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Abstract: Pathway analysis can increase power to detect associations with a gene or a pathway by combining several
signals at the single nucleotide polymorphism (SNP)-level into a single test. In this work, we propose to extend two
well-known self-contained methods, the Fisher’s method (FM) and the Adaptive Rank Truncated Product (ARTP)
method to the analysis of gene-environment (GxE) interaction at the gene and pathway-level. It has been previously
suggested that the permutation procedures that are usually used to derive the significance of these tests are not appro-
priate for the analysis of GxE interaction and should be replaced by a bootstrap approach. We analyse and compare
the performance of the extension of FM and ARTP using the permutation and the parametric bootstrap procedure in
simulation studies. We illustrate its application by analysing the interaction between night work and circadian gene
polymorphisms in the risk of breast cancer in a case-control study. The ARTP method, adapted for both gene- and
pathway-environment interactions, gives promising results and has been wrapped to the R package PIGE available on
the CRAN.

Résumé : Les analyses par pathway permettent d’augmenter la puissance statistique en combinant les signaux au
niveau des SNPs pour définir des associations au niveau du gène et/ou du pathway. Dans cette étude, nous proposons
d’adapter deux méthodes d’analyse par pathway, la méthode de Fisher (FM) et la méthode ARTP (Adaptive Rank
Truncated Product), pour l’analyse des interactions gène-environnement (GxE) au niveau du gène et au niveau du
pathway. Il a été précédemment suggéré que les procédures de permutations habituellement utilisées pour estimer la
significativité de ces tests ne sont pas appropriées pour l’analyse des interactions GxE et devraient être remplacés
par une approche Bootstrap. Ainsi, nous analysons et comparons dans une étude de simulation les performances de
l’extension des méthodes FM et ARTP en utilisant une procédure de permutation et une méthode de Bootstrap para-
métrique. Ces méthodes sont également appliquées aux données de l’étude cas-témoins CECILE sur les cancers du
sein dans laquelle nous avons analysé l’interaction entre le travail de nuit et les polymorphismes des gènes circadiens
dans le risque de cancer du sein. La méthode ARTP adaptée aux interactions GxE donne des résultats prometteurs.
Un package R PIGE a été développé et est mis à disposition sur le CRAN.
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Gene- and Pathway-environment Interaction analysis 57

1. Introduction

During the last decade, genome-wide association studies (GWAS) have been successful in iden-
tifying several hundred single nucleotide polymorphisms (SNPs) associated with multiple cancer
types (http://www.genome.gov/gwastudies/). However, such findings are not enough for explain-
ing the genetic heritability of these cancers. Several reasons have been discussed that possibly
explain the “missing heritability” in complex diseases such as the fact that most of these genetic
associations were identified through single-SNP analyses (each SNP tested independently). It has
been raised that polygenic effects, gene-gene and gene-environment (GxE) interactions are not
fully explored in traditional methods (Manolio et al., 2009). Several approaches were developed
in order to complete the agnostic GWAS in the discovery of additional genetic risk factors or to
provide additional insights into the mechanisms involved in the studied disease.

One such approach is pathway analysis that consists of aggregating signals from SNPs (and/or
genes) to pathways. Pathways are sets of genes that work together for the production of a specific
biological outcome. Pathway analysis therefore incorporates the available biological knowledge
of genes and SNPs for a better understanding of the genetic and biological mechanisms of the
studied disease (Mooney et al., 2014, Pers (2016)). One of the main thrust of the statistical
analyses will be to gain power and reduce the number of tests by combining weak signals from
SNP-level analysis. Over the recent years, numerous pathway analysis for GWAS data have
been proposed in the literature for finding pathways associated with the studied disease (a non
exclusive list includes the methods proposed by Wang et al., 2007; Yu et al., 2009; Holmans
et al., 2009; O’Dushlaine et al., 2009; Shahbaba et al., 2012; Carbonetto and Stephens, 2013;
Evangelou et al., 2014a,b; Su et al., 2016). The challenges, properties and statistical methods for
conducting pathway (and gene-set) analysis for GWAS data have been discussed and reviewed
by Wang et al. (2011); Fridley and Biernacka (2011); de Leeuw et al. (2016).

These methods can be divided by the null hypothesis they test, namely the competitive (enrich-
ment) or self-contained (association) null hypotheses. The self-contained null hypothesis states
that no pathway genes are associated with the phenotype. On the other hand, the competitive
hypothesis states that the statistics of the pathway genes are no more associated with the phe-
notype than the statistics of the genes outside of the pathway. A pathway where the competitive
null hypothesis is rejected, is said to be an enriched one. The self-contained null hypothesis can
be tested in both GWAS and candidate gene analysis, since only the statistics from a selection
of genes is required. By contrast, competitive methods are usually used in GWAS data as all
pathways are tested simultaneously. As discussed in the literature self-contained methods are
generally more powerful than competitive methods (Evangelou et al., 2012).

Self-contained methods could also be classified into marginal approaches, which are based
on the combination of p-values of individual SNPs (such as for instance Fisher’s Method (FM),
Adaptative Rank Truncated Product (ARTP)), or joint approaches that jointly model and test
the effect of all the SNPs in the set (such as random and mixed effect models, Sequence Kernel
association Test (SKAT) proposed by Ionita-Laza et al., 2013). p-value combination test statistics
are usually combined with phenotype permutations for estimating their significance. Phenotype
permutations avoid making any assumptions about the distribution of the effect of the genetic
variants on the disease.

Another distinction factor is whether the pathway analysis is considered at the gene-level or
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58 Broc, Evangelou, Truong, Guenel and Liquet

at the SNP-level. Methods that perform a gene-based pathway analysis they first combine the
p-values of single-SNP analysis into gene-level test statistics (or p-values) that are subsequently
summarised into pathway-level associations. On the other hand, SNP level pathway methods
skip the intermediate gene level and map SNPs directly to pathways.

Although a number of statistical approaches have been proposed to test for pathway associa-
tion with disease, the literature has not been greatly extended for testing for GxE interactions at
the pathway level. Lin et al. (2013) proposed a computationally efficient GxE set association test
(GESAT), a variance component score test statistic is proposed that extends the SNP-set Kernel
association test for GxE testing. The proposed method tests each set of SNPs independently from
the other sets and it is a SNP-based pathway analysis approach.

In addition to this, Jiao et al. (2013) proposed the set based gene environment interaction
(SBERIA) method and two more extensions that overcome the limitations of SBERIA (Jiao et al.,
2015) for both rare and common variants. SBERIA firstly computes the correlation between
the environmental factors and all SNPs in the set, where a z-score of correlation is obtained.
These scores are translated into weights based on a preselected threshold that are included in
a regression model that tests whether they are needed or not in the model. The first extension,
named enhanced set-based GxE testing (eSBERIA), is composed of two steps: the first one tests
the null hypothesis that the gene-environment weights are not associated with the response. The
second step implements the SKAT statistic that accounts for any residual effects that might have
been missed by the logistic regression model with the gene-environment interactions. As the
two tests are independent, their p-values are combined using Fisher’s product statistic. The third
proposed approach is coSBERIA which combines SBERIA and SKAT tests for the case-only
test. The case-only GxE test for a single SNP has been found to improve the power for testing
for GxE under the assumption that G and E are independent (Albert et al., 2001).

In this work we were interested in extension of combination tests to the analysis of set based
GxE interactions for which we have looked at replacing the phenotype permutation procedure
for testing the significance of each pathway (and/or gene) by the bootstrap approach proposed by
Buzkova et al. (2011). We have decided to compare the Fisher’s product test statistic and ARTP
approach as these two approaches have been discussed in the literature to be the most powerful
pathway analyses among combination tests (Evangelou et al., 2012; Su et al., 2016). In contrast
to the other proposed approaches GESAT and SBERIA, we are considering the case of gene-
based pathway analyses over SNP-based ones. Further, Su et al. (2016) discussed the need for a
fast algorithm to test for GxE interactions through pathway analysis and in this conducted work
we aim to fill this gap.

