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Abstract: We consider the classical moving window rule of classification for functional spatially dependent data. We
investigate asymptotic properties of this nonparametric classification rule based on training data drawn from « or -
mixing random field taking values in infinite-dimensional space. We extend the results of Younso (2017a) concerning
both the consistency and the strong consistency of the moving window classifier to the spatially dependent case under
mild assumptions. We propose a method for bandwidth selection and we conduct some simulation studies.

Résumé : Nous considérons la regle de la fenétre mobile pour classifier des données fonctionnelles spatialement
dépendantes. Nous étudions les propriétés asymptotiques de cette reégle de classification non paramétrique basée sur
des données d’apprentissage tirées d’un champ aléatoire a ou §—mélangeant a valeurs en espace de dimension infinie.
Nous étendons les résultats de Younso (2017a) concernant la consistance et la consistance forte au cas spatialement
dépendant sous des hypotheses non restrictives. Nous proposons un critére pour choisir le parametre de lissage et nous
considérons 1’application de notre approche sur des données simulées.
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1. Introduction

In many studies, the observations can be collected as spatially dependent curves. This type of data
arises in a variety of fields including econometrics, epidemiology, environmental sciences, image
analysis, oceanography and many others. Many spatially dependent data can be represented by
finite dimensional vectors and others may be represented by curves. For general applications, we
refer the reader to Ramsay and Silverman (2002, 2005). The statistical treatment for spatially
dependent data has received a lot of attention in recent years in finite or infinite dimensional space.
Nonparametric approaches, including classification and estimation, have recently emerged as a
flexible way to model spatial data. In some studies, it can be interesting to see spatio-temporal data
as spatially dependent data. The need to classify observed functional data occurs in many scientific
problems. For example, in medical imaging modalities, an important problem is how to classify
image pixels into spatial regions in which the pixels exhibit similar temporal behavior. In this paper,
we propose a nonparametric classification rule based on kernel method for classifying spatially
dependent variables taking values in infinite dimensional space. For the spatially dependent case,
most of existing theoretical nonparametric results concern the density and regression estimation in
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finite dimensional space. For background material, the reader is referred to Tran (1990), Carbon
et al. (1997), Biau and Cadre (2004) and Hallin et al. (2004, 2009). Despite the wide area of
application, there is only a very few literature dedicated to models that take into account both the
functional and spatial dependence features, see for example Ternynck (2014) and Dabo-Niang and
Yao (2007, 2013). The literature dealing with nonparametric classification (kernel rule or nearest
neighbor rule) when data are independent is extensive in finite or infinite dimensional spaces, see
for example Devroye and Krzyzak (1989) and Devroye et al. (1996) for the finite dimensional
case and Abraham et al. (2006), Ferraty et al. (2002, 2012) and Ferraty and Vieu (2006) for the
infinite dimensional case. Younso (2017a) extends the results of Abraham et al. (2006) to the
temporally dependent case. In the spatially dependent case, Younso (2017b) proposes a new kernel
rule allowing for the classification of missing data in a finite-dimensional space and establishes
the consistency of this new rule. In the functional case, the asymptotic properties of the kernel
classification rule remains unexplored. In this paper, we investigate whether the moving window
rule can be generalized to classify spatial functional data showing spatial dependence.

2. Moving window rule for functional random field

Let (E,d) be a metric space where E is a function space and d is the metric on E. Denote the integer
lattice points in the N-dimensional Euclidean space by Z", N > 1. Consider a strictly stationary
random field {(X;, ;) }ijczv defined on some probability space (Q2,.#,[P) and taking values in
E x{0,1}. A pointi= (iy,...,iy) € ZN will be referred to as a site. For n = (ny,...,ny) € (N*)V,
we define the rectangular region I, by

Lh={icZV: 1<i<m,Vk=1,..,N}.

We will write n — oo if
min 7y — oo,

geony,

Define fi = ny x ... X ny = Card(I,,). For the sake of simplicity, we suppose that (Xj,Y;) has the
same distribution as the pair (X,Y) for all i € Z". Observe that the distribution of (X,Y) may be
well defined by (u,n) where u(B) =P(X € B), for all Borel sets B on .%, and 1(x) =P(Y =
1|X = x), for all x € E. Classical procedure of classification deals with predicting the unknown
nature Y called a class (0 or 1) of an observation X with values in E. The statistician creates a
classifier g : E — {0, 1} which maps a new observation x € E into its predicted label g(x). It is
certainly possible to wrongly specify the label y of a new observation x and an error occurs if
g(x) #y. Let L=L(g) =P{g(X) # Y} denote the probability of error for the classifier g. There
exists an optimal classifier, called Bayes rule, given by

“(x) = 0if P{Y =0|X =x} >P{Y =1|X =x}
J ] 1 otherwise.

