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Abstract: Over the last few years, case-control genome-wide association studies (GWAS) have proven to be a
successful tool to identify genomic regions associated with complex diseases. Nevertheless, current GWAS still heavily
rely on a single-marker strategy, in which each biological marker (or SNP for single nucleotide polymorphism) is
tested individually for association with the disease. However, it is widely admitted that this is an oversimplified
approach to tackle the complexity of underlying biological mechanisms and gene-gene interaction must be considered.
Unfortunately, gene-gene interaction detection gives rise to complex statistical challenges, arising from the high-
dimensionality and the complex architecture of the data as well as the size of the space of interaction models. The
purpose of this survey is to provide a critical overview of the numerous statistical methods proposed to detect gene-gene
interaction detection in GWAS. Those methods have been developed to detect interaction at various scales of the data
and we decompose our survey in three main classes: SNP-SNP interaction methods, Gene-Gene interaction methods
and large-scale methods. For each class of methods, we identify relative strengths and weaknesses in terms of statistical
power and provide perspectives to the future of statistical strategies in gene-gene interaction analysis.

Résumé : Ces dernières années ont confirmé l’intérêt des études pangénomiques (GWAS) pour l’identification de
régions génomiques associées à des maladies complexes. Néanmoins, les études actuelles reposent sur une stratégie
simple-point, dans laquelle chaque marqueur biologique est testé individuellement pour l’association avec la maladie.
Cependant, il est largement admis que cette approche est trop simpliste pour s’attaquer à la complexité des mécanismes
biologiques sous-jacents et qu’il est important d’inclure l’interaction gène-gène dans l’analyse. Malheureusement,
la détection de l’interaction gène-gène soulève des défis statistiques complexes, issus de la grande dimension et de
l’architecture complexe des données ainsi que de la taille de l’espace des modèles d’interaction. Le but de cette étude
est de fournir un aperçu des nombreuses méthodes statistiques proposées pour détecter une interaction gène-gène
dans les GWAS. Ces méthodes ont été développées pour détecter l’interaction à différentes échelles des données
et nous décomposons notre étude en trois classes principales : les méthodes d’interaction SNP-SNP, les méthodes
d’interaction Gene-Gene et les méthodes à grande échelle. Pour chaque classe de méthodes, nous identifions les forces
et les faiblesses en termes de puissance statistique et proposons des pistes de développements dans la modélisation
statistique de l’interaction gène-gène.
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1. Introduction

Case-control genome-wide association studies (GWAS) aim at investigating the genetic compo-
nents of binary traits like major diseases (cancer, diabetes, Alzheimer, Parkinson, ...). GWAS
typically compare the probabilistic distribution of hundreds of thousands of variables, called
Single Nucleotide Polymorphisms (SNPs), between a population of affected individuals and
a population of unaffected individuals. Since SNPs are precisely located in the genome and
cover the entire genome, GWAS are used to identify SNPs or genomic regions that influence
the risk of disease with the hope of accelerating drug and diagnostics development (Balding,
2006). Single-locus approaches, whereby each SNP is tested individually for association, have
first been developed to analyse GWAS (Lewis, 2002). Although such single-locus approaches
have successfully identified regions of disease susceptibility (Hindorff et al., 2009), findings were
of modest effect and a large proportion of the genetic heritability is still not covered for common
complex diseases (Maher, 2008; Manolio et al., 2009). To overcome such a lack, the search for
gene-gene interaction, also refers to as epistasis, has gained in popularity (Moore, 2003; Phillips,
2008). Since human complex diseases are generally caused by the combined effect of multiple
genes, the detection of genetic interactions is indeed essential to improve our knowledge of the
etiology of complex diseases (Cordell, 2009; Hindorff et al., 2009).

However, the detection of gene-gene interaction in GWAS remains very challenging. First,
from a computational point-of-view, the number of SNPs (or variables) in a GWAS can reach up
to 1,000,000, thus generating

(
1000000

2

)
≈ 5×1011 possible interaction tests. An exhaustive testing

requires extensive computing resources to perform, store and post-process the analysis (Ritchie,
2015). Next, from a biological point-of-view, gene-gene interaction has to face with is the lack
of clear definition of what epistasis means. This has generated a big controversy regarding the
ability of methods based on a statistical definition of interaction to detect biological interaction
(Cordell, 2002). As a result, there is no consensus regarding the underlying null hypothesis
of statistical methods which make the formal comparison between methods complex. Finally,
from a statistical point-of-view, the detection of gene-gene interaction raises issues related to the
statistical power of proposed methods, such as the data structure and the complexity of the models
of interaction. GWAS data are first characterized by their high-dimension and by the correlation
between variables inherited from the complex architecture of the genome. Furthermore, the lack
in power is enhanced by the number of factors known to influence the power of statistical methods
in GWAS (Emily and Friguet, 2015; Emily, 2016b) and by the vast amount of epistatic models
(Li and Reich, 2000; Hallgrimsdottir and Yuster, 2008).