A brief description of the context which has first motivated the development of our R package
PIGE (Pathway Interaction Gene Environment, Liquet et al., 2017) is presented in Section 2. In
Section 3, Fisher’s Method (FM) and ARTP approaches are presented in context of gene and
pathway-environment interaction. Both permutation and parametric bootstrap resampling meth-
ods are presented. In Section 4, a simulation study is presented to analyse the performances of
FM and ARTP methods combined with both permutation and parametric bootstrap approaches.
The methods are applied on genotype data from the CECILE case-control study in Section 5.
Concluding remarks are presented in Section 6.
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2. Motivation

In a first step, we propose to test the performance of the proposed methods in simulated datasets
that mimic the application dataset. In a second step, the methods will be illustrated on genotype
data from the CECILE case-control study, in which we are interested in the interaction between
nightwork, a binary environmental factor (defined as ever worked at night more than two years:
yes/no) and polymorphisms from genes in the circadian rhythm pathway (Truong et al., 2014).

In the case of a binary response Y , the null hypothesis that there is no association between
the response and the interaction term between SNP̀ and environment is evaluated through the
following logistic model:

logit[P(Y = 1|SNP̀ ,E)] = α`+β`SNP̀ +βE,`E + γ`E×SNP̀ . (1)

where E presents the environmental factor. The likelihood ratio test (LRT) could be used to test
the evidence of the interaction term (H0,` : γ` = 0 versus H1,` : γ` 6= 0), resulting to the `-th
p-value (p`).

As discussed earlier, there are usually multiple SNPs within each gene and multiple genes
within each pathway. The questions that we will answer through our conducted work are: how
to combine these results to get (i) association evidence between gene-environment interaction
and the outcome, (ii) association evidence between pathway-environment interaction and the
outcome?

In the context of a gene-based pathway analysis, a two-step procedure is needed. At the first
level the association evidence between a gene and the response is found and at the second level
these gene-level p-values are combined into a test statistic for the disease-pathway association.

Phenotype permutations are usually implemented for computing the null distribution of the
test statistic that can be used for obtaining a p-value for the global null hypothesis of no asso-
ciation between the gene with the response. In this work, we are investigating the performance
of two alternative resampling approaches one based on phenotype permutations and a second
one on the bootstrap approach proposed by Buzkova et al. (2011) that has been proposed for
interaction models. Both these resampling approaches are presented in Section 3.3.

3. Methods

In this section, we first present two frequentist approaches for combining p-values under in-
vestigation FM, and ARTP methods. We subsequently present the two resampling approaches.
Finally, we shortly present an alternative frequentist approach iSKAT.

3.1. Fisher’s method

Fisher’s method is a well established association method that combines the results from multiple
statistical tests. The FM test statistic equals

FM =−2
L

∑
`=1

log(p`) =−2log

(
L

∏
`=1

p`

)
, (2)
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where L is for example the number of SNPs within a pathway. Under null hypothesis the FM test
statistic follows a χ2 distribution with 2L degrees of freedom when the p-values are independent.
In the presence of linkage disequilibrium, the correlation between SNPs leads to dependent test-
statistics. We have used the resampling approaches (presented in Section 3.3) to approximate the
empirical distribution of the FM test statistics.

3.2. Adaptive rank truncated product (ARTP)

The idea behind the ARTP is to truncate the highest p-values in the FM method. The only p-
values left are the most significant ones. To simplify the presentation of the ARTP proposed by Yu
et al. (2009), we consider a pathway consisting of L SNPs and we want to test the null hypothesis
that there is no pathway-environment interaction associated to the disease phenotype. Using
model (1), we can perform a LRT test on individual interaction E×SNPs within the considered
pathway. We denote the ordered statistics of those p-values p(1) ≤ . . .≤ p(L), with p(`) being the
`-th smallest p-value. The original RTP statistic given by

WK =
K

∑
k=1

log(p(k)) = log

(
K

∏
k=1

p(k)

)
(3)

combines the K smallest p-values E×SNP statistics of the tested pathway (Dudbridge and Koele-
man, 2003). In the adaptive RTP method J different truncation K1 ≤ . . . ≤ KJ are investigated.
Let ŝ(K j) be the estimated p-value for WK j , (1≤ j ≤ J). The ARTP statistic is then defined using
the minimum p-value procedure

MinP = min1≤ j≤J ŝ(K j). (4)

Note that for a single truncation point (J = 1), the ARTP method is the RTP method and the RTP
statistic simplifies to the FM test statistic when the truncation point K is fixed to L. Two levels
of resampling approach are required to get the adjusted p-value for MinP: (1) for estimating
ŝ(K j), (2) for the adjustment for multiple testing over different truncation points. To avoid this
computational issue specially when the number of test L is large, Yu et al. (2009) uses the Ge
et al. (2003)’s algorithm which reduces the multiple-level resampling procedure into a single
level resampling procedure. In this work, we use the same algorithm.

Let p(0)1 , . . . , p(0)L be the p-values for each interaction test on the null hypothesis based on the
observed data. We generate B datasets under the complete null hypothesis H0 = H0,1 ∩ . . .H0,L

using appropriate resampling procedure (see section 3.3). Let p(b)1 , . . . , p(b)L be the p-values for
each interaction test on the null hypothesis based on the b-th generated dataset, 1 ≤ b ≤ B. The
RTP statistic

W (b)
j =

K j

∑
i=1

log(p(b)(i) ), 0≤ b≤ B, 1≤ j ≤ J (5)

is calculated for each truncation point, for both the observed data-set and each of the B simulated
datasets. Then Ge’s algorithm is used to estimate the p-value

ŝ(b)j =
∑

B
b∗=0 I

(
W (b∗)

j ≤W (b)
j

)
B+1

, 0≤ b≤ B, 1≤ j ≤ J (6)
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for each Wj. The p-value for the ARTP statistic MinP(0) of the pathway is estimated as

p̂ART P =
∑

B
b∗=0 I

(
MinP(b) ≤MinP(0)

)
B+1

, (7)

where
MinP(b) = min1≤ j≤J ŝ(b)j , 0≤ b≤ B, 1≤ j ≤ J. (8)

Remark. The adjusted p-value for MinP(b), the ARTP statistic from the b-th dataset, can also be

estimated similarly using ∑
B
b∗=0 I(MinP(b∗)≤MinP(b))

B+1 .

Thus this procedure can give an evidence of association between a pathway-environment inter-
action and the disease outcome. It is called a SNP-based strategy. We describe in the following the
gene-based strategy consisting to used the ARTP method for both derive the gene-environment
interaction level summary and to combine gene-environment interaction level p-values across all
genes within a pathway. This procedure adapted for interaction investigation is the one described
in Yu et al. (2009).

Consider a pathway composed of L genes, with the `-th composed of n` SNPs, 1 ≤ ` ≤ L.
Let p(0)`,i be the p-value for the association test on the i-th interaction SNP×environment of
the `-th gene based on the observed dataset. We then generate using resampling approach B
datasets under the null hypothesis, and define p(b)`, j the p-value for the test on the ith interac-
tion SNP×environment of the `-th gene based on the b-th generated dataset, 1 ≤ b ≤ B. The
ARTP is then applied (with a predetermined set of candidate truncation points, which could be
varied from gene to gene) to combine interaction SNPs×environment-level evidence of associ-
ation within a gene. For the `-th gene, we apply the minimum p-value procedure (MinP) given
earlier on, 1 ≤ i ≤ n`, 0 ≤ b ≤ B, to obtain p∗(0)` , the interaction gene×environment-level p-
value for the observed data, and p∗(b)` , the interaction GxE level p-value for the b-th permuted
dataset. Finally in order to get a evidence of interaction pathway×environment the ARTP statis-
tic is used to combine the gene×environment-level p-values for the observed and the resampling
"null" data sets. We use the MinP procedure one more time to obtain the adjusted p-value for the
pathway×environment-level ARTP statistic. Note that the same set of generated "null" datasets
are exploited each time for the MinP procedure to derive interaction gene×environment-level and
interaction pathway×environment-level evidence. Thus the full procedure overcomes the expen-
sive computational multi-layer resampling issue. The same procedure is used for FM method.

