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Abstract: In aircraft industry, market needs evolve quickly in a highly competitive context. This requires adapting a
given aircraft model in minimum time considering for example an increase of range or the number of passengers (cf
A330 NEO family). The computation of loads and stress to resize the airframe is on the critical path of this aircraft
variant definition: this is a consuming and costly process, one of the reason being the high dimensionality and the large
amount of data. This is why Airbus has invested since a couple of years in Big Data approaches (statistic methods
up to machine learning) to improve the speed, the data value extraction and the responsiveness of this process. This
paper presents recent advances in this work made in cooperation between Airbus, ENAC and Institut de Mathéma-
tiques de Toulouse in the framework of a proof of value sprint project. It compares the influence of three dimensional
reduction techniques (PCA, polynomial fitting, combined) on the extrapolation capabilities of Regression Trees based
algorithms for loads prediction. It shows that AdaBoost with Random Forest offers promising results in average in
terms of accuracy and computational time to estimate loads on which a PCA is applied only on the outputs.

Résumé : Dans l’industrie aéronautique, les besoins du marché évoluent rapidement dans un contexte de forte concur-
rence. Ceci nécessite d’adapter un modele d’avion donné en temps minimum considérant par exemple un incrément
du rayon d’action ou du nombre de passagers (voir famille A320 NEO). Le calcul de charges et de structure pour
redimensionner la cellule est sur le chemin critique de la définition de cette variante avion : c’est un processus chro-
nophage et coûteux, une des raisons étant la grande dimension et la grande quantité de données. C’est pourquoi
Airbus a investi depuis 2 ou 3 ans dans des approches de données massives (des méthodes statistiques jusqu’au ma-
chine learning) pour améliorer la vitesse, l’extraction de valeur et la réactivité de ce processus. Cet article présente
des avancées récentes dans ce travail fait en collaboration entre Airbus, l’ENAC et l’Institut Mathématique de Tou-
louse dans le cadre d’une étude de validation sous la forme un projet de type sprint. Il compare l’influence de trois
techniques de réduction dimensionnelle (ACP, interpolation polynomiale, combiné) sur les capacités d’extrapolation
d’algorithmes basés sur les arbres de régression pour la prédiction des charges. Il montre que AdaBoost avec Forêts
Aléatoires offre des résultats prometteurs en moyenne en termes de précision et temps de calcul pour estimer des
charges sur lesquelles une ACP est appliquée sur les sorties.
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1. Introduction

In aircraft industry, market needs evolve quickly in a high competitiveness context. This requires
adapting a given aircraft model in minimum time considering for example an increase of range
or of the number of passengers such as the A330 family in Airbus (2017). In our case study,
variants concern the maximum take-off weight of a given aircraft model. Depending on the con-
figuration, the computation of loads and stress, as defined in Hoblit (1988); Hjelmstad (2005), to
resize the airframe is on the critical path of this aircraft variant definition: this is a time consum-
ing (approximately a year for a new aircraft variant) and costly process, one of the reason being
the high dimensionality and the large amount of data. Big Data approaches such as defined by
Gandomi and Haider (2015) is mandatory to improve the speed, the data value extraction and the
responsiveness of the overall process. This study has been realized during a proof of value sprint
project within Airbus to demonstrate the usefulness of statistics and machine learning approaches
in the Engineering field. In a previous internal project, it has been shown that the family of re-
gression trees Breiman et al. (1984) works well to predict loads for different aircraft missions in
an interpolation context. Thus, we can formulate our problem in this way: is it possible to use
dimensional reduction and regression trees-based algorithms to predict loads in an extrapolation
context (i.e outside the design space of a certain weight variant) to improve the actual process?

1.1. Industrial context

An airframe structure is a complex system and its design is a complex task involving today many
simulation activities generating massive amounts of data. Such is the case of the process of loads
and stress computations for an aircraft (that is to say the calculations of the forces and the me-
chanical strains suffered by the structure) and can be represented as follows:

FIGURE 1. Flowchart for loads and stress analysis process

The overall process exposed in Figure 1 is run to identify load cases (i.e aircraft mission and
configurations: maneuvers, speed, loading, stiffness...), that are critical in terms of stress endured
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58 Fournier and Klein and Grihon

by the structure and, of course, the parameters which make them critical. The final aim is to size
and design the structure (and potentially to reduce loads in order to reduce the weight of the struc-
ture). Typically for an overall aircraft structure, millions of load cases can be generated and for
each of these load cases millions of structural responses (i.e how structural elements react under
such conditions) have to be computed. As a consequence, computational times can be significant.

For a derivative aircraft, we can give some rough order of magnitudes in terms of quantities
of produced data: External loads (106 of bytes); Weights: number of elements (104 of bytes); In-
ternal loads: number of components by the number of external loads by the number of elements
(1011 of bytes); Reserve Factors: number of internal loads by the number of failure modes (1012

of bytes). Hence, we easily reach 1018 to 1021 of bytes for a single derivative aircraft.

In an effort to continuously improve methods, tools and ways-of-working, Airbus has in-
vested a lot in digital transformation and the development of infrastructures allowing to treat
data (newly or already produced). The objective here is to exploit and adapt Machine Learning
and optimization tools in the right places of the computational process. As pointed by Manyika
and al. (2011), these techniques cover a large number of fields such as Internet and Business
Intelligence but they can also benefit to the manufacturing industry (here aeronautics). The main
industrial challenge for Airbus is to reduce lead time in the computation of loads and preliminary
sizing of an airframe.

1.2. A simplistic load and stress model computation process example

In order to illustrate the process exposed in the previous subsection, let us consider a simplistic
load model completed with equations calculating thickness used to correct the weight distribu-
tion of a wing structure similar to Doherty (2009).