The purpose of the review is to provide a comprehensive comparison of the detection ability of
statistical methods used to search for gene-gene interaction in susceptibility with a binary outcome.
Compared to previous reviews proposed in the literature (Cordell, 2009; Steen, 2011; Ritchie,
2015; Niel et al., 2015), where attention was paid to the computational burden relative to the
application of these methods at the genome scale, we focus on the statistical power of each method.
Although the lack of consensus on the statistical null hypothesis upon which each method is based
(which is not possible because of the limited biological knowledge of gene-gene interaction)
prevents from a nice and clear formal power comparison, we focus here on several features known
to influence power function. According to their relative scope, we first propose a classification of
statistical methods and distinguish between methods dedicated to (1) SNP-SNP interaction, (2)
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gene-gene interaction and (3) genome-wide interaction. Due the complexity of living organisms,
the variability of an outcome may indeed be related to variations observed at different biological
levels. More specifically, GWAS data have the ability to investigate association at (1) the smallest
scale of a single site in DNA using SNPs, (2) the functional level of the gene using SNP-sets and
(3) the organism level through whole genome scans. From a statistical point-of-view, in each class,
methods aim at addressing the issue of interaction by considering different sets of predictors. First
for SNP-SNP interaction methods, only two predictors are included in the models. For gene-gene
interaction methods, only two SNP-sets (with variable sizes, namely m1 and m2) are considered.
However, SNP-set sizes are assumed to be moderate and does not scale up to the genome size.
Finally, for genome-wide interaction the whole set of predictors is included in the model thus
resulting in a deep modification of the scale of interactions that can be considered. Therefore,
several statistical strategies have been proposed to deal with whole genome data by (1) restricting
to exhaustive pairwise testing by combining all possible SNP-SNP interaction tests or all possible
gene-gene interaction tests, (2) estimating multidimensional models that include interaction terms
possible of order higher than 2 or (3) adapting machine learning techniques able to cope with
GWAS data.

Due to the lack of clear definition of gene-gene interaction, our comparative analysis is not
based on a formal power studies but rather focus on qualitative factors that influence the statistical
power of each method. To successfully detect gene-gene interaction, a method is expected to be a
good trade-off between flexibility, interpretability and computational efficiency. In this review, we
summarized such a trade-off by ten main qualitative features, reported in Table 1, that have been
stated in previous reports (Cordell, 2009; Niel et al., 2015; Emily, 2016b). Those features can
be grouped into four main classes whether they are related to (1) the impact of the correlation
structure among predictors, (2) the nature of the underlying signal (i.e. the relationship between
between the response Y and the set of predictors), (3) the computational aspects of the method
and (4) the interpretability of the results.

First, the architecture of the genome induces a complex correlation structure among the
predictors. It is therefore important for a statistical method to account for such a structure.
However, since correlation structure can be very different from a genomic region to another,
statistical methods are expected to consider a large panel of structure while not overfitting the
data. We focus our comparative analysis on the following qualitative features: ]1: the robustness
to predictors structure (i.e. the capacity for a method to perform well regardless of the predictor
structure), ]2: the control of the Type-I error rate and ]3: the need for parameter hand-setting (i.e.
the capacity for a method not to rely on parameters that are likely to generate overfitting).

Next, because of the complexity of the space of epistatic models, the true relationship between
the response and the predictor (also called nature of the signal) can have very diverse form. It is
therefore crucial for a method to be flexible enough to catch a large variety of interaction signals.
We therefore consider 3 additional qualitative features: ]4 the reliance of an underlying model
(i.e. the model-free characteristic of a method), ]5 the capacity to detect non-linear relationship
between the response and predictors and ]6 the capacity to detect pure epistatic signal (i.e. signal
without marginal effect).

Finally, we consider qualitative features that are of importance when searching for gene-
gene interactions in practice. We focus on the computational performances of each method
by considering ]7 the possibility for a method to a have a closed formulation that fasten the
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computation of the method, ]8 the computational efficiency of each method (i.e. the computational
cost), ]9 the scalability of the method to determine whether a method is applicable at the genome
scale or not and ]10 the interpretability of the results. The latter feature is important in the sense
that interpretability allows to give insights in further investigation to be performed to propose
therapeutic development.

Table 1. Summary of the ten qualitative features that serve as a basis for our comparative analysis. Those features are
related to four characteristics : the correlation among predictors, the nature of the signal, the computational aspects
and the interpretability of the results.

