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A Mutual Information-based method to select
informative pairs of variables in case-control

genetic association studies to improve the power
of detecting interaction between genetic variants.

Mathieu Emily1 and Chloé Friguet2

Abstract: We propose a novel procedure for tagging Single Nucleotide Polymorphisms (SNPs), called EpiTag, to
deal with interaction detection in Genome-Wide Association Studies. The aim of our method is to select a set of tag-
SNPs that optimally represents the whole set of pairs of SNPs whereas usual approaches are univariate. The linkage
between two pairs of SNPs is measured by the Normalized Mutual Information. The proposed algorithm is assessed
considering the power of interaction detection compared to a no-tagging strategy and a usual one-dimensional tagging
procedure, both on simulated and real genotype structures. EpiTag demonstrates good power performances along with
various signal strengths or data sizes w.r.t the competing methods.

Résumé : Nous proposons une nouvelle méthode de sélection de marqueurs biologiques, appelée EpiTag, permettant
la détection d’interaction de gènes dans les études d’association à l’échelle du génome. Notre méthode extrait un
sous-ensemble de marqueurs qui caractérise de façon optimale la variabilité de la totalité des couples de marqueurs,
là où les approches usuelles considèrent les marqueurs de façon univariée. Nous proposons de quantifier le lien
entre couples de marqueurs par l’Information Mutuelle Normalisée. La faisabilité de notre méthode est validée à
partir d’une étude de la puissance de détection d’interaction sur un ensemble de jeu de données avec une structure
de dépendance simulée ou bien provenant de donnéées réelles. EpiTag réalise de bonnes performances en terme de
puissance, et ce quelque soit la force du signal ou la dimension des données testées, par rapport aux autres méthodes.

Keywords: Genome-wide association studies, Gene-gene interaction, Mutual information, Selection of pairs of vari-
ables
Mots-clés : Etudes d’association à l’échelle du génome, Inéteraction entre gènes, Information mutuelle, Selection de
paires de variables
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1. Introduction

The sequencing of the human genome combined with the finalization of the HapMap project
(International HapMap Consortium, 2003) have allowed the development of association studies
at the genome scale. The aim of these Genome-Wide Association Studies (GWAS) is to detect
differences in genetic variants associated to a specific trait (a disease for example). Genetic vari-
ant usually refers to Single Nucleotide Polymorphism (SNP), defined as one base pair on the
genome that is polymorphic in the studied population. Single-locus approaches, whereby a large
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number of SNPs are tested independently for association, have first been developed to analyse
GWAS (Lewis, 2002). Although such single-locus approaches have successfully identified re-
gions of disease susceptibility (Hindorff et al., 2009), findings were of modest effect and a large
proportion of the genetic heritability is still not covered for common complex diseases (Maher,
2008; Manolio et al., 2009).

Single-marker strategy is usually considered as one of the main limiting factors for GWAS
to detect causal variants. Since human complex diseases are generally caused by the combined
effect of multiple genes, the detection of genetic interactions (also called epistasis) is thus es-
sential to improve our knowledge of the etiology of complex diseases (Cordell, 2009; Hindorff
et al., 2009). However, the detection of gene-gene interaction in GWAS remains very challeng-
ing. First, when considering SNP arrays with 1,000,000 SNPs, an exhaustive testing requires
extensive computing resources to perform, store and post-process the 5×1011 possible interac-
tion tests (Ritchie, 2015). From a statistical point-of-view, the detection of gene-gene interactions
raises issues related to the statistical power of the proposed methods, such as the data structure
and the complexity of the models of interaction. GWAS data are first characterized by their high-
dimension and by the correlation between variables inherited from the complex architecture of
the genome. Furthermore, the lack in power is enhanced by the number of factors known to in-
fluence the power of statistical methods in GWAS (Emily and Friguet, 2017; Emily, 2016b) and
by the vast amount of epistatic models (Li and Reich, 2000; Hallgrimsdottir and Yuster, 2008).
Although the past few years have therefore seen the development of methods dedicated to the
detection of association between a case-control phenotype and the interaction between pairs of
SNPs (Wan et al., 2010; Ueki and Cordell, 2012; Emily, 2012), and pairs of SNP-sets (Larson
and Schaid, 2013; Emily, 2016a), efforts are still needed to improve the power of detection of
pairwise interaction.

Another major limitation of GWAS is the indirect association testing due to the tagging step.
Because of the block structure of the genome and to reduce the technological cost of genotyp-
ing, SNP-arrays are designed to genotype a (relatively) small part of the SNPs, called tag-SNPs.
Tag-SNPs are selected to capture a high proportion of the genetic variation all along the genome.
Therefore, the actual causal SNPs, where the mutation responsible for the disease has truly oc-
curred, may not be genotyped in the observed dataset. In that case, the causal SNPs may be
detected thanks to its tag-SNPs, thus testing for indirect association. The loss of power, induced
by indirect association, has been well studied in the case of single-marker association (Weir,
2008; Emily and Friguet, 2017; Emily, 2016b) and a strong link between power loss and the
amount of correlation between causal and tag-SNPs has been demonstrated in several studies
(Pritchard and Przeworski, 2001; Carlson et al., 2004; Nielsen et al., 2004).

Since the selection of maximum informative tag-SNPs is an NP-complete problem, a substan-
tial literature has been dedicated to provide computational solutions to the tagging issue (Carlson
et al., 2004; de Bakker et al., 2005; Ao et al., 2005; Frommlet, 2010; Sicotte et al., 2011; Bush
and Moore, 2012). Tagging algorithms currently focus on one-dimensional quality measures of
tagging and therefore aim at maximizing the information retrieved for each SNP individually.
For example, in the widely used method Tagger, each SNPs is tagged by at least one tag-SNP
with a correlation coefficient r2 higher than a cutoff, usually r2 ≥ 0.8 (de Bakker et al., 2005).
However, when searching for SNPxSNP interaction, there is no guarantee that maximizing the
information for each SNP of the causal pair using a one-dimensional strategy is optimal to re-
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cover the maximum of information of the pair. In other words, a pair of markers is not necessarily
well represented by the pair of the one-dimensional associated tag-SNPs. Thus, it is very likely
that only accounting for a one-dimensional pattern of correlation between SNPs may generate an
uncontrolled loss in power. Although variable and feature selection is of main interest in various
domains, the selection of pairs of variables is still not much studied in the statistical literature. To
our knowledge, the only study dealing with pair selection can be found in Ng (2004) where the
author proposes a bivariate variable selection method but for supervised classification problems.

In this paper, we propose a new approach for tagging SNPs, called EpiTag, to deal with inter-
action detection. The aim of our method is to select a set of tag-SNPs that optimally represents
the total set of all pairs of SNPs. The linkage between two pairs of SNPs is measured by the
Normalized Mutual Information (NMI) (Strehl and Ghosh, 2002). NMI aims at quantifying the
amount of information (from an entropy point-of-view) obtained about one random variable,
through the other random variable. Compared to the correlation coefficient, NMI is not limited
to real-valued random variables and NMI can therefore be applied to pairs of variables which is
of major interest in our context of interaction detection. Based on the NMI, EpiTag can be seen
as a greedy algorithm that allows each pair of the genome to be tagged by a pair of SNPs, at fixed
level of NMI.

After introducing the notations, Section 2 describes the most commonly used one-dimensional
tagging strategy called Tagger. Our proposed method EpiTag, based on two-dimensional infor-
mation, is detailed in Section 3. In Section 4, we evaluate the performance of our method com-
pared to a non-tagging strategy, where no selection is performed before testing for association
and a usual one-dimensional strategy. Perspectives are discussed in Section 5.

