ2

S as
the variance) and correlation function relative to the emulator and by mδ , cδ (c

σ2
δ
,ψψψδ

) and rδ

(rψψψδ
) the same functions relative to the discrepancy (respectively σ2

δ
for the variance in the

covariance function). Note that mδ and cδ are functions of xxx only and not θθθ . The aim of adding
the discrepancy lies in the fact that correlation is sometimes visible in the residuals and/or that
no value of θθθ brings the computer close to experiments. However, the discrepancy could lead
to an identifiability issue. For example, two different couples (θθθ ,δ (xxxi)) and (θθθ ∗,δ ∗(xxxi)) may
verify these two equalities: δ (xxxi) = ζ (xxxi)− fc(xxxi,θθθ) and δ ∗(xxxi) = ζ (xxxi)− fc(xxxi,θθθ

∗). Some papers
(Higdon et al., 2004; Bachoc et al., 2014; Bayarri et al., 2007) advocate setting the mean of the
discrepancy to 0 to solve this identifiability issue. The contribution of the discrepancy is widely
discussed in the literature.

When the code is not time consuming, the (real) code fc is used:

M3 : ∀i ∈ J1, . . . ,nK yexpi = fc(xxxi,θθθ)+δ (xxxi)+ εi, (4)

δ (•) ∼ G P
(

mmmδ (•),cδ (•,•)
)
,

where ∀i ∈ J1, . . . ,nK εi
iid∼N (0,σ2

err), and δ (•) stands for a Gaussian process which mimics
the discrepancy and only depend on the input variables xxx. For the rest of the article, we make the
assumption that the discrepancy is independent on the measurement error. Therefore, we write
δ (•) ∼ G P(mmmδ (•),cδ (•,•)) with ∀xxx, mmmδ (xxx) = hhhδ (xxx)βββ δ (where hhhδ is a row vector and βββ δ is
a column vector if we choose a parametric representation of the mean) and cδ the covariance
function of the discrepancy. We also denote HHHδ (XXX) the n row matrix, the ith row of which is hhhδ (xxxi).

When the code is time consuming, the systematic use of fc is not computationally acceptable.
Then, as for Model M2, the code is replaced by a Gaussian process emulator. This leads to the
more generic model introduced in Kennedy and O’Hagan (2001).
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M4 : ∀i ∈ J1, . . . ,nK yexpi = F(xxxi,θθθ)+δ (xxxi)+ εi, (5)

where ∀i∈ J1, . . . ,nK εi
iid∼N (0,σ2

err), F(xxxi,θθθ) and δ (xxxi) are the two Gaussian processes defined
as before. As before, we consider, for the following, that the measurement error, the discrepancy
and the error induced by the emulator are all independent. In their model, Kennedy and O’Hagan
(2001) also used a multiplicative scale parameter ρ for F . This parameter is usually set to 1 in
many papers in order to achieve the best estimate on θθθ . Thus, we omit this scaling parameter in
the model definition.

A quantification of the bias form is the aim of both models. If we are interested in improving
the computational code or its emulator, it is usually fair to set the mean of the discrepancy to zero
and find the best tuning parameter vector which compensates a potential bias (Higdon et al., 2004;
Bachoc et al., 2014).

yyyexp

yyyc(XXX ,θθθ)

σ2
err

θθθ

βββ δ , σ2
δ

, ψψψδβββ S, σS, ψψψS

δ (x)

FIGURE 3: Directed Acyclic Graph (DAG) representation of the different models

The directed acyclic graph (DAG) shown in Figure 3 summarizes and compares the structures
of all the previously introduced models. Specifically: if one considers only the grey nodes, the
obtained DAG corresponds to Model M1. Adding the green node, the resulting DAG represents
M2. Considering the grey and red nodes yields a DAG for model M3 and the whole DAG repre-
sents the general model M4. Note that two categories of parameters are considered. The tuning
parameters are only related to the code and other parameters (also called nuisance parameters)
concern the measurement error, the emulator or the discrepancy introduced in the models. In
calibration, we only focus on the value of θθθ but the other parameters introduced need to be
estimated as well. We will examine these estimation issues at greater length into the next sections.

All these models introduce new parameters and need to be estimated as well as tuning para-
meters. Estimation needs to delve into technical aspects such as writing the likelihood for each
model. The following section provides all the elements required to go one step further and carry
out the estimation.
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12 Carmassi, Barbillon, Chiodetti, Keller and Parent

3.2. Likelihood

To estimate parameters (whatever the framework used, Bayesian or Maximum Likelihood Esti-
mation (MLE)), expressing the likelihood comes as the first requirement. Two major categories
stand out. When the code is not time consuming, the main issue in code calibration (i.e. the
computational time burden) is avoided. When the code is time consuming, new parameters have to
be taken into account and to be estimated. In the models M2 and M4, both numerical data (yyyc) and
field data (yyyexp) are available and can be collected in the whole data vector yyyT = (yyyT

exp,yyy
T
c ). In the

models M1 and M3, data can only represent field data (yyyexp). In what follows, we will denote by
θθθ
∗ the true parameter vector. Note that it is well-defined only in Models M1 and M2, as the value

of θθθ which satisfies: ζ (xxx) = fc(xxx,θθθ ∗) for all possible xxx, is assumed to exist and to be unique. On
the other hand, the models M3 and M4 are both defined by the relation ζ (xxx) = fc(xxx,θθθ)+δ (xxx),
which holds for infinitely many couples (θθθ ,δ (•)), as discussed earlier. Kennedy and O’Hagan
(2001) avoid this issue by defining θθθ

∗ as a “best-fitting” value, but it is unclear what this means
exactly (see the discussion section of their paper for further details).

