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Abstract: This paper describes some population genetic models under neutrality, involving genetic drift and mu-
tations. Starting with Kingman’s coalescent we show how structured populations can be modeled. We detail these
models by showing how simulation algorithms can be written. In particular we highlight the latent processes than rule
out the explicit computation of the likelihood function on a dataset.

Résumé : Cet article décrit quelques modèles de génétique des populations sous neutralité, incluant dérive génétique
et mutations. À partir du coalescent de Kingman, nous montrons comment on peut modéliser des populations struc-
turées. Nous détaillons ces modèles en montrant comment il est possible d’écrire des algorithmes de simulations. En
particulier, nous mettons en avant l’ensemble des processus latents qui rendent le calcul de la fonction de vraisem-
blance sur un jeu de données difficile, voire impossible.
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1. Introduction

Population genetics concerns the distribution of genetic polymorphism within populations of
individuals of the same species. Two mechanisms govern the distribution of the various genetic
states, named alleles, and their evolution over time: a mutational process (mainly a Markov
process on the state space of all possible alleles) and variations of the frequencies of alleles
from one generation to another because of the varying number of children per individual. The
latter process, named genetic drift, is governed by the its structuration into sub-populations and
the size of each one. Genetic neutrality (Kimura, 1968, 1983) assumes that the various allelic
states at a given position of the genome (named locus) are neither beneficial nor detrimental to
the individuals that carry them. The neutral hypothesis is certainly not realistic accros the whole
genome. It is well known that certain loci undergo selective pressure, i.e. some allelic states at this
position of the genome can confer benefits or disadvantages to their carriers, whose reproductive
success is greatly influenced by them. However, under neutrality, the number of children of a
given individual is independent of their genetic type and the two evolutionary processes described
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above (mutation and genetic drift) are independent. The statistical challenge is therefore to infer
the history of populations from polymorphism data taken from a current sample of individuals.
The present paper does not present inferential methods to answer this question. Rather, the aim
is to describe the stochastic processes that allow demographic and mutational parameters to be
linked to genetic data. In other words, our objective is to explain the models that allow a proper
likelihood to be defined.

We discuss a large family of stochastic models under neutrality that are part of the scien-
tific folklore of population genetics, but which are rarely described with accuracy. The simplest
way to present these models is to provide simulation algorithms. Writing mathematical formulas
from these algorithms is left to the reader, if need be. Furthermore, we aim to demonstrate that,
given genetic data, a likelihood is not an explicit function of the parameters, but represents as
an integral over a large latent process that encompasses the past histories of the ancestors of the
individuals comprising the sample.

For each individual in the sample, the genetic information that we consider in the data x is
limited. We are interested only by a few given positions in the genome called loci. At these
loci, the DNA sequence varies from one individual to the other due to genetic polymorphism,
i.e. the mutations that occurred during the evolution of the species. Variants are called alleles or
allelic states. We denote by x j the genetic data at locus j and by L the number of loci so that
x = (x1, . . . ,xL).

Let us denote by φ the set of parameters of our model. In the present paper, we consider only
loci from the nuclear genome and assume that they are independent. Thus our likelihood f (x|φ)
is a product of likelihoods evaluated on single locus dataset:

f (x|φ) =
L

∏
j=1

f (x j|φ). (1)

This assumption actually hides a composite likelihood model Hudson (2001); Stumpf and
McVean (2003). Owing to genetic mixing due to recombination, this approximation is valid
if the loci are sufficiently distant from each other, so as to be able to consider the different
genealogies of the loci as independent. It should be pointed out here that more complex models
have been proposed to take ancestral recombination into account Griffiths and Marjoram (1997).
Note also that the set of parameters φ can be broken down into two subsets, one φdem concerning
the demography of the species, and the other φmut the mutational processes.