Correlation among Nature of the signal Computational aspects Interpretability
predictors

]1 Robustness to predictors ]4 Reliance of an ]7 Derivation in ]10 Capacity to detect
structure underlying model closed form true causal predictors

]2 Control of the Type-I ]5 Capacity to detect ]8 Computational
error rate non-linear association efficiency

]3 Parameter hand-setting ]6 Capacity to detect ]9 Scalability
pure epistasis

The remainder of the article is organized as follows. In section 2, the main notations used
throughout the paper as well as the statistical characteristics of a GWAS dataset are introduced.
Then, Section 3 is devoted to statistical methods proposed to detect interaction between two
SNPs, therefore focusing on the smallest possible scale. In Section 4, statistical procedures
motivated to detect interaction at the gene level are presented and evaluated. In the next Section 5,
statistical methods and strategies dedicated to large-scale (up to genome-wide) analysis are
presented. Finally, the paper is ended by Section 6 where the remaining limitations as well as
some perspectives in gene-gene interaction are discussed.

2. Notations, modeling assumptions and statistical hypotheses

Let Y ∈ {0,1} be the random binary variable corresponding to the disease status (i.e. Y is the
phenotype variable) where Y = 0 stands for an healthy individual (control status) and Y = 1 a
diseased individual (case status). Let consider that the genotype of an individual is measured
through a collection of p SNPs. In more details, for i = 1, . . . , p, let Xi be a random variable
modeling the genotype of the ith SNP. Various modeling of the Xi’s can be considered. First, in
its raw representation, Xi is a categorical variable with three states denoted by Xi ∈ {AA,Aa,aa}.
States AA and aa correspond to the two homozygote genotypes while Aa is the heterozygote
state, where A is the major (resp. minor) allele of the SNP i. In a second representation, it can
be considered that genotypes are allele counts so that Xi ∈ {0,1,2}. In another modeling, each
Xi can be treated in terms of allele. Therefore, at the allele level, Xi ∈ {A,a} is a binary variable
and, since each individual has two copies of an allele, the sample size is twice the number of
individuals. Finally, a fourth representation of Xi is a continuous allelic modeling where Xi ∈ {0,1}.
It is noteworthy that each of these four modeling are considered throughout the paper. The choice
of a specific modeling is mostly driven by mathematical arguments but it is important to keep in
mind that it deeply impacts the interpretation of the results.
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Let further consider a sample of n individuals with nc controls and nd cases (nc + nd = n) and
Y = [y1, . . . ,yn]′ the vector of the observed binary phenotypes. The observed genotypes can be
represented by a n× p matrix: X = [xi j]i∈1...n; j∈1...p where xi j is the observed genotype for SNP j
carried by individual i. Therefore, xi, j is the realization of a random variable characterized by one
of the four probabilistic distributions introduced in the previous paragraph. Therefore a typical
dataset can be summarized as in the following Equation (1).

Y =



y1
...

ync

ync+1
...

ync+nd


X =



x1,1 . . . x1,p
...

. . .
...

xnc,1 . . . xnc,p

x(nc+1),1 . . . x(nc+1),p
...

. . .
...

x(nc+nd),1 . . . x(nc+nd),p


(1)

2.1. SNP-SNP interaction statistical hypotheses

In a first part we focus our attention to statistical methods that aim at detecting an association
between Y and a pair (Xi,X j) where i , j and i = 1, . . . , p, j = 1, . . . , p. Four different types of
association are considered in the literature, whether the association is investigated at the genotype
or the allele level and whether the type of investigated association is statistical or biological.
The four types of association, called S tatAllele, S tatGeno, BioAllele and BioGeno relies on four
different null hypotheses : H0

S tatAllele
S S I (see Eq. (2)), H0

S tatGeno
S S I (see Eq. (3)), H0

BioAllele
S S I (see

Eq. (4)) andH0
BioGeno
S S I (see Eq. (5)). Statistical hypotheses refers to a linearity in the effects that

is measured by odds-ratio as proposed in Equations (2) and (3). However biological hypotheses
are based on biologically-driven measures of association that are assumed to be equal in cases
and controls, as displayed in Equations (4) and (5).

In each of the four situations, the null hypothesis can be formalized via the joint distribution at
the genotype level:

π
y
k,` = P[Y = y,Xi = k,X2 = `] for y ∈ {0,1}, k ∈ {AA,Aa,aa} and ` ∈ {BB,Bb,bb}.