2. Notations and usual tagging strategy

2.1. Notations for genotype data

Let us consider that the genotype of an individual is measured through a collection of p SNPs. In
more details, for i = 1, . . . , p, let Xi be a random variable modeling the genotype of the ith SNP.
Although various modeling of the Xi’s can be considered, we focus here on the raw representa-
tion of a SNP where Xi is a categorical variable with three levels denoted by Xi ∈ {AA,Aa,aa}=
{0,1,2}. States AA and aa correspond to the two homozygote genotypes while Aa is the het-
erozygote state, where A (resp. a) is the major (resp. minor) allele of SNP i. In the following,
we focus on sets of SNPs, X1 = [X1

1 , . . . ,X
1
p1
] and X2 = [X2

1 , . . . ,X
2
p2
], respectively located within

two genomic regions R1 and R2 composed of p1 and p2 SNPs.

Let us further consider a sample of n individuals. The observed genotypes from R1 can be
represented by a n× p1 matrix X1 =

[
x1
`,i

]
`∈1...n; i∈1...p1

, where x1
`,i is the observed genotype for

SNP i carried by individual `. Therefore, x1
`,i is the realization of a random variable characterized

a multinomial distribution as introduced in the previous paragraph. Using similar notations for
genotypes observed from R2, a typical genotype dataset can be summarized as follows:
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X1 =


x1

1,1 . . . x1
1,p1

...
. . .

...
...

. . .
...

x1
n,1 . . . x1

n,p1

 X2 =


x2

1,1 . . . x2
1,p2

...
. . .

...
...

. . .
...

x2
n,1 . . . x2

n,p2


2.2. One-dimensional tagging: Tagger

The most widely used method for tag-SNP selection is called Tagger (de Bakker et al., 2005).
Tagger algorithm aims at selecting a maximally informative set of SNPs based on Linkage Dis-
equilibirum (LD) (Carlson et al., 2004). LD refers to the non-random association of alleles at
different SNPs and therefore introduces dependency between SNPs. The amount of LD in a set
of SNPs is commonly measured by the pairwise correlation r2 between SNPs (Hill and Robert-
son, 1968). When considering two biallelic SNPs, Xi and X j, with respective marginal allele
frequencies πA and πB, and πAB as joint allele frequency, the r2 is defined by:

r2(Xi,X j) =

(
πAB−πA×πB

)2

πA×πa×πB×πb

Given the set of SNPs X1 from the genomic region R1, the Tagger procedure starts by com-
puting the pairwise correlation matrix of size p1× p1. As displayed in the flowchart of Figure 4
(see Appendix B), SNPs are then iteratively partitioned into different blocks (also called bins)
according to the relevance of SNPs (r2 ≥ γ , with γ = 0.8 usually in practice). Each iteration is
decomposed into two steps: (1) the identification of the current tag-SNP and (2) the building
of the current bin. The identification of the current tag-SNP is performed by selecting the SNP
exceeding the r2 threshold with the maximum number of other SNPs in the current set. Then, the
current bin is built by aggregating the current tag-SNP and its associated SNPs if any. In the first
iteration, the current set of SNPs is the whole set of SNPs and then, at each iteration, the current
set of SNPs is updated by removing SNPs from the current bin until all SNP belongs to a single
bin.

After the final iteration performed on R1, the Tagger procedure provides two distinct outputs:
a set of tag-SNPs denoted I1

Tagger and a set of bins. I1
Tagger refers to the set of tag-SNPs indices so

that I1
Tagger ⊆ [1, . . . , p1]. Let us also introduce t1 a mapping function defined by:

t1 : [1, . . . , p1] −→ I1
Tagger

i 7−→ t1(i)
(1)

where t1(i) gives the index of the tag-SNP for SNP i. Besides, it is noteworthy that :

∀i ∈ I1
Tagger : t1(i) = i.

Tagger relies on the r2 measure that can be seen as a quality measure that specifies how well
a set of tag-SNPs reports the information carried by the whole set of SNPs. Common quality
measure introduced in the literature are one-dimensional in the sense that they focus on the
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recovered information for single SNP only, while information from pairs, triplet or any n-tuple
with n> 1 is not considered. Therefore, in the design setting introduced in Section 2.1, the search
for tag-SNPs in regions R1 and R2 is performed independently. As consequence, when applying
Tagger to region R2, similar notations can be used to define the set of of tag-SNPs, namely
I2
Tagger, and the map function t2 : [1, . . . , p2]→ I2

Tagger that provides the index of the tag-SNP for
any SNP i ∈ [1, . . . , p2].

3. EpiTag: our two-dimensional tagging procedure

This section is dedicated to the detailed presentation of our tagging method, called EpiTag. To
overcome the main limitation of one-dimensional methods, such as Tagger, that consider R1 and
R2 independently, we proposed a quality measure based on the information carried by pairs of
SNPs.

3.1. The Normalized Mutual Information: a quality measure for pairs of SNPs

The Normalized Mutual Information (NMI) is a measure of the mutual dependence between two
variables (Strehl and Ghosh, 2002). NMI aims at quantifying the amount of information (from an
entropy point-of-view) obtained about one random variable, through the other random variable.
Compared to the correlation coefficient, NMI is not limited to real-valued random variables.
NMI can therefore be applied to pairs of variables which is of major interest in our context of
interaction detection as defined hereafter.

Let us first introduce Zi j = (X1
i ,X

2
j ) as the random variable characterizing the couple of the

two random variables X1
i and X2

j , where X1
i (resp. X2

j ) is the ith SNP of R1 (resp. jth SNP of R2).
If we consider two pairs of SNPs Zi j and Zrs, the NMI between Zi j and Zrs is defined by:

NMI
(

Zi j,Zrs

)
=

I
[
Zi j,Zrs

]√
H(Zi j)H(Zrs)

with

I
(

Zi j,Zrs

)
= ∑

(xi,x j,xr,xs)∈{0,1,2}4

p(i, j,r,s) log

(
p(i, j,r,s)

P
(
Zi j = zi j

)
P
(
Zrs = zrs

))

H (Zi j) = I
(

Zi j,Zi j

)
p(i, j,r,s) = P

(
(X1

i ,X
2
j ,X

1
r ,X

2
s ) = (xi,x j,xr,xs)

)
I and H denote respectively the mutual information and the entropy (Kullback, 1959).
In Appendix A, the benefit of using a two-dimensional measure of information such as the

NMI compared to combining two one-dimensional measures of correlation is investigated. If
we consider two pairs, Zi j and Zrs such that r2(X1

i ,X
1
r ) = 0.8, r2(X2

j ,X
2
s ) = 0.8 and all other

pairwise r2 = 0, it can be remarked that NMI(Zi j,Zrs) falls in the range [0.7, 0.85] (see Figure 3).
Thus, only accounting for the one-dimensional correlation when tagging pairs is likely to miss
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a certain amount of variability since the whole degrees-of-freedom are not considered. Such a
result strengthens our working hypothesis and motivates the proposal of two-dimensional tagging
strategies.

3.2. EpiTag procedure

Given the set of pairs of SNPs from the genomic regions R1×R2, the EpiTag procedure starts
by computing the pairwise NMI matrix of size p1 p2× p1 p2. The main purpose of EpiTag is to
select a subset of pairs (i.e. a subset of SNPs) that tags all pairs with a predefined amount of
NMI denoted τ . Therefore, the goal of the EpiTag procedure is to provide a subset IE piTag ⊆
[1, . . . , p1]× [1, . . . , p2] such as:

∀(r,s) ∈ [1, . . . p1]× [1, . . . , p2], ∃(i, j) ∈ IE piTag : NMI
(

Zi j,Zrs

)
≥ τ (2)

To solve the optimization problem raised in Equation (2), we propose the following iterative
algorithm. Let us introduce Uk and Tk the sets of indices of respectively Untagged and Tagged
pairs of SNPs after iteration k. The EpiTag algorithm is straightforwardly initialized by U0 =
[1, . . . , p1]× [1, . . . , p2], T0 = /0 and IE piTag = /0. Let us now consider the kth iteration of the EpiTag
algorithm and define Q as, ∀(i, j) ∈Uk−1:

Qk(i, j) = ∑
(r,s)∈Uk−1

1
{

NMI
(

Zi j,Zrs

)
≥ τ

}
(3)

The indices of the tag-pair of SNPs Γk = (ik, jk) is defined as:

Γk = argmax
(i, j)∈Uk−1

Qk(i, j)

We denote by T ∗k =
{
(r,s) ∈Uk−1 : NMI

(
ZΓk ,Zrs

)
≥ τ

}
the set of pairs that are tagged at

iteration k. Then, at the end of iteration k, the following updates are performed:

Uk =Uk−1 \T ∗k ; Tk = Tk−1∪T ∗k ; IE piTag = IE piTag∪Γk

Tag-SNPs selection stops when Uk = /0. Algorithm 1 describes the main steps of the EpiTag
procedure.