FIGURE 2. Scheme of the wing structure considered in the load model
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The structure contains a fuel tank at the wing tip with the dimensions Lf, Ctf, Cof as shown in
Figure 2. The length of the wing is L, the chord length at wing root is Co and at the tip Ct. As a
consequence, there are three different types of loads which affect the wing: the aerodynamic lift
Qli f t (i.e the force which allows the aircraft to lift off and to maintain altitude) which depends on
the length of the wing, the load factor and the total weight of the aircraft; the loads concerning
the fuel and the fuel tank weight Q f uel depending on the fuel weight and the dimension of the
fuel tank; and the loads due to the wing structure Qwingstructure depending on the weight and the
dimension of the wing. By adding these three types of loads, and providing the weight of the
wing structure, the weights of the tank and the fuel contained, as well as the total weight of the
aircraft and the load factor; Qtotal provides the basis for calculating the shear force V (transverse
forces near to vertical arising from aerodynamic pressure and inertia) and bending moment M
(resulting from the shear forces) of the wing. The relations between these quantities are :

V (x) =−
∫ L

0 Q(x)dx,

M(x) =
∫ L

0 V (x)dx,

where x is the position along the wing. We consider that the wing is represented by a simpli-
fied rectangular box schematized by two parallel panels representing the covers (see Figure 3) :
This is enough to distribute the fluxes induced by the bending moment.

x

c(x)
t(x)

FIGURE 3. Form of the box (upper cover and under cover) of the wing

We can complete equations calculating thickness. Indeed, by considering the box has height
h(x) supposed linearly decreasing along the span, considering we must not exceed an allow-
able of σmax tension and compression. Considering the fluxes in the wing covers are given by
N(x) = M(x)

h(x)C(x) thus we have the thickness distribution defined by:

t(x) = M(x)
h(x)C(x)σmax
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60 Fournier and Klein and Grihon

And by integrating we get the weight of the cover given by:

Wcover = 2
∫ L

0
M(x)

h(x)C(x)σmax
dx

Indeed, by considering that the wing takes the form of a box presented in Figure 3, by inte-
grating t(x)C(x) along x and by multiplying by 2ρ , where ρ is the density of the material used
to fabricate the wing panels, we get the weight of the wing cover. More precisely, we obtain the
minimum weight of the wing cover able to resist an allowable σmax tension and compression. We
assume that Wcover = 30%Wwing, then we can extract the minimum weight of the wing structure
able to resist an allowable σmax tension and compression.

1.3. Data presentation

The data we have at our disposal are the aircraft parameters (features) which are used in the com-
puting chain for calculating loads (outputs which correspond to moments and forces). We have
data coming from the weight variant 238 tons (aircraft parameters and loads distribution along
the wing); and we would like to predict those of the 242t and other weight variants (247t and
251t). All the different datasets have been previously computed and we use them to assess the
capability of methods defined in the following sections to predict loads in such context. In fact,
we hope to answer, by doing so, to the question: "What would the results have been if we had
applied such a methodology to calculate the loads instead of the normal process for new weight
variants?".

25 aircraft (A.C.) parameters play the role of features (lying in R) of a load case and we would
like to predict the associated loads (outputs) which are in Rk. To simplify, we will focus on pre-
dicting bending moment along the wing which is, in our data, represented by a vector of size
k = 29. In other words, each load case (i.e observation) is defined by its 25 features and its bend-
ing moment (output). The features are used to identify a typical aircraft event (maneuvers, gusts,
continuous turbulences) with specific aerodynamic and weight conditions. Gusts are loads pro-
duced by environmental perturbations: sudden vertical or lateral wind blasts which are required
by certification organisms like EASA from statistical meteorological histories. Continuous tur-
bulence cases are linked to the cumulative energy stored by the structure under a spectrum of
random gusts. A typical maneuver is a 2.5g pull-up consisting in producing an increase aerody-
namic lift by deflecting the elevator and increasing the angle of attach of the aircraft. This gives
a bending moment close to the maximum value in competition with gust cases. The data base
is constituted mainly by gusts (90% of all load cases) and we will focus on them. To begin, we
shall focus on the 238t and 242t data before generalizing our results to other weight variants. A
quick summary of the size of our different datasets is presented in Table 1:
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A case study : Influence of dimension reduction on regression trees-based algorithms 61

TABLE 1. Description of the datasets

238t(Train&Test) 242t(Validation)

Dimension data features 28391 rows x 25 col. 28391 rows x 25 col.

Dimension data outputs 28391 rows x 29 col. 28391 rows x 29 col.

In a more formal way, let be the 238t database of features defined by X = (X1, ...,X25) where
X j are quantitative variables (i.e a A.C. parameter), and X j = (x j

1, ...,x
j
28391)

T . The 238t database
of outputs is then defined by Y = (Y 1, ...,Y 29) and Y j = (y j

1, ...,y
j
28391)

T . Aircraft parameters X
(inputs) we have at our disposal in the training data base 238t are described in Table 2:

TABLE 2. Description of the 238t dataset

Description Distribution type Mean Std Min Max

Defl. Left inboard Elevator Gaussian 0.015 0.034 -0.116 0.108

Stabilizer Setting Mixture of Gaussian (2 modes) -0.033 0.023 -0.093 0.0033

Defl. Spoiler 1 Left Wing Bi Modal -0.221 0.218 -0.436 0

Defl. Spoiler 2 Left Wing Mixture of Gaussian (2 modes) -0.266 0.262 -0.755 0.230

Defl. Spoiler 3 Left Wing Mixture of Gaussian (2 modes) -0.266 0.262 -0.755 0.230

Defl. Spoiler 4 Left Wing Mixture of Gaussian (2 modes) -0.266 0.262 -0.755 0.230

Defl. Spoiler 5 Left Wing Mixture of Gaussian (2 modes) -0.266 0.262 -0.755 0.230

Defl. Spoiler 6 Left Wing Mixture of Gaussian (2 modes) -0.266 0.262 -0.755 0.230