3.3. Resampling methods

Both ARTP and FM rely on appropriate resampling strategy to generate data set under the null
hypothesis considered. For gene- and pathways- environment interaction, we consider the global
null hypothesis:

H0 = H0,1∩ . . .H0,` . . .∩H0,L, with H0,` : γ` = 0 (see equation (1)) (9)

where L is the number of SNPs within a considered pathway.
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Yu et al. (2009) use a permutation procedure to evaluate the significance level of the ARTP
statistic in the context of disease-pathway association which for example corresponds to the
situation of the simplified model:

logit[P(Y = 1|SNP̀ ,E)] = α`+β`SNP̀ (10)

with H0,` : β` = 0. In this situation, there is no difficulty to define the permutation procedure
for the complete null hypothesis. One just need to permute the phenotype Y . However, for the
interaction model (1), a valid permutation procedure to generate data set under the complete
null hypothesis (9) is complex to define. As noted by Buzkova et al. (2011), fixing SNP and E
and permuting Y generates data in which the generated phenotype Y ∗ is independent of SNP
and E. This procedure fails to generate data set under the null hypothesis since in model (1)
the phenotype Y is not independent of SNP and E. Indeed, for the logistic model there is no
permutation procedure which can be used to generate data set for the complete null hypothesis
(Edgington, 1987). An alternative to the permutation procedure is to used a parametric bootstrap
procedure (Efron and Tibshirani, 1994; Liquet and Riou, 2013) which implies less stringent
assumptions (Good, 2000). In our context, the procedure could be defined in the following.

For each SNP (`= 1, . . . ,L):
1. Fit the model under the null hypothesis H0,`, using the observed data, and obtain α̂`, β̂`,

β̂E,`, the maximum likelihood estimate (MLE) of respectively α`, β` and βE,`

2. Generate a new outcome Y ∗i,` for each subject from the probability measure defined under
H0,`. For example, for model (1), we generate Y ∗i,` according to:

P(Y ∗i,` = 1|SNP̀ ,E) =
exp(α̂`+ β̂`SNP̀ + β̂E,`E)

1+ exp(α̂`+ β̂`SNP̀ + β̂E,`E)
.

Repeat this for all the subjects to obtain a sample noted s∗` = {Y ∗i,`,SNPi,`,Ei} which is
related to the `-th SNP.

3. Generate B new datasets s∗b,`, b = 1, . . . ,B by repeating B times the steps 1, 2 and 3.

Remark: In case of marginal association of both SNP and environmental factor, step 2 might
generate unbalanced data which could affect the statistical power of the resampling methods. A
screening investigation on the marginal association might be used before using the booststrap
method.

3.4. iSKAT

The other frequentist approach is iSKAT proposed by Lin et al. (2016). The method uses the
spirit of SKAT-O methods (Wu et al. (2011)) and apply it to an interaction test context. From
one side burden tests are know to be an efficient test in many cases but they struggle when rare
variants are involved in the data. From the other side kernel test can handle those rare variants.
The idea behind the algorithm is to separate from the data the rare variants from the rest and to
take advantage of both burden tests and kernel tests. Furthermore, iSKAT offer the possibility of
weighting the covariates to take into account extra information. However, no weight have been
added in the use of iSKAT in this article. The method GESAT is a particular case of the iSKAT
method.
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4. Simulation Study

In this section, we compare the FM and ARTP methods through a simulation study inves-
tigating their control of Type-I error and FWER and their power performance. Two resam-
pling approaches (permutation and bootstrap) are compared for a range of sample sizes (n =
200, 500,1000). The combination methods FM and ARTP are compared to iSKAT and to the
popular frequentist approach MinP which combines p-value by considering only the most signi-
factive p-value:

MinP = min
`∈{1,...,L}

p`.

Let’s note that MinP method doesn’t have the same meaning than the quantity MinP used in the
intermediary steps of ARTP (see equation (4)).

4.1. Data Generated

We work on generated data which are supposed to mimic experimental data. The parameters of
the generation are inspired from Buzkova et al. (2011). The genetic structure simulated is com-
posed by one pathway containing I genes (genes are called G1,G2, . . . ,GI). Each gene contains
several SNPs. The SNPs are binary variables. In order to generate the i-th gene, composed by ki

SNPs, SNPi
1 . . .SNPi

ki
, we use the following procedure:

Si ∼ Bern(0.2)

logit(p j) = logit(0.2)+Si for j ∈ {1, . . . ,ki}
SNPi

j|Si ∼ Bern(p j) for j ∈ {1, . . . ,ki}.

Hence, conditionally on the latent polymorphism Si, for a given gene i, the individual SNPi
j

are independent and identically distributed, but they are marginally dependent.
A binary environment variable is also simulated that is marginally dependent with one gene

iE and generated with the following procedure:

logit(pE) = a+bSiE

P[E = 1] = pE

Finally, a binary outcome variable is simulated. It is generated from a logistic model using
SNPs from gene iY . Among those s′ SNPs only s SNPs are associated to the response variable Y
as specified in the following equations:

λ1, . . . ,λs′ ∈ {0,1} and
s′

∑
l=1

λl = s (11)

logit[P(Y = 1|GiY ,E)] = α +βEE +

kiY

∑
j=1

λ jβSNPiY
j

SNPiY
j +

kiY

∑
j=1

λ jγSNPiY
j

SNPiY
j ×E (12)
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The parameters λl control the choice of the SNP involved in the generation of Y and the
parameter s controls the number of those SNPs. Different choices for parameters β j and γ j are
chosen in order to highlight different results. For Type I error results the parameters γ j are set to
0 whereas for power results parameters β j and γ j are chosen in order to evidence the different
rejection of the null hypothesis for different parameters and methods used.

4.2. Simulation design

We present nine different simulation models. The first four ones are used to investigate the Type-
I error and the Family Wise Error Rate (FWER) results while the others are used to explore the
power of the different methods.

As discussed above, different resampling methods are used: (i) permutation that permutes
the outcome Y and (ii) parametric bootstrap. We set to 1,000 the number of permutations and
bootstrap resampling. The sample size n of the simulation datasets are 200, 500 and 1000. The
results we look for are the p-values at gene level that are based on SNP-level information. Then
a pathway-level p-values is computed from this information.

We use cases 1, 2, 3 and 4 (defined in the following) to investigate the control of the Type-I
error rate for each gene. We also investigate the control of the FWER at the gene level and at the
pathway level. An empirical FWER for gene-environment interaction is defined by the number of
times the procedure detects wrongly at least one significant gene-environment interaction (from
all the genes within the Pathway) over the N = 500 simulation replications. We also add the em-
pirical FWER computed using a Bonferroni correction (i.e., each gene-environment interaction
p-value is divided by the number of investigated genes). Indeed, the output of each method is a set
of p-values (one for each investigating gene-environment interaction). This set of p-values is as-
sociated to a set of null hypotheses which define our family of hypotheses. Then it is important to
control an overall error for these hypotheses. The empirical FWER for pathway-environment in-
teraction is defined by the number of times the procedure detects wrongly a significant pathway-
environment interaction over the 500 replications. As only one pathway is considered in our
simulation study, the control of the FWER at the pathway level is similar to the Type-I error rate
control of the pathway investigated.

Simulation cases for investigating Type-I error rate and FWER

— Case 1: Data is composed of 5 genes with 10 SNPs each. True model is based on the
main effect of E and the main effect of 5 randomly selected SNP from the first gene. The
environment is marginally correlated with the first gene but not with the other genes. The
outcome is therefore generated from the following model:

λ1, . . . ,λ10 ∈ {0,1} and
10

∑
j=1

λ j = 5

logit[P(Y = 1|G1,E)] = α +βEE +
10

∑
j=1

λ jβSNP1
j
SNP1

j
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Gene- and Pathway-environment Interaction analysis 65

— Case 2: Data is composed of 5 genes with 10 SNPs The true model is based on the main
effect of E and the main effect of all SNPs from the second gene. The environment is
marginally correlated with first gene but not with other genes. The outcome is therefore
generated from the following model:

logit[P(Y = 1|G2,E)] = α +βEE +
10

∑
j=1

βSNP2
j
SNP2

j

— Case 3: Data is composed of 5 genes, 4 of them with 5 SNPs and one with 50 SNPs (the
last one).True model is based on the main effect of E and 2 randomly selected SNPs from
the first gene. The environment is marginally correlated with the first gene but not with
other genes. The outcome is therefore generated from the following model:

λ1, . . . ,λ5 ∈ {0,1} and
5

∑
j=1

λ j = 2

logit[P(Y = 1|G1,E)] = α +βEE +
5

∑
j=1

λ jβSNP1
j
SNP1

j

This model enables us to see how the methods perform when the pathway gene members
have different sizes.