A dataset is composed of individuals sampled from different populations of interest (some-
times named colonies or demes). We have numbered the populations with integer numbers from
1 to D, and labelled them Pop1 to PopD. Unlike many statistical problems, the memberships of
individuals are known. The typical sample size of a sample varies from about 20 to one hundred
per population. The sample size of individuals arising from Popi is denoted ni. The random mod-
els that we present here explain genetic polymorphism by tracing the evolution of a species and
its mutations over time. We must thus specify which forms of genetic information can be found at
each locus. In fact, there are three types of locus: microsatellite, sequence and single nucleotide
polymorphism(SNP). We focus here on microsatellite loci which are DNA sequences where a
short motif (typically of 1 to 4 base pairs) is repeated. Because of these repeats whose number
varies between individuals, the microsatellites are sources of polymorphism. We describe two
classical, mutational models on this type of locus in Section 3.
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The genetic data x j at locus j can be explained by some biological concepts and evolutionary
phenomena. A demographic scenario is a series of spatio-temporal events sorted from the most
recent to the oldest one (Figure 1). Stochastic models explain the genetic data with a latent
process that is constrained by the demographic scenario. The latent part of the model includes a
genealogy G j and a set of ancestral genotypes M j. So that the likelihood of the genetic data x j

at locus j can be written as

f (x j|φ) =
∫∫
{M j→x j}

h(M j|G j,φmut)g(G j|φdem)dM j dG j, (2)

where
— g(G |φdem) is the density associated to the distribution of the genealogy G with respect to

some reference measure dG ,
— h(M |φmut) is the density associated to the distribution of the mutational process M with

respect to another reference measure dM , knowing the genealogy G ,
— {M j → x j} is the set of paths of the mutational process which leads to labels on the tips

of the genealogy that are equal to the observed dataset x j

A genealogy G j can be visualized with a dendrogram. A lineage of the dendrogram corresponds
to the ancestry of an individual until the most recent common ancestor (MRCA) of the observed
sample is reached. Simulations of genealogies G j according to the distribution g(G j|φdem) are
given in Section 2. The evolution of the lineages of a genealogy is governed by various in-
between population events in the demographic scenario (Section 2) whose parameters are in the
set φdem. Given a mutation model and its parameters that lie in the set φmut, the simulation of
genotypes M j of the ancestral individuals according to the distribution h(M j|G j,φmut), from the
MRCA to the tips of the genealogy G j, is described in Section 3. According to the kind of genetic
data, a mutational model (Section 3) generates the MRCA genotype and mutates its state along
the lineages at the times set by the point process.

The latent part (G j,M j) of the process adds a temporal dimension to the stochastic models that
is not present in the data. Thus, the understanding of the parameters of these models depends on
a time scale that is difficult to set (Section 4). The computation of the likelihood f

(
x
∣∣φ) requires

a marginalization that can be achieved by integrating over the latent part (Section 4).

2. Sample genealogies

Some stochastic models (Wright-Fisher, Moran, etc. see Wakeley, 2005, Chapter 3) explain the
evolution of the whole population from past to present, and then sample the individuals from the
last generation. When the population size is large, simulating data according to these models can
be very slow. The method presented below simulates only the history of the sampled individuals.

Section 2 describes the simulation of a genealogy G j according to g(G j|φdem). Note the simu-
lation starts from the present, since the time at which the MRCA is met is random and unknown.
First we deal with a very simple demographic scenario of a single closed population at equilib-
rium. We introduce here the fundamental tool to simulate genealogies which is the coalescent
process of Kingman (1982a,c,b). A complete description of the Kingman coalescent process can
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FIGURE 1. Example of a complex evolutive scenario composed of in-between population events. The scenario deals
with four sampled s Pop1, . . . ,Pop4 et two other non-observed populations Pop5 and Pop6. The branches of the above
picture are “tubes” and the demographic scenario constraints the genealogy to stay inside those “tubes”. Migration
between populations Pop3 et Pop4 during the period [0, t3] is parametrized by two migration rates m and m′. The
two admixture events are parametrized by dates t1 and t3, as well their respective admixtures rates r and s. The three
other events are divergences, respectively at times t2, t4 and t5. The event at time t ′4 corresponds to a change in the
effective population size of population Pop4.
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FIGURE 2. Example of a genealogy of n = 5 individuals from a closed population at equilibrium. The sampled
individuals stand on the tips of the dendrogram; the coalescent time T2, . . . ,T5 are independent, and Tk is drawn from
an exponential distribution of rate k

(
k−1

)
/2.

be found in Sainudiin et al. (2015). Then, we deal with the genealogy of structured populations.
These populations are structured by interpopulation events. We describe the evolution of the
lineages of a genealogy according to these events such as divergence, admixture and migration.