Besides, as shown in Figure 5 in Appendix B, it can be remarked that the EpiTag algorithm
has similarities with the Tagger algorithm and can therefore be seen as an extension of this
algorithm considering (1) pairs of SNPs as input variables instead of single SNPs and (2) the
NMI between pairs of SNPs as a measure of similarity between input variables instead of the
correlation coefficient. We also introduce a mapping function denoted tE piTag that gives the index
of the tag-SNPs pair for each pair of SNPs.

tE piTag : [1, . . . , p1]× [1, . . . , p2] −→ IE piTag

(i, j) −→ tE piTag(i, j) (4)

where tE piTag(i, j) gives the index of the tag-pair for the pair of SNPs Zi j.
It is noteworthy that :

∀i ∈ IE piTag : tE piTag(i, j) = (i, j).
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Algorithm 1 EpiTag algorithm
Require: MNMI {the matrix of NMI values between all pairs of SNPs from regions R1 and R2}
Require: τ {the threshold for blocks partitionning}

p← dim(MNMI)[1] {total number of pairs of SNPs between region R1 and region R2 = nb of rows in MNMI . Note
that p = p1× p2}
nb.pairs.tagged← 0 {counter for the number of tagged pairs of SNPs}
IE piTag← vect(0, p) {0/1 p-vector indicating wether a pair of SNPs is a tag or not}
U ← vect(1, p) {0/1 p-vector indicating wether a pair of SNPs has been tagged or not}
B← vect(0, p) {p-vector indicating for each pair of SNPs the index of its tag-pair}
k = 0 {Iteration counter}
while nb.pair.tagged < p do

for t ∈U == 1 do
Compute Q(t) as in (3) {For each pair of SNPs, count the nb of pairs with which the mutual information is
greater than τ . Note that t = 1⇔ (i, j) = (1,1), t = 2⇔ (i, j) = (1,2), . . ., t = p⇔ (i, j) = (p1, p2).}

end for
tag.pair← which.max(Q) {The pair of SNPs exceeding the MNI threshold τ with the maximum number of
other pairs of SNPs is identified as a tagging pair. If several pairs of SNPs are candidate, choose the one with
the highest MNI average.}
tag.pair.bin← which(MNMI[tag.pair,U == 1]> τ) {The pair of SNPs indexed by tag.pair tags for all pairs of
SNPs with MNI > τ among those that have not been tagged yet}
IE piTag[tag.pair]← 1 {Update: the pair of SNPs indexed by tag.pair is a tag}
B[tag.pair.bin]← tag.pair {Update: the pair of SNPs indexed by tag.pair is the tag-pair for those indexed by
tag.pair.bin}
B[tag.pair]← tag.pair {Update: the pair of SNPs indexed by tag.pair is its own tag-pair}
U [tag.pair.bin]← 0 {Update: pairs of SNPs indexed by tag.pair.bin are no longer candidates for tagging}
nb.pairs.tagged← p− sum(U) {Update: total nb of pairs of SNPs that have been tagged}

end while
return IE piTag,B

4. Numerical evaluation of EpiTag

To evaluate the performances of the EpiTag procedure, power studies are performed, based on
simulated disease models. The aim is to compare the power of detection of EpiTag with two com-
monly used strategies: a one-dimensional tagging strategy, namely Tagger, and a “no-tagging”
strategy that we call NoTag where no selection is performed. Although there exists a direct re-
lationship between coverage and power in single association testing (Pritchard and Przeworski,
2001), such a relationship is not valid anymore when dealing with SNPxSNP interaction. There-
fore, compared to previous studies where emphasis is put on the coverage of the genome (Carlson
et al., 2004), we focus here on the statistical power of detection as a measure of comparison.

In the remainder of this section, we first provide details regarding the pipeline of simulation
proposed to compare EpiTag with the two other tagging procedures, Tagger and NoTag. Indeed,
existing simulators for GWAS does not account for correlation between two regions and the set-
ting is not straightforward. The functions used to run EpiTag are available in the following github
repository: https://github.com/MathieuEmily/EpiTag. Then, results obtained with either
a simulated genotype structure or an observed genotype structure are presented.
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4.1. Simulation pipeline

Our simulation pipeline can be decomposed into four main successive steps: (1) the design of
genotype structures, (2) the simulation of the phenotype, (3) the testing for SNPxSNP associa-
tions and (4) the estimation of power. These steps are detailed hereafter.

Step ]1: Design of genotype structures The design of genotype data is performed by simulat-
ing the two regions R1 and R2 simultaneously. Our purpose is to simulate genotype structures
with various patterns of r2 and pairwise NMI defined according to the setting of a probabilis-
tic setup. This probabilistic setup is decomposed into three main steps: (1) an initialization step
where two triplets of variables (one triplet in region R1 and one triplet in region R2) are sim-
ulated simultaneously, (2) the addition of a single variable in either R1 or R2, (3) the addition
of a pair of variables with one variable in R1 and one variable in R2. The following paragraphs
provide details regarding the three simulation steps.

Initialization. To initialize the simulation process, we start by defining a joint probability dis-
tribution denoted P between the two triplets (X1

1 ,X
1
2 ,X

1
3 ) and (X2

1 ,X
2
2 ,X

2
3 ) as defined in Equa-

tion (5). (X1
1 ,X

1
2 ,X

1
3 ) and (X2

1 ,X
2
2 ,X

2
3 ) correspond to the three first SNPs of R1 and R2 respec-

tively.

∀(i, j,k,r,s, t) ∈ [0,1,2]6 : P[X1
1 = i,X1

2 = j,X1
3 = k,X2

1 = r,X2
2 = s,X2

3 = t] = pi jkrst (5)

The definition of P allows the control both of the r2 between all pairs of variables and of
NMI

(
Zi j,Zrs

)
for (i, j,r,s) ∈ [0,1,2]4.

Single-SNP adding. A single variable can be added to either region R1 or R2 by specifying
the r2 between the adding variable and a variable already included the simulation setup. For
example, variable X4

1 is added by setting r2(X1
1 ,X

4
1 ) = 0.8.

SNP-pair adding. A single pair of variable can be added to the simulation setup by specifying
the NMI between the added pair and an existing pair. For example, SNP pair Z4,4 is added by

defining NMI
(

Z44,Z11

)
= 0.7.

Details regarding the two above mentioned operations (Single-SNP adding and SNP-pair
adding) are provided in Appendix D.

To simulate two observed genotype structures, X1 and X2, we set the number n of individuals
to be simulated. Then given a simulation setup defined by an initialization step and a series of
single-SNP and SNP-pair adding: we first use Equation (5) to simulate n observations of the 6
variables (X1

1 ,X
1
2 ,X

1
3 ,X

2
1 ,X

2
2 ,X

2
3 ). Then single-SNPs and/or SNP-pairs are added conditionally

to existing variables. The output of the simulation procedure is two matrices, X1 and X2, with
n observations (or rows) and respectively p1 and p2 variables (or columns), as described in
Section 2.1.
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Step ]2: Phenotype simulation The main purpose of the phenotype simulation is to draw a
response variable with respect to a given disease model. The response variable, denoted by Y and
corresponding to the disease status, is modeled as a random binary variable (Y ∈ {0,1}) where
Y = 0 stands for an healthy individual (control status) and Y = 1 a diseased individual (case
status).