— Case 4: Data is composed of 20 genes with 20 SNPS for the first gene and 10 SNPs
for the others. True model is based on: the main effect of E; the main effect of 10 ran-
domly selected SNPs from the first gene and 5 from the second genes. The environment
is marginally correlated with first gene but not with other genes. The outcome is therefore
generated from the following model:

λ
1
1 , . . . ,λ

1
20 ∈ {0,1} with

20

∑
j=1

λ
1
j = 10 and λ

2
1 , . . . ,λ

2
10 ∈ {0,1} with

10

∑
j=1

λ
2
j = 5

logit[P(Y = 1|G1,G2,E)] = α +βEE +
20

∑
j=1

λ
1
j βSNP1

j
SNP1

j +
10

∑
j=1

λ
2
j βSNP2

j
SNP2

j

Simulation cases for power performance

— Case 5: Data is composed of 5 genes with 20, 10, 10, 10, 10 SNPs. True model is based
on the main effect of E and the main effect of 10 randomly selected SNPs from the first
gene and the interaction between the environment with each of the selected SNPs. The
environment is marginally correlated with first gene but not with other genes. The outcome
is therefore generated from the following model:

λ1, . . . ,λ20 ∈ {0,1} and
20

∑
j=1

λ j = 10

logit[P(Y = 1|G1,E)] = α +βEE +
20

∑
j=1

λ jβSNP1
j
SNP1

j +
20

∑
j=1

λ jγSNP1
j
SNP1

j ×E
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— Case 6: Data is composed of 5 genes with 20, 10, 10, 10, 10 SNPs. True model is based
on the main effect of E and the main effect of 2 randomly selected SNPs from the first
gene and the interaction between the environment with each of the selected SNPs. The
environment is marginally correlated with first gene but not with other genes. The outcome
is therefore generated from the following model:

λ1, . . . ,λ20 ∈ {0,1} and
20

∑
j=1

λ j = 2

logit[P(Y = 1|G1,E)] = α +βEE +
20

∑
j=1

λ jβSNP1
j
SNP1

j +
20

∑
j=1

λ jγSNP1
j
SNP1

j ×E

— Case 7: Data is composed of 20 genes with 20 SNPS for the first gene and 10 SNPs for
the others. True model is based on: the main effect of E; the main effect of 10 randomly
selected SNPs from the first gene and 5 from the second genes; the interactions between
the environment with each of the selected SNPs. The environment is marginally correlated
with first gene but not with other genes. The outcome is therefore generated from the
following model:

λ
1
1 , . . . ,λ

1
20 ∈ {0,1} with

20

∑
j=1

λ
1
j = 10 and λ

2
1 , . . . ,λ

2
10 ∈ {0,1} with

10

∑
j=1

λ
2
j = 5

logit[P(Y = 1|G1,G2,E)] = α +βEE +
20

∑
j=1

λ
1
j βSNP1

j
SNP1

j +
10

∑
j=1

λ
2
j βSNP2

j
SNP2

j

+
20

∑
j=1

λ
1
j γSNP1

j
SNP1

j ×E +
10

∑
j=1

λ
2
j γSNP2

j
SNP2

j ×E

— Case 8: Data is composed of 20 genes with 20 SNPS for the first gene and 10 SNPs for
the others. True model is based on: the main effect of E; the main effect of 2 randomly
selected SNPs from the first gene and 2 from the second genes; the interactions between
the environment with each of the selected SNPs. The environment is marginally correlated
with first gene but not with other genes. The outcome is therefore generated from the
following model:

λ
1
1 , . . . ,λ

1
20 ∈ {0,1} with

20

∑
j=1

λ
1
j = 2 and λ

2
1 , . . . ,λ

2
10 ∈ {0,1} with

10

∑
j=1

λ
2
j = 2

logit[P(Y = 1|G1,E)] = α +βEE +
20

∑
j=1

λ
1
j βSNP1

j
SNP1

j +
10

∑
j=1

λ
2
j βSNP2

j
SNP2

j

+
20

∑
j=1

λ
1
j γSNP1

j
SNP1

j ×E +
10

∑
j=1

λ
2
j γSNP2

j
SNP2

j ×E

— Case 9: Data is composed of 2 pathways with 10 genes in each pathways. Each genes
includes 10 SNPS. True model is based on: the main effect of E; the main effect of 2
randomly selected SNPs from the first gene and 2 from the second genes of each pathways;
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the interactions between the environment with each of the selected SNPs. The outcome is
therefore generated from the following model:

λ
1
1 , . . . ,λ

1
10 ∈ {0,1} with

10

∑
j=1

λ
1
j = 2 and λ

2
1 , . . . ,λ

2
10 ∈ {0,1} with

10

∑
j=1

λ
2
j = 2

λ
11
1 , . . . ,λ 11

10 ∈ {0,1} with
10

∑
j=1

λ
11
j = 2 and λ

12
1 , . . . ,λ 12

10 ∈ {0,1} with
10

∑
j=1

λ
12
j = 2

logit[P(Y = 1|G1,E)] = α +βEE + ∑
k∈K

10

∑
j=1

λ
k
j βSNPk

j
SNPk

j

+ ∑
k∈K

10

∑
j=1

λ
k
j γSNPk

j
SNPk

j ×E

where K = {1,2,11,12}.

Simulation parameters

The different coefficient used in our cases are gathered in table 1. The notation used refer to part
4.1. For each simulation case, FM, and ARTP methods are applied for the 9 simulation cases
to investigate the presence of interaction effects of gene- and pathway- environment based on a
gene-based strategy (see end of Section 3.2).

For all of the 9 cases the truncation points of the ARTP parameters are optimized like in
previous ARTP results Yu et al. (2009). Let m be an integer; kG and kSNP be real numbers; ki be
the number of SNP in the i-th gene; I the number of genes. Let bkG× Ic,b2× kG× Ic, . . . ,bm×
kG× Ic be a set of truncation points for genes and, for each gene i, let bkSNP× kic,b2× kSNP×
kic, . . . ,bm× kSNP× kic be a set of truncation points for the SNPs of this gene. The notation bxc
gives the largest integer that does not exceed x (if bxc = 0 we set the value to 1) . We define
pkSNP,kG,m the p-value of the ARTP computed with this set of truncation points. The optimal p-
value of the ARTP is defined as:

min
kSNP∈A ,kG∈A

pkSNP,kG,m with A = {2%,4%, . . . ,20%}.

The parameter m is fixed to 5 in our study.