In order to simplify the notation, for the rest of the paper we will use Φ = {σ2
S ,σ

2
δ
,ψψψS,ψψψδ}

and ΦS = {σ2
S ,ψψψS} and Φδ = {σ2

δ
,ψψψδ}, where σ2

S and σ2
δ

are the variances of the two Gaussian
processes respectively relative to the emulator and the discrepancy. The two parameter vectors ψψψS
and ψψψδ are relative to the correlation functions. Let us call βββ

T = (βββ T
S ,βββ

T
δ ) the vector of collected

coefficient vectors.

The likelihood equations will be written for the generic forms of M3 and M4. The likelihoods
for the simpler models M1 and M2 will then be derived since M1 ⊂M3 and M2 ⊂M4.

3.2.1. A fast code

The generic model which deals with calibration with a code that is quick to run is given in
Equation (4). Only experimental data are used to compute the likelihood. Experimental data
follow a Gaussian distribution, the expectation of which is:

E[yyyexp|θθθ ,βββ δ ;XXX ] = mmmβββ δ
exp(XXX ,θθθ) = mmmexp(XXX ,θθθ) = fc(XXX ,θθθ)+HHHδ (XXX)βββ δ .

Then, the expression of the variance is given by:

Var[yyyexp|Φδ ;XXX ] =VVV Φδ ,σ
2
err

exp (XXX) =VVV exp(XXX) = ΣΣΣδ (XXX)+σ
2
errIIIn,

with ∀(i, j) ∈ J1, . . . ,nK2 : (ΣΣΣδ (XXX))i, j = (ΣΣΣ
Φδ

δ
(XXX))i, j = cδ ({xxxi,xxx j}). The likelihood in this par-

ticular case can be written as
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L F(θθθ ,βββ δ ,Φδ ;yyyexp,XXX) =
1

(2π)n/2|VVV exp(XXX)|1/2 exp

{
− 1

2

(
yyyexp−mmmexp(XXX ,θθθ)

)T
VVV exp(XXX)−1

(
yyyexp−mmmexp(XXX ,θθθ)

)}
.

(6)

This likelihood is relative to Model M3 (Equation (4)). For the specific case, where no dis-
crepancy is considered (corresponding to M1 Equation (1)) the likelihood can be written in
a similar way but with mmmexp(XXX ,θθθ) = fc(XXX ,θθθ) and VVV exp(XXX) = σ2

errIIIn. Note that the covariance
matrix depends only on σ2

err. It implies that if we seek to estimate the posterior density on θθθ (in a
Bayesian framework), this covariance term is superfluous.

Then the likelihood can be rewritten more simply:

L F(θθθ ,σ2
err;yyyexp,XXX) =

1
(2π)n/2σn

err
exp

{
− 1

2σ2
err
||yyyexp− fc(XXX ,θθθ)||22

}
. (7)

The models using the code with or without the discrepancy do look quite similar. For theoretical
development, it might be easier to work with the one without discrepancy. From an experimental
point of view, it could be interesting to study the role of the code error.

3.2.2. A time consuming code

When a code is time consuming and is replaced by an emulator, additional parameters have to be
estimated. As introduced above, a DOE is set up and aims to be a representative sample of the
input space (variable and parameter input space). Simulated data from this DOE (called yyyc) will
constitute additional data for the estimation of the nuisance parameters. Depending on how we
consider that two sources of data are linked, multiple likelihoods can be set up. For the theoretical
development, we will consider the general model M4 and we will detail the particular case M2
hereafter.

The first likelihood useful in estimation is the full likelihood. This concerns the distribution of
all collected data (yyyT = (yyyT

exp,yyy
T
c )). That means that we are interested in estimating the parameters

of the distribution π(yyy|θθθ ,βββ ,Φ,σ2
err;XXX ,DDD) which is Gaussian. The expectations can be written

from both expectancies of π(yyyexp|θθθ ,βββ ,Φ,σ2
err;XXX) and π(yyyc|θθθ ,βββ S,ΦS;DDD).{

E[yyyc|βββ S;DDD] = mmmβββ S
S (DDD) = mmmS(DDD) = HHHS(DDD)βββ S

E[yyyexp|θθθ ,βββ ;XXX ] = mmmβββ
exp(XXX ,θθθ) = mmmexp(XXX ,θθθ) = HHHS(XXX ,θθθ)βββ S +HHHδ (XXX)βββ δ

(8)

This can be summed up for two component vectors yyyT = (yyyT
exp,yyy

T
c ):
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14 Carmassi, Barbillon, Chiodetti, Keller and Parent

E[yyy|θθθ ,βββ ;XXX ,DDD] = mmmβββ
yyy ((XXX ,θθθ),DDD) = mmmyyy((XXX ,θθθ),DDD) = HHH((XXX ,θθθ),DDD)βββ

=

(
HHHS(XXX ,θθθ) HHHδ (XXX)

HHHS(DDD) 0

)
βββ .

(9)

The variance matrix now includes the covariance functions of the discrepancy and the emulator.

Var[yyy|θθθ ,Φ,σ2
err;XXX ,DDD] =VVV Φ,σ2

err((XXX ,θθθ),DDD) =VVV ((XXX ,θθθ),DDD)

=

(
ΣΣΣexp,exp(XXX ,θθθ)+ΣΣΣδ (XXX)+σ2

errIIIn ΣΣΣexp,c((XXX ,θθθ),DDD)
ΣΣΣexp,c((XXX ,θθθ),DDD)T ΣΣΣc,c(DDD)

) (10)

where
— ∀(i, j) ∈ J1, . . . ,nK2 : (ΣΣΣexp,exp(XXX ,θθθ))i, j = cS{(xxxi,θθθ),(xxx j,θθθ)},
— ∀(i, j) ∈ J1, . . . ,nK× J1, . . . ,NK : (ΣΣΣexp,c((XXX ,θθθ),DDD))i, j = cS{(xxxi,θθθ i),(xxxD

j ,τττ
D
j )},

— ∀(i, j) ∈ J1, . . . ,nK2 : (ΣΣΣδ (XXX))i, j = cδ{(xxxi,xxx j)},
— ∀(i, j) ∈ J1, . . . ,NK2 : (ΣΣΣc,c(DDD))i, j = cS{(xxxD

i ,τττ
D
i ),(xxx

D
j ,τττ

D
j )}.