If association is investigated at the allelic level, the joint probability distribution is denoted by
py

k,`, where py
k,` is obtained according to πy

k,`’s as follows:

py
a,b = π

y
aa,bb +

π
y
aa,Bb +π

y
Aa,bb

2
+
π

y
Aa,Bb

4
; py

a,B = π
y
aa,BB +

π
y
aa,Bb +π

y
Aa,BB

2
+
π

y
Aa,Bb

4

py
A,b = π

y
AA,bb +

π
y
Aa,bb +π

y
AA,Bb

2
+
π

y
Aa,Bb

4
; py

A,B = π
y
AA,BB +

π
y
aA,BB +π

y
AA,Bb

2
+
π

y
Aa,Bb

4

The formal notations for the joint distributions considered in SNPxSNP association tests are
summarized in Table 2.

The four null hypotheses can then be formulated as follows:
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Table 2. Joint distributions of the triplet (Y,X1,X2) when X1 and X2 have three categories (genotypic data) or two
categories (allelic data).

Joint distribution in controls Joint distributions in cases

Genotypic data


π0

AA,BB π0
AA,Bb π0

AA,bb
π0

Aa,BB π0
Aa,Bb π0

Aa,bb
π0

aa,BB π0
aa,Bb π0

aa,bb



π1

AA,BB π1
AA,Bb π1

AA,bb
π1

Aa,BB π1
Aa,Bb π1

Aa,bb
π1

aa,BB π1
aa,Bb π1

aa,bb


Allelic data

p0
A,B p0

A,b
p0

a,B p0
a,b


p1

A,B p1
A,b

p1
a,B p1

a,b



H0
S tatAllele
S S I :

(
p1

a,b

p0
a,b

p1
A,B

p0
A,B

)
(

p1
a,B

p0
a,B

p1
A,b

p0
A,b

) = 1 (2)

H0
S tatGeno
S S I :

(
π1

k,`

π0
k,`

π1
AA,BB

π0
AA,BB

)
(
π1

k,BB

π0
k,BB

π1
AA,`

π0
AA,`

) = 1
(
∀(k, `) ∈ [Aa,aa]× [Bb,bb]

)
(3)

H0
BioAllele
S S I :

(
p1

ab−(p1
ab+p1

aB)(p1
ab+p1

Ab)
p0

ab−(p0
ab+p0

aB)(p0
ab+p0

Ab)

) (
p1

AB+p1
Ab+p1

aB+p1
ab

p0
AB+p0

Ab+p0
aB+p0

ab

)
√

(p1
AB+p1

Ab)(p1
aB+p1

ab)(p1
AB+p1

aB)(p1
Ab+p1

ab)
(p0

AB+p0
Ab)(p0

aB+p0
ab)(p0

AB+p0
aB)(p0

Ab+p0
ab)

= 1 (4)

H0
BioGeno
S S I :

(
π1

k,`

π0
k,`

π0
AA,BB

π1
AA,BB

)
(
π1

k,BB+π1
k,Bb+π1

k,bb

π0
k,BB+π0

k,Bb+π0
k,bb

π0
AA,BB+π0

AA,Bb+π0
AA,bb

π1
AA,BB+π1

AA,Bb+π1
AA,bb

) (
π1

AA,`+π
1
Aa,`+π

1
aa,`

π0
AA,`+π

0
Aa,`+π

0
aa,`

π0
AA,BB+π0

Aa,BB+π0
aa,BB

π1
AA,BB+π1

Aa,BB+π1
aa,BB

) = 1 (5)

(
∀(k, `) ∈ [Aa,aa]× [Bb,bb]

)
Table 3 indicates the underlying null hypothesis (among H0

S tatAllele
S S I , H0

S tatGeno
S S I , H0

BioAllele
S S I ,

H0
BioGeno
S S I ) addressed by each of method considered in this review and Section 3 aims at introduc-

ing each method in details.

2.2. Gene-gene interaction statistical hypotheses

In a second part, we focus on gene-level testing approaches. In such approaches, we consider
two SNP-sets (called gene for ease of reading) where each gene is a collection of respectively m1
and m2 SNPs. The observed genotypes for gene X1 can be represented by a n×m1 matrix: X1 =

[x1
i j]i∈1...n; j∈1...m1 where x1

i j ∈ {0;1;2} is the number of copies of the minor allele for SNP j carried
by individual i. A similar representation is used for gene X2 where X2 is a n×m2 matrix. Let
us further introduce Xc

1 and Xc
2 the matrices of observed genotypes among controls for gene X1

and X2 and Xd
1 and Xd

2 among cases for both genes. Thus Xc
1 is a nc ×m1 matrix, Xd

1 a nd ×m1
matrix, Xc

2 a nc×m2 matrix and Xd
2 a nd ×m2 matrix. A general setup of the observed values can

be presented as proposed in Equation (6):
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Y =



y1
...

ync

ync+1
...

ync+nd


; X1 =



Xc
1

Xd
1


=



x1
11 . . . x1

1m1
...