4.3. Type I error rate and FWER

Type I error rate and FWER of the methods are computed in cases 1, 2, 3 and 4. The data are
generated under the null hypothesis (i.e. no interaction). The SNP-level tests are performed under
the interaction assumption with a significance level of 0.05. Hence, the expected value of all p-
values at gene-level and pathway level are 0.05. In the section, we study the behavior of the
different methods for this case. Tables 2, 3, 4 , 5 , 6 and 7 present the results. The expected
value of the average p-values is 0.05. Computing a binomial model, the average of the p-values
on the 500 iterations should be between 3% and 7%.
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TABLE 1. Generating parameters for cases 1 to 9. The notation used refer to part 4.1.

pE a b α βE βSNPiY
j

iY∈{1,...,kiY }

γSNPiY
j

iY∈{1,...,kiY }

case 1 0.2 logit(2) log(2) -2 2 ∈ {3,2,1} = 0
case 2 0.2 logit(2) log(2) -2 2 ∈ {1.5,1.0,0.5} = 0
case 3 0.2 logit(2) log(2) -2 2 ∈ {3,2,1} = 0
case 4 0.5 logit(2) 2 -1 1 ∈ {0.3,0.2,0.1} = 0
case 5 0.2 logit(2) log(2) -2 0.4 ∈ {0.06,0.04,0.02} = 0.5
case 6 0.2 logit(2) log(2) -2 2 ∈ {0.3,0.2,0.1} = 1.5
case 7 0.5 logit(2) 2 -1 0.1 ∈ {0.03,0.02,0.01} = 0.3
case 8 0.5 logit(2) 2 -1 0.1 ∈ {0.075,0.050,0.025} = 0.7
case 9 0.5 logit(2) 2 -1 0 = 0 = 0.5

The permutation approach obtained very low error rate for both approaches (FM, MinP,
ARTP). The bootstrap approach gives good results for controlling the Type-I error rate for both
FM and ARTP methods. As expected the FWER at the gene level is not controlled. The FWER
computed can then be corrected using the Bonferroni method which is known to be conservative
and more trustable. Finally, a pathway p-value is given by each combining method (FM, MinP,
ARTP). When the number of genes is low (cases 1 to 3), the Type-I error rate at the pathway
level is well controlled using the bootstrap approach for both FM, MinP and ARTP methods
while permutation approach give conservative results. When the number of genes is higher (case
4), the type-I error rate at the pathway level of the ARTP and iSKAT is slightly inflated.

4.4. Power performance

Tables 8, 9, 10, 11 and 12 present the results for the power of the methods. As expected for all
methods power performances increase with larger sample size.

In those results the proportion of significant SNP in the true model have a huge importance
on the performances. In cases 5 and 7 the proportions of significant SNPs are high whereas
in cases 6, 8 and 9 they are low. For higher proportions bootstrap is slightly but consistently
more powerful than the permutation. For lower proportions permutation and bootstrap results
are equivalent. We can see that when the proportion is high FM and ARTP have equivalent
results and MinP has abysmal results. This is due to the fact that MinP truncates too much of the
information contained in the data. When the proportion are lower, ARTP and then MinP have
a good performance but FM have lower ones. This is due to the fact that FM results take into
account too much irrelevant SNPs in its combination. The ARTP have the merit of having good
power whatever is the proportion of significant SNP in the true model. FM and MinP seems to
detect different patterns but ARTP can detect both. When we compare the combining methods
with iSKAT we can see that the level of performance of ARTP and iSKAT is similar. We notice
that in general, ARTP is more powerful on small sample sizes (200 and 500).
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TABLE 2. Simulation of case 1 with 1000 permutations and 1000 bootstrap resampling with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0 0.03 0.036 0.04 0.024 0.038 0.024
Gene2 10 0.016 0.08 0.04 0.04 0.038 0.076 0.052
Gene3 10 0.022 0.074 0.048 0.064 0.042 0.078 0.054
Gene4 10 0.008 0.056 0.04 0.052 0.028 0.05 0.05
Gene5 10 0.02 0.07 0.04 0.05 0.042 0.066 0.038

FWERBF 0.014 0.066 0.046 0.052 0.042 0.068 0.038
FWER 0.066 0.282 0.188 0.23 0.166 0.29 0.2

Type-I Error: Pathway 0.014 0.066 0.048 0.052 0.028 0.078 0.052

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.002 0.016 0.008 0.01 0.01 0.02 0.03
Gene2 10 0.028 0.062 0.052 0.062 0.044 0.064 0.044
Gene3 10 0.028 0.046 0.028 0.044 0.028 0.05 0.038
Gene4 10 0.018 0.034 0.03 0.044 0.028 0.038 0.03
Gene5 10 0.028 0.054 0.036 0.042 0.042 0.054 0.066

FWERBF 0.028 0.052 0.038 0.042 0.042 0.064 0.042
FWER 0.098 0.188 0.148 0.188 0.142 0.208 0.186

Type-I Error: Pathway 0.03 0.052 0.038 0.042 0.042 0.078 0.04

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.008 0.032 0.026 0.028 0.018 0.028 0.032
Gene2 10 0.032 0.04 0.03 0.048 0.036 0.052 0.042
Gene3 10 0.022 0.032 0.036 0.044 0.04 0.05 0.038
Gene4 10 0.044 0.054 0.046 0.064 0.06 0.076 0.054
Gene5 10 0.036 0.036 0.032 0.046 0.036 0.042 0.042

FWERBF 0.026 0.04 0.036 0.04 0.04 0.048 0.03
FWER 0.138 0.178 0.16 0.21 0.178 0.228 0.196

Type-I Error: Pathway 0.026 0.04 0.036 0.04 0.042 0.048 0.044
FWERBF stands for FWER results using Bonferroni correction
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TABLE 3. Simulation of case 2 with 1000 permutations and 1000 bootstrap resampling with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.018 0.09 0.032 0.046 0.03 0.094 0.046
Gene2 10 0.002 0.028 0.054 0.044 0.036 0.032 0.04
Gene3 10 0.008 0.062 0.03 0.046 0.02 0.054 0.038
Gene4 10 0.012 0.084 0.042 0.056 0.04 0.104 0.062
Gene5 10 0.016 0.076 0.03 0.038 0.032 0.07 0.038

FWERBF 0.008 0.084 0.03 0.034 0.04 0.076 0.038
FWER 0.056 0.304 0.172 0.212 0.152 0.31 0.204

Type-I Error: Pathway 0.008 0.086 0.03 0.036 0.03 0.09 0.028

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.02 0.046 0.028 0.05 0.022 0.05 0.032
Gene2 10 0.002 0.032 0.036 0.038 0.03 0.03 0.058
Gene3 10 0.028 0.07 0.038 0.046 0.034 0.066 0.054
Gene4 10 0.028 0.062 0.042 0.054 0.044 0.076 0.044
Gene5 10 0.018 0.05 0.036 0.052 0.026 0.046 0.026

FWERBF 0.016 0.046 0.042 0.042 0.042 0.06 0.036
FWER 0.09 0.232 0.164 0.214 0.146 0.238 0.196

Type-I Error: Pathway 0.016 0.046 0.048 0.044 0.032 0.066 0.036

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.056 0.07 0.044 0.064 0.056 0.078 0.046
Gene2 10 0.014 0.03 0.022 0.03 0.024 0.026 0.04
Gene3 10 0.038 0.054 0.03 0.042 0.042 0.06 0.038
Gene4 10 0.032 0.042 0.028 0.036 0.036 0.046 0.062
Gene5 10 0.042 0.048 0.028 0.038 0.038 0.046 0.038

FWERBF 0.032 0.048 0.032 0.038 0.034 0.07 0.038
FWER 0.164 0.216 0.144 0.194 0.178 0.226 0.204

Type-I Error: Pathway 0.032 0.048 0.032 0.04 0.042 0.076 0.044
FWERBF stands for FWER results using Bonferroni correction
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TABLE 4. Simulation of case 3 with 1000 permutations and 1000 bootstrap resampling with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 5 0.02 0.064 0.042 0.05 0.034 0.054 0.044
Gene2 5 0.026 0.07 0.048 0.068 0.038 0.07 0.07
Gene3 5 0.03 0.068 0.04 0.06 0.044 0.074 0.054
Gene4 5 0.018 0.04 0.026 0.036 0.02 0.034 0.04
Gene5 50 0.01 0.144 0.066 0.066 0.062 0.16 0.192

FWERBF 0.02 0.144 0.044 0.046 0.052 0.11 0.072
FWER 0.096 0.32 0.19 0.242 0.176 0.326 0.348

Type-I Error: Pathway 0.022 0.146 0.046 0.048 0.058 0.132 0.008

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 5 0.026 0.048 0.036 0.05 0.032 0.048 0.058
Gene2 5 0.028 0.042 0.038 0.052 0.036 0.056 0.042
Gene3 5 0.038 0.056 0.048 0.056 0.044 0.068 0.06
Gene4 5 0.042 0.062 0.032 0.062 0.04 0.06 0.052
Gene5 50 0.032 0.098 0.032 0.038 0.06 0.11 0.088