Defl. all speed inner Aileron Gaussian -0.029 0.086 -0.58 0.58

Defl. Low speed outer Aileron Quadrimodal -0.028 0.053 -0.157 0

Lower part Rudder Deflection Gaussian 0 0.011 -0.072 0.072

Total A.C. Mass Multimodal 195738 35428 135093 238000

Mach Number Multimodal 0.716 0.19 0.372 0.93

True Airspeed Multimodal 223 50 126 282

Altitude Multimodal 6270 4519 0 12634

x-location of cg in % amc Multimodal 0.297 0.114 0.140 0.42

Thrust(calculated) Multimodal 131442 157160 0 415495

X-Load Factor Gaussian -0.020 0.107 -0.3 0.261

Y-Load Factor Gaussian 0 0.08 -0.306 0.307

Z-Load Factor Gaussian 1.024 0.43 -0.701 2.643

Fuel Tank mass TANK1L Multimodal 392 1030 0 4341

Fuel Tank mass TANK2L Multimodal 13008 12721 0 36295

Fuel Tank mass TANK3L Multimodal 1883 1377 0 3087

Fuel Tank mass TANK1L Multimodal 945 1029 0 2592

Left inner engine thrust Multimodal 65721 78579 0 207747

Contrary to the simplistic load calculation example, real simulations needs much more of in-
formation: the first ten variables are linked to the orientation of ailerons, spoilers and the rudder
which are directional control surfaces (see Figure 4); the x-location of gravity center is an in-
dicator concerning the location of the gravity center along the x-axis; the thrust is a calculated
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62 Fournier and Klein and Grihon

FIGURE 4. Airplane parts definition

variable corresponding to the force which moves the aircraft forward (contrary to the drag force);
and the load factors are global indicators which express the "amount of loads" the structure can
withstand. All these features are processed by dynamic flight equations considering the flexible
body behaviour of the aircraft through finite element models (Lagrange’s equations): for further
readings, we refer to Torenbeek and Wittenberg (2009).

The bending moment is calculated at 29 points along the wing - each point represents a station
and stations are not equidistant (two more stations are located in the center wing box; we prefer
to focus here on stations of the wing only). Thus Y k represents the values of the bending moment
taken at the kth station. Through a change of coordinate system (aircraft system to wing system),
we can easily plot bending moments (Figure 5):

FIGURE 5. Examples of bending moments along the wing for different load cases

Journal de la Société Française de Statistique, Vol. 159 No. 3 56-78
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



A case study : Influence of dimension reduction on regression trees-based algorithms 63

1.4. Industrial problem

Aircrafts (A.C.) have been developed for different maximum take-off weight (which is one of
the many aircraft parameters used in the computing chain to calculate the loads). Because the
computation process exposed above for a new aircraft variant (a new weight variant in our case)
can reach easily a year, the use of meta-models, optimization and statistic approaches such de-
fined by Gandomi and Haider (2015) is mandatory to improve the speed and responsiveness of
the overall process.

From this standpoint, we can expose the following problem: for each combination of A.C. pa-
rameters corresponding to a load case, and each load case being categorized into a load condition
(family of load cases - gusts or maneuvers), can we give an estimation of the loads for different
A.C. parameters for new weight variants (242t, 247t and 251t) knowing the loads of the weight
variant 238t?

The mathematical problem of this project is an extrapolation problem. Is it possible to "extrap-
olate" loads of the 242 tons, 247t and 251t knowing loads of the 238t by using machine learning?
To be more precise, can we find a function depending on aircraft parameters that allows us to
estimate/extrapolate to 242t and other weight variants by learning from those of the 238t? In a
previous project concerning loads, it has been shown that the family of regression trees works
well on the data we have to deal with. As a consequence, different algorithms based on decision
trees will be investigated. Besides, because of the dimension of our outputs, how do dimensional
reduction techniques affect the capability of extrapolation of machine learning algorithms based
on regression trees?

This paper is organized as follows: Section 2 is dedicated to the description of the three dif-
ferent techniques of dimension reduction we used in our study. Then in Section 3 we expose the
different algorithms based on regression trees and finally we present in Section 4 our results.

2. Three Dimensional Reduction Techniques

In order to improve the efficiency and speed of the modeling process, we compare several di-
mensional reduction techniques. We start by using a classical PCA on the inputs and also on
the outputs. Then we consider a polynomial fitting and finally we mix the two methods. These
dimensional reduction techniques will reduce the dimension of the output space. Each technique
has been used on the 238t, and these allow us to reverse the technique to come back to the original
output space easily.

2.1. Principal Components Analysis

In few words, the Principal Components Analysis (PCA), developed by Pearson (1901) and
formalized by Hotelling (1993) is a statistical method used to compress a matrix n x p of quan-
titative variables into a smaller rank matrix. This method uses the variance-covariance matrix
(or correlation matrix) to extract important factors (few in general) to represent observations in
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64 Fournier and Klein and Grihon

a smaller subspace. As a consequence, each observation is represented by coordinates into new
components linked to these factors (this approach is similar to the SVD decomposition).

We apply the PCA in the space defined by the outputs (centered and reduced), and the Figure
6 shows the decline of the variance explained by each component as well as the cumulative
percentage of the explained variance:

FIGURE 6. Cumulative percentage of the explained variance when applying a PCA on the raw outputs

The study of the eigenvalues shows that the six first components explain 99.99% of the total
variance. When we look closer at the correlation of the original variables with the principal com-
ponents, we see that all features have a similar correlation coefficient with the two first principal
components.

2.2. Polynomial fitting

As we can see in Figure 5, a discontinuity always appears at the 12th station along the wing.
Besides, the curves we observe are extremely regular. Consequently, it seems reasonable to fit a
polynomial on the first part of the curve and another on the second. In order to choose properly
the degree of each polynomial, we assess the quality of the fit by calculating a R-squared score
for each curve.

Thus, we consider that it exists a polynomial function p of degree d for each part of the curve
such as:

p(x) = a0xd + ...+ad

The coefficients a0, ...,ad are obtained by minimizing the squared error by the least squares
method.

To have an R-squared score greater than 99.9% for each curve and to avoid over-fitting by
choosing too great degrees, the optimal couple of degrees is set to 2 for both polynomials. The
dimension of the output space would be 6 instead of 29.
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2.3. Polynomial fitting & Principal Components Analysis

By first applying polynomial fitting on the curves and then applying a PCA on the coefficients
of the polynomials, we can decrease one more time the dimension of the output space from 6 to 4.