. . .
...

x1
nc1 . . . x1

ncm1

x1
(nc+1)1 . . . x1

(nc+1)m1
...

. . .
...

x1
(nc+nd)1 . . . x1

(nc+nd)m1


; X2 =



Xc
2

Xd
2


=



x2
11 . . . x2

1m2
...

. . .
...

x2
nc1 . . . x2

ncm2

x2
(nc+1)1 . . . x2

(nc+1)m2
...

. . .
...

x2
(nc+nd)1 . . . x2

(nc+nd)m2


(6)

The general question raised by the detection of gene-gene interaction is to determine whether
accounting for the joint information of X1 and X2 improves the explanation of Y compared to
only considering both marginal informations from X1 and X2. By considering the dimensionality
of each gene and the correlation within and between genes, such a question can be formalized in
many different ways, thus leading to a large number of potential null hypothesis. In this review we
focus on four main statistical approaches introduced in the literature: a signal detection approach,
a dimension reduction approach, an approach based on comparing covariance structures and an
entropy-based approach. Section 4 aims at explaining the methods in the literature by focusing on
the design of statistics with respect to the statistical approaches as summarized in Table 5.

3. SNP-SNP interaction

In this section we focus our attention to statistical methods that aim at detecting an association
between Y and a pair (Xi,X j) where i , j and i = 1, . . . , p, j = 1, . . . , p. Let A and a (resp. B
and b) be the two alleles for Xi (resp. X j). When considering the raw representation for Xi and
X j, analyzed data can be summarized into a 3× 3× 2 three-way contingency table. In such a
table, cell (i, j,k) is denoted by nk

i, j and corresponds to the number of individual with genotype
i ∈ {AA,Aa,aa} for Xi, genotype j ∈ {BB,Bb,bb} for X j and disease status k ∈ {0,1} (see Figure 1).

Figure 1. Raw representation for SNP-SNP interaction using a 3×3×2 three-way contingency table.

A large number of methods have been proposed in the literature to detect interaction at the SNP
level, i.e. SNP-SNP interaction (Shang et al., 2011). Based on statistical modeling hypothesis,
these methods can be grouped into 3 main classes: regression-based methods, methods based on
Wald-like tests and entropy-based methods. The purpose of regression-based methods is to model
the relationship between Y , X1 and X2 using either a logistic regression (Cordell, 2002; Purcell
et al., 2007) or a Poisson regression (Wan et al., 2010). In Wald-like tests, proposed methods
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introduced Wald statistics to either compare the correlation between X1 and X2 in cases and
controls (Zhao et al., 2006), or to evaluate differences in odds-ratio between cases and controls
(Wu et al., 2010b; Ueki and Cordell, 2012; Emily, 2012). In the third class, several measures
of interaction based on information theory are introduced through the derivation of information
gain statistics (Fan et al., 2011; Chen et al., 2011; Kwon et al., 2014), relative information gain
statistics (Yee et al., 2013; Dong et al., 2008; Kwon et al., 2014; Chattopadhyay et al., 2014) and
interaction information statistics (Mielniczuk and Rdzanowski, 2017).

Table 3. Summary of the SNP-SNP interaction methods and their respective null hypothesis presented in Equations 2,
3, 4 and 5.

Statistical model Popular name Null hypothesis Reference

1dof logistic regression PLINK H0
S tatAllele
S S I Purcell et al. (2007)

4dof logistic regression H0
S tatGeno
S S I Cordell (2002)

Poisson regression BOOST H0
S tatGeno
S S I Wan et al. (2010)

Correlation WZhao H0
BioAllele
S S I Zhao et al. (2006)

Odds-ratio WWu H0
S tatAllele
S S I Wu et al. (2010b); Ueki and Cordell (2012)

Odds-ratio IndOR H0
BioGeno
S S I Emily (2012)

Entropy IG, RIG, Fan et al. (2011); Chen et al. (2011)
ES , II H0

BioGeno
S S I Kwon et al. (2014); Yee et al. (2013)

Dong et al. (2008); Chattopadhyay et al. (2014)
Mielniczuk and Rdzanowski (2017)

In the remainder of this section details regarding the most popular methods in each of the 3
classes are given. These methods relies on several statistical hypothesis as described in Equations 2,
3, 4 and 5. Table 3 provides a summary of the underlying null hypothesis addressed by each
method. A qualitative comparative summary of the developed methods is proposed in Table 4. Our
evaluation focus on four main features known to play a role in the statistical power for detecting
interaction at the SNP level and in the interpretation of the results: (1) the dependence to an
underlying modeling of interaction, (2) the ability to detect interaction at the genotype level, (3)
the closed formulation of the statistics and (4) the control of the type-I error rate.