It is easy to see that the Bayes rule has the smallest probability of error, that is

L=L(g) = inf | P(s(X) £ V).
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(see Theorem 2.1 in Devroye et al., 1996 for the finite dimensional case). Unfortunately, the Bayes
rule depends on the distribution of (X,Y) which is generally unknown to the statistician. But it is
often possible to construct a classifier from a set of observations Dy, = {(Xj,Y;), i € I }. The set
Dy, is called the training data. Among the various ways to define a classifier from a training data,
one of the most simple and popular is the moving window rule defined by

0if Y Tiy—oxen,) = Y Ln—1.xe8,,)

icl, icl,

gn(x) =
1 otherwise,

where 1[4 denotes the indicator function of the set A, b = b(n) the bandwidth, is a strictly positive
number tending to 0 when n — oo and B, ;, denotes the closed ball centered at x with radius b. In
order to establish the theoretical results, we write the moving window rule as follows

. Zieln(lfyi)]I{XiGva }
0if 1n((x) < U(Byy) :

gn(x) = ‘ (1)

1 otherwise,

where -
nn(x) _ Ziel: i{XieB,}
nu (Bx,b)

Clearly, the moving window rule is one of the kernel-based rules being derived from the kernel
estimate in density and regression estimation (see for example Parzen, 1962, Nadaraya, 1989 and
Watson, 1964). Let L, = L(gn) = P{gn(X) # Y|Dn} be the error probability of g,. The classifier
gn 1s called consistent if

EL, — L*asn — o

and called strongly consistent if
L, — L* with probability one as n — oo.

A classifier can be consistent for certain class of distribution of (X,Y), but not be consistent for
others. The classifier g, is called universally (strongly) consistent, if it is (strongly) consistent for
all distribution of (X,Y). Much of the existing theory on the consistency problems is based on
the assumption that the available functional data are independent and identically distributed. In
finite dimensional spaces, the moving window rule and the k-nearest neighbor rule are universally
strongly consistent under classical conditions (see Devroye and Krzyzak, 1989 and Stone, 1977).
Abraham et al. (2006) give some examples showing that the results of Devroye and Krzyzak
(1989) on the consistency are no more valid in a general functional metric space and they establish
the consistency and the strong consistency under mild conditions on the distribution of (X,Y) and
the metric space. Younso (2017a) extends the results of Abraham et al. (2006) to the temporally
dependent case. Our aim in this paper is to establish the consistency and the strong consistency of
the moving window rule based on spatially dependent functional training data under some - and
B-mixing conditions.
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On the Consistency of Kernel Classification Rule for Functional Random Field 71

3. Mixing conditions

Let us first recall the definitions of «-mixing coefficients introduced by Rosenblatt (1956) and
B-mixing coefficient introduced by Rozanov and Volkonskii (1959). Let <7 and % be two sub
o-algebras of .#. The a-mixing coefficient between <7 and ¥ is defined by

a=a(#, €)= sup |P(ANC)—P(A)P(C)|
Aed CeC

and the B-mixing coefficient is defined by
B=B(o,%)= E sup [P(A|Z) —P(A)]].
€

Let {Z;};czv be a random field on (Q,.7,P) and taking values in some space (Q',.%#"). For any
S,8" C ZN with finite cardinals, we denote by %(S) and %(S’) the Borel c-algebras generated by
{Z;}ies and {Z; }ics respectively.

Definition 3.1 The random field {Z; };cz~ is said to be a-mixing or strongly mixing if

a(t)= sup a(B(S),B(S)),0ast— oo, )
dist(S,8") >t
where

dist(S,8') = ot il

and ||.|| denotes the Euclidean norm.

Observe that a-mixing condition (2) is satisfied by many spatial models. Examples can be found
in Neaderhouser (1980) and Rosenblatt (1985).

Definition 3.2 The random field {Z; };cz~ is said to be B-mixing or absolutely regular if

B(r)= sup PB(B(S),B(S')) L0ast— .
dist(S,8") >t
The two mixing coefficients o and B are related by the inequality 2o < 8 (see Rio, 2000).
Consequently, any B-mixing random field is an a-mixing one. The following lemma, given in
Rio (2000), is crucial in order to derive the consistency of the moving window rule.