2.1. A single closed population: the Kingman Coalescent

The Kingman coalescent process (Kingman, 1982a,c,b) is the fundamental tool to simulate
genealogies. For the sake of clarity, we focus here on the simplest scenario that considers only
a single closed population at equilibrium. We assume that this population is neither subjected to
an external flow of genes, nor undergoes any internal demographic variation.

The gene genealogy of the sample is represented by a dendrogram (Figure 2). We generate
ancestral lineages until we reach the most recent common ancestor (MRCA). A coalescent event
occurs when the lineages of two individuals join at a node of the dendrogram (Figure 2). The
genealogy of a sample of k individuals is thus composed of k−1 coalescent events. Each coales-
cent event decreases the number of ancestral lineages by 1 until we reach the last lineage at the
root of the dendrogram, which corresponds to the MRCA.

The variables denoted Ti represent the time between successive coalescent events (Figure 2).
The distribution of the genealogy of k individuals is fully characterized by the distribution of the
draw of the two lineages that coalesce at the coalescent event and the time between these events
Tk, . . . ,T2. According to the Kingman coalescent process, the times between coalescent events
are independent and Tk is distributed according to the exponential distribution of the parameter
(or rate) k

(
k−1

)
/2.
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Algorithm 1 Kingman coalescent in natural time

INPUT: The sample size n, and the effective population size Ne.

Set k = n.

While k ≥ 2 do
1) Draw the inter-coalescent time Tk from the exponential distribution of parameter

k
(
k−1

)/
(2Ne).

2) Add Tk to the length of the k lineages.
3) Among the k lineages, pick two lineages randomly and join them to make a new node of the

dendrogram.
4) k← k−1.

EndWhile

We can describe a coalescent event as follows when the number of ancestral lineages is k.
For each of the

(k
2

)
pairs of lineages in competition for coalescing, we start a random clock of

exponential distribution with rate 1. The clock that rings first, namely the minimal value, picks
the pair of lineages that will coalesce. In practice, the draws of

(k
2

)
exponential distributions are

slow. We can decrease the number of random variables we have to simulate with the following
Lemma.

Lemme 1. Let T1, . . . ,T` be independent, exponentially distributed random variables of respec-
tive rates λ1, . . . ,λ`. Then, the random variable T = inf

1≤i≤`
Ti is distributed according to the expo-

nential distribution of rate ∑
`
i=1 λi. And independently, the random variable T is equal to Tk with

probability λk
/

∑
`
i=1 λi.

Hence, with Lemma 1, the simulation of a coalescent event boils down to drawing a variable
from to the exponential distribution with rate

(k
2

)
= k(k−1)/2 and to drawing a pair of lineages

at random among the
(k

2

)
lineages.

The time scale of the above mentioned description is such that a period of time of 1 unit corre-
sponds to Ne generations, where Ne is a parameter of the model named the effective population
size of the population (more details in Section 4). Algorithm 1 describes the Kingman coalescent
process of a sample of k individuals taken from a population of constant effective population size
Ne. Hence, in this algorithm, the time scale is the “natural time scale”, and the coalescent rate is
multiplied by Ne.

Finally, note that the order of the individuals at the bottom of the dendrogram can differ from
the order of the individuals in the sample so that the lineages do not coalesce. In the genealogy
given in Figure 2, the numbers at the bottom of the dendrogram are the numbers of the individuals
in the dataset.

In this simple case, we can write the distribution of the genealogy explicitly. To this end, we
encode the genealogy G j by a sequence of triplets (xk,yk,Tk) where

— xk,yk denotes the pair of lineages that has coalesced when there are k lineages
— and Tk is the in-between-coalescence time.