As a reminder DDD is the DOE set up to build the emulator and is defined as DDD= {(xxxD
1 ,τττ

D
1 ), . . .(xxx

D
N ,τττ

D
N)}.

The general expression of the full likelihood can then be expressed:

L F(θθθ ,βββ ,Φ,σ2
err;yyy,XXX ,DDD) =

1
(2π)(n+N)/2|VVV ((XXX ,θθθ),DDD)|1/2 exp

{
− 1

2

(
yyy−mmmyyy((XXX ,θθθ),DDD)

)T

VVV ((XXX ,θθθ),DDD)−1
(

yyy−mmmyyy((XXX ,θθθ),DDD)
)}

.

(11)

Bayarri et al. (2007); Higdon et al. (2004) advocate, in this particular case, considering a
zero Gaussian process mean for the discrepancy. Under this condition, we have mmmy((XXX ,θθθ),DDD) =(

HHHS(XXX ,θθθ)
HHHS(DDD)

)
βββ S and the other terms remain the same. For the model M2 where an emulator is

used without any discrepancy (Cox et al., 2001), the expectation becomes:

E[yyy|θθθ ,βββ S;XXX ,DDD] = mmmyyy((XXX ,θθθ),DDD) = HHH((XXX ,θθθ),DDD)βββ S =

(
HHHS(XXX ,θθθ)

HHHS(DDD)

)
βββ S (12)

and the covariance:

Var[yyy|θθθ ,Φ,σ2
err;XXX ,DDD] =VVV ((XXX ,θθθ),DDD) =

(
ΣΣΣexp,exp(XXX ,θθθ)+σ2

errIIIn ΣΣΣexp,c((XXX ,θθθ),DDD)
ΣΣΣexp,c((XXX ,θθθ),DDD)T ΣΣΣc,c(DDD)

)
(13)

where the covariance matrices are the same as defined above.
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The estimation can be separated into different steps where the partial likelihood (Equation
(14)) could be useful. This only concerns simulated data and the corresponding emulator. The
partial likelihoods of the models M2 and M4 are then the same. This means that we only
need to estimate the distribution π(βββ S,ΦS|yyyc) where ΦS = {σ2

S ,ψψψS}. The expectation can be
obtained by considering only the mean function of the emulator (Equation (8)) and the variance is
straightforwardly linked to the variance of the emulator.

Var[yyyc|ΦS;DDD] =VVV ΦS
c (DDD) =VVV c(DDD) = ΣΣΣc,c(DDD),

where ∀(i, j) ∈ [1, . . . ,N]2 : (ΣΣΣc,c(DDD))i, j = cS{(xxxD
i ,θθθ

D
i ),(xxx

D
j ,θθθ

D
j )}. Let us recall that Equa-

tion (8) established that mmmc(DDD) = HHHS(DDD)βββ S. It implies that the partial likelihood relative to M4
and M2 is:

L M(βββ S,ΦS;yyyc,DDD) =
1

(2π)N/2|VVV c(DDD)|1/2 exp

{
− 1

2

(
yyyc−mmmc(DDD)

)T
VVV c(DDD)−1

(
yyyc−mmmc(DDD)

)}
.

(14)
From what has been introduced before, one can write the conditional distribution π(yyyexp|yyyc)

(see Appendix A for more details) from the joint distribution π(yyyexp,yyyc):(
yyyexp
yyyc

)
∼N

((
mmmexp(XXX ,θθθ)

mmmc(DDD)

)
,

(
VVV exp,exp(XXX ,θθθ) ΣΣΣexp,c((XXX ,θθθ),DDD)

ΣΣΣexp,c((XXX ,θθθ),DDD)T ΣΣΣc,c(DDD)

))
where mmmc and mmmexp are defined in Equation (8), the covariance matrices are defined above Equation
(11) and we define VVV exp,exp(XXX ,θθθ) = ΣΣΣexp,exp(XXX ,θθθ)+ΣΣΣδ (XXX)+σ2

errIIIn in M4 and VVV exp,exp(XXX ,θθθ) =
ΣΣΣexp,exp(XXX ,θθθ)+σ2

errIIIn in M2
1. Then,

yyyexp|yyyc ∼N (µµµexp|c((XXX ,θθθ),DDD),ΣΣΣexp|c((XXX ,θθθ),DDD))

with:

µµµexp|c((XXX ,θθθ),DDD) = mmmexp(XXX ,θθθ)+ΣΣΣexp,c((XXX ,θθθ),DDD)ΣΣΣc,c(DDD)−1(yyyc−mmmc(DDD)), (15)

ΣΣΣexp|c((XXX ,θθθ),DDD) =VVV exp,exp(XXX ,θθθ)−ΣΣΣexp,c((XXX ,θθθ),DDD)ΣΣΣc,c(DDD)−1
ΣΣΣexp,c((XXX ,θθθ),DDD)T . (16)

The conditional likelihood can then be written as:

L C(θθθ ,βββ δ ,Φδ ;βββ S,ΦS,yyyexp|yyyc,XXX ,DDD) ∝|Σexp|c((XXX ,θθθ),DDD)|−1/2

exp
{
− 1

2
(yyyexp−µexp|c((XXX ,θθθ),DDD))T

Σexp|c((XXX ,θθθ),DDD)−1

(yyyexp−µexp|c((XXX ,θθθ),DDD))
}
.