3.1. Regression-based methods

In regression-based models, proposed procedures are based on the statistical definition of interac-
tion that corresponds to a deviation from the additivity of effects. A first class of methods relies
on the regression of the binary outcome response using appropriate logistic regression (Cordell,
2002; Purcell et al., 2007). In another class, a regression model is based on the observed counts in
contingency table (see Figure 1) using a dedicated Poisson regression (Wan et al., 2010).

Logistic regression
The regression-based procedures, proposed in Purcell et al. (2007) and Cordell (2002), aim at

explaining the disease status Y knowing the values of Xi and X j using a logistic model. Statistical
test for interaction is then performed by testing the nullity of the interaction coefficients. In
more details, the implementation of the software PLINK (Purcell et al., 2007) focus on an allelic
representation of the Xi and is based on the model defined in Equation (7). PLINK’s statistical test
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is defined through the following statistical hypothesis :H0 : δ = 0 vsH1 : δ , 0, corresponding to
H0

S tatAllele
S S I in Equation (2), and can be performed using standard techniques based on maximum

likelihood estimation (McCullagh and Nelder, 1989). It can be remarked that underH0, classical
association statistics follow a χ2 distribution with 1 degree-of-freedom.

logit
(
P[Y = 1|(Xi,X j) = (xi, x j)]

)
= α+βIxi=A +γIx j=B +δI(xi,x j)=(A,B) (7)

A genotypic version of PLINK’s test that relies on a categorical modeling of the Xi’s has
been proposed by Cordell (2002). Such a statistical procedure is performed by testing the
nullity of the 4-dimensional vector [δAa,Bb, δaa,Bb, δAa,bb, δaa,bb], where δk,` are the interaction
coefficients in Equation (8). A likelihood ratio test (LRT) can then be performed to test for
H0 : [δAa,Bb, δaa,Bb, δAa,bb, δaa,bb] = [0,0,0,0] vs.H1 : [δAa,Bb, δaa,Bb, δAa,bb, δaa,bb] , [0,0,0,0], cor-
responding toH0

S tatGeno
S S I in Equation (3). UnderH0, LRT is expected to follow a χ2 distribution

with 4 degrees-of-freedom.

logit
(
P[Y = 1|(Xi,X j) = (xi, x j)]

)
= α+

∑
k∈{Aa,aa}

βkIk(xi) +
∑

`∈{Bb,bb}

γ`I`(x j)

+
∑

(k,`)∈{Aa,aa}×{Bb,bb}

δk,`I(k,`)(xi, x j) (8)

Poisson regression (BOOST)
An alternative method based on a log-linear model that focus on the conditional modeling of

the counts, with respect to Y , Xi and X j, has further been proposed by Wan et al. (2010). Let N be
the random variable coding for the number of sampled individuals; the log-linear model proposed
by Wan et al. (2010) can then be defined as in Equation (9). Similar to the logistic regression
procedure, testing for SNP-SNP interaction can be performed with a likelihood ratio test where:
H0 : [λ1,Aa,Bb,λ1,aa,Bb,λ1,Aa,bb,λ1,aa,bb] = [0,0,0,0] and H1 : [λ1,Aa,Bb,λ1,aa,Bb,λ1,Aa,bb,λ1,aa,bb] ,
[0,0,0,0], equivalent to H0

S tatGeno
S S I in Equation (3). Under H0, such a statistic is expected to

follow a χ2 distribution with 4 degrees-of-freedom.

E[N |(Y = y,Xi = xi,X j = x j)] = λ+λY I1(y) +
∑

k∈{Aa,aa}

λi,kIk(xi) +
∑

`∈{Bb,bb}

λ j,`I`(x j)

+
∑

(k,`)∈{Aa,aa}×{Bb,bb}

λXi,X j,k,`I(k,`)(xi, x j)

+
∑

(k,`)∈{Aa,aa}×{Bb,bb}

λY,Xi,X j,1,k,`I(1,k,`)(y, xi, x j) (9)

The Poisson regression-based method has been implemented in a software called BOOST (Wan
et al., 2010). Improvements have been proposed to speed up the computation of the test, such as a
GPU implementation (Yung et al., 2011).

Strengths for regression-based methods. Regression-based methods rely on a well-established
statistical modeling and therefore offer strong guarantees in terms of control of the Type-I error.
Furthermore, since Equations (8) and (9) are based on genotype data, the 4 dof logisitic regression
and the BOOST method are able to detect interaction at the genotype level.
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Weaknesses for regression-based methods. However compared to linear regression, logistic and
Poisson regression do not show a closed formulation for the estimation of the regression coeffi-
cients. Statistical tests of the significance of regression coefficients, as proposed in Equations (7),
(8) and (9), resort to a computational optimization of the likelihood that may introduce numerical
instabilities. However, the major limitation of regression-based methods is the assumption that an
interaction is a deviation to linearity. Finally, the assumption made by the 1dof logistic regression
test, implemented in PLINK, only consider interaction at the allele level thus preventing from
detecting interaction at the genotype level.