Given two SNP-sets, X1 and X2, obtained as outputs of Step ]1, the simulation of Y is per-
formed as follows. At first, a pair of causal SNPs, denoted by Zc = (X1

c1
,X2

c2
) where c1 ∈ [1, p1]

and c2 ∈ [1, p2], is chosen at random. Then, Y is defined according the following logistic regres-
sion model:

logit
(
P[Y = 1|Zc = (xc1 ,xc2)]

)
= β0 +β11{(xc1 ≥ 1)∩ (xc2 ≥ 1)} (6)

Equation (6) refers to a dominant-dominant disease model that has been studied in a large
number of studies (Marchini et al., 2005; Emily, 2012). Such a model allows the simulation of
the disease status for each observed individual summarized in the following n−uplet:

Y = [yi, . . . ,yn]
′

Step ]3: Testing for SNPxSNP associations The association between Y and the two SNP-sets
X1 and X2 is tested by performing all pairwise interaction tests between SNP-pairs Zi j =(X1

i ,X
2
j )

(1 ≤ i ≤ p1 and 1 ≤ j ≤ p2) and Y . More precisely, association testing between Y and a single
pair Zi j is performed by a Likelihood Ratio Test that aims at comparing the two logistic models
MInter and MNoInter, defined as follows (the reference level is 0):

MNoInter : logit
(
P[Y = 1|Zi j = (x1,x2)]

)
= β

N +
2

∑
i=1

γ
N
i 1{x1 = i}+

2

∑
j=1

δ
N
j 1{x2 = j}

MInter : logit
(
P[Y = 1|Zi j = (x1,x2)]

)
=

β
I +

2

∑
i=1

γ
I
i 1{x1 = i}+

2

∑
j=1

δ
I
j1{x2 = j}+ ∑

1≤i≤2
1≤ j≤2

γδ
I
i j1{x1 = i}1{x2 = j}

LRT = D(MNoInter)−D(MInter)
H0∼ χ

2(4)

where D is the deviance. Such a Likelihood Ratio Test allows for testing the significance of the
interaction between X1

i and X2
j in association with Y . As usual, the significance of the test is

summarized by a p-value denoted by pval(i, j)(Y ). Therefore, the output of Step ]3 is a set of
p1× p2 p-values, stored in the Pval uplet as follows:

Pval(Y ) =
[

pval(1,1)(Y ), . . . , pval(i, j)(Y ), . . . , pval(p1,p2)(Y )
]

Step ]4: Power estimation Based on the observation of two SNP-sets, X1 and X2, obtained
as outputs of Step ]1, the association test for tag-pairs can be performed for each of the three
compared strategies: NoTag, Tagger and EpiTag.
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NoTag. Since there is no SNP selection, all possible pairwise tests are performed. We introduce
INoTag as the set of indices for tested pairs:

INoTag = [1 . . . , p1]× [1 . . . , p2].

Given a response variable Y , obtained as an output of Step ]2, the set of computed p-values is
then given by:

PvalNoTag(Y ) =
{

pval(i, j)(Y ), (i, j) ∈ INoTag

}
.

To account for multiple comparisons, we aim at controlling the False Discovery Rate at a given
level α by applying the Benjamini-Hochberg (BH) correction to PvalNoTag(Y ) (Benjamini and
Hochberg, 1995). Let us denote by P̃valNoTag(Y ) the obtained vector of BH-corrected p-values
where:

P̃valNoTag(Y ) =
{

p̃val
NoTag
(i, j) (Y ), (i, j) ∈ INoTag

}
.

The ability for the NoTag strategy to correctly detect interaction, with respect to Y , is therefore
measured by:

pval∗NoTag(Y ) = p̃val
NoTag
(c1,c2)(Y ),

where (c1,c2) is the causal pair used to simulate Y . It is noteworthy that (c1,c2)∈ INoTag, meaning
that the causal pair is always tested in the NoTag strategy. To estimate the power of detection,
we simulate nb.sim response variables by repeating Step ]2 nb.sim times. We therefore obtain a
collection of nb.sim vectors of phenotypes (Y1, . . . ,Ynb.sim), and the power is estimated with:

P̂owerNoTag(α) =
1

nb.sim

nb.sim

∑
k=1

1
{

pval∗NoTag(Yk)≤ α

}
.

Tagger. As described in Section 2.2, the one-dimensional tagging strategy Tagger results in the
independent selection of two sets of tag-SNPs for region R1 and R2. The set of tested pairs
indices can be defined as:

ITagger = I1
Tagger× I2

Tagger,

where I1
Tagger (resp. I2

Tagger) denotes the set of tag-SNPs indices within R1 (resp. R2).
Similarly to the NoTag strategy, the set of p-values for a given Y , PvalTagger(Y ), and corre-

sponding BH-corrected p-values, P̃valTagger(Y ) obtained with the Tagger strategy are:

PvalTagger(Y )=
{

pval(i, j)(Y ), (i, j)∈ ITagger

}
, and P̃valTagger(Y )=

{
p̃val

Tagger
(i, j) (Y ), (i, j)∈ ITagger

}
.

It is noteworthy that, since ITagger ⊆ INoTag, the Benjamini-Hochberg correction is likely to be
different between both strategies as the correction depends on the number of tests. Furthermore,
it is likely that (c1,c2) 6∈ ITagger, so that the actual causal pair (c1,c2) may not be directly tested
with the Tagger strategy. In that case, the causal pair (c1,c2) is tested indirectly by the pair(

t1(c1), t2(c2)
)

, where ti(ci) is the tag for ci in Ii
Tagger(see Equation (1)).

Therefore, the ability for Tagger to detect the causal pair is controlled by p∗Tagger(Y ) defined
by:
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pval∗Tagger(Y ) = p̃val
Tagger
(t1(c1),t2(c2))(Y ).

Similarly to the NoTag stategy, the estimation of power is performed by averaging over nb.sim
simulated response variables obtained with the procedure described in Step ]2:

P̂owerTagger(α) =
1

nb.sim

nb.sim

∑
k=1

1
{

pval∗Tagger(Yk)≤ α

}
.

EpiTag. The main output of the EpiTag algorithm is the set of tag-pairs indices denoted by
IE piTag (See Section 3). Therefore, for a given Y , the set of p-values PvalE piTag(Y ) and BH-
corrected p-values P̃valE piTag(Y ) obtained with the EpiTag strategy can be defined as follows:

PvalE piTag(Y )=
{

pval(i, j)(Y ), (i, j)∈ IE piTag

}
, and P̃valE piTag(Y )=

{
p̃val

E piTag
(i, j) (Y ), (i, j)∈ IE piTag

}
.

As for the Tagger strategy, it is likely that (c1,c2) 6∈ IE piTag and the true signal may be tested
indirectly by tE piTag(c1,c2), the tag-pair for (c1,c2) obtained with EpiTag algorithm (see Equa-
tion (4)). Therefore, the ability for EpiTag to detect the causal pair is controlled by:

pval∗E piTag(Y ) = p̃val
E piTag
(tE piTag(c1,c2))(Y ).

Here again, power estomation is performed by averaging over nb.sim simulated response vari-
ables obtained with the procedure described in Step ]2:

P̂owerE piTag(α) =
1

nb.sim

nb.sim

∑
k=1

1
{

pval∗E piTag(Yk)≤ α

}
.