(17)

Usually in a Bayesian framework, βββ is distributed according to a Jeffreys prior. In this case,
π(βββ ) = π(βββ S,βββ δ ) ∝ 1 and we can integrate out βββ from the full likelihood expressed by Equation
(11).
1 This notation was introduced to correct the initial version of the paper. The term VVV exp,exp is also used in Eq (16).
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16 Carmassi, Barbillon, Chiodetti, Keller and Parent

3.3. Estimation

3.3.1. Maximum likelihood estimator

In this section, we comment on remarkable insights developed in Cox et al. (2001). To estimate
the parameters θθθ , βββ and Φ, a first approach (for M1 and M2) would be to maximize the full
likelihood introduced in the previous section. This method is called Full Maximum Likelihood
Estimator. The major drawback of this method is dealing with a high number of parameters and
in certain cases this leads to a very heavy computational operation.

A second method to overcome this issue, introduced in Cox et al. (2001) for M2 only, is called
the Separated Maximum Likelihood Estimation (SMLE). The estimation is made in two steps. The
first step is to maximize the partial likelihood (Equation (14)) to get estimators of the parameters
of the Gaussian Process. Then these estimators (Φ̂ and β̂ββ ) are plugged into µµµexp|c((XXX ,θθθ),DDD) and
ΣΣΣexp|c((XXX ,θθθ),DDD) which are the mean and the variance of the conditional distribution. A likelihood
is set up from those quantities and maximized to get θ̂θθ . The SMLE method can also be seen as an
approximation of the generalized non linear least squares technique.

These methods are applied in Cox et al. (2001) for M2. For models M3 and M4, (Wong
et al., 2017) developed a new approach which deals with the identifiability problem when the
discrepancy is added in this framework. Then, the estimation part is conducted in two steps. The
first step consists in estimating θ̂θθ in

θ̂θθ = argmin
θθθ∈Q

Mn(θθθ) with Mn(θθθ) =
1
n

n

∑
i=1
{yyyexpi

−F(xxxiii,θθθ)}2, (18)

where Cox et al. (2001) propose to get this minimum numerically. Then the estimation of the
discrepancy is done by applying a nonparametric regression to the data {xxxiii,yyyexpi

−F(xi, θ̂θθ)}i=1,...,n.
Any nonparametric regressions can offer working alternatives with this method, showing the
interesting flexibility of the approach.

3.3.2. Bayesian estimation

Under the Bayesian framework, there are several ad hoc short cuts to find estimators without
evaluating and sampling from the entire joint posterior distribution of the unknowns. The idea is to
consider a prior distribution on all the parameters which we will separate into two different catego-
ries. The first category represents the nuisance parameters which are typically {σ2

S ,σ
2
δ
,ψψψS,ψψψδ},

σ2
err and βββ . These parameters are added because of the modeling. The second category groups the

other parameters to be estimated such as θθθ . We will work on the two generic models M3 and M4
with the corresponding sets of parameters to be estimated.

The difference between the two models lies in the fact that for M3 the code can be used as
such and for M4 an emulator is used to avoid running the code. In the further developments, the
parameters to be estimated will be relative to M4 and to return to M3 it will just be necessary to
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omit the nuisance parameters relative to the emulator.

As introduced above, it is common to take a weakly informative prior on βββ such that
π(βββ S,βββ δ ) ∝ 1. It is also reasonable to assume that prior information about θθθ is independent from
the prior information about Φ and βββ . The prior density can then be expressed as

π(θθθ ,βββ ,Φ) = π(θθθ)×1×π(Φ). (19)

Once the full likelihood integrated L F on the prior distribution of βββ , the posterior distribution
can be expressed (full details are pursued in Kennedy and O’Hagan (2001)).

For a full Bayesian analysis, integrating Φ out is needed to finally get π(θθθ |yyy). However this
integration can be quite difficult because of the high number of nuisance parameters. It would
also demand a full and careful consideration of the prior π(Φ). Two methods are mainly used to
estimate θθθ and Φ. In Higdon et al. (2004), the choice made is to jointly estimate all parameters
from Equation (11). The strength of this method is that it is fully Bayesian: all the collected data
are used (the data simulated with the DOE and experimental data) to estimate all the parameters
and nuisance parameters at the same time.

However, Kennedy and O’Hagan (2001) and Bayarri et al. (2007) chose an estimation in
separate steps. This method called modularization by Liu et al. (2009) makes inference sim-
pler but gives only a rough approximation approximation of the exact posterior (that separates
the components of parameter Φ for each Gaussian Process involved). The first step consists in
maximizing the likelihood L M(βββ S,ΦS|yyyc;DDD) (Equation (14)) to get the maximum likelihood
estimates (MLE) β̂ββ S and Φ̂S of βββ S and ΦS. In the second stage, these estimators are plugged
into the conditional likelihood L C(θθθ ,βββ δ ,Φδ ;βββ S,ΦS,yyyexp|yyyc,XXX ,DDD) (Equation 17) from which
the posterior density is sampled with MCMC methods. Note that this last step is the only one that
differs from the SMLE method in Cox et al. (2001).

An alternative method was developed in Bayarri et al. (2007) where “virtual” residuals are
studied (yyyexp− fc(XXX ,θθθ prior) where θθθ prior is a prior value on θθθ ). Then the posterior densities
of σ2

δ
and σ2

err are sampled with a Gibbs algorithm based on conditional complete distribution.
In practice, this estimation is very time consuming as the Gibbs sampler will compute at each
iteration the full likelihood which contains a (n+N)× (n+N) matrix to invert.