By keeping 4 principal components, the output space goes from 6 to the 4 dimensions and
the precision is greater than 99.9% for at least 99% of the observations. Here follows the decline
of the explained variance per component as well as the cumulative percentage of the explained
variance (Figure 7):

FIGURE 7. Cumulative percentage of the explained variance when applying a PCA on the coefficients of polynomials

In the following, we shall test the different dimensional reduction techniques above which will
be compared to no dimensional reduction.

3. Regression based on Trees

In this section, different algorithms based on decision trees will be investigated. More precisely,
the Classification and Regression Trees have been the source of numerous ensemble methods
such as Bagging, Random Forest, the Gradient Boosting and AdaBoost and we explain how
they work on the data we deal with. Recall we have at our disposal the 238t database of inputs
which contains X = (X1, ...,X25) where X j are quantitative variables (i.e a A.C. parameter), and
outputs are defined by Y = (Y 1, ...,Y 29). For each individual, we observe a couple Zi = (Xi,Yi)
where Xi = (X1

i , ...,X
25
i ) and Yi = (Y 1

i , ...,Y
29
i ). We have thus a sample of observations of size

n = 28391. The aim is to explain Y by a function of X. For the sake of simplicity, we will con-
sider the univariate regression Yk (that is to say the value of the bending moment on the kth

station) by a function of X.
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3.1. Classification and Regression Trees (CART)

Classification and Regression Trees have been formalized by Breiman et al. (1984) and are de-
cision trees. They consist of approximating a function F such as F : X→ Yk. This algorithm
considers all of 28391 observations and all of the 25 inputs. In no technical terms, the algorithms
partitions the data into smaller and smaller sub-samples until all sub-samples are homogeneous
in terms of output variables. Let us recall how the method works (see Breiman et al. (1984),
Quinlan (1993)):

The construction of a tree is the successive partitioning of the output space thanks to the fea-
tures in the form of a sequence of nodes. At the beginning, the full data set is linked to the initial
node (also called the root) and is divided into two classes (two children nodes, left and right)
accordingly to a division criteria. Thus, each child node represents a sub-sample of the data-set
of the parent node, and recursively from each child node will arise two other children - if a node
has no child, it is considered as a terminal node, also called a leaf. The observations belonging
to each node must be the most homogeneous, and two children from a node must be the most
heterogeneous. In fact at each node, a feature X j is selected and the algorithm finds the threshold
of X j (thanks to an impurity measure, also called heterogeneity function or split function) which
leads to the most homogeneous sample vs heterogeneous classes. The division criteria leads to
know if a node must be a leaf or not, and finally associates each leaf to a value of Y k.

A tree stop growing at a certain node for two reasons: the sub-sample contains too little data
according to a fixed threshold set by the user, or the sample linked to the node is homogeneous
and no other division is acceptable (that is to say that possible divisions lead to an empty child
node). The Figure 8 shows an example of construction of a tree.

l4

l3

l8 l9

d1

d2

d3

X j

Xk

N1

l3N2

l4 N5

l9l8

X j ≥ d1X j ≤ d1

Xk ≥ d2Xk ≤ d2

X j ≥ d3X j ≤ d3

FIGURE 8. Example of construction of a tree Wikistat (2016) : Nodes are designed by N, and leaves by l

N1 is the node containing all observations of X, and other nodes or leaves contain a subsample
of X. Let be Il j := {i, Xi ∈ l j}. Then, the value of Yk associated to l j is defined by :
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Yk
l j
=

1
#{Il j}

∑
i∈Il j

Y k
i (1)

The value of Y k associated to each leaf is then the average value of Y ks associated to the sub-
sample of the leaf.

At the end, this algorithm provides a huge tree with many leaves which can lead to over fitting.
To avoid this effect, the tree must be pruned: we have to extract a sub-tree. Among a sequence
of sub-trees, we keep the one which minimizes a criteria which depends most of the time of the
generalization error and the complexity (the number of leaves): this method is called the cost
complexity pruning. In our case, the generalization error (i.e the mean squared error) is calcu-
lated by cross-validation.

3.2. Bagging with regression trees

Bagging is an algorithm which aggregates trees and has been introduced by Breiman (1996). Let
us consider the full sample X of size n = 28391. For u = 1, ..., t, we denote by X(n,u) a sample
of size n obtained by sampling with replacement X. For each X(n,u), we train a predictor pu.
{p1, ..., pt} is therefore an ensemble of predictors, predictors defined on different samples and
are tree-based algorithms. Each individual Xi, i = 1, ...,28391, belongs to t differents leaves (one
for each tree) denoted by l j1 , ..., l jt . So, by equation 1, we have t different values for the prediction
of Y k

i , i.e (Yk
l ju
)u=1,...,t . The aggregated prediction value of Y k

i is then defined by:

Ŷ k
i =

1
t

t

∑
u=1

Yk
l ju

(2)

Sampling with replacement is most of the time associated to boosting sampling. The method
explained above is named Bagging (stands for Boosting AGGregatING). Bagging improves pre-
dictions capabilities because it introduces differences between training samples which lead to
variability of predictors. Breiman has shown that good candidates to boosting are classification
and regression trees and neural networks.

3.3. Random Forest

Random Forests, introduced by Breiman (2001), are based on bootstrap sampling and CART. As
in Section 3.2, we first construct t sub samples with replacement of size n. When a tree is built,
at each node of the tree, we draw randomly m inputs out of 25 (independently) and the optimal
splitting criteria is defined through these m drawn variables. Trees grow to the maximal size and
are not necessarily pruned.