For example, the genealogy of Figure 2 is encoded by {(4,5,T5),(1,2,T4),(1,2,T3),(1,2,T2)}.
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Then, the distribution of Gi is given by

g(G j|Ne) ∝ ∏
k=n,n−1,...,2

k(k−1)
2Ne

exp
(
−k(k−1)

2Ne
Tk

)
. (3)

2.2. Many structured populations

Algorithm 2 Partial genealogy in an independent population
INPUT: The ancestral sample size n of the population i at time t, the effective population size Ne and the

dates t, t ′.

Set k = n and simulate Tk from an exponential distribution with parameter k
(
k−1

)/
2Ne.

While
(
t +Tk

)
≤ t ′ do

1) Increase the lengths of all the k lineages by Tk.
2) Draw independently among the k lineages a pair of lineages that is gathered to form a node of

the dendrogram at time t +Tk.
3) Set k← k−1, t← t +Tk
4) Draw a time Tk from the exponential distribution with rate k

(
k−1

)/
2Ne.

EndWhile
Set n′ = k
If
(
t +Tk

)
> t ′ Then

Increase the lengths of all lineages time t ′ is reached.
EndIf

Algorithm 3 Genealogy of populations in presence of migration, in coalescent time
INPUT: The sizes and the ancestral samples: k1, . . . ,kD and the migration rates mi j.

For i =1→ D do
1) Associate an exponential random clock with rate 1/Nei to each pair of ancestral individuals in

population i( which corresponds to a potential coalescent event)
2) Associate D− 1 exponential random clocks of parameters mi j,1 ≤ j 6= i ≤ D to each ancestral

individual of population i (which correspond to potential migration events).
EndFor
Among all these clocks in competition, the first that rings, i.e. the smallest one, wins. If the winning
clock corresponds to a pair of individuals, a coalescent event occurs: we add a node to the genealogy
joining the attached pair at the time the clock rings. If the winning clock is attached to a single indi-
vidual, and has parameter mi j, then the ancestral lineage of this individual is sent from population i to
population j.

We now describe the distribution of a genealogy following an demographic scenario whose
structure is governed by in-between population events. We combine these events with Kingman
coalescent process which describes the within population evolution. We begin by describing the
three kinds of inbetween population events.

— Divergence (Figure 3, (a)) is the coalescing of two populations (backward in time) at a
given date.
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Algorithm 4 Genealogy of 2 populations in presence of migration
INPUT: The size of the ancestral samples k1 and k2, the migration rates m12 and m21, and the effective

sample sizes Ne1 and Ne2 of the populations.

1) Choose population numbered i among the two populations with probability

kimi j +
[
ki
(
ki−1

)/
2Nei

]
k1m12 +

[
k1
(
k1−1

)/
2Ne1

]
+ k2m21 +

[
k2
(
k2−1

)/
2Ne2

] .
2) Choose the type of event that will occur: either a coalescent event with probability

ki
(
ki−1

)/
2Nei

kimi j +
[
ki
(
ki−1

)/
2Nei

] ,
or a migration event with probability

kimi j

kimi j +
[
ki
(
ki−1

)/
2Nei

] .
3) If the event is a coalescent event within population i:

— Simulate Tc from an exponential distribution with rate ki
(
ki−1

)/
2Nei.

— Increase the lengths of all lineages by Tc.
— Draw uniformly at random the pair of lineages that coalesces between the ki lineages of popu-

lation i and draw the corresponding node in the dendrogram.
— Set ki← ki−1, and go back to 1).
EndIf

4) If the event is a migration event from population i to population j:
— Simulate Tm from an exponential distribution with rate kimi j

/
Nei.

— Increase the lengths of all lineages by Tm.
— Migrate a lineage drawn uniformly at random within population i to send it to population j 6= i.
— Set ki← ki−1 and k j← k j +1, and go back to 1).
EndIf

— Admixture (Figure 3, (b)) is the splitting of one population into two parts at the time of
the event. The lineages are sent randomly to both populations, with a given probability of
going to the first one, often named the admixture rate.

— Migration (Figure 3, (c)) allows lineages to move from one population to another over a
period of time, according to rates expressed by time unit and per gene.

Divergence and admixture are both instantaneous events while migration is an event that lasts
over a given period of time.