It seems intuitively more natural to estimate the parameters with the modularization technique.
Indeed, simulated data only influence the value of the nuisance parameters relative to the emulator.
Experimental data influence the nuisance parameters contained in the whole model.

4. Application to the prediction of power from a photovoltaic (PV) plant

In this section, the PV plant code was used as a toy example to try out all the models. First, we
test the model M1 (Equation (1)), in which only the initial code and the measurement error are
considered. The code is assumed, in this case, to be quick to run although, in most industrial case
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18 Carmassi, Barbillon, Chiodetti, Keller and Parent

studies, numerical codes are time consuming. This is the first issue of feasibility encountered by
engineers. In a second part, we apply Model M2 on our example to mimic the case when the code
cannot be run at will. This model introduces an emulator of the code and its characteristics will
be detailed below. M3 is motivated by the gap between reality and the code observed, most of
the time, by engineers. In this case, we will add to M1 an error term for the discrepancy between
the code and the phenomenon. This code error will be represented by a Gaussian process also
detailed below. The final case is when the two issues co-occur. This leads to considering M4 for
the application case.

The Bayesian framework starts with the elicitation of priors’ densities (that will not be discussed
here (Albert et al., 2012)). According to the experts we choose:

— η ∼N (0.143,2.5.10−3),
— µt ∼N (−0.4,10−2),
— ar ∼N (0.17,3.6.10−3),
— σ2

err ∼ Γ(2,169),
— σ2

δ
∼ Γ(3,1),

— ψδ ∼U (0,1).

This section comprises two subsections. The first subsection details the practical implemen-
tation procedures of the inference for each model. In the second subsection, we discuss all the
results obtained for the models that we tried out.

4.1. Inference

As mentioned in Section 2, a sensitivity analysis was run on the parameter vector θθθ and it turns
out that only η , µt and ar are relevant considering the power output. The inference only concerns
these three parameters and the additional nuisance parameters depending on the model. For the
sake of simplicity, data, recorded every 10s, were averaged per hour and only data corresponding
to a strictly positive power were kept. The Bayesian framework was chosen for the following
study. It is motivated by the availability of strongly informative priors, elicited from experts, on
the parameters we want to estimate. To perform the inference, a Markov Chain Monte Carlo
algorithm was used (Robert, 1996). The algorithm used was first introduced by Metropolis et al.
(1953) for a specific case and was then extended by Hastings (1970). In this application, we
were able to simulate samples from conditional distributions (algorithm called Metropolis within
Gibbs). In other words, we can sample well only one component of the parameter vector at a
time, which makes the process rather slow. That is why a Metropolis within Gibbs was launched
for 3000 iterations. The values of this first sampling phase were kept to improve the covariance
structure of the auxiliary distribution used to make proposals by the algorithm. This will lead to
better mixing properties for the following Metropolis Hastings (10000 iterations including a burn
in phase of 3000).

Two months of data were studied. The PV production over August and September 2014 were
available. We used those two months of data averaged per hour which makes 1019 points. For
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the cross validation, three days of instantaneous power (51 points) were taken from the learning
set and used to evaluate the predictive power of the model considering the rest of the available data.

4.1.1. Emulator

As said in Section 2, 6 input variables are needed to run the code. These are t the UTC time, L
the latitude, l the longitude, Ig the global irradiation, Id the diffuse irradiation and Te the ambient
temperature. As the test stand is precisely located, the latitude and longitude are not taken into
account since they remain unchanged.

The major issue in emulating the behavior of the code is to deal with correlated variables.
The global irradiation, diffuse irradiation and ambient temperature depend on the time which
defines the sun’s position. If a space filling DOE is sampled in [0,1]4 and then unnormalized
between the upper and lower bounds of the 4 input variables, many configurations tested would
not make any sense. For example, we could obtain a time which indicates the morning and a
global irradiation value which corresponds to noon. The projection and space-filling proper-
ties of a DOE such as a maximin Latin-Hypercube-Sample (LHS) DOE (Morris and Mitchell,
1995) are essentially relevant for uncorrelated inputs. A PCA on the matrix containing the input
variables xxxi’s (over the duration used for calibration) provides a basis of the input space with
uncorrelated axes. The bounds of the hypercubic domain in which the maximin LHS DOE is
sampled are then chosen with respect to these axes. Therefore, the DOE will be more concentrated
in the domain corresponding to configurations for input variables that are physically relevant.
Moreover, the PCA could help to reduce the dimension of the input space if this dimension is large.

The main steps of this method are:

1. a PCA is performed on the matrix XXX , the ith row of which is Xi = (ti, Ig,i, Id,i,Te,i) for
1≤ i≤ n. This matrix corresponds to the whole set of observed input variables. The matrix
is scaled (each column is centered and scaled to unit variance).

2. From the eigenvectors given by the PCA, the transition matrix between the uncorrelated
basis and the original basis of the input variable space : TTT ∈M4,4 is computed.

3. A maximin LHS DOE DDD′′′ of N points in dimension d + p = 4+ 3 = 7 is sampled with
respect to the 4 uncorrelated axes given by the PCA and the 3 dimensions of the parameters.
The DOE is sampled in [0,1]7 and then unnormalized with respect to minimal and maximal
values of the coordinates of the input variables on the 4 axes and with respect to the
considered ranges of the 3 parameters.

4. The first 4 coordinates of the DOE DDD′′′ : DDD′′′1:4 corresponding to the input variables are
transformed by the transition matrix T : DDDT

Sc,1:4 = TTT DDD′′′T1:4 and then DDDSc,1:4 is unscaled which
gives DDD1:4. It results in the DOE : DDD =

(
DDD1:4 DDD′′′5:7

)
where the coordinates corresponding to

the parameters are concatenated to the coordinates of the input variables expressed in the
original basis.