Each tree is an estimator of the underlying function and built on a variation of the training set.
As a consequence, each estimator leads to different results. Nevertheless, because of the numbers
of estimators, the ensemble of trees (the forest), leads to a stable model. For a new observation,
the prediction is then the average value of all the predictions of all predictors as in Bagging.
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68 Fournier and Klein and Grihon

3.4. Gradient Boosting

The gradient boosting, intuited by Breiman (1997) and developed by Friedman (1999), is like
every other boosting method: it combines weak learners. The goal stays the same, to explain Yk

by a function of X and instead of tuning parameters of this model, we iteratively add a model to
the previous one to increase its capabilities. The name of "gradient" comes from the fact that the
gradient of the squared error is the negative residual (see Friedman, 1999 and Li, 2016). In our
case, we use regression trees (CART). Here follows a simplified version of the Gradient Boosting
Machine algorithm (for more details, see Friedman, 1999):

Algorithm 1 Simplified Gradient Boosting Machine
1: procedure GBM
2: Fit a decision tree F1 on X (resp. Yk)
3: Compute the error residuals e1 = Yk−F1(X)
4: for t = 2, ...,T do:
5: Fit a decision tree F on X (resp. et−1)
6: Ft(X) = Ft−1(X)+F(X)
7: Compute the error residuals et = Yk−Ft(X)

8: The model is then the sum of all fitted trees

3.5. AdaBoost

One thing that Bagging does not take into account is that each observation is not equally suscepti-
ble to be drawn randomly from the training set. Most of the time, we cannot assure this condition.
As explained by Drucker (1997); "in boosting, the probability of a particular example being in
the training set of a particular machine depends on the performance of the prior machines on that
example". In other words, if machine (a model) is able to predict and learn properly an observa-
tion, we do not need to learn more about it, but on observations which are difficult to learn on.
Thus, these last ones will be more likely to be picked in a boosting sample. Adaboost was first
introduced by Freund and Shapire (1995, 1996), and the following is a slightly modified version
by Drucker (1997) called AdaBoost.R2:

Algorithm 2 AdaBoost.R2
1: procedure ADB
2: for u = 1, ..., t do:
3: The probability that the observation i is in the training set is directly obtain by pi =

wi
∑wi

. Draw with

replacement a n-sized sample X(n,u) (and its corresponding output Yk
u) from the training set X (and Yk).

4: Build a model Fu on X(n,u) (resp. Yk
u) by making a weak hypothesis hu : X(n,u)→ Yk

u
5: Pass X to the model to get each predictions Fu(Xi), i = 1, ...,n
6: Calculate a loss for each observation. The loss may be of any form as long as L ∈ [0,1]
7: Calculate the average loss:L = ∑

n
i=1 Li pi

8: Assessment of the confidence in the predictor by calculating β = L
1−L

9: Update the weights wi→ wiβ
1−Li

10: Outputs of each machine Fu are then weighted, and the predictor is the (weighted) median
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Initially, each observation is assigned by a weight wi = 1, i = 1, ...,n. The algorithm is defined
this way and continues till the average loss L goes under 0.5.

Although this algorithm is noise and outliers sensitive, it does not need to be calibrated. This
ensemble technique can be used with Random Forest and Decision Trees Regressors.

4. Prediction of loads for a new weight variant

In this section, we apply the techniques we described in Section 3 to our database and present
the results we obtain.

4.1. Data preparation

Several options are possible to improve the capability of predictions of machine learning. For
example, some of them are sensitive to the homogeneousness of the data they learn from, or
the number of input variables, as well as outliers. Concerning the last case, we cannot consider
outliers because every load cases have been validated thus we must consider all of them. In the
first part, we will focus on clustering of our load cases of gusts to improve the ML performance.
In the second part, we shall analyze the influence of different dimensional reduction techniques
on the generalization capabilities of several algorithms based on regression trees.

To improve the capability of machine learning algorithms, clustering has been performed on
the gust cases. From a weight variant to another, loads experts are able to roughly estimate the
form and intensity of the bending moments. To represent it a priori, we add the coefficients of the
polynomials to the features to cluster our data and the K-means algorithm has been performed
on these data (features and coefficients). The number of clusters was chosen with the experts and
the elbow method using an Euclidean distance. A PCA has been performed and in the two first
components, two clusters can be distinguished precisely (see Figure 9). In the following, these
two clusters will be referred as Cluster 0 and Cluster 1.

As we can see in Figure 9, the average bending moment of the Cluster 0 is more linear than
the one of Cluster 1. Besides, the cluster 1 is constituted by bending moment which are mainly
positive and with higher value at the wing root. By looking closer at the A.C. parameters, we
can see that most of variables have the same distribution with a slightly different mean value.
Nevertheless, some of them are really different (see Table 3): this is the case for DQ_DEGL1
(Deflection left inboard Elevator), DSP_DEG1L (Deflection Spoiler 1 Left Wing), DP_DEGIL
(Deflection all speed Inner Aileron), DP_DEGOL (Deflection low speed Outer Aileron) and even
more for ENXF (X-Load Factor Body Axis), especially the distribution (see Figure 10 and 11):

TABLE 3. Comparison of variables means in the two clusters: DQ_DEGL1 (Deflection left inboard Elevator),
DSP_DEG1L (Deflection Spoiler 1 Left Wing), DP_DEGIL (Deflection all speed Inner Aileron), DP_DEGOL
(Deflection low speed Outer Aileron) ENXF (X-Load Factor Body Axis)

DQ_DEGL1 DSP_DEG1L DP_DEGIL DP_DEGOL ENXF

Cluster 1 0.0043 -0.00025 -0.0082 -0.0079 -0.0587

Cluster 0 0.0258 -0.4363 -0.0495 -0.0488 0.0173
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70 Fournier and Klein and Grihon

FIGURE 9. (a) Decrease of the Euclidean distorsion according to the number of clusters; (b): Scatter plot of indi-
viduals in the two PC; (c)&(d): Average, median, and Interval Inf. and Sup of bending moments of Clusters 0 and
1

4.2. From 238t to 242t

Before presenting the results, it is important to explain more the R-squared score we have used
in this project and why it is relevant in an engineering context. The R-squared, or also known as
coefficient of determination, is a number that shows how well predictions are with respect to the
explained variance. In other words, it is a measure of how well the model fits the data:

R2 = 1− ∑i(yi−ŷ)2

∑i(yi−y)2

In our case, we calculate a R2 at each station of the wing. Indeed, by doing so, we maintain the
engineering sense of accuracy of a curve. Because the variance for one curve can be extremely
high - for example, we have at the root a value of 8 000 000 and at the wing tip it is closed to 0 -
calculating a R2 on all the values at the same times would lead to over-estimate the accuracy of
our models because the total variance is higher and thus, the ratio between the squared error and
the variance is really low.