FWERBF 0.038 0.08 0.042 0.05 0.044 0.092 0.088
FWER 0.156 0.278 0.172 0.232 0.198 0.304 0.278

Type-I Error: Pathway 0.038 0.084 0.044 0.052 0.034 0.096 0.02

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 5 0.016 0.03 0.034 0.042 0.022 0.028 0.04
Gene2 5 0.046 0.05 0.04 0.054 0.046 0.054 0.046
Gene3 5 0.04 0.05 0.042 0.056 0.046 0.054 0.052
Gene4 5 0.03 0.042 0.038 0.046 0.032 0.04 0.04
Gene5 50 0.042 0.05 0.036 0.05 0.06 0.098 0.05

FWERBF 0.024 0.044 0.044 0.054 0.044 0.056 0.038
FWER 0.16 0.208 0.176 0.222 0.188 0.248 0.21

Type-I Error: Pathway 0.024 0.044 0.046 0.056 0.04 0.06 0.012
FWERBF stands for FWER results using Bonferroni correction
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TABLE 5. Simulation of case 4 for sample size of 200 with 1000 permutations and 1000 bootstrap resamplings with
FM, MinP and ARTP. 500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.046 0.062 0.036 0.05 0.058 0.076 0.028
Gene2 10 0.05 0.062 0.044 0.056 0.05 0.064 0.034
Gene3 10 0.038 0.042 0.034 0.036 0.046 0.058 0.024
Gene4 10 0.034 0.044 0.046 0.052 0.04 0.046 0.032
Gene5 10 0.048 0.066 0.038 0.042 0.048 0.062 0.042
Gene6 10 0.058 0.07 0.062 0.064 0.06 0.068 0.056
Gene7 10 0.044 0.042 0.026 0.034 0.036 0.038 0.036
Gene8 10 0.054 0.068 0.044 0.04 0.044 0.06 0.04
Gene9 10 0.046 0.064 0.052 0.062 0.06 0.066 0.044
Gene10 10 0.032 0.036 0.026 0.042 0.026 0.04 0.032
Gene11 10 0.042 0.056 0.038 0.044 0.046 0.058 0.034
Gene12 10 0.054 0.072 0.054 0.062 0.06 0.072 0.046
Gene13 10 0.038 0.052 0.036 0.052 0.048 0.058 0.026
Gene14 10 0.062 0.078 0.044 0.048 0.066 0.076 0.056
Gene15 10 0.032 0.044 0.05 0.06 0.04 0.048 0.038
Gene16 10 0.038 0.044 0.042 0.05 0.038 0.048 0.034
Gene17 10 0.062 0.076 0.028 0.038 0.048 0.07 0.056
Gene18 10 0.058 0.07 0.032 0.042 0.044 0.054 0.05
Gene19 10 0.038 0.042 0.032 0.048 0.042 0.046 0.028
Gene20 10 0.06 0.076 0.04 0.05 0.072 0.086 0.048

FWERBF 0.02 0.056 0.024 0.026 0.054 0.08 0.018
FWER 0.612 0.704 0.564 0.642 0.646 0.732 0.556

Type-I Error: Pathway 0.028 0.07 0.028 0.04 0.084 0.152 0.004
FWERBF stands for FWER results using Bonferroni correction
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TABLE 6. Simulation of case 4 for sample size of 500 with 1000 permutations and 1000 bootstrap resamplings with
FM, MinP and ARTP. 500 replications of the synthetic data are performed.

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.054 0.060 0.046 0.056 0.068 0.073 0.038
Gene2 10 0.048 0.053 0.048 0.053 0.064 0.070 0.056
Gene3 10 0.044 0.043 0.046 0.049 0.052 0.051 0.032
Gene4 10 0.056 0.062 0.042 0.043 0.052 0.060 0.052
Gene5 10 0.048 0.043 0.052 0.049 0.052 0.053 0.038
Gene6 10 0.046 0.043 0.046 0.049 0.04 0.047 0.028
Gene7 10 0.054 0.058 0.042 0.053 0.05 0.049 0.042
Gene8 10 0.038 0.030 0.044 0.041 0.052 0.041 0.02
Gene9 10 0.066 0.073 0.052 0.053 0.064 0.071 0.054
Gene10 10 0.038 0.039 0.052 0.053 0.052 0.058 0.036
Gene11 10 0.036 0.045 0.038 0.043 0.054 0.058 0.04
Gene12 10 0.054 0.062 0.054 0.064 0.064 0.066 0.056
Gene13 10 0.05 0.058 0.04 0.047 0.06 0.075 0.042
Gene14 10 0.038 0.036 0.05 0.049 0.04 0.051 0.026
Gene15 10 0.048 0.053 0.06 0.062 0.056 0.058 0.044
Gene16 10 0.06 0.053 0.058 0.062 0.06 0.066 0.048
Gene17 10 0.056 0.060 0.074 0.068 0.058 0.056 0.044
Gene18 10 0.052 0.056 0.042 0.045 0.056 0.068 0.048
Gene19 10 0.046 0.043 0.07 0.071 0.07 0.079 0.036
Gene20 10 0.032 0.032 0.03 0.041 0.04 0.047 0.028

FWERBF 0.046 0.056 0.042 0.058 0.078 0.111 0.032
FWER 0.626 0.637 0.628 0.658 0.676 0.712 0.544

Type-I Error: Pathway 0.056 0.068 0.056 0.071 0.122 0.156 0.02
FWERBF stands for FWER results using Bonferroni correction
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TABLE 7. Simulation of case 4 for sample size of 1000 with 1000 permutations and 1000 bootstrap resamplings with
FM, MinP and ARTP. 500 replications of the synthetic data are performed.

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.038 0.038 0.05 0.052 0.052 0.054 0.04
Gene2 10 0.066 0.074 0.058 0.054 0.076 0.07 0.054
Gene3 10 0.052 0.054 0.042 0.044 0.046 0.056 0.04
Gene4 10 0.044 0.054 0.038 0.038 0.042 0.044 0.03
Gene5 10 0.058 0.06 0.038 0.038 0.044 0.052 0.046
Gene6 10 0.052 0.058 0.066 0.068 0.06 0.06 0.036
Gene7 10 0.058 0.06 0.058 0.054 0.064 0.066 0.046
Gene8 10 0.048 0.052 0.044 0.044 0.046 0.046 0.034
Gene9 10 0.036 0.036 0.038 0.038 0.032 0.036 0.028
Gene10 10 0.062 0.06 0.064 0.064 0.07 0.072 0.052
Gene11 10 0.052 0.054 0.042 0.042 0.046 0.056 0.046
Gene12 10 0.044 0.048 0.032 0.036 0.038 0.03 0.034
Gene13 10 0.046 0.044 0.062 0.07 0.052 0.058 0.036
Gene14 10 0.05 0.048 0.054 0.046 0.05 0.058 0.036
Gene15 10 0.06 0.054 0.054 0.056 0.062 0.06 0.052
Gene16 10 0.034 0.036 0.052 0.048 0.054 0.05 0.028
Gene17 10 0.034 0.032 0.048 0.05 0.042 0.044 0.028
Gene18 10 0.056 0.06 0.038 0.032 0.052 0.048 0.048
Gene19 10 0.048 0.048 0.052 0.046 0.044 0.046 0.038
Gene20 10 0.044 0.048 0.06 0.066 0.056 0.06 0.036

FWERBF 0.044 0.056 0.044 0.05 0.076 0.092 0.046
FWER 0.614 0.61 0.63 0.622 0.634 0.67 0.536

Type-I Error: Pathway 0.058 0.058 0.054 0.066 0.12 0.13 0.104
FWERBF stands for FWER results using Bonferroni correction
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TABLE 8. Simulation of case 5 with 1000 permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.1 0.122 0.054 0.052 0.1 0.122 0.21
Power: Pathway 0.062 0.096 0.044 0.042 0.084 0.098 0.012