5. Then, yyyc = fc(DDD) is computed to build the emulator.
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The Gaussian processes emulated from this method prove to work much better. To mimic a
time consuming code context, we consider that only a limited number of numerical experiments is
allowed for the DOE. First, the number of code calls will be limited to N = 50 to investigate the
high time consuming situation and compare it to an intensive use of the code. Since calibrations
with such an emulator may be not accurate enough, we propose to improve the emulator by adding
10 code calls with an adaptive design devoted to calibration (Damblin et al., 2018). The results
with or without this adaptive procedure will also be compared.

4.1.2. The first model M1

Model M1 described by Equation (1) only deals with the measurement error. The code used in its
simplest form uses only the parameters η , µt and ar. In this case the parameters to infer on are η ,
µt , ar and σ2

err (where εi
iid∼N (0,σ2

err)).

4.1.3. The second model M2

As defined in Section 3, when the code is time consuming, the solution is to emulate it with a
Gaussian process (GP). For the GP emulator, we chose to consider the mean function mS(•,•)
as a linear combination of linear functions. That means HS is a matrix of linear functions. The
correlation function rS (cS = σ2

S rS) chosen is defined by the following equation that corresponds
to a Matérn 5/2 kernel :

rS(xxx,xxx∗) =
(

1+

√
5||xxx− xxx∗||2

ψS
+

5||xxx− xxx∗||22
3ψ2

S

)
exp
{
−
√

5||xxx− xxx∗||2
ψS

}
. (20)

where || • ||2 stands for the Euclidean norm. We used an isotropic kernel in order to have
only one range parameter ψS to estimate. In order to be consistent with this simplification, we
normalized the input variables and the parameters by mapping each of them in the unit interval
[0,1] before computing the emulator. In this case, six parameters have to be estimated: η , µt , ar,
σ2

err, σ2
S and ψS.

4.1.4. The third model M3

The third model introduces another GP for the discrepancy. We chose a different covariance kernel
which is Gaussian (Equation (21)). Note that compared to Equation (4), the discrepancy mean
has been set to 0 (i.e. mδ (.) = 0). These choices are motivated by the fact that the purpose of
calibration is to estimate the "best-fitting" vector parameter θθθ . We do not want any compensation
that might lead to an additional bias. This decision is consistent with Bachoc et al. (2014) where
the same hypothesis was made. We chose an isotropic Gaussian kernel for the correlation :

rδ{(xxx,θθθ),(xxx∗,θθθ ∗)}= exp
{
− 1

2
||(xxx,θθθ)− (xxx∗,θθθ ∗)||22

ψ2
δ

}
(21)

In this case, there are also six parameters to be estimated, i.e. η , µt , ar σ2
δ

, ψδ and σ2
err.

Journal de la Société Française de Statistique, Vol. 160 No. 1 1-30
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2019) ISSN: 2102-6238



21

4.1.5. The fourth model M4

This part focuses on a time consuming code with discrepancy. This model uses the same emulator
and discrepancy as those defined above. The two correlation functions for the emulator and
the discrepancy are chosen with different regularities in order to distinguish the two Gaussian
processes. It seems relevant to assume that the discrepancy is smoother than the code. That is why
a Matérn correlation function is chosen for the code and a Gaussian correlation function for the
discrepancy. In this case eight parameters need to be estimated: η , µt , ar, σ2

err, σ2
S , ψS, σ2

δ
and

ψδ .

4.1.6. Estimation of the nuisance parameters

In the Bayesian framework, an estimation by modularization is chosen. It concerns only the
second and the fourth model. As is the case in Kennedy and O’Hagan (2001), a maximization of
the probability π(ΦS|yyyc) is performed to estimate βββ S, σ2

S and ψs where yyyc are the outputs of the
code for all the points given by the DOE. This maximization is included in the R function km from
the package DiceKriging (Roustant et al., 2012). The emulation fitting procedure is run several
times since the estimation of the nuisance parameters relative to the code is very sensitive to the
starting point of the optimization algorithm. The Q2 criterion is used to choose which estimates
are kept for the emulator used in calibration (Da Veiga and Marrel, 2012).

4.2. Results

Figure 4 compares the results obtained with the help of the R package CaliCo (Carmassi, 2018).
For each parameter η , µ , ar and σ2

err, the MCMC chains converge. Good mixing properties are
confirmed by a visual check. Figure 4 confronts the prior densities with the posterior densities. In
almost every model, a decrease of the variance is quantifiable, which illustrates an improvement
in the knowledge of the parameter density. However, the decrease of variance is not the same
for every model. Calibration performed with the model M2 produces posterior densities with
larger variances than for M1. The replacement of the numerical code by a Gaussian process has
added a variance term in the full likelihood which increases the variance a posteriori. The same
phenomenon is visible from the model M3 to the model M4. Calibration with the model M1 also
highlights a strong disagreement in the estimation of the posterior density of σ2

err. The Maximum
A Posteriori (MAP) of σ2

err is 6500 W 2 which makes a standard deviation of 80.6 W . This value
is too high and has no physical validity. From calibration with the model M1 to the model M3,
the posterior density of σ2

err has been corrected in accordance with the prior distribution and the
physical sense. It does not mean that calibration with the model M1 is incorrect, it only means
that this model misses a substantial variance term due to a structural error in the experimental
data. This term is the discrepancy and if one wants to be consistent with physics, one should
consider Model M3 in this case. Note that with Model M2 the variance of the measurement error
decreases without the addition of the discrepancy. This may be due to the fact that the emulator
is smoother than the code and taking into account the variance of the Gaussian process could
regularize the estimation problem.
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FIGURE 4: Prior (in blue) and posterior (in red) densities of η , µt , ar and σ2
err for each model.