4.2. Results

To evaluate the ability for the EpiTag procedure to identify an association between a binary
phenotype Y and a causal pair of SNPs (Xc1 ,Xc2), we conduct power studies based on either
simulated structures of genotypes and an observed structure of genotype. The power is strongly
related to several parameters of the data design such as the sample size, the odds-ratio of the
phenotype (odds of a case with respect to a control) and the frequency of the desease in the pop-
ulation. In the present simulation study, the sample sizes among cases and controls are fixed and
equal and we consider various strength of the signal by choosing several β1 values in model (6).
Significance is determined at the α = 5% experiment-wide level. Power evaluation for Tagger
is performed by setting the r2 threshold to γ = 0.8 as usual. We further fix the NMI threshold
for EpiTag to τ = 0.75 since it corresponds to the average NMI value obtained when simulating
pairs with r2 = 0.8, as shown in Appendix A.
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Simulated genotype structures

Settings. The first series of power studies is based on simulated genotype structures using the
procedure described in the simulation pipeline in Section 4.1. Three simulated genotype struc-
tures are tested, considering different number of variables per region:
• Scenario ]1: p1 = p2 = 3
• Scenario ]2: p1 = p2 = 6
• Scenario ]3: p1 = p2 = 10

In each scenario, the major allele frequency for each variable is set to 0.6 (π1
i = 0.6 ∀i =

1, . . . , p1 and π2
j = 0.6 ∀ j = 1, . . . , p2). Furthermore, the between correlation structure is defined

so that variables from R2 are not correlated with variables from R1:

∀(i, j) ∈ [1, p1]× [1, p2] : r2(X1
i ,X

2
j ) = 0

According to Step ]1, the six first variables defined in the initializing step are set according to
the following parameters:
• the within correlation structure in region R1 and R2 is defined so that two variables within

the same region are correlated with r2 = 0.8:

∀i ∈ [1,2,3], j ∈ [1,2,3] and i 6= j : r2(X1
i ,X

1
j ) = 0.8 and r2(X2

i ,X
2
j ) = 0.8,

• the information between pairs of variables is chosen so that the NMI between Z11 and Z22
is minimal and the NMI between Z11 and Z33 is maximal:

NMI(Z11,Z22) = 0.7 and NMI(Z11,Z33) = 0.85.

Then, pairs of variables are added with respect to the following parameters:

∀i ∈ [4, . . . , p1], r2(X1
i ,X

1
1 ) = 0.7 and ∀ j ∈ [4, . . . , p2], r2(X2

j ,X
2
1 ) = 0.7

In order to mimic a Genome-Wide Association Study, a large population of N = 100,000
individuals is simulated. Then, the set of tested pairs ITagger and IE piTag are estimated based on
the total population. Next, a response variable Y is simulated according to the logistic model (6)
introduced in Step ]2 with several values for β1 ∈ [0;0.6]. For each nb.sim = 1,000 simulations,
1,000 cases (Y = 1) and 1,000 controls (Y = 0) are picked at random in the population and
SNPxSNP associations are tested according to Step]3. We then use the procedure described in
Step]4 to estimate the power of each compared method.

Results. Figure 1 displays the estimated power (mean over 1,000 replicates) for interaction
detection along with the different values for β1, for the 3 tagging procedures (EpiTag, Tagger and
noTag) and the 3 scenarios (3, 6 and 10 SNPs per region). It can be firstly remarked that EpiTag
outperforms Tagger and NoTag strategies. The gain in using EpiTag is even more substantial
when the relative risk is high (highest values of β1). The difference between EpiTag and NoTag
seems to be equivalent from one scenario to another. As the number of SNPs per region increases,
it is noteworthy that EpiTag is more efficient than other methods but, more surprisingly, the use
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of one-dimensional tagging (Tagger) appears to be similar or slightly less efficient that the no-
tagging strategy in this case. The efficiency of the EpiTag method is related to its ability to select
a small but sufficiently representative subset of SNP pairs. As reported in Table 1, the number
of SNP pairs tested with EpiTag is low, compared to the number of SNP pairs tested with the
Tagger method. From Table 1 it can also be remarked that the difference in the number of tested
SNP pairs sharply increases along with the number of SNPs per region.

TABLE 1. Mean number of SNP pairs and relative Standard Deviation (SD) computed for each simulated scenario
and each tagging strategy over the nb.sim=1,000 simulations.

p1 = p2 = 3 p1 = p2 = 6 p1 = p2 = 10
Mean SD Mean SD Mean SD

NoTag 9 0 36 0 100 0
Tagger 3.98 2.64 27.04 6.4 81.1 11.89
EpiTag 2.48 0.54 3.4 0.7 11.24 1.4

Observed genotype structure

Settings. An observed pattern of genotype data is used in this second power study. For that
purpose, we focus our investigation on two genes, Adenomatous Polyposis Coli (APC) and the
IQ-domain GTPase-activating protein 1 (IQGAP1), that have previously been reported to interact
in susceptibility with Crohn’s disease (Emily et al., 2009). Genes APC and IQGAP1 are located
on chromosome 5 (p1 = 13 SNPs) and 15 (p2 = 14 SNPs) respectively. The Tagger procedure
selects 2 tag-SNPs for each region, and EpiTag tags 3 pairs of SNPs. To study the power of the
tagging procedures on a real pattern of genotype, we consider 5,000 genotype samples for APC
and IQGAP1. Then, a total of nb.sim = 1,000 responses variables are simulated with respect
to the logistic model introduced in Step]2 with several values for β1 ∈ [0;0.6]. Power is then
computed using the procedure described in Step]4.

Results. Figure 2 displays the estimated power (mean over 1,000 replicates) for interaction
detection along with the different values for β1, for the 3 tagging procedures (EpiTag, Tagger
and noTag). Similarly to the simulation-based power studies, EpiTag outperforms Tagger and
NoTag. In more details, it can be remarked that, although the gain in power for EpiTag is obvious
for moderate values of β1, the difference between EpiTag and NoTag becomes smaller for β1 =
0.6. Finally, similarly to the results obtained with simulated genotype structures, using one-
dimensional tagging seems to be much less efficient for detecting interaction.

5. Conclusion and discussion

In this paper, we introduce EpiTag, a novel method for tagging SNPs in genetic association
studies. Contrary to existing methods, EpiTag is based on the Normalized Mutual Information,
a two-dimensional measure of similarity, that allows a better tagging for pairs of SNPs. Our
results prove that our method, by maximizing the information of SNP pairs instead of single
SNP, improves the statistical power to detect interaction between SNPs. More precisely, when
testing for interaction, accounting for the information at the level of the pair is more efficient

Journal de la Société Française de Statistique, Vol. 159 No. 2 84-110
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



Mutual information-based tagging method for detecting interaction between genetic variants 97

FIGURE 1. Simulated genotype structures: Power for interaction detection along with different values for β1, consid-
ering 3 scenarios for the region sizes.
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FIGURE 2. Observed genotype structure: Power for interaction detection along with different values for β1.

than no selection and than using one-dimensional tagging. More surprisingly, our results show
that using a one-dimensional tagging strategy is less efficient than avoiding tag selection. Such
a result strengthens our hypothesis that one-dimensional tagging is not appropriate to detect
interactions.

Despite the good performances of EpiTag, its practical use suffers from few limitations. First,
similarly to the one-dimensional strategy Tagger, EpiTag is based on the choice of a threshold τ

(Equation (2)) on the NMI values to build bins of SNP-pairs. In practice, the threshold is tuned
by the user, depending on a balance between the level of coverage of the whole set of SNPs
and a parcimonious set of tag-SNPs. In our proposal, we set τ = 0.75 to mimic the mean of
computed MNI values between 2 pairs with r2 = 0.8 and the use of other thresholds shows a
relative sensitivity to τ .