Lemma 3.1. Let Z and Z, be two R-valued bounded random variables. Then, we have
|cov(Z1,22)| < 4|21 ||| Z2] | (0(Z1), 0(Z2)),
where ||.||« is the supremum norm and 6 (Z;) is the G-algebra generated by Z; for i = 1,2.

Now, let <7 and % be two sub ¢-algebras of %, we denote by & V € the c-algebra generated by
o/ U%€ . The following coupling lemma (see Berbee, 1979) will be needed to establish the strong
consistency.

Lemma 3.2. Let Z be a random variable defined on (Q,.# ,IP) and taking values in some Polish
space Q' and .# be a sub c-algebra of .. Assume that there exists a random variable U
uniformly distributed over [0, 1], independent of 6(Z)\ . Then, there exists a random variable
Z* measurable with respect to o(U)\V 6(Z)V M, distributed as Z and independent of #, such
that

P(Z#2°) = B(M,5(2)).
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Remark 3.1 A Polish space Q' is a topological space which is separable and completely
metrizable (see Kechris, 1995). Most of the familiar objects of study in analysis involve Polish
spaces. For example, R and R? with the usual topology are Polish. For all m € N*, {0,1,...,m—1}
is Polish with discrete topology. A countable product of Polish spaces is Polish, too.

4. Assumptions and preliminaries

For convenience, we firstly introduce the notion of covering numbers (see Kolmogorov and
Tihomirov, 1961). For a given subset G of the metric space (E,d) , the covering number is defined
by

k
N (g,G,d) = inf{k >1: 3x,..., x4, € Ewith G C Uthg} ,
i=1
where S, ¢ denotes the open ball centered at x with radius € > 0. The set G is said to be totally
bounded if .4 (€,G,d) < o for all € > 0. In particular, every relatively compact set is totally
bounded and all totally bounded sets are bounded. Now, we introduced some assumptions.

Assumption 1 There exists a sequence (Ej)i>; of totally bounded subsets of E such that
Ei C Exy forall k> 1and p (Ups Ex) = 1.

Assumption 2 For each integer k > 1, any i # j and & €]0, 1], there exists C > 0 such that
P((Xi,X;) € Byp X Bypy) < C[U(Byp)|' 81, for all x € Ey.

Assumption 3 The following Besicovich condition holds, for every € > 0,

1
>£}:O.

P { °F ‘u(Bx,w Jy, nam=nto)

Remark 4.1 Note that Assumption 1 is always true whenever the space (E,d) is separable,
see for example Abraham et al. (2006) and Kulkarni and Posner (1995). Assumption 2, used by
Ternynck (2014), concerns the local dependency and a consequence is

‘IP)((XUXJ) € Bx,b X Bx,b) - IP)(X, S Bx7b)IP)(Xj S Bx,b)’ < Cl7

for C' = C+ 1. As noticed in Dabo-Niang et al. (2011), Assumption 2 can be linked with the
classical local dependence condition met in the literature of the finite-dimensional case when
X and (X;,Xj) admit, respectively, the densities f and fi; (see Tran, 1990). In the case N = 1,
Assumption 2 has been used by (Bosq, 1998, page 54). Assumption 3 holds for example if 1 (x) is
u-continuous (see Cérou and Guyader, 2006).

Now, we suppose that the random field {(X;,Y;) }icz~ is arithmetically a-mixing in the sense that
there exist C > 0 and 8 > 0 such that

a(t) <Cr 9 forallr € RY. (3)

From now on, G¢ stands for the complement of any subset G of E and for simplicity of notation,
we write 4;(€) instead of 4 (€, Ey,d). Before we state the main results, we introduce some
lemmas that will be needed in the sequel. The following lemma is a direct consequence of
Assumption 3.
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On the Consistency of Kernel Classification Rule for Functional Random Field 73

Lemma 4.1. Assume that Assumption 3 holds. If b — 0 as n — o, then,

/In — Enn (%) | (dx) = /' _Jo,T ()()u(dx)—>0

xb)

asmn — oo,
For the proof of the following lemma, we refer to Abraham et al. (2006).

Lemma 4.2. Assume that (Ey)i>1 is a sequence of totally bounded subsets of E. Let k be a fixed
positive integer. Then, for every b > 0,

A u(;xb)u(dX) < Hi(b)2).