The top two rows show the first two models (without and with emulator) which have only these
four parameters to estimate. The bottom two rows represent the third and the fourth models which
have two more parameters to estimate (see Figure 6).
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The use of a Gaussian process emulator of the code (in Models M2 and M4) has to be handled
with caution. Most industrial codes are time consuming and the use of a limited number of points
in the DOE is required. However, if the emulator does not represent the numerical code well
enough, calibration will fail to retrieve a physical meaning for the parameter. The performance of
the emulator is assessed through the Q2 criterion (Da Veiga and Marrel, 2012). However even a
Q2 larger than 0.8 does not ensure a calibration performance similar to that with the actual code.
In Figure 4, although Q2 = 0.83 for M2 and Q2 = 0.90 for M4, the posterior distributions are
quite wide. Moreover, the larger posterior variances are not the only issue: a shift in the posterior
mode is also observed for some parameters which could lead to quite different point estimates
for these parameters. From an industrial point of view, these issues in the estimation might be
unsatisfactory. The Gaussian process can be improved by adding a small number of well-chosen
points in the original DOE. A strategy, called sequential design and developed in Damblin et al.
(2018), is based on the EGO algorithm (Jones et al., 1998) to find new points regarding further
calibration. From the original DOE of 50 points used for previous calibrations (for M2 and M4)
in Figure 4, 10 points are appended to the original DOE by using the sequential design. Then
calibration is performed on the new Gaussian process emulated with the new DOE.
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FIGURE 5: Calibration results for M ′
2 and M ′

4 using the emulator based on the sequential design.

Figure 5 illustrates the improvement in the new results based on the Gaussian process built after
the sequential design and proves that, with a better emulator, calibration appears to be consistent
with the prior densities and thus with Models M1 and M3.

Figure 6 illustrates the estimation of the parameters from the discrepancy term. As expected,
learning from data has improved our prior belief by decreasing the prior uncertainty of the
parameters. It shows that in both cases (with and without emulator) that convergence seems to be
reached at some point.
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FIGURE 6: Prior (in blue) and posterior (in red) densities of σ2
δ

and ψδ for M3, M4 and M ′
4.

In the posterior densities generated, we also depict correlation between the parameters. As a
matter of fact, a strong positive and linear correlation links all the parameters (η , µt and ar) with
one another as illustrated in Figure 7. A strong correlation can be seen between µt and ar. A lo-
wer, but still meaningful, correlation is also visible between η and µr, as well as between ar and η .
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FIGURE 7: Correlation between parameters of Model M1

4.3. Comparison

To compare the prediction ability of the four models, a cross validation (CV) was performed.
Three days of data (randomly chosen) were taken from the calibration dataset for each of the 100
repetitions of the CV. The densities, generated from the MCMC samples, allow us to compute,
for each model, the 90% predictive credibility intervals for power. The coverage rate at 90%
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represents the quantity of validation experiments contained in these credibility intervals. The
Root Mean Square Error (RMSE) is also computed for the instantaneous power. The results are
displayed in Table 1.

TABLE 1. Comparison of the RMSEs and coverage rates in prediction of 100 test-sets on three randomly selected days
where M ′

2 and M ′
4 are the models based on the Gaussian process established after the sequential design

M1 M2 M3 M4 M ′
2 M ′

4

coverage rate at 90% (in %) 91 44 85 42 71 68
RMSE of the instantaneous power (W ) 5.103 21.79 4.56 18.78 10.94 9.29

The coverage rates for M1 and M3 correspond to the chosen credibility level. However for
M2 and M4 the coverage rates are below this level. As expected, the coverage rates of M ′

2 and
M ′

4 increase since the quality of the emulator has been improved. The coverage levels remain
below 90% which may result from the negligence of certain sources of uncertainty such as the
estimation of the nuisance parameters. As shown in Figure 5, it has also led to spikier posterior
distributions for some of the parameters than the ones obtained with M1 or M3.

Overall, the model M3 gives better results than the others in two respects. First, the code
realizes a better prediction than the emulator. Second, a correlation structure remains in the error.
Adding the discrepancy in the model makes it possible to reproduce the real results. In the case
when an emulator is used instead of the code, the CV produces worse results which was expected
since the number of points chosen in the DOE is not sufficient to reproduce the exact behavior of
the code. The use of the sequential design (even adding only 10 points) has allowed to drastically
improves the models for both calibration and prediction.

5. Conclusion and discussion

This article focuses on code calibration which is a part of uncertainty quantification in numerical
experiments. Although the code used in this paper is a quick code which predicts power gene-
rated from a small PV plant, it was also treated as time consuming in order to investigate the
consequences of emulation on calibration. In particular, it has been shown that sequential designs
(Damblin et al., 2018) could help to perform a better calibration by improving the emulator. This
work can then be extended to bigger computational codes in application at larger PV plants where
emulation is required. As we are working with a physical code, it is important to keep in mind the
meaning of the physical boundaries. Indeed, this has led to confirm and to interpret the presence
of the discrepancy term.

When using models with the discrepancy term (M3 and M4), the mean of the GP was set
to 0 since we consider the parameter θθθ as a best fitting parameter. However, in spite of this
hypothesis, a confounding can still occur between the posterior distributions of θθθ and δ . That
is why more recent works (Plumlee, 2017; Gu and Wang, 2017) advocate adding constraints on
the GP which models the discrepancy. These methods result in additional computational burden
for the estimation procedure but seem promising ways to deal with the confounding effect. Other
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works (Brynjarsdóttir and O’Hagan, 2014) make the case for setting strong hypotheses on the
discrepancy term but this needs a deep elicitation which is not always possible.