The algorithm that produces the genealogy in these three cases simulates the evolutions of
the lineages between these events and the instantaneous changes due to these evolutions. In the
presence of a migration event over a period of time, the evolution of the lineages of the genealogy
is somewhat different. Coalescent and migration events compete over the period. Algorithm 5
sums up the simulation steps of a genealogy constrained to follow a given demographic scenario.

Genealogy between two instantaneous events The genealogy within a population between
two dates (t and t ′, where t ′ > t, in Figure 3 (a) and (b)) of successive population events is
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FIGURE 3. Graphical representation of three kind of in-between population events. There exists two families of events
between populations. The first family is simple and is made of instantaneous events. This is the case of divergence
or admixture. (a) Two populations evolve and are joined in the case of a divergence. (b) Trois populations evolve in
parallel in the case of an admixture. In this situation, each tube represents the genealogy (one can imagine that the
genealogy is constrained to stay inside the tubes) of the population which evolves independently of the other ones
according Kingman process.
The second family of event is reduced here to migration.(c) This situation is slightly more complex that the other
ones because of gene flows. Here, a single process governs the evolution of the lineages of populations Pop1 et Pop2.
Displacement of lineages from one population to the other one is in competition with coalescent events within each
population.

distributed according to the Kingman coalescent process independently of the other populations.
Algorithm 2 describes the process. It differs slightly from Algorithm 1, which describes the
evolution of a closed population at equilibrium until MRCA is reached. Indeed, Algorithm 2
describes the Kingman coalescent process over a period of time of length t ′− t between two
population events. If the effective size of the population (Figure 1) changes at a given time
t ′′ ∈ [t; t ′], the period of time [t; t ′] should be split into two parts, [t; t ′′] and [t ′′; t ′].

For instance, the contribution of a part drawn from Algorithm 2 to the distribution g(G j|φdem)
between times t and t ′ is given by

n

∑
n′=1

n

∏
k=(n′+1)

k(k−1)
2Ne

exp
(

k(k−1)
2Ne

Tk

)
×

exp
(

n′(n′−1)
2Ne

(t ′− t−Tn−·· ·−Tn′+1)

)
(4)

with the notations set in the Algorithm. Note that the last term of this product is the probability
that t +Tn +Tn−1 + · · ·+Tn′ > t ′, and that, if n′ = 1, the last term is equal to 1. Note also that n′

is the number of ancestral lineages remaining in the population just before time t ′. Hence other
contributions to the distribution of G j that depends on this size should be added inside the sum
over possible values of n′.

Divergence At the time of the divergence event, the lineages that remain in both populations
(Pop1 and Pop2 of Figure 3 (a)) are gathered in a single population (Pop1 of Figure 3 (a)). Such
events are deterministic and do not add any term to distribution of g(G j|φdem).
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Admixture At the time of the admixture event, the ancestral sample of Pop3 (see Figure 3, (b))
is split into two other populations as follows: a lineage of population Pop3 is sent to Pop1 with
probability r and to Pop2 with probability (1− r), where r is a parameter of the model named
the admixture rate. The contribution of such an event to the distribution g(G j|φdem) is that of a
binomial distribution with parameter r.

Migration In Algorithm 3, we describe the evolution of ancestral lineages when migrations
occur between D populations. The migration is parametrized by the migration rates from popu-
lation i to population j, denoted mi j. Algorithm 3 details all exponential clocks in competition
and their own parameters. The clock that reaches the minimum time (i.e. that rings first) chooses
the kind of event that occurs. In practice, the number of exponential clocks to be simulated is
much smaller. As in the Section 2.1, we can simplify the Algorithm by using Lemma 1. Al-
gorithm 4 is an example with D = 2 populations, and we refer the reader to (Wakeley, 2005,
Chapter 5) for explicit details on the case D > 2. The genealogy described in this algorithm cor-
responds to the scenario in Figure 3 (c). It is used on populations Pop1 and Pop2 until time t ′ is
reached. Alas, we are unable to describe the contribution of migration events to the distribution
g(G j|φdem) as in (3) or (4), since it is much more difficult in the cases we consider here.