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.512 0.536 0.162 0.17 0.496 0.526 0.532
Power: Pathway 0.308 0.326 0.078 0.078 0.328 0.35 0.356

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene1 20 0.876 0.884 0.432 0.42 0.86 0.872 0.872
Power: Pathway 0.722 0.744 0.184 0.196 0.722 0.726 0.836

FWERBF stands for FWER results using Bonferroni correction

TABLE 9. Simulation of case 6 with 1000 permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.076 0.09 0.046 0.052 0.094 0.086 0.186
Power: Pathway 0.056 0.068 0.054 0.04 0.1 0.098 0.048

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.264 0.254 0.222 0.19 0.364 0.348 0.382
Power: Pathway 0.162 0.152 0.11 0.094 0.226 0.192 0.212

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.62 0.616 0.73 0.7 0.798 0.782 0.752
Power: Pathway 0.406 0.426 0.448 0.408 0.616 0.598 0.684

FWERBF stands for FWER results using Bonferroni correction
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TABLE 10. Simulation of case 7 with 1000 permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.108 0.118 0.060 0.080 0.108 0.134 0.096
Gene2 10 0.072 0.084 0.054 0.072 0.062 0.088 0.072

Power: Pathway 0.060 0.062 0.040 0.034 0.086 0.128 0.004

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.272 0.278 0.144 0.148 0.270 0.272 0.268
Gene2 10 0.158 0.170 0.100 0.100 0.138 0.144 0.132

Power: Pathway 0.112 0.132 0.074 0.070 0.214 0.240 0.168

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.572 0.580 0.262 0.268 0.562 0.578 0.592
Gene2 10 0.318 0.324 0.180 0.186 0.290 0.288 0.3

Power: Pathway 0.298 0.334 0.080 0.090 0.416 0.444 0.464
FWERBF stands for FWER results using Bonferroni correction

TABLE 11. Simulation of case 8 with 1000 permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.102 0.114 0.108 0.110 0.134 0.153 0.124
Gene2 10 0.092 0.094 0.104 0.102 0.128 0.125 0.120

Power: Pathway 0.044 0.060 0.050 0.048 0.142 0.157 0.016

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.224 0.230 0.160 0.160 0.256 0.250 0.302
Gene2 10 0.310 0.318 0.274 0.272 0.340 0.332 0.398

Power: Pathway 0.108 0.116 0.096 0.100 0.262 0.280 0.168

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 20 0.376 0.372 0.436 0.438 0.476 0.467 0.550
Gene2 10 0.538 0.548 0.544 0.544 0.602 0.618 0.700

Power: Pathway 0.266 0.284 0.292 0.288 0.516 0.526 0.568
FWERBF stands for FWER results using Bonferroni correction
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TABLE 12. Simulation of case 9 with 1000 permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.
500 replications of the synthetic data are performed.

sample size 200

Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.070 0.080 0.040 0.045 0.070 0.065 0.090
Gene2 10 0.095 0.105 0.070 0.075 0.095 0.095 0.080
Power: Pathway1 0.055 0.065 0.04 0.030 0.110 0.130 0.012

Gene3 10 0.110 0.125 0.095 0.090 0.100 0.120 0.120
Gene4 10 0.085 0.100 0.085 0.100 0.110 0.115 0.118
Power: Pathway2 0.065 0.095 0.04 0.050 0.105 0.105 0.016

Power: Pathway all 0.055 0.070 0.05 0.025 0.115 0.155 0.012

sample size 500
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.150 0.145 0.130 0.135 0.150 0.170 0.194
Gene2 10 0.155 0.160 0.125 0.125 0.160 0.160 0.190
Power: Pathway1 0.085 0.10 0.075 0.075 0.145 0.150 0.132

Gene3 10 0.145 0.150 0.100 0.105 0.150 0.145 0.204
Gene4 10 0.135 0.145 0.125 0.110 0.140 0.145 0.166
Power: Pathway2 0.100 0.09 0.080 0.085 0.155 0.165 0.084

Pathway all 0.065 0.10 0.075 0.070 0.260 0.230 0.148

sample size 1000
Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap iSKAT

Gene1 10 0.245 0.245 0.260 0.260 0.295 0.290 0.366
Gene2 10 0.235 0.260 0.225 0.220 0.275 0.270 0.364
Power: Pathway1 0.145 0.150 0.135 0.12 0.240 0.255 0.324

Gene3 10 0.230 0.235 0.240 0.240 0.270 0.285 0.364
Gene4 10 0.295 0.305 0.270 0.265 0.345 0.335 0.392
Power: Pathway2 0.160 0.195 0.150 0.14 0.250 0.265 0.304

Pathway all 0.160 0.220 0.170 0.18 0.425 0.465 0.484
FWERBF stands for FWER results using Bonferroni correction
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5. Application: Breast cancer and night work

Circadian rhythm is a roughly 24 hours cycle of biological processes that are synchronized by ex-
ternal cues such as light or temperature, and regulated endogenously by periodic transcription of
a set of genes that form a network of self-regulated feedback loop. The circadian rhythm pathway
plays a key role in the maintenance of various endocrine, physiological factors and behavioral
functions including cell cycle regulation, hormone secretion, body temperature and sleep/wake
cycle. Shift work that involves circadian disruption was classified as probably carcinogenic to
humans (group 2A) by the International Agency for Research on Cancer in 2007 (Straif et al.,
2007). An increased risk of breast cancer was reported in women working at night by several
studies (Hansen and Lassen, 2012; Menegaux et al., 2013) and it was hypothesized that this
association could be modulated by polymorphisms in the circadian pathway genes. As the cir-
cadian pacemaker requires multiple molecular interactions to generate the circadian rhythms,
single-SNP analyses may not be sufficient to analyze the association between circadian genes
and breast cancer. Therefore, we have investigated the role of circadian clock gene polymor-
phisms and their interaction with nightwork in breast cancer risk using a pathway analysis. This
work was previously described in more details using only the ARTP method with a modified
permutation procedure that permutes the outcome, the environmental factor and the adjustment
variables together (Truong et al., 2014). Here, we present the results using FM, MinP and ARTP
methods using permutation and Bootstrap resampling procedures as well as iSKAT method for
comparison.

Briefly, the analyses are conducted in a population-based case-control study from France in-
cluding 1126 breast cancer cases and 1174 controls.

We considered the circadian pathway as defined in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database that included 23 genes (CLOCK, ARNTL, NPAS2, CRY1, CRY2,
PER1, PER2, PER3, RORA, RORB, RORC, BHLHE40, BHLHE41, SKP1, FBXW11, CUL1,
TIMELESS, FBXL3, NR1D1, CSNK1D, CSNK1E, RBX1, and BTRC). These genes constitute
a complex regulatory network with multiple negative and positive feedback loops. A selection
of tag SNPs from these genes were selected in order to capture SNPs within 5 kb of each genes
(pairwise approach with a square of correlation coefficient r2 > 0.8) with a minimum minor al-
lele frequency of 0.05 in the CEU population from HapMap project. After quality controls, we
have included 577 SNPs from the 23 genes. The circadian pathway was additionnally divided
into two subpathways: the core circadian genes which are involved in the same transcriptional
feedback loop (CLOCK, ARNTL, NPAS2, CRY1, CRY2, PER1, PER2, PER3,CSNK1E) and the
other genes that are involved in other auxiliary loops.

Odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated using un-
conditional logistic regression models adjusted for the matching factors (age, area of residence)
and for established risk factors of breast cancer (age at menarche, age at first full-term pregnancy,
parity, current use of menopausal hormone therapy, body mass index, alcohol consumption and
tobacco consumption). An OR of 1.42 (95% CI: 1.08-1.88) (p=0.01) was observed in women
that have a lifetime duration of nightwork greater than 2 years compared to less. The interaction
between the polymorphisms in circadian genes and nightwork were first analysed using a SNP
by SNP approach and no interaction term was statistically significant after correction for mul-
tiple testing (results not shown). Gene-level and pathway-level interaction p-values obtained by
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the FM, MinP, ARTP and iSKAT are shown in Table 13 for 1000 resampling. The parameters of
the ARTP are calibrated in the same way than in the simulation part (see section 4.2).