Lemma 4.3. Let (E;)x>1 be a sequence of totally bounded subsets of E. Assume that the training
data Dy, are observations of a-mixing functional random field such that (3) and that Assumption
2 is satisfied. Let k be a fixed positive integer. Then, for alln € (N*)V,

1 (\\"?
]E/Ek | (%) — Enn(x) | (dx) < C (ﬁ% <2>> , for some C > 0.

5. Main results

In this section, we establish the consistency and the strong consistency of the moving window
rule.

Theorem 5.1 (Consistency). Let (Ey)i>1 be a sequence of totally bounded subsets of E. Assume
that the training data Dy, are observations of o.-mixing functional random field such that (3) and
that Assumption 1-3 hold. If b — 0 and for every k > 1, %/2) — 0 as n — oo, then, for 6 > 2N,

EL, — L" as n— oo,

where 0 is the constant defined in (3).

Observe that, for N = 1, the same assumptions on the smoothing factor b are used by Abraham
et al. (2006) and Younso (2017a) for the independent and the dependent case respectively.

Now, we investigate the strong consistency of the moving window classifier under -mixing
condition. This mixing condition together with the coupling Lemma 3.2 allow to generate inde-
pendent and identically distributed random functional variables that we need to prove the strong
consistency, while the more general mixing condition, the o-mixing condition, allows only to
generate independent and identically distributed real-valued random variables (see Bradley, 1983).
In order to establish the strong consistency, we suppose that n; = ny = ... = ny = n. It means that
if n — oo, the rectangular region I, expands to infinity at the same rate along all directions. This
isotropic assumption is used by El-Machkouri (2007). For the sake of simplicity, we will write

L={ieZ": 1<i<n,Vk=1,..,N}, i = Card(l,) = n"
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and L
. Zi n(l_yl) i€By
0if M, (x) < =t
gn(x) =

1 otherwise,

where
(%) = Yier, Yillixep, )
! nNu(Bep)

L, =P(g,(X) #Y|D,) and b = b(n). Furthermore, the limit n — oo will be replaced by the limit
n — oo. Before we formulate the result on the strong consistency, we suppose that the random
field {(X;, Yi) }iezv is arithmetically B-mixing in the sense that there exist C; > 0 and 6; > 0 such
that

B(r) < Ct~° forall r € N*. (4)

The following theorem generalizes the strong consistency result of Younso (2017a) to the spatial

case.

Theorem 5.2 (Strong consistency). Let (Ey)i>1 be a sequence of totally bounded subsets of E.
Assume that the training data D,, are observations of B-mixing functional random field such that
(4) with 6, > 2N and that the metric space (E,d) is Polish. Assume also that Assumption 1-3 hold.
Let (ky)n>1 be an increasing sequence of positive integers such that

: b
W(E; ) <ooand ) M, () P, % < oo,

for some integer p = p, € [1,n/2] with p, — o asn — oo. If b — 0 and

I’lN

pNlog(n).A2(b/2

)—>oo as n—» oo,

then,
L, — L" as n— o with probability one.

Remark 5.1 Observe that for N = 1, the assumptions on b are used by Younso (2017a) to
obtain the strong consistency in the temporal case (see also Abraham et al. (2006) for similar
assumptions in the independent case). Furthermore, consider .4, (b/2) ~ n"N with 0 <y < 1,
and choose p, ~ n™ with (14 9;)N/6; < y» < 1 and 6; > 2N. Clearly, we have

Y M, <Z2)> Py <o

n>1

The condition

nN

pNlog(n). A2 (b/2)

— S

may be satisfied if 9» + 27 < 1. The condition Z U(E; ) < oo, used by Abraham et al. (2006)
n>1
and Younso (2017a), is classical for this type of results.
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6. Smoothing factor selection and simulation study

In practice, the choice of a smoothing parameter b is a crucial problem to the kernel classifier.
A wrong value of b may lead to catastrophic error rates. In principle, there is no universal
criterion that would enable an optimal choice. Various techniques for the smoothing factor
selection have been developed in the nonparametric kernel smoothing method. Among the
different selection techniques to select the parameter b, one can propose the cross-validation
criterion (CV). This technique, being widely used in statistics, is primarily a way of measuring the
predictive performance of a statistical model. In the nonparametric functional regression, the (CV)
criterion is implemented in R programming environment (see Febrero-Bande and de la Fuente,
2012), but the situation is slightly different for the nonparametric classification problem. However,
taking
0if Yicy, Yillaxgm<p) < Xier, (1= Y5) Liaox,0<n)

gn(x) =
1 otherwise,

the (CV) criterion is based on minimizing, with respect to b = b(n) € R, the CV(b) given by