Although the ultimate goal of statistical methods for detecting interaction in GWAS is to an-
alyze the whole genome at a time, whole-genome investigation of interaction still raises the
issue of the scalability of classical methods. Since the number of SNPs is very large (esti-
mated to 10 millions in humans), the number of SNP-pairs is even much larger (≈ 5× 1013)
and EpiTag is therefore hardly scalable. Computing and storing the whole NMI matrix, of size
(5×1013)× (5×1013), raises computational issues. Furthermore, if feasible, the computation of
such a matrix is likely to be highly time-consuming. However, in the context of whole-genome
gene-gene interaction testing, many different statistical strategies have been proposed in the re-
cent literature such as logic regression (Kooperberg and Ruczinski, 2005), penalized regression
(Park and Hastie, 2008), Random Forest (McKinney et al., 2009), Multifactor Dimensional-
ity Reduction (Gola et al., 2016) or Support Vector Machines (Chen et al., 2008). Although
we can hope that improvements in data management, data storage, computer performances and
distributed computing could help reducing the computational cost, such a strategy would still
remain too demanding to be performed in routine. Nowadays, the computational limitation of
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gene-gene interaction can only be overcome by the incorporation of prior biological knowledge
in the analyse (Emily, 2018). For example, in the context of pathway disease-associated detec-
tion or gene-gene interaction network investigation, EpiTag can be performed on blocks of SNPs
under consideration.

In the same way as Tagger, EpiTag is based on a greedy algorithm to select the most infor-
mative set of SNP-pairs. However, tag-SNP selection based on multivariate statistical techniques
also exists in the literature. For example, in a one-dimensional strategy, cluster analysis has been
proposed by considering 1− r2 as a distance measure between SNPs (Ao et al., 2005; Frommlet,
2010). A similar strategy can be performed in two-dimensional tagging by considering 1−NMI
as a distance measure between SNP-pairs. Note that such a procedure is also sensitive to the
tuning of a threshold parameter associated to the distance between clusters. Preliminary results
regarding the use of such approach in a two-dimensional tagging show a lack in power in all
situations.

Finally, we focus on the benefits of using a two-dimensional tagging strategy to improve the
power to detect interaction (or epistasis). However, such a two-dimensional strategy is not ap-
propriate to test for single-marker association since the output of EpiTag is a set of tag-SNP
pairs. Therefore, one-dimensional strategy and two-dimensional strategy can be seen as com-
plementary and combining these two approaches may be very efficient to detect simultaneously
marginal effects, pure epistasis and epistasis with marginal effects.
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Appendix A: NMI behaviour w.r.t. the data design

We consider the simulation of two pairs of SNPs on two genomic regions (p1 = p2 = 2). The
aim is to illustrate the variability of NMI values between the pairs, according to the r2 correlation
between SNPs within a region. The major allele frequency for each SNP is set to π1

1 = π1
2 =

π2
1 = π2

2 = 0.6. Furthermore, the between correlation structure is defined so that variables from
R2 are not correlated with variables from R1. The r2 coefficient within each region are equal:
r2 = r2(X1

1 ,X
1
2 ) = r2(X2

1 ,X
2
2 ) with r2 ∈ {0.5,0.6,0.7,0.8,0.9}. Each setup is repeated 1,000

times.
For r2 = 0.8 (as in the simulation study presented in Section 4), the mean value of NMI is

about 0.75. This is the value we have chosen for the threshold τ in the simulation study.

FIGURE 3. NMI between two pairs over 1,000 simulations with different settings for the r2 coefficient within each
region.

Appendix B: Graphical scheme for Tagger and EpiTag

Figures 4 and 5 display the flowcharts of two tagging methods: the one-dimensional Tagger and
our pairwise tagging method EpiTag. From Figures 4 and 5, it can be remarked that the core of
the two algorithms is similar. Both algorithms are indeed based (1) on an initializing step that
aims at computing a matrix of similarity, and (2) on iterative steps used to build the set of tags
and the set of bins. However, since EpiTag is applied to an initial set of SNP pairs and uses the
pairwise NMI as quality measure, it allows the tagging of pairs of SNPs.
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FIGURE 4. Flowchart summarizing the main steps of the Tagger algorithm.
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FIGURE 5. Flowchart summarizing the main steps of the EpiTag algorithm.
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Appendix C: Study of the scalability of the method

Due to its lack of scalability, the practical use of EpiTag at the genome scale is not yet feasible.
However, in this Appendix, details regarding the memory needs and the computational time are
provided.

As shown in Figure 5, one of the main step in the EpiTag algorithm is the computation of
the initial tagging matrix. This step is the most consuming step in terms of memory needs. If
no prior information is used to restrict the computation to predefined subset of SNPs, such a
matrix has to be initialize with all combinations of pairs of SNPs. If we consider a set of p SNPs,
the total number of elements in the tagging matrix that have to be computed is given by

(nPairs
2

)
where nPairs =

(p
2

)
. Such a number is growing along with p (and more precisely p4) which is

not tractable for a whole-genome tagging. For example, if we consider a set of p = 1,000,000
SNPs, the total number of elements is approximatively 1.25× 1023. The storage of such object
in memory is hardly possible. However, to save memory, efficient algorithmic paradigms may be
used, such as Branch and Bound solution for example.

In terms of computational time, the two steps mostly demanding are: (1) the initialization
of the tagging matrix and (2) the iterative building of the list of tags and the list of bins (see
Figure 5). First, as for the memory, the computation time required to compute the tagging matrix
is exponential in the number of SNPs. Next, the iterative building of the lists tags and bins
depends on the mutual information structure of the SNPs. However, in the worth-case scenario
where each pair is only tagged by itself, the computational time is of the order of the number of
SNP pairs, i.e. also exponential in the number of SNPs. Furthermore, the sample size also plays
a role in the computation time.

FIGURE 6. Evolution of the computation time with respect to the number of SNPs.

Journal de la Société Française de Statistique, Vol. 159 No. 2 84-110
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



Mutual information-based tagging method for detecting interaction between genetic variants 105

Figure 6 displays the evolution of the computation time with respect to the number of SNPs
where it can be remarked that the shape of the curve is indeed exponential. Computation time
is obtained for a sample size of 10,000 individuals on a single processor with the following
characteristics: 2,7 GHz Intel Core i7. Functions distributed in the following github repository
https://github.com/MathieuEmily/EpiTag are used to run EpiTag. It can be remarked
that EpiTag takes about 270 seconds to run for 10 SNPs. However in both steps, execution time
can be drastically reduced using both algorithmic optimization and parallelization.

Appendix D: Details on genotype simulation

In this appendix, we provide details regarding the simulation of genotype data as introduced
in Step #1, Section 4.1. We focus on two specific operations, namely the adding of a single
SNP and the adding of a SNP-pair. For both operations, we consider that SNPs are in Hardy-
Weinberg equilibrium so that each chromosome is simulated independently. More precisely, for
a given SNP Xi ∈ {0,1,2}, the allele on each chromosome is simulated independently through
two random variables XAi ∈ {0,1} and XBi ∈ {0,1}, Xi being obtained with: Xi = XAi +XBi.

D.1. Single-SNP adding

The addition of a single SNP to a dataset is performed conditionally to one other SNP. Let
consider that the SNP Xi has already been simulated where each allele XAi and XBi have an
observed allelic frequency pi. Let p j be the desired allelic frequency for both alleles XA j and XB j

of SNP X j and ri j be the correlation between SNP i and j. The correlation ri j can be formulated
in each chromosome as for example:

r2
i j =

pi j− pi p j√
pi(1− pi)p j(1− p j)

with pi j = P[XAi = 1∩XA j = 1]. The joint probability distribution is given by:

P[XAi = 0∩XA j = 0] = (1− pi)(1− p j)+ ri j

√
pi(1− pi)p j(1− p j)

P[XAi = 1∩XA j = 0] = pi(1− p j)− ri j

√
pi(1− pi)p j(1− p j)

P[XAi = 0∩XA j = 1] = (1− pi)p j− ri j

√
pi(1− pi)p j(1− p j)

pi j = P[XAi = 1∩XA j = 1] = pi p j + ri j

√
pi(1− pi)p j(1− p j)

The conditionnal distribution of SNP allele XA j can easily be obtained since

P[XA j = k|XAi = `] =
P[XA j = k∩XAi = `]

P[XAi = `]
.