Finally, we presente the general scheme to simulate a genealogy constrained by the events of
a demographic scenario in Algorithm 5. The Kingman coalescent process indeed constitutes the
cornerstone of these algorithms to simulate gene genealogies. It is used piecewise, or in com-
petition with an independent migration process. From the evolution of populations of interest,
these algorithms make it possible to extract the only part of the process that matters regarding
the sample of individuals in the dataset. Note that some approximations of the migration process
are proposed to avoid D populations being considered in parallel, see e.g. Müller et al. (2017)
and the references therein.

Algorithm 5 Genealogy constrained by a demographic scenario
Sort the instantaneous in-between population events from the most recent to the oldest one.

For t going from the most recent event to the oldest one do
1) Simulate the genealogies within each population: the Kingman coalescent process is drawn in-

dependently for each population until time t, or processes that combine Kingman coalescent
processes and migration processes are drawn.

2) Apply the instantaneous in-between population event at time t.
EndFor
Simulate a single Kingman coalescent process or a combined migration-coalescent process until MRCA
is reached.

3. Mutational processes

Let us now look at the distribution of the genotypes of the sample conditionally upon the geneal-
ogy. The simulation of the genealogy starts from t = 0 to the old age of the MRCA. Indeed, the
genealogy traces the ancestors that gave their genes to the sample in the past of the populations.
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However, the simulation of the mutational process along the branches of the genealogy starts
from the old age of the MRCA and progresses towards the present, since it models the mutations
of the ancestors of the sample.

3.1. Mutations on microsatellite loci

We describe the positions of mutations with Poisson point process on the branches of the den-
drogram. Then we introduce two mutational models for microsatellite loci. A Markov chain
associated the mutational model applies mutations to their positions on the genealogy.

Positioning the mutations on the branches of the genealogy The mutation rate per unit of
natural time and per individual diploid is given by the parameter µ . Conditional upon the ge-
nealogy, mutations occur on the dendrogram according to a Poisson point process with rate µ/2.
On a branch of length t, the distribution of the number N of mutations is Poisson with parameter
µt/2, and the N random mutations are uniformly spread over the branch.

Algorithm 6 Mutational process on genealogy
INPUT: A genealogy G , a mutation rate µ , and the transition matrix Q of the Markov chain with station-

ary distribution ν .

1) Apply the Poisson point process on the branches of the genealogy G .
2) Sort the point mutations on G from the oldest to the newest.
3) Simulate the genotype of the MRCA from the distribution ν .
4) Sweep G from the MRCA to leaves : construct the genotypes along the branches.

— if a coalescent event is met, then duplicate the genotype above the node of the dendrogram.
— if a mutation event is met, then apply a one-step transition Markov chain Q on the branch (i.e

the individual with the mutation).

Mutation models on microsatellite loci We introduce here two mutational models (Whittaker
et al., 2003; Cornuet et al., 2006): the Stepwise Mutation Model (SMM) and the Generalized
Mutation Model (GMM) which were specially designed for microsatellite loci . Both mutational
models use a simple parameterization. Markov chains associated with GSM and SMM are sym-
metrical random walks on an interval of integer numbers, [[a;b]] of N. Applying a one-step tran-
sition of the GSM Markov chain is equivalent to adding±mG to the length of the locus, where m
is the length of the repeated pattern (known), G is a geometric random variable with parameter
p and ± is a random sign. In practice, the parameter p ≈ 0.2. Whereas for the SMM model, a
mutation is equivalent to adding the length of the locus by ±m base pairs, where m is the length
of the repeated pattern, and± is a random sign. Sometimes, applying mutations makes the geno-
type exceed the bounds a and b of all the alleles. In this case, we set the genotype to the closest
value among the two bounds a,b of the state space. To simulate the genotypes of the sample at a
given locus, we start by simulating the genotype of the MRCA, and then we let it evolve along
the genealogy as far as the tips by applying the mutations (Algorithm 6). The genotype of the
MRCA comes from the stationary distribution associated to the Markov chain of the mutational
model. Figure 4 describes the process that generates the genotypes of the sample.
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A pure jump Markov process on the genealogy The evolution of the progeny of an individ-
ual over a lineage is a pure jump Markov process on [[a;b]]. The Markov chain associated to the
mutational model is the embedded chain of the jump process. Both have the same stationary dis-
tribution because the mutation rate (jump rate) does not depend on the allelic state. The ends of
the paths of the process give the observed genotypes of the sample. (Figure 4). In Figure 4, each
lineage corresponds to one path of the process. These paths are correlated and the dependence
is described by the shared branches between the different lineages. Since the genotype of the
MRCA comes from the stationary distribution, the marginal distribution of the genotype of any
individual is also distributed according to this stationary distribution. However, the joint proba-
bility distribution of the genotypes of all individuals in the sample is more complex to describe.
The correlation structure between the paths of the jump process is given by the branches shared
by the lineages of the dendrogram. For example, in Figure 4, the Markov processes that explain
the genotypes of individuals numbered 2 and 4 (represented in red and green respectively on the
figure) share a large proportion of their trajectories, and are more correlated than, for instance,
individuals numbered 2 and 5.
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99genotype:
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4
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3
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1
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FIGURE 4. Example of generating genotypes of a sample of 8 individuals in a microsatellite locus. The mutations
are given by the SMM model. The mutation points are represented by stars (?) on lineages of the dendrogram. The
genotype of an individual (represented by an integer in red on the dendrogram) is obtained by applying one-step
transition of the Markov chain at each mutation point from the MRCA (100) genotype along his lineage.
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3.2. Mutations on sequence loci