3.2. Wald-like tests

Wald statistics are widely used in statistics to test whether a vector of parameters θ is equal to a
targeted vector θ0. Given that θ and θ0 are q-dimensions vectors and that θ̂ is an unbiased estimator
for θ, the statistic W (see Equation (10)) follows a χ2 distribution with q degrees-of-freedom
underH0 : θ = θ0.

W = (̂θ− θ0)t
(
V

[̂
θ
])−1

(̂θ− θ0) ∼H0 χ
2
q (10)

In the search for SNP-SNP interactions, several procedures have been proposed in the literature
that differ in their definition of the vector θ. In the remainder of this section, three Wald statistics,
WZhao (Zhao et al., 2006), WWu (Wu et al., 2010b) and WIndOR (Emily, 2012) are introduced,
corresponding to different modeling of the interaction.

One-dimensional WZhao

The procedure proposed by Zhao et al. (2006) relies on the allelic level of interaction and aims
at comparing the correlations between X1 and X2 conditional to the disease status, respectively
Y = 0 and Y = 1. Correlation refers to the statistical definition of correlation as it is related to the
biological concept of Linkage Disequilibrium (Hill and Robertson, 1968). More precisely, Zhao
et al. (2006) proposed the following WZhao statistic:

WZhao =
(r1− r0)2

V(r1) +V(r0)
(11)

where for k ∈ [0,1]:

rk =
P[(Xi,X j) = (A,B)|Y = k]−P[Xi = A|Y = k]P[Xi = B|Y = k]√

P[Xi = A|Y = k](1−P[Xi = A|Y = k])P[X j = B|Y = k](1−P[X j = B|Y = k])

Details regarding the maximum-likelihood estimation procedure for WZhao can be found in
Zhao et al. (2006). Testing for interaction is based on the property that under the null hypothesis
H0 : r1 = r0, WZhao ∼H0 χ

2
1do f . It is noteworthy that the null hypothesis corresponds toH0

BioAllele
S S I

in Equation (4).

One-dimensional WWu

The procedure proposed in Wu et al. (2010b) is also based on the allelic data but aims to
compare the joint allelic odds-ratio conditional to the disease status (Y = 0 and Y = 1). The
following Wald statistic, WWu, is then proposed:
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WWu =
(λ1−λ0)2

V(λ1) +V(λ0)
(12)

where λi is the allele log odds-ratio conditional to Y = k where k ∈ {0;1}. More precisely for
k ∈ [0,1]:

λk = log


(
P[(Xi,X j)=(a,b)|Y=k]
P[(Xi,X j)=(a,B)|Y=k]

)
(
P[(Xi,X j)=(A,b)|Y=k]
P[(Xi,X j)=(A,B)|Y=k]

)


An estimation procedure for λk and V(λk) is proposed in Wu et al. (2010b) under the assump-
tions that (1) the two populations Y = 0 and Y = 1 are independent and (2) the phase, i.e. the
knowledge of the alleles given the genotypes, is known. In Ueki and Cordell (2012), improvement
regarding the estimation of V(λk) has been proposed in order to account for the unknown phase.
Similar to WZhao, testing for interaction is based on the following distribution WWu ∼H0 χ

2
1do f

whereH0 : λ1 = λ0, however the null hypothesis is equivalent toH0
S tatAllele
S S I in Equation (2).

Multidimensional IndOR
By dealing with data at the genotype level, Emily (2012) proposed a method to search for

interaction based on a biological definition of interaction. Indeed, assuming that conditional to Y =

0, Xi and X j are independent, biological interaction is defined as a departure from independence.
Therefore, testing for biological interaction corresponds to testing for the following statistical
hypothesis:H0 : Xi y X j|Y = 1. Such a test refers to a case-only test where hypothesis is made in
the control population (Y = 0). However, in practice, assuming independence between Xi and X j

is hardly realistic since many biological mechanisms may induce dependence between Xi’s, such
as Linkage Disequilibrium for instance. In Emily (2012), no assumption is assumed in the control
population but focus is made on capturing a variation in the amount of dependency between
the two populations Y = 0 and Y = 1. By using the ratio between the joint distribution and the
product of marginal distributions, the statistical hypothesis tested in Emily (2012) can be written
as ∀(xi, x j) ∈ [AA,Aa,aa]× [BB,Bb,bb] :

H0 :
P
[
(Xi,X j) = (xi, x j)|Y = 1

]
P[Xi = xi|Y = 1]P[X j = x j|Y = 1]