The industrial goal was to have the higher R2: in fact, this sprint project is part of a bigger
project aiming to deliver models to accelerate pre-development of aircraft. Thus, the necessary
condition is to have models precise enough and able to generalize simulations computed anteri-
orly to approximate, in our case, the computing chain of loads and stress. We agree that the R2

can be misleading if the variance of the output is very high. As a consequence, by calculating a
R-squared at each station (that is to say for each predictor) of the wing: we consider the variance
only of the same kind of values in the outputs. The R-squared score given is then the average
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FIGURE 10. Comparison of DQ_DEGL1(Deflection left inboard Elevator) for the two clusters: the Cluster 0 is mainly
constituted by load cases where the left inboard Elevator is active contrary to the Cluster 1

FIGURE 11. Comparison of ENXF (X-Load Factor Body Axis) for the two clusters: the Cluster 0 is mainly constituted
by load cases where the X-load Factor Body Axis is positive contrary to the Cluster 1. Simply speaking, that means
that the structure "warps" in a way for the Cluster 0, and the other way for the Cluster 1 (due to positive of negative
gusts)
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value of all R-squared calculated at each station.

To compare properly the results, from the 238t data set, we have drawn randomly a sample
representing 80% of the observations, the last 20% represent the test set, and the 242t, 247t and
251t are our validation datasets, and we have repeated the process several time to see if a modi-
fication of the training set leads to unstable results in forecasting and generalizing.

To perform the comparison of algorithms presented above, we have used the scikit-learn li-
brary. Unfortunately, because we are trying to predict a field of vectors (we fit a model per station
along the wing), just Random Forest is naturally implemented to do so and to take advantage of
links which could exist between them. Simply speaking, when we fit a multioutput model with
Random Forest, the impurity measure used at each node has a "covariance" form such as de-
fined in Segal and Xiao (2011). Then we used the MultiOutputRegressor for the other algorithms
which fits an independent predictor per output vector (i.e per station): the MultiOutputRegressor
is then an object containing as much predictors as outputs. As a recall, here are the algorithms we
have tested the generalization capabilities: Adaboost based on decision trees regressors (ADB-
DT); Adaboost based on Random Forest regressors (ADB-RF), Random Forest (RF), Bagging
and Gradient Boosting (GBM). First, before checking the influence of dimensional reduction
techniques we check which algorithms work the best on raw data:

TABLE 4. Mean/standard deviation of scores after random learning (80%) - testing (20%) - validation: (1) refers to
Raw inputs + Raw outputs (no transformation on the data)

Cluster 0 Cluster 1

Learning Test Validation 242t Learning Test Validation 242t

ADB-DT (1) 0.9999/0 0.9756/0.04 0.956/0.001 0.999/0 0.983/0.003 0.967/0.001

ADB-RF (1) 0.9997/0 0.976/0.003 0.956/0.001 0.999/0 0.981/0.003 0.965/0.001

RF (1) 0.9917/0.003 0.96/0.004 0.92/0.003 0.994/0 0.966/0.005 0.925/0.003

Bagging (1) 0.9922/0.003 0.96/0.003 0.927/0.001 0.994/0 0.967/0.003 0.933/0.001

GBM (1) 0.8858/0 0.878/0.004 0.871/0.007 0.896/0 0.885/0.003 0.878/0

As we can see in Table 4, even if AdaBoost is not able to predict and take into account several
outputs, the one based on decision tree regressors gets the better results. Random Forest com-
bined with AdaBoost has 3% higher scores with a lower variability than RandomForest only. It is
important to notice that GBM has the less degrowth from the test score to the validation score but
the poorest score. Adaboost (based on decision trees or Random Forest) having the best results
and the second less degrowth from the test score to the validation score (from 97.56% to 95.6%),
we will focus on this algorithm to see the impact of dimensional reduction techniques.

To quantify the influence of dimensional reduction techniques on extrapolation capabilities,
here follows the different configurations we need to compare:

— (1) Raw inputs + raw outputs: no data transformation.
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— (2) Raw inputs + PCA outputs: we keep the original input space and we perform a PCA
on the output space.

— (3) Raw inputs + polynomial fitting: we keep the original input space and replace the out-
puts by polynomial coefficients.

— (4) Raw inputs + polynomial fitting and PCA: we keep the original input space and replace
the outputs by polynomial coefficients on which we perform a PCA.

— (5) PCA inputs + Raw outputs: we keep the original bending moment and we perform a
PCA on the input space.

— (6) PCA inputs + PCA outputs: we perform a PCA on the design space, and another on
the output space.

— (7) PCA inputs + polynomial fitting: we perform a PCA on the design space and replace
the outputs by polynomial coefficients.

— (8) PCA inputs + polynomial fitting and PCA: we perform a PCA on the design space and
replace the outputs by polynomial coefficients on which we perform a PCA.

Methods concerning the polynomial fitting are not shown due to lack of generalization and
poor results. Other results are shown in Table 5.

TABLE 5. Mean/standard deviation of scores after several random learning (80%) - testing (20%) - validation 242t
for the configurations: (1) Raw inputs + raw outputs; (2) Raw inputs + PCA outputs; (5) PCA inputs + Raw outputs;
(6) PCA inputs + PCA outputs