We now consider models on a sequence of DNA. A position within the locus is called a site.

Infinite site model This model is an approximation of a locus composed of a long DNA se-
quence that does not recombine, such that each site mutates very slowly. In this model, the num-
ber of sites is infinite and is often considered to be the whole interval [0;1]. At each site, only two
values are possible, either 0 or 1, and the sequence of the MRCA is composed of 0’s only. The
positions of the mutations along the genealogy are drawn according to a Poisson point process
of rate µ/2 as above. At each position, a site is chosen uniformly at random on the interval [0;1],
and the value 0 at this site is mutated into 1.

Markov sequence models These models consider that the sequence of letters {A,C,G,T} is of
fixed length N. Each site evolves independently of the others. Along one branch of the genealogy,
the site evolves according to a pure jump continuous time Markov process on the {A,C,G,T}-
state space. It is often convenient to assume that the Markov process is time reversible. The
simplest model that falls into this category is the model of Jukes et al. (1969), and the most
complex one was set by Tamura and Nei (1993). In any case, the type of each site of the MRCA
is drawn from the stationary distribution of the Markov process. On each branch of the genealogy,
the site evolves as dictated by the Markov process, and at a given node, the process splits up into
two independent processes.

4. Conclusion

Likelihood The likelihood of a given parameter φ = (φdem,φmut) on the observed dataset x is
therefore given by (1) and (2). The integral in (2) cannot be computed explicitly in a closed form,
except in a very few simple cases. The space of (Gi,Mi) satisfying Mi→ xi over which we have
to integrate is a huge space of much greater dimension than the observed data xi itself.

Ethier and Griffiths (1987); Griffiths (1989) developed recurrence formulas linking the like-
lihood f

(
xi|φ

)
of φ on the data to likelihoods f

(
y|φ
)
, of φ on samples y of smaller or equal

size. De Iorio and Griffiths (2004a, equation (3)) describes the case of a closed population at
equilibrium, and the case of several populations with migration De Iorio and Griffiths (2004b,
equation (2)). Practically, it is not very efficient to evaluate the likelihood using this recurrence
formula. Indeed, to obtain the value of f (xi|φ) for a given value of φ , the value of f (y|φ) must
be computed for all genetic data y on all samples smaller or equal to xi. Hence, the algorithm
relying on the recurrence formula becomes exponentially more complex as the size of the sample
increases, leading to what is known as the combinatorial explosion phenomenon.

Time scale To explain the observed dataset, we added a temporal dimension to set the latent
process (G ,M ). Almost all coordinates of φ are set relatively to a given scale on this time
axis. However, the dataset is collected at the present time and does not provide any information
about the time scale. Indeed, applying a homothety of ratio λ on the time axis does not change
the marginal distribution of the dataset x if we perform the following transformations on the
components of φ :

— each event time parameter t is changed to λ t,
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— each effective population size parameter Ne is changed to λ Ne,
— the mutation rate parameter µ is changed to µ/λ , and
— each migration rate parameter m is changed to m/λ .