One may wonder which model to use in a particular case study. If the code is time consuming,
only M2 or M4 are practicable. Then, the relevance of the discrepancy term is questionable.
A first attempt to answer this question was developed in Damblin et al. (2016). Models with
or without the discrepancy term are compared by computing a Bayes factor. This is done in a
simplified context where the code is assumed to be linear with respect to the parameters to be
calibrated. The extension to the general case is challenging since Bayes factors are burdensome to
compute and extremely sensitive to the prior distributions of the parameters.
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Appendices
A. Gaussian processes

Let us consider a probability space (Ω,F ,P) where Ω stands for a sample space, F a σ -algebra
on Ω and P a probability on F . A stochastic process X is a family such as {Xt ; t ∈T } where
T ⊂ Rd . It is said that the random process is indexed by the indexes of T . At t fixed, the
application Xt : Ω→R is a random variable. However at ω ∈Ω fixed, the application t→ Xt(ω)
is a trajectory of the stochastic process.

For t1 ∈T , . . . , tn ∈T , the probability distribution of the random vector (Xt1 , . . . ,Xtn) is called
finite-dimensional distribution of the stochastic process {Xt}t∈T . Hence, the probability distribu-
tion of an aleatory process is determined by its finite-dimensional distributions. Kolmogorov’s
theorem guaranties the existence of such a stochastic process if a suitable collection of coherent
finite-dimensional distributions is provided.

A random vector ZZZ such as ZZZ = (Z1, . . . ,Zn) is Gaussian if ∀λ1, . . . ,λn ∈ R the random
variable ∑

n
i=1 λiZi is Gaussian. The distribution of Z is straightforwardly determined by its

first two moments : the mean µµµ = (E[Z1], . . . ,E[Zn]) and the variance covariance matrix Σ =
cov(Zi,Z j)1≤i, j≤n. When Σ is positive definite, Z has a probability density defined by equation
(22).

f (zzz) =
|Σ|−1/2

(2π)n/2 exp
{
− 1

2
(zzz−µµµ)T

Σ
−1(zzz−µµµ)

}
(22)

Let us consider two Gaussian vectors called UUU111 and UUU222 such that:

(
UUU111
UUU222

)
∼N

((
µµµ111
µµµ222

)
,

(
Σ1,1 Σ1,2
Σ2,1 Σ2,2

))
The conditional distribution UUU222|UUU111 is also Gaussian (Equation (23)). This property is especially

useful when an emulator is created from a code.

UUU222|UUU111 ∼N (µµµ222 +Σ2,1Σ
−1
1,1(UUU111−µµµ111),Σ2,2−Σ2,1Σ

−1
1,1Σ1,2) (23)

A stochastic process {Xt}t∈T is a Gaussian process if each of its finite-dimensional distributions
is Gaussian. Let us introduce the mean function such that m : t ∈ T → m(t) = E[Xt ] and the
correlation function such that K : (t, t ′) ∈T ×T → K(t, t ′) = corr(Xt ,Xt ′). A Gaussian process
with a scale parameter noted σ2 will be defined as equation (24).

X(.)∼PG (m(.),σ2K(., .)) (24)

Gaussian processes are used in this article in two cases. In the first one, f is a code function
with a long runtime and the Gaussian process emulates its behavior. The Gaussian process is
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called the emulator of the code. The second case is when we want to estimate the error made by
the code (called code error or discrepancy in this article). For the former, we want to create an
emulator f̃ of a deterministic function f . In a Bayesian framework, the Gaussian process is a
"functional" a priori on f (Currin et al., 1991).

Let us note:
f (.)∼PG (h(.)T

βββ f ,σ
2
f Kψψψ f

(., .)) (25)

where βββ f , σ2
f , ψψψ f are the parameters specifying the mean and the variance-covariance structure

of the process and h(t) = (h1(t), . . . ,hn(t)) is a vector of regressors. For (t, t ′) ∈T ×T :

cov( f (t), f (t ′)) = σ
2
f Kψψψ f

(t, t ′) (26)

Let us consider that the code has been tested on N points i.e. on N different vectors ttt. The
design of experiments (DOE) is noted D = (t1, . . . , tN)T and the outputs of D by f will be
defined as y = ( f (t1), . . . , f (tN))T . The correlation matrix induced by y can be defined by the
correlation function Kψψψ f

(., .) and can be written as Σψψψ f
(D) = Σψψψ f

(D,D) such that ∀(i, j) ∈
[1, . . . ,n] Σψψψ f

(D)(i, j) = Kψψψ f
(ti, t j).(

f (t)
f (D)

)
∼N

(( h(t)T βββ f
h(D)T βββ f

)
,σ2

f

(
Σψψψ f

(t) Σψψψ f
(t,D)

Σψψψ f
(t,D)T Σψψψ f

(D)

))
(27)

From Equation (23), it follows that f (t)| f (D)∼PG (µp(t),Σp(t)). This conditional is called
posterior distribution with :

µp(t) = h(t)T
βββ f +Σψψψ f

(t,D)Σψψψ f
(D)−1( f (D)−h(D)T

βββ f )

Σp(t, t ′) = σ
2
f

(
Σψψψ f

(t, t ′)−Σψψψ f
(t,D)T

Σψψψ f
(D)−1

Σψψψ f
(t ′,D)

)
The mean obtained a posteriori is called the Best Linear Unbiased Predictor (BLUP) which is

the linear predictor without bias f̃ of f which minimizes the Mean Square Error (MSE) :

MSE( f̃ ) = E[( f − f̃ )2] (28)

In this appendix, we will not discuss the choice of Kψψψ f
, the parameter estimation, nor the

validation of the Gaussian process.
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