Cluster 0 Cluster 1

Learning Test Validation 242t Learning Test Validation 242t

(1) ADB-RF 0.9997/0 0.976/0.003 0.956/0.001 0.999/0 0.981/0.003 0.965/0.001

(2) ADB-RF 0.9996/0 0.9751/0.002 0.956/0.0008 0.9996/0 0.9816/0.003 0.966/0.001

(5) ADB-RF 0.9996/0 0.9579/0.004 0.9120/0.001 0.9966/0 0.9680/0.004 0.9192/0.001

(6) ADB-RF 0.9995/0 0.9585/0.004 0.9136/0.003 0.9995/0 0.9684/0.004 0.9215/0.002

(1) ADB-DT 0.9999/0 0.9756/0.04 0.956/0.001 0.999/0 0.983/0.003 0.967/0.001

(2) ADB-DT 0.9998/0 0.9742/0.004 0.9565/0.001 0.9998/0 0.9823/0.005 0.9683/0.001

(5) ADB-DT 0.9999/0 0.9535/0.004 0.9145/0.001 0.9999/0 0.9670/0.005 0.9141/0.001

(6) ADB-DT 0.9998/0 0.954/0.004 0.9144/0.003 0.9998/0 0.9676/0.005 0.9247/0.003

(1) RF 0.9917/0.003 0.96/0.004 0.92/0.003 0.994/0 0.966/0.005 0.925/0.003

(2) RF 0.9923/0 0.9584/0.003 0.92/0.004 0.9937/0 0.9658/0.004 0.9255/0.001

(5) RF 0.9889/0 0.9407/0.004 0.8460/0.001 0.9899/0 0.9475/0.006 0.7675/0.001

(6) RF 0.9889/0 0.94/0.004 0.8681/0.004 0.9896/0 0.9665/0.004 0.7716/0.016

Note 4.1. Parameters of algorithms can be consulted in the Appendix A.
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PCA performed on the inputs does not improve results but reduces their variability for Ran-
dom Forest. Nevertheless, we can see that a PCA applied only on the outputs improves slightly
the average results when predicting the 242t for all algorithms. This is not surprising that apply-
ing a PCA does not highly improve the results since Random Forest and AdaBoost are natively
able to deal with a large number of variables.

The results of ADB-RF are similar to ADB-DT. One major difference is the variability con-
cerning the validation scores which is reduced against the other methods. From a cluster to
another, results concerning the variability and the type of algorithms are the same; just the scores
change.

AdaBoost with Random Forest or Decision Trees are similar, just the variability in scores is
different. Indeed, due to the stable behavior of Random Forests, it is not surprising that AdaBoost
performs better on Decision Trees than on Random Forests. Nevertheless, we can assume now
that a PCA on the outputs improves the results and from now, we shall investigate how are the
error distributed to understand better the lack of generalization capabilities of our model. In the
following, just AdaBoost with Random Forest will be investigated concerning the extrapolation
with a PCA applied on the outputs.

4.3. From 238t to 251t

The R-squared is not optimal to appreciate the quality of the fit: this score can hide poor results
depending on the data people are dealing with. To assess the goodness of fit of our models, we
defined for a curve of bending moment j the error rate as follows:

error( j) = ∑
L
i=1(ŷ(xi)−y j(xi))

2

∑
L
i=1 y2

j(xi)

For j = 1, ...,n, where n is the size of the sample we calculate the error rates, and where L= 29
is the number of stations along the wing. It allows us to have a physical idea of how far our pre-
dictions are. For this standpoint, we can easily compute the empirical cumulative distribution
function (CDF): ∀ j = 1, ...,n, let α ∈ [0,1]. The empirical CDF is defined as:

α → G(α) = 1
n ∑

n
j=11(error( j)≤α)

The Table 6 gives more detailed information concerning the CDF of error rates in Figure 12:

TABLE 6. P(error ≤ 2%), P(error ≤ 10%) and E(error) for the different clusters and datasets 242t, 247t and 251t

Cluster 0 Cluster 1

242t 247t 251t 242t 247t 251t

P(error ≤ 2%) 88% 65% 63% 90% 79% 78%

P(error ≤ 10%) 95% 89% 89% 95% 88% 90%

E(error) 12% 17% 22% 23% 18% 27%
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FIGURE 12. Empirical CDF of error rates (P(error ≤ α)) concerning the extrapolation for Cluster 0 and Cluster 1:
242t (blue), 247t (green) and 251t (red)

As soon as we try to generalize our results far from the training dataset, results drop. This is
easily explain by the fact that some variables in the 247t and the 251t are far (in average) from
the 238t: for example, the quantity of fuel in the first tank is 50% more important in the 242t,
117% in the 247t and 270% more important in the 251t. By looking at Deflection left inboard
elevator, it is up to 50% different in the 247t and 251t than is the 238t and 242t. Unfortunately,
theses features have a low importance according to Random Forest (see Appendix B). Besides,
it is known that in some cases, slight changes of the features (especially the load factor along the
Z-axis) can lead to very different behaviours.

5. Conclusion

Let us highlight now the contribution of this case study. As mentioned above, AdaBoost asso-
ciated with Random Forest gives excellent results for observations which are not far from the
training set. This is even more accurate when the outputs have similar forms for close design
points and for load cases that are not impacted by the weight change roughly. As soon as we try
to generalize the results for observations far from the learning data set or for load cases which
leads to different behaviour, results drop. If we control the design space at the starting point, or
add information concerning the form of the load to predict, or place us in an interpolation con-
text, results would be even better.

A PCA on the outputs improves the results in average, and this can be explained because of
the high co linearity of the outputs. Because of the presence of outliers and especially because
all inputs matter, a PCA on the input space does not improve our results in average.

By trying to predict a vector (the shape of our training matrix is 28931x53) and not a point (it
would have been 838 999x25), the speed of learning is exponentially decreased, and we keep the
engineering information of the mathematical object.

Upcoming works concerning this project should investigate the following point: define a reli-

Journal de la Société Française de Statistique, Vol. 159 No. 3 56-78
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



76 Fournier and Klein and Grihon

able method for extrapolation; test other dimensional reduction techniques as the shape invariant
model approach such as defined by Sergienko et al. (2012) which has been used in the petroleum
industry; produce data in sub-spaces where there is a lack of information; investigate the fact that
the optimal parameters obtained are maybe not optimal in term of generalization; consider other
machine learning algorithms than those based on regression trees because they are known to be
not optimal in a generalization problem, because they are considered as ?black-boxes? and be-
cause they do not give uncertainties; considering on-line learning: as soon as a new observation
is available, the model should keep learning sequentially.