CV(b) = 5 ¥ (i~ g, (X)X,

iel,

where g, (X;) indicates the moving window rule based on leaving out the pair (X;,¥;) and @ (X;)
is the weight of the element X;. We assume that b belongs to some set H, C R, including bi1 s b}c
for all i € I,, where bij is the distance to the j neighbor of X; with respect to the metric d and k
is chosen depending on the size of training data set. The weight function ®(x) may be chosen
as a bounded function with support on a bounded compact set having non-empty interior (see
Rachdi and Vieu, 2007). For the sake of simplicity, we will take @(x) as a constant. Therefore,
the cross-validated smoothing factor is given by

bopt = arg}grelgl CV(b).

Now, we use the R statistical programming environment to run a simulation study for N = 2. We
propose to investigate the performance of our method in the following simulated scenario. For

eachie€ I, and r € [1,21], we generate pairs (X;(7),Y;) via the following model inspired by Ferraty
and Vieu (2003) and Preda (2007) (see also Jacques and Preda, 2014):

Class(¥; =0) : Xi(¢t) = Uihi (1) + &(2)
Class(Yi = 1) ZXi(t) = Uihl(l) —i—Vihz(l‘) —I—Si(l‘)

where U; and V; are independent Gaussian variables such that E(U;) = E(V;) = 0, Var(U;) =
1/2,Var(V;) = 1/12 and &(t) are dependent normal random variables with mean 0, variance 2
and covariance function c (||u||) = 2||u||=> for all u € R? with u # 0. It is also supposed that &(t)
are independent of both U; and V;. The functions /; and h; (plotted on Figure 1) are defined for
t € [1,21], by hy(t) = max(6 — |t —7|,0) and hy(t) = max(6 — |t — 15],0).
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h1 and h2 functions

FIGURE 1. Plots of the function hy(t) (solid line) and the function hy(t) (dashed line).

It is important to mention that {&/(r) }ic;, are observations of an o-mixing random field since
any Gaussian random field with covariance function c(||u||) converges to zero as ||u|| — oo is
o-mixing. We suppose that the function space on the interval [1,21] is endowed with the metric
d (between x; and x,) defined by d(x1,x;) = |, 12 Vx1(t) = x2(r)|dt. This metric is used without
discretizing the data. The curve X;(¢) will be colored by black if ¥; = 1 and by red if ¥; = 0. Figure
2 displays two realizations of the X;’s and Figure 3 displays a sample of size n> = 625 observed
on the two-dimensional grid Ls = {(i, j), 1 <1i,j <25} (plotted on Figure 4).

15
|
15
|

10
|
10
|

-10
-10

-15

-15

FIGURE 2. Two realizations of simulated curves with label O (left) and label 1 (right).
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[:18 oL 4 0 §- - S-

FIGURE 3. Sample of 625 observed curves on the region Ips.
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0
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15
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FIGURE 4. The region Ips where the red sites are associated with curves from class 0 and the black sites are associated

with curves from class 1.
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Since the theoretical results of this paper are related to the consistency, it is natural to consider
training samples with increasing sizes and to estimate the corresponding misclassification error
rates. For this aim, for each n = 25,50,75, we generate 100 samples simulated on the rectangular
region G, = {(i,J) € N2:1<i<n+m,1< j<n} which consists of n(n+m) sites, for some
positive integer m > 1. In each replication, the region C, ,, is partitioned into two regions: the
training region I, = {(i, j) : 1 <4, j <n} and the test region J,, ,, = {(i,j) :n+1<i<n+m,1 <
J < n} where Card(J, ) = nm. We will choose m so that the size of the test sample is 150.
For example, if n = 25, we choose m = 6. In this case, the training region is l»5 and the test
region is Jos ¢ = {(i, /) : 26 <i < 31,1 < j <25} If n =50, we choose m = 3. In this case, the
training region is I5 and the test region is Jso3 = {(i, j) : 51 <i<53,1 < j <50}. If n =75, we
choose m = 2. In this case, the training region is I75 and the test region is J75, = {(i,)):76 <
i <77,1 < j <75} In each replication, the proposed classifier is determined on the basis of
D, ={(X;,Y;) :i € I}, the training sample, at hand (based on the optimal bandwidth minimizing
the CV (b)) and the misclassification error rate (ER) is evaluated based on the associated test
sample D), ,, = {(X;,¥;) 11 € Jun}, Where ER = L Y icin I;y,4(x,)}- Table 3 reports the average
error rate (AER), obtained by averaging the error rates associated with the corresponding 100 test
samples.