When performing data analysis relying on classical statistics (frequentist), we face the problem
of a lack of identifiability. This issue can be addressed by reparametrizing the model to eliminate
the unknown scale on the time axis. To do so, one may introduce a reference effective population
size, denoted NeREF , which is a linear combination of effective population sizes on a natural
scale. The model then becomes identifiable if, first, we replace

— each data ti by τi = ti/NeREF,
— each effective population size Nei by Nei = Nei/NeREF,
— each mutation rate µi by θi = 4NeREF µi and
— each migration rate mi j by mi j = NeREF mi j,
— etc.

and, remove one effective population size in φ . Commonly, NeREF corresponds to the sum of
effective population sizes of the observed populations. For example, in Figure 1, we could set
NeREF = Ne1 +Ne2 +Ne3 +Ne4, use the transformation described above and remove Ne1. For
biologists, the interpretation of the identifiable parameterization requires using a rule of thumb
to set the time scale. However, Bayesian analysis allows this problem to be circumvented since a
posterior distribution is well defined, even if we lack identifiability. Moreover, information on the
time scale can be set in the prior. This make it possible to introduce some variability on the value
of this scale through a directly interpretable distribution on the parameters. This is an argument
in favor of Bayesian analysis in population genetics, which was clearly highlighted by Beaumont
and Rannala (2004).

Likelihood approximation There are three main families of algorithms.
— The first family is based on a data augmentation MCMC that samples from the distribu-

tion of (φ ,G ,M ) knowing x. The space we have to sample in this case is of very high
dimension. Hence, the running time can be very long, and the chain can easily get stuck
in a part of the high dimensional space we have to sample.

— The second family is based on importance sampling. The idea here is to introduce an aux-
iliary distribution commonly called proposal distribution to sample the space of interest
and introduce a weight that corrects the discrepancy between the target distribution and
the proposal. In this context, the calculation of (1) and (2) is an integral according to a
probability distribution. Calibration of the proposal is required to control the Monte Carlo
error, bu this is difficult. Ad hoc strategies can be used to calibrate the proposal in this
context Stephens and Donnelly (2000); De Iorio and Griffiths (2004a,b); De Iorio et al.
(2005).

— The third family involves Approximate Bayesian Computation (ABC) methods that use
many simulated datasets according to the model instead of likelihood calculation. Thus,
ABC methods Beaumont et al. (2002); Marjoram et al. (2003); Marin et al. (2011) com-
pare several simulated datasets to the observed dataset using summary statistics which are
supposed to be informative for the posterior calculation. The target of these Monte Carlo
methods is a degraded version of the posterior: this is the distribution of the parameters
where the summary statistics are known instead of the complete dataset. This family pro-
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vides less relevant results than importance sampling to approximate the likelihood function
at each point of interest in the parameter space. However, these methods are much more
flexible because they need only to simulate according to the model and provide important
information through summary statistics.

Software There are several available tools in the literature but they do not cover all the ques-
tions encountered in practice. Here are some representative examples of simulation and estima-
tion software.

— Ms of Hudson (2002) simulates demographic scenarios with migration between popula-
tions using Kingman’s coalescent.

— IBDSim of Leblois et al. (2009) simulates scenarios with migration (isolation by distance)
in discrete time, generation by generation, and samples the latest generation.

— DIYABC of Cornuet et al. (2008) simulates demographic scenarios involving divergence
and admixture events without migration. Note that DIYABC provides procedures of esti-
mation and model selection based on ABC.

— Migraine of Rousset and Leblois (2012) computes likelihood surfaces using an importance
sampling algorithm.

— IM, IMa of Nielsen and Wakeley (2001); Hey and Nielsen (2004, 2007) analyzes demo-
graphic models with migration. Both Bayesian and frequentist approaches are included.
Posterior distribution and likelihood surfaces may be approximated with MCMC methods.
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