It is noteworthy that each combination of pi, p j and r2
i j are not possible since joint probabilities

may be negative. Finally, to simulate SNP allele XA j, the genotype for each individual is straight-
forwardly computed according to the conditional probability P[XA j = 1|XAi = xi]. Similarly and
independently, SNP allele XB j can be simulated conditionally to XBi. Using Hardy-Weinberg
equilibrium SNP X j is obtained by X j = XA j +XB j.
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D.2. SNP-pair adding

To add a pair of SNP Zuv = (X1
u ,X

2
v ) = (XA1

u +XB1
u,XA2

v +XB2
v) to an existing set of SNPs,

we specify the relationship between Zuv and an already simulated pair Zrs = (X1
r ,X

2
s ) = (XA1

r +
XB1

r ,XA2
s +XB2

s ). For that purpose, the joint probability distribution of the quadruplet (X1
r ,X

2
s ,X

1
u ,X

2
v ),

given by pi jk` =P[X1
r = i∩X2

s = j∩X1
u = k∩X2

v = `] with (i, j,k, `)∈ [0,1,2]4, is built under a set
of constraints. More precisely, alleles in both chromosomes are first simulated according to the
joint probability distribution of the quadruplets (XA1

r ,XA2
s ,XA1

u,XA2
v) and (XB1

r ,XB2
s ,XB1

u,XB2
v).

As displayed in Table 2, the joint distribution of both quadruplets (XA1
r ,XA2

s ,XA1
u,XA2

v) and
(XB1

r ,XB2
s ,XB1

u,XB2
v) is given by 16 probabilities, namely qi jk` with (i, j,k, `) ∈ [0,1]4. qi jk`’s

are then derived with respect to four types of constraints that are details hereafter: (A) an over-
all constraint on the probability distribution, (B) constraints regarding the marginal distribution
of each SNP, (C) constraints regarding the pairwise relationship between each pair and (D) a
constraint related to the mutual information between Zrs and Zuv.

TABLE 2. Joint distribution of the quadruplet (XA1
r ,XA2

s ,XA1
u,XA2

v) where

qi jk` = P
[
XA1

r = i ∩ XA2
s = j ∩ XA1

u = k ∩ XA2
v = `

]
.

XA1
u = 0 XA1

u = 1
XA2

v = 0 XA2
v = 1 XA2

v = 0 XA2
v = 1

XA1
r = 0

X2
s = 0 q0000 q0001 q0010 q0011

XA2
s = 1 q0100 q0101 q0110 q0111

XA1
r = 1

X2
s = 0 q1000 q1001 q1010 q1011

XA2
s = 1 q1100 q1101 q1110 q1111

Similarly and independently, the quadruplet (XB1
r ,XB2

s ,XB1
u,XB2

v) is simulated using the
same joint distribution as in Table 2.

Finally, ∀(i, j,k, `) ∈ [0,1,2]4,

pi jk` = P

[
X1

r = i ∩ X2
s = j ∩ X1

u = k ∩ X2
v = `

]

= ∑
(iA, jA,kA,`A)∈[0,1]4

(
P

[
XB1

r = i− iA ∩ XB2
s = j− jA ∩ XB1

u = k− kA ∩ XB2
v = `− `A

]

× P

[
XA1

r = iA ∩ XA2
s = jA ∩ XA1

u = kA ∩ XA2
v = `A

])
= ∑

(iA, jA,kA,`A)∈[0,1]4
qi−iA, j− jA,k−kA,`−`A × qiA, jA,kA,`A (7)

(A). Constraint on the overall probability distribution

The first constraint C0 is straightforward since we deal with a probability distribution.

C0: ∑i, j,k,` qi jk` = 1
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(B). Constraints on marginal probabilities for each SNP

Marginal distribution of each SNP are considered as fixed and the next constraints present the
corresponding relationship between the qi jk`.

Constraints on X1
r

C1: ∑ j,k,` q1 jk` = pXA1
r
= P[XA1

r = 1]

C1b: ∑ j,k,` q0 jk` = 1− pXA1
r
= P[XA1

r = 0]

Constraints on X2
s

C2: ∑i,k,` qi1k` = pXA2
s
= P[XA2

s = 1]

C2b: ∑i,k,` qi0k` = 1− pXA2
s
= P[XA2

s = 0]

Constraints on X1
u

C3: ∑i, j,` qi j1` = pXA1
u
= P[XA1

u = 1]

C3b: ∑i, j,` qi j0` = 1− pXA1
u
= P[XA1

u = 0]

Constraints on X2
v

C4: ∑i, j,k qi jk1 = pXA2
v
= P[XA2

v = 1]

C4b: ∑i, j,k qi jk0 = 1− pXA2
v
= P[XA2

v = 0]

It is straighforward to show that constraints C1b, C2b, C3b and C4b are respectively equivalent
to C1, C2, C3 andC4. Therefore, for each SNP, there is only one link between the qi jk`.

(C). Constraints on the joint probability for each pair of SNPs

In our pipeline, we consider that relationships between pairs of SNPs are fixed and parameterized
by the statistical correlation. Setting the pairwise correlation induces constraints on the qi jk`. In
the following, we focus on the pair (X1

r ,X
2
s ) and then extend the expression to all the pairs.

Constraints on (X1
r ,X

2
s ). The correlation is denoted by rX1

r ,X2
s
, with:

r2
X1

r ,X2
s

=

(
P[XA1

r = 1∩XA2
s = 1]−P[XA1

r = 1]P[XA2
s = 1]

)2

P[XA1
r = 0]P[XA1

r = 1]P[XA2
s = 0]P[XA2

s = 1]

Therefore, we have:

P[XA1
r = 1∩XA2

s = 1] = P[XA1
r = 1]P[XA2

s = 1]

+ rXA1
r ,XA2

s

√
P[XA1

r = 0]P[XA1
r = 1]P[XA2

s = 0]P[XA2
s = 1]

m

∑
k`

q11k` = ∑
j,k,`

q1 jk` ∑
i,k,`

qi1k`+ rXA1
r ,XA2

s

√
∑
j,k,`

q0 jk` ∑
j,k,`

q1 jk` ∑
i,k,`

qi0k` ∑
i,k,`

qi1k`
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Therefore, constraints regarding the whole joint probability distribution for the pair (X1
r ,X

2
s ) are

given by:

C5: ∑k` q11k` = ∑ j,k,` q1, j,k,` ∑i,k,` qi,1,k,`+ rXA1
r ,XA2

s

√
∑ j,k,` q0, j,k,` ∑ j,k,` q1, j,k,` ∑i,k,` qi,0,k,` ∑i,k,` qi,1,k,`

C5b: ∑k` q01k` = ∑ j,k,` q0, j,k,` ∑i,k,` qi,1,k,`− rXA1
r ,XA2

s

√
∑ j,k,` q0, j,k,` ∑ j,k,` q1, j,k,` ∑i,k,` qi,0,k,` ∑i,k,` qi,1,k,`

C5c: ∑k` q10k` = ∑ j,k,` q1, j,k,` ∑i,k,` qi,0,k,`− rXA1
r ,XA2

s

√
∑ j,k,` q0, j,k,` ∑ j,k,` q1, j,k,` ∑i,k,` qi,0,k,` ∑i,k,` qi,1,k,`

C5d: ∑k` q00k` = ∑ j,k,` q0, j,k,` ∑i,k,` qi,0,k,`+ rXA1
r ,XA2

s

√
∑ j,k,` q0, j,k,` ∑ j,k,` q1, j,k,` ∑i,k,` qi,0,k,` ∑i,k,` qi,1,k,`

It is crucial to remark that given the marginal probabilities (P[XA1
r = 0] and P[XA2

s = 0]), some
values of correlation r2

X1
r ,X2

s
are not possible. According to constraints C5, C5b, C5c, C5d, joint

probabilities can be either negative or higher than one with unacceptable combination of P[XA1
r =

0], P[XA2
s = 0] and r2

XA1
r ,XA2

s
.