TABLE 1. Table 1: Estimated optimal bandwidths and average error rates corresponding to training samples of
different sizes.

n 25 50 75
hopt 33 2.8 2.0
AER | 132% | 103% | 8.4%

Table 1 shows that the estimated optimal bandwidth and the error rate decrease when the training
sample size increases. This means that the practical results in the simulation study are in line with
the theoretical results.

7. Proofs

We recall that we have by (1)

Tiew (1-%) Lixen, )

0 if N (x) <

AL (Byp)
gn(x) = }
1 otherwise,
where
Yicr, Yillixes,
nn(x) = IGA KB}
nyu (Bx,b)
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Proof of Lemma 4.3 By Cauchy-Schwartz inequality, we have
E|n(x) — Ena(x)| < (var(1a(x)))"/

var(Y Iixcp, ,y) 172
S( AL (Byy))? *S“(x))

E(Y Iixep,,1)? 2
< (w”"“)) |

where
1

Sn(X) =
(A (Byp))? (ij)€ln x In:ij

[cov(As, Aj)]

and A; = Yilx.cp, ) for all i € Iy. Now, since |Y]| <1, we obtain

1/2
E’nn<x> _Erln(x)’ < <,\ +Sn(x)> : )

AU (B )

Let us first deal with the cross term Sy, (x). Let up, a sequence of positive numbers such that u, — oo
as n — oo . Then, we can write

Su() = y lcov(AnAy)|

(ﬁﬂ (Bx7b> )2 (i.§)Eln X In:0<|[i—j|| <un
1 . (6)
I S |cov (A, Aj)].
(A (B p))? (L) €l xn:[li=jl|>un

Now, for 0 < ||i — j|| < un, according to Assumption 2, we have
[cov(Ai, Aj)| < E(Aidy) +E(A)E(4)
< P((Xi,X;) € Byp X Byp) +{P(X € Byp)}?
< C{“(Bx7b)}l+81 + {u(Bx7b)}2>

where 0 < g€ < 1 is the constant defined in Assumption 2 and C is a generic positive constant,
independent of both x and n, whose value may vary from line to line. Since t(By ;) < 1 and

Card{(i,j) e WX L : 0 < |li—j|| S un} < ZCard{j Eh:0<[[i—j| <un} <H(2up)",

icl,
then, {t(Byp)}? < {1(Byp)}' ™ and

lcov(As, Ap)| < Chud [ (Bop) ' )

(1.§) €l x In:0< [[i—j|| <utn
If ||i— j|| > un, by Lemma 3.1 and the fact that |Y| < 1, we get

|cov (A, Aj)| < 4a([[i—j)- ®)
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From (6), (7) and (8), we can write

RSP S Y alli-dl
nX) >3 ~ -
f(u(Byp)) 8 (n#(Bxyb))z (1) €ln X o [i—j | >t
culy
< n N— ]
- ﬁ(.u(Bx,b))l_sl f Z

1>un

(©))

Since by assumption ¢(i) < Ci~9 for some 8 > 2N, it follows that

Z N la(i) < C/ N0 1qr, (10)
up—1

i>up

Now, since uy — oo, then up — 1 > uy /2 for i sufficiently large. Then, we have

Consequently, by (9) and (10), we obtain

cul CuN-9
S,(x) < = n 4 — n . 11
W) < B T AuBL)? (an

If we choose un = { (B, )} /N and N/(6 —N) < & < 1, from Assumption 2 and since 6 > 2N,
we get

Sn(x) € ————. (12)
Thus, form (5) and (12), it follows that

Elfla(x) = Ema(3)| < —rm=s.

Therefore, according to Fubini’s theorem, Jensens’s inequality and Lemma 4.2, we conclude that

E/ [11n (x) — Enn (x) |1 (dx) <C/

and the proof is completed. [J
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Proof of Theorem 5.1 Since the extension of Theorem 2.3 in Devroye et al. (1996) to the
infinite dimensional setting is straightforward, thus, the consistency will be proved if we show that

E/m )|t (dx) — 0 as m — oo.