TABLE 13. Results of the investigation of gene-environment interaction of Circadian Pathway using 1000
permutations and 1000 bootstrap resamplings with FM, MinP and ARTP.

Circadian Pathway FM MinP ARTP iSKAT

Gene Size Permutation Bootstrap Permutation Bootstrap Permutation Bootstrap

ARNTL 24 0.04 0.001 0.1359 0.1578 0.0539 0.001 0.0078
PER1 5 0.0849 0.035 0.032 0.04 0.049 0.0619 0.1132
NPAS2 62 0.2647 0.1249 0.0879 0.1309 0.2957 0.1608 0.4338
CSNK1E 9 0.3337 0.3427 0.4166 0.4965 0.4655 0.5265 0.6011
CRY1 7 0.4935 0.5235 0.4985 0.5504 0.5295 0.5694 0.6081
CRY2 9 0.5425 0.7722 0.6603 0.9111 0.6374 0.8761 0.3475
PER2 11 0.9071 0.967 0.9401 0.983 0.8721 0.9491 0.734
PER3 15 0.8901 0.984 0.8571 0.976 0.8941 0.995 0.5695
CLOCK 11 0.9181 0.99 0.982 1 0.964 0.999 0.8104

subpathway 0.2967 0.007 0.2537 0.2997 0.2957 0.0020 0.2095
FBXL3 7 0.1658 0.0769 0.1239 0.1848 0.1628 0.1918 0.2986
SKP1 4 0.4046 0.4236 0.2128 0.2318 0.2827 0.3057 0.4056
CSNK1D 3 0.3706 0.3906 0.4256 0.4655 0.3736 0.4056 0.4412
RBX1 2 0.4146 0.3876 0.5005 0.4825 0.4505 0.4296 0.4977
BHLHE40 9 0.3277 0.3237 0.5864 0.7113 0.4126 0.4396 0.7204
RORA 288 0.3836 0.3027 0.6184 0.7612 0.4515 0.4456 0.4576
NR1D1 8 0.4476 0.4985 0.3906 0.4945 0.4206 0.4825 0.5439
RORC 14 0.1958 0.1139 0.4226 0.6434 0.2687 0.5055 0.4815
CUL1 23 0.4585 0.5814 0.1009 0.1578 0.3916 0.5105 0.1035
TIMELESS 7 0.6643 0.7632 0.4406 0.5504 0.5395 0.6513 0.7471
BTRC 13 0.977 0.998 0.4236 0.6064 0.7153 0.7013 0.8507
RORB 34 0.5974 0.7163 0.5994 0.7972 0.5614 0.7293 0.7152
FBXW11 8 0.8741 0.952 0.8711 0.9361 0.9121 0.962 0.7715
BHLHE41 4 0.959 0.983 0.8891 0.957 0.9211 0.97 0.8227

subpathway 0.9231 0.6474 0.7682 0.9101 0.8042 0.8951 0.5552
circadien 0.6054 0.009 0.5085 0.6114 0.6374 0.02 0.4166

At the gene level, we observed that both methods FM and ARTP highlight the same two genes
PER1 and ARNTL in the interaction analysis with nightwork, while only PER1 is significant with
the MinP method and only ARNTL is significant with the iSKAT method. Bootstrap resampling
method tends to give lower p-values than permutations for these two genes in particular. This
is in accordance with the simulation section in which we shown that the parametric bootstrap
method is more powerful for large sample size.

At the pathway level, a significant interaction p-value (see Table 13) was observed for the
overall circadian pathway for both FM and ARTP methods when parametric bootstrap is used
while no association is observed using permutation resampling approach. This association is
observed only for the core circadian genes subpathway that includes the genes PER1 and ARNTL.
No significant association was observed while using the methods MinP and iSKAT.

To summarize, FM and ARTP gave similar results in our data. Significant interaction p-values
were observed at the gene and pathway levels using the boostrap resampling method, while only
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significant results at the gene level were observed using the permutation resampling method.
MinP and iSKAT methods highlighted only part of the genes that were found significant by FM
and ARTP methods and reported non-significant interaction at the pathway level.

PER1 and ARNTL which are highlighted in the gene level analysis, are important components
of the circadian system which is regulated by molecular feedback loops. Heterodimers composed
of ARNTL and either of the two related proteins CLOCK or NPAS2 are transcriptional factors
that induce the expression of PER and CRY genes by binding to their promoters, which in turn
will act on the ARNTL-CLOCK/NPAS2 complex to repress their own transcription.

Variants in both genes has been previously associated to breast cancer risk (Hansen and
Lassen, 2012; Zienolddiny et al., 2013). The finding with PER1 from the interaction analysis
may be of particular interest, as a variant in PER1 (rs2735611) was previously associated with
an extreme morning preference (Carpen et al., 2006), a condition that was associated with an
increased breast cancer risk among Danish military women working in night shifts (Hansen and
Lassen, 2012).

5.1. Running time performance

The most demanding part of the p-value algorithms in terms of time computation is the resam-
pling part. All p-value combining methods have been ran with the same resampling samples. We
focus on the mesure of the running time related to this part of the algorithm. Tables 14 and 15
presents the running time performances of permutation and bootstrap approaches. The results
given are computed on one standard core, and results are running times on the application data
(see table 14) and on 500 iterations of simulation case 5 (see table 15). We can see that bootstrap
and permutation have similar running times. The running time of iSKAT is added in comparison.
p-value combining methods have a much higher running time than iSKAT. Hopefully it can be
computed in parallel, whereas iSKAT cannot.

TABLE 14. Running time: permutation and bootstrap performances using 1000 resampling related to the
application. Results are in seconds.

Running time

permutation bootstrap iSKAT

20187.5 20264.8 486.3

TABLE 15. Running time: permutation and bootstrap performances using 1000 resampling related to the simulation
case 5. Results are the average time in seconds over 500. replications.

Running time

size 200 size 500 size 1000

Permutation Bootstrap iSKAT Permutation Bootstrap iSKAT Permutation Bootstrap iSKAT

488 491 2.37 611 709 2.81 1170 1376 3.58
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6. Concluding Remark

Based on the work of Yu et al. (2009), we have proposed an efficient practical tool for investi-
gating gene- and pathway-environment interaction. Both FM and ARTP methods are extended
in this context and available through our R package PIGE (Liquet et al., 2017). Permutation and
parametric bootstrap approaches have been implemented. Our simulation study suggests sightly
better results from bootstrap compared to permutation, especially when the number of signifi-
cant SNP is high. Furthermore we have shown that our proposed methods can be competitive
and even slightly more powerful then the cutting edge methods like iSKAT.

The cornerstone of the implemented approaches are the running time of the resampling ap-
proaches which could be problematic in presence of large data set (i.e., large sample size and
large number of genetic information). To overcome this issue, PIGE offers a parallel imple-
mentation of these approaches. As an example, our application on interaction between circadian
genes and night work in breast cancer risk which includes n = 2300 subjects and p = 577 SNPs
took 45 minutes with the permutation procedure and 1 hours 5 minutes using 4 cores and 1000
resampling.

In this application study, using ARTP method with the parametric bootstrap approach, we
highlighted significant interactions at the pathway-level which were missed when using the per-
mutation procedures. Our results suggest that polymorphisms in the circadian rhythms pathway
could modulate the association between night work and breast cancer. This association seems to
be driven mostly by the genes PER1 and ARNTL.

Note that our approaches can deal in the context of p > n as the methods are based on com-
bining individual p-values. Finally, our proposed approaches are not restricted to a binary case-
control outcome. In this study, we focus the presentation on an binary environment variable
which was motivated by binary environment data of our application. The method is not restricted
to binary environment variable and has been extended and implemented in our R package PIGE
(Liquet et al., 2017) to any quantitative environment variable. Further, our package also offers the
possibility to deal with survival outcome variable or quantitative outcome in general. It is also
possible to investigate gene- and pathway-environment interaction for more than one pathway
during the same analysis.
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