Airbus pursues the increasing knowledge capitalization and the development of new methods
and tools for Research and Engineering through Big Data initiatives and the promising results of
the sprint project, in which this case study has been achieved, are part of the root of upcoming
bigger projects about Machine Learning in the load and stress process.
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Appendix A: Models parameters

Models have been optimize through cross-validation (5-folds). The parameters which do not ap-
pear in the following table are set to default value of algorithm in scikit-learn. AdaBoost and
Bagging use Decision trees as based estimators: due to time constraints, we have first optimized
the parameters of Decision Trees alone on the data, and then optimize AdaBoost and Bagging pa-
rameters. Here follows the table containing the parameters of the models exposed in the previous
sections.

TABLE 7. Models parameters through cross-validations (5 folds): models with an asterisk use the parameters of
Decision Trees in the same column - (1) Raw inputs + raw outputs; (2) Raw inputs + PCA outputs; (5) PCA inputs +
Raw outputs; (6) PCA inputs + PCA outputs.

Cluster 0 Cluster 1

Parameters (1) (2) (5) (6) (1) (2) (5) (6)

RF
min_samples_leaf 5 2 5 2 3 10 5 3
min_samples_split 10 11 3 12 14 6 8 10

n_estimators 144 192 173 201 210 161 239 133

ADB-RF

learning_rate ADB 0.95 0.92 0.98 0.96 0.90 1.07 0.92 1.06
n_estimators ADB 31 29 34 25 34 47 49 38
n_estimators RF 19 23 11 13 22 24 24 12

min_samples_leaf RF 17 15 4 3 6 3 2 9
min_samples_split RF 13 17 4 17 7 7 4 17

DT
min_samples_leaf 4 3 3 2 17 19 15 3
min_samples_split 9 7 12 7 18 15 12 6

ADB-DT(*)
learning_rate 1.09 0.96 1.07 0.93 1.03 0.93 0.93 1.02
n_estimators 89 117 133 143 156 230 234 172

Bagging(*) n_estimators 186 183 149 146 179 222 216 156

GBM
max_depth 8 10 10 13 15 14 14 14

learning_rate 0.92 0.90 0.90 0.97 0.91 0.99 0.94 0.92
n_estimators 42 46 52 67 161 149 69 65

One can notice that applying a PCA on the outputs leads to increase significantly the number
of estimators in almost all cases when the min_samples_leaf and the min_samples_split are stable
for RF and ADB-RF. Naturally, the number of estimators increases when the depth of the trees
grows. A learning_rate above 1.0 seems to compensate a too large number of estimators and the
more transformation we apply on our data, the more deeper are the trees underneath.

Appendix B: Features importance in Random Forests

The following table gives the features importance in Random Forest for the cases (1) Raw inputs
+ raw outputs and (2) Raw inputs +PCA outputs:
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TABLE 8. Features Importance in Random Forests - (1) Raw inputs + raw outputs; (2) Raw inputs + PCA outputs

Cluster 0 Cluster 1

(1) (2) (1) (2)

Defl. Left inboard Elevator 0.0269 0.0771 0.0636 0.0719

Stabilizer Setting 0.0567 0.0171 0.0235 0.0155

Defl. Spoiler 1 Left Wing 0.0023 0.0056 0 0

Defl. Spoiler 2 Left Wing 0.0011 0.001 0.0001 0.0001

Defl. Spoiler 3 Left Wing 0.0013 0.0011 0.0001 0.0001

Defl. Spoiler 4 Left Wing 0.001 0.001 0.0001 0.0001

Defl. Spoiler 5 Left Wing 0.0012 0.001 0.0001 0.0001

Defl. Spoiler 6 Left Wing 0.0012 0.001 0.0001 0.0001

Defl. all speed inner Aileron 0.0283 0.0438 0.0090 0.0117

Defl. Low speed outer Aileron 0.0114 0.0158 0.001 0.0001

Lower part Rudder Deflection 0.0078 0.0095 0.0033 0.0036

Total A.C. Mass 0.139 0.1121 0.1314 0.1487

Mach Number 0.0052 0.0145 0.0074 0.0064

True Airspeed 0.0075 0.0243 0.0341 0.0240

Altitude 0.0121 0.0049 0.0099 0.0146

x-location of cg in % amc 0.0039 0.0086 0.0082 0.0067

Thrust(calculated) 0.0019 0.0017 0.0006 0.0004

X-Load Factor 0.0173 0.03 0.0281 0.0254

Y-Load Factor 0.0086 0.0161 0.0048 0.012

Z-Load Factor 0.6529 0.6045 0.6550 0.6462

Fuel Tank mass TANK1L 0.0016 0.0013 0.0028 0.0023

Fuel Tank mass TANK2L 0.0038 0.003 0.008 0.0046

Fuel Tank mass TANK3L 0.0015 0.0012 0.0042 0.0024

Fuel Tank mass TANK4L 0.0031 0.002 0.0033 0.0014

Left inner engine thrust 0.0022 0.0016 0.0006 0.0004

Features importance are stable from a method to another and the two most important features
are identified: the mass and the Z-load factor. As said in the section 4.3, the importance of
variables such as the Deflection left inboard elevator or the quantity of fuel in the first tank is
small compared to those last two variables: thus, even if they change roughly for the other weight
variants, they have a low impact on the prediction of loads.

Acknowledgements

We are very much indebted to the referees and the Associate Editor for their constructive criti-
cisms, comments and remarks that resulted in a major improvement of the original manuscript.
We would also like to thank Fabrice Gamboa for careful rereadings.

Journal de la Société Française de Statistique, Vol. 159 No. 3 56-78
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238


	Introduction
	Industrial context
	A simplistic load and stress model computation process example
	Data presentation
	Industrial problem

	Three Dimensional Reduction Techniques
	Principal Components Analysis
	Polynomial fitting
	Polynomial fitting & Principal Components Analysis

	Regression based on Trees
	Classification and Regression Trees (CART)
	Bagging with regression trees
	Random Forest
	Gradient Boosting
	AdaBoost

	Prediction of loads for a new weight variant
	Data preparation
	From 238t to 242t
	From 238t to 251t

	Conclusion
	References
	Appendix A: Models parameters
	Appendix B: Features importance in Random Forests
	Acknowledgements