Since 1)(x) < 1 and Eny(x) < 1 for every x € E and n € (N*)", we have for each k > 1,

E [ () =m0l (dx)

—E/ 1) — ()14 (dx) +E/ 1) = Mo () |1 ()

< [ In(3) ~Ena()lad) B | () ~ Ema(o) () + 20 (E).

Consequently, according to Lemma 4.3, we get the following inequality

E [ |1(x) = o)1)
/ M)~ Ena(x >|u<dx>+c(;wk (;’))UZHM(EE)-

Therefore, by using Lemma 4.1 and the assumptions on b, we obtain for each k > 1,

timsupkE | 1(x) = 1 ()| () < 241 (ED)

n—oo

If we let k go to infinity, Assumption 1 yields

limsupE In( ) = M (x)|p(dx) =0

n—oo

and the proof of the theorem is completed. [

Proof of Theorem 5.2 The strong consistency will be proved if we show that

/ [n(x) x)|p(dx) — 0 as n — oo with probability one.

13)

(14)

15)

(16)

We set Z = (X,Y) and Z; = (X;,Y;) for each i € I,. By assumptions, X and X; take values in the
Polish metric space E, so, Z = (X,Y) and Z; = (X;, Y;) take values in the product space E x {0,1}

which is also Polish. Without loss of generality, let n = 2pq for p = p,,q = g, €

Jo={i=Gtyenin) NV 0< i <g—1,Vk=1,..,N}.
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We define blocks, inspired by Tran (1990) (see also Carbon et al., 1997), as follow, for each j € J,,

S = fied,: 2jp+1 < i < Qe+ Dp, k=1,...,N}

SO =fiel : 2ip+1<i<jx+)p, k=1,... .N—1

J
and (2jy+1)p+1<iy <2(jn+1)p}

s

) = fie Qi Dp+1 < i <20+ Dp, k=1,...,N—1

and 2jyp+1<iy < (2jy+1)p}
N
ST ={ieh: (2+)p+1<ic<20js+1)p, k=1,...,N}.

We have .
2 .
L=UUs}’ (17)

i=1jel,

and one can easily prove that for all j € J,, Card(SJ@) = p" and for all j #§/, dist(Sjgi),SJg,i)) > p.
Foreachi=1,...,2Y and j € J,, let Wj(i) =(4,ie Sj(i)) and let y: {1,...,¢" } — J, be a bijection.
We can define a lexicographic order relation <j,, on J, as follows: for all /,/' € {1, ..., gV}, we
have y(I) <jr y(I') if I < I'. For any j € J,, we can find [ € {1,...,¢"} with y(I) = j. Now,
for each i = 1,...,2V, by applying Lemma 3.2 together with a decomposition in blocks similar
to that introduced by Doukhan et al. (1995) (see also Viennet, 1967) on the family of vectors
{Wq(/l()z)v [=1,...,¢"}, we can generate independent copies {Wq(,’()l), [=1,...,¢"} such that: they
(@)

(@) (i) ) (@) . ) o)

1 . 1 1 S 74U . 4 1
as W) = (4, i€ SW)) and IP’(WW(I) # Ww(l)) < B(p) because dlSt(Sw(l)’Sly(
[ #1'. As a consequence, we have

are mutually independent, for all / € {1,...,¢"}, Wy(/i()l) =(Z,ies 1)) has the same distribution

l,)) > p for any

P(Z # Z) = P((X;, ¥;) # (%, %)) < B(p) foralli € I,. (18)
By (17), we can write

ZN
Z f]i]I{XiGBx,b} = Z Z Z I?i]I{XiGBﬂ;}

icl, i=1j€g 5
J

where for each i = 1,...,2", the variables {Zie Sj(,‘) K (RieB.y ) je Jq} are mutually independent.

If we denote

- Yic, T Ligien, ) . Yies, Zies}” i Lixes.,)
nn(x) = nN,U (Bx7b) and nn,i(x) = I’lN,U(BXVb)
then,
2N
(%) = Y (). (19)

i=1
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Let (k,),>1 be the sequence of increasing positive integers defined in Theorem 5.2. We first
proceed to show that

/ In(x) — Nn(x) |1 (dx) — 0 with probability one as n — eo. (20)
k;

n

One can easily prove that

N (x) — M (x) |1 (dx)

e @n
<E/ — ()| 1 (dx) +/ |1 (x) = En, (x) |1 ().
According to (15), we have
E/ ()| () <E/m M () |1 (dx) — 0 as 7 — oo,
Thus, by (21), in order to prove (20), it suffices to show that
/E |Mn(x) —En,(x)|u(dx) — 0 with probability one as n — oo. (22)
o