Moreover, considering that P[XA1
r = 0] = 1−P[XA1

r = 1], P[XA2
s = 0] = 1−P[XA2

s = 1] and
P[XA1

r = 0∩XA2
s = 0]+P[XA1

r = 0∩XA2
s = 1]+P[XA1

r = 1∩X2
s = 0]+P[XA1

r = 1∩XA2
s = 1],

it is straightforward to show that constraints C5b, C5c and C5d are equivalent to C5.

Extension to the other pairs. Therefore, for each pair, there is only one constraint linking the
qi jk`. More precisely, these constraints are:
• (XA1

r ,XA1
u)

C6:∑
j`

q1 j1` = ∑
j,k,`

q1, j,k,` ∑
i, j,`

qi, j,1,`+ rXA1
r ,XA1

u

√
∑
j,k,`

q0, j,k,` ∑
j,k,`

q1, j,k,` ∑
i, j,`

qi, j,0,` ∑
i, j,`

qi, j,1,`

• (XA1
r ,XA2

v)

C7:∑
jk

q1 jk1 = ∑
j,k,`

q1, j,k,` ∑
i, j,k

qi, j,k,1 + rXA1
r ,XA2

v

√
∑
j,k,`

q0, j,k,` ∑
j,k,`

q1, j,k,` ∑
i, j,k

qi, j,k,0 ∑
i, j,k

qi, j,k,1

• (XA2
s ,XA1

u)

C8:∑
i`

qi11` = ∑
i,k,`

qi,1,k,` ∑
i, j,`

qi, j,1,`+ rXA2
s ,XA1

u

√
∑
i,k,`

qi,0,k,` ∑
i,k,`

qi,1,k,` ∑
i, j,`

qi, j,0,` ∑
i, j,`

qi, j,1,`

• (XA2
s ,XA2

v)

C9:∑
ik

qi1k1 = ∑
i,k,`

qi,1,k,` ∑
i, j,k

qi, j,k,1 + rXA2
s ,XA2

v

√
∑
i,k,`

qi,0,k,` ∑
i,k,`

qi,1,k,` ∑
i, j,k

qi, j,k,0 ∑
i, j,k

qi, j,k,1

• (XA1
u,XA2

v)

C10:∑
i j

qi j11 = ∑
i, j,`

qi, j,1,` ∑
i, j,k

qi, j,k,1 + rXA1
u,XA2

v

√
∑
i, j,`

qi, j,0,` ∑
i, j,`

qi, j,1,` ∑
i, j,k

qi, j,k,0 ∑
i, j,k

qi, j,k,1

Journal de la Société Française de Statistique, Vol. 159 No. 2 84-110
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



Mutual information-based tagging method for detecting interaction between genetic variants 109

(D). Constraints on the link between Zrs and Zuv

To simulate the pair Zuv with respect to the pair Zrs, we set the Normalized Mutual Information
(NMI) between Zrs and Zuv. Let’s recall that

NMI
(

Zrs,Zuv

)
=

I
[
Zrs,Zuv

]√
H(Zrs)H(Zuv)

with

I
(

Zrs,Zuv

)
= ∑

i, j,k,`
pi, j,k,` log

(
pi, j,k,`

P
(
Zrs = zrs

)
P
(
Zuv = zuv

))

H (Zi j) = I
(

Zi j,Zi j

)
It can then be deduced that setting NMI

(
Zrs,Zuv

)
generate non-linear constraints on the pi, j,k,`’s.

D.3. Simulation of Zuv with respect to Zrs

To add the pair Zuv with respect to Zrs, we first set pX1
r
, pX2

s
, pX1

u
, pX2

v
, r2

X1
r ,X2

s
, r2

X1
r ,X1

u
, r2

X1
r ,X2

v
,

r2
X2

s ,X1
u
, r2

X2
s ,X2

v
, r2

X1
u ,X2

v
and NMI(Zrs,Zuv). The "adding pair" simulation algorithm is divided into

two steps: firstly, a collection of joint probability distributions are obtained with respect to pX1
r
,

pX2
s
, pX1

u
, pX2

v
, r2

X1
r ,X2

s
, r2

X1
r ,X1

u
, r2

X1
r ,X2

v
, r2

X2
s ,X1

u
, r2

X2
s ,X2

v
, r2

X1
u ,X2

v
. Then, the joint distribution with the

expected NMI is selected. These two steps are descibed with more details hereafter.

Step#1 To summarize, given the constraints on the marginal distribution of each SNP (i.e. pX1
r
,

pX2
s
, pX1

u
and pX2

v
) and the constraints on the pairwise joint distribution between each pair (Xr,Xs)

(i.e. r2
X1

r ,X2
s
, r2

X1
r ,X1

u
, r2

X1
r ,X2

v
, r2

X2
s ,X1

u
, r2

X2
s ,X2

v
, r2

X1
u ,X2

v
), the joint distribution displayed in Table 2 can be

computed with respect to the following system of constraints:

S :



C0: ∑i, j,k,` qi jk` = 1
C1: ∑ j,k,` q1 jk` = pX1

r

C2: ∑i,k,` qi1k` = pX2
s

C3: ∑i, j,` qi j1` = pX1
u

C4: ∑i, j,k qi jk1 = pX2
v

C5: ∑k` q11k` = pX1
r

pX2
s
+ rX1

r ,X2
s

√
pX1

r
(1− pX1

r
)pX2

s
(1− pX2

s
)

C6: ∑ j` q1 j1` = pX1
r

pX1
u
+ rX1

r ,X1
u

√
pX1

r
(1− pX1

r
)pX1

u
(1− pX1

u
)

C7: ∑ jk q1 jk1 = pX1
r

pX2
v
+ rX1

r ,X2
v

√
pX1

r
(1− pX1

r
)pX2

v
(1− pX2

v
)

C8: ∑i` qi11` = pX2
s

pX1
u
+ rX1

r ,X2
v

√
pX2

s
(1− pX2

s
)pX1

u
(1− pX1

u
)

C9: ∑ik qi1k1 = pX2
s

pX2
v
+ rX2

s ,X2
v

√
pX2

s
(1− pX2

s
)pX2

v
(1− pX2

v
)

C10: ∑i j qi j11 = pX1
u

pX2
v
+ rX1

u ,X2
v

√
pX1

u
(1− pX1

u
)pX2

v
(1− pX2

v
)
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More precisely, we first simulate q1111 using a uniform prior with a support ensuring that
constraints C5, C5b, C5c and C5d does not lead to negative probabilities. Then, the system of
constraints is updated and the other probabilities are recursively simulated (using a uniform prior
with an appropriate support) until the system is satisfied. It can be remarked that the system S
has 10 linear constraints while Table 2 is composed of 16 probabilities. Therefore, the simulation
algorithm has 6 degrees-of-freedom that correspond to the uniform simulation of 6 probabilities.

The joint distribution of the genotypes, i.e. the 81 probabilities pi jk` with (i, j,k, `) ∈ [0,1,2]4,
is then computed with respect to Equation 7.

Step#2. Step#1 is recursively performed until the NMI between Zrs and Zuv reached the tar-
geted value for NMI(Zrs,Zuv).
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