Using Markov’s inequality, we have for any € > 0,

)

< elE\ . o)~ Emwlu(a - [ !ﬁn(X)—Eﬁn(x)\u(dX)‘

n

B(|,L in-Enwin@)- [ 15.0-Enwin@)| >

n

<e'E / 111a(x) = En (9] = 1) = ER () ()

<e B ([ 1m0 -nlne@) B [ 11,0 -nwk@)

—26_1E/ |71 (%) — M (x) | 4 (dx)
Zi ' Y]I X: i Yilly
_ 2871E eIN 1{X;eB,} _ Ze],;v i{XieB,,} [.L(dx)
Epy, nN(Byp) nN 1 (Byp)
Y]I g
—1 {X EB h} 1 {XiEBx,b}
El; 4 5 / U(dx
l; {(X,11)#(X:.5) } nNN(Bx,b) ( )
Y El, ¢ 5 / u(dx
.g' ((RT) £} HNH )

As a consequence, by Lemma 4.2, (18) and (4), we have

e

P(\ f. ) =En @ = [ 1)~ Enouta

n
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L - 1
47 Y P((X, 1) # (X, 1)) /Ek,, m#(dx)

icl,
-1 é -1 é -6

for some generic constant C > 0 independent of both x and n. Thus, by the assumptions on p and
the Borel-Cantelli lemma, we conclude that

L 1m0 —En)lu(dn) — [ 17,0 - ER(l(dr) —0
Ey, Ey,

with probability one as n — oo. Consequently, (22) will be proved if we show that

/ | T (x) — Ef)p(x) |t (dx) — O with probability one as n — eo. (23)
Ej

n

To do that, by (19), we have

2N
100 = Bt < B [ ) ~ s, 4

n

To establish (23), by (24) it is sufficient to show that

/ | T1n,i(x) — Efjni(x) | (dx) — 0 as n — oo with probability one, (25)
k

n

for each 1 <i <2N. Without loss of generality, we show (25) for i = 1. To do that, we denote
foreach I =1,....,¢", W, := () =((X%,%), i€ SE;/)(I)). Let F : (E x {0,1})P")7" — R a real
function deﬁned as follows

F(Wl,...,wqw:/& 71 (x) — Eff1 (x)| 11 (dx)

Yl E(Y 1 x
— / N{XleBx.b} o ( 5 {XEBX.I)}) [J(dx)
Ekn JG] n IJ“ (Bx7b) n lJ“ (BxJ?)

For v, # W, where w;, W, € (E x {0, 1})1’N, using Lemma 4.2, we have

. 2pN 1
F (Wi, ooty W) = F(Wa, W), W )| < ’jv/ w(dx)
nV e,

kn vab)
cpV b
< — M| =
= TN kn <2> )

where C > 0 is the generic constant. Hence, by McDiarmid’s inequality (see McDiarmid, 1989),
we have for every € > 0,

2Yl
P (|F (Wi, ..., Wov) —E(F (W1,..., W) | > €) < 2exp ( M)
2
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Now, by the Borel-Cantelli lemma and the assumption on b, we conclude that
119 = ERua (911(d9) ~E [ 171 () =B () (dx) — 0
kn kn

with probability one as n — co. As a consequence, by (23), the proof of (22) will be completed if
we prove that

E/E [t () — Effy ()|t (dx) —s 0 as n — 0. (26)

Since 2a(t) < B(t) < Ct=% for each t € N*, with a straightforward adaptation of the proof of
Lemma 4.3, one can easily prove (26). So, the proof of (25) is completed and then, the proof of
(23) is also completed. To finish the proof of the theorem, let us denote for each n > 1 and i € [,

Lixies.,)
7= [ Mgy
< 1(Bry) p(dx)

Consequently,

o[ L g ] -

i€l

By the assumption },,>; tt(Ef ) < oo together with the Borel-Cantelli lemma, we have

—~ Z Z' — 0 with probability one as n — co. 27
n iel,

Hence, we can write

Jp e =m @) = [ ) - molut@) + [ )= lula)

n

< [ ) =M+ (B ) + o T -

n i€l,

Finally, according to Assumption 1, (20) and (27), the three terms on the right hand side of
the last inequality tend to O as n — oo, hence (16) tends to O and the proof of the theorem is
completed. [
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