=
P[(Xi,X j) = (xi, x j)|Y = 0]

P[Xi = xi|Y = 0]P[X j = x j|Y = 0]

H1 :
P
[
(Xi,X j) = (xi, x j)|Y = 1

]
P[Xi = xi|Y = 1]P[X j = x j|Y = 1]

,
P[(Xi,X j) = (xi, x j)|Y = 0]

P[Xi = xi|Y = 0]P[X j = x j|Y = 0]

It is straightforward to show that such a null hypothesis is equivalent to H0
BioGeno
S S I in Equa-

tion (5). Using bayes formula, the above hypothesis are equivalent to:

H0 : Φ = [0;0;0;0] andH1 : Φ , [0;0;0;0]

where Φ = (ϕ1,ϕ2,ϕ3,ϕ4),
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ϕ1 = log
(

OR(Aa,Bb)
OR(Aa)OR(Bb)

)
; ϕ2 = log

(
OR(aa,Bb)

OR(aa)OR(Bb)

)
;

ϕ3 = log
(

OR(Aa,bb)
OR(Aa)OR(bb)

)
; ϕ4 = log

(
OR(aa,bb)

OR(aa)OR(bb)

)
;

and, by considering AA,BB as the baseline genotype, odds-ratios (OR) can be defined as
following:

OR(x1, x2) =
odds(x1, x2)

odds(AA,BB)
=

P[Y=1|X1=x1,X2=x2]
P[Y=0|X1=x1,X2=x2]
P[Y=1|X1=AA,X2=BB]
P[Y=0|X1=AA,X2=BB]

OR(x1) =
odds(x1)
odds(AA)

=

P[Y=1|X1=x1]
P[Y=0|X1=x1]
P[Y=1|X1=AA]
P[Y=0|X1=AA]

and OR(x1) =
odds(x2)
odds(BB)

=

P[Y=1|X2=xb]
P[Y=0|X2=xb]
P[Y=1|X2=BB]
P[Y=0|X2=BB]

In Emily (2012), to test forH0, a Wald statistic, IndOR, has been defined as follows:

IndOR = ΦV−1
Φ Φt (13)

where V−1
Φ

is the inverse of variance-covariance matrix for Φ and Φt is the transposed vector of
Φ. Under the null hypothesis of the same amount of dependence between cases and controls, the
score IndOR follows a central χ2 distribution with four degrees of freedom.

Estimation of the multidimensional vector Φ has been performed using Maximum Likelihood
Estimator (MLE) (Thomas, 2004), while an estimation of the covariance matrix VΦ has been
proposed using δ approximation of the counts.

Strengths for Wald-like tests. Compared to regression-based methods, interaction in odds-ratio is
treated as a residual term and can implicitly consider nonlinear interaction between two unlinked
loci (Ueki and Cordell, 2012). Furthermore, thanks to the large amount of literature regarding
odds-ratio, especially in the epidemiology community, asymptotic approximations allow for
proposing closed formulations of the statistic thus fastening the computation of the tests and
controlling the type-I error rate. As based on genotype data, IndOR is the only Wald-like statistic
to have power to detect genotype interaction (Emily, 2012).

Weaknesses for Wald-like tests. The use of one-dimensional statistic in WZhao and WWu prevents
those methods to detect genotype interaction.

3.3. Entropy-based methods

Since 2006, it has been argued that entropy-based methods, that rely on information theory
(Shannon, 2001) are particularly powerful and adapted to capture nonlinear relationships between
variables (Ferrario and Konig, 2016). More precisely, entropy-based methods rely on a qualitative
definition of SNP-SNP interaction: Xi and X j are said to interact when the strength of the joint
prediction ability of Xi and X j in explaining Y is larger than the sum of the individual prediction
abilities of Xi and X j. Therefore, such methods are based on a measure of the strength of prediction
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ability of a single Xi or a pair (Xi,X j) in explaining Y defined as the mutual information (Cover
and Thomas, 2006).

The mutual information I between two random variables X and Y , with supports denoted
respectively by SX and SY , is defined as follows:

I(X,Y) =
∑
x∈SX

∑
y∈SY

P[X = x,Y = y] log
(
P[X = x,Y = y]
P[X = x]P[Y = y]

)
(14)

As detailed in Mielniczuk and Rdzanowski (2017), the mutual information between X and Y is
related to the Kullback-Leibler distance between the joint distribution (X,Y) and the product of
the marginal distributions in X and Y . Alternatively, the mutual information I can be defined as
follows (see Ferrario and Konig (2016) for example):

I(X,Y) = H(X)H(X|Y) (= H(Y)H(Y |X))

where H(X) is the entropy of X:

H(X) =
∑
x∈SX

P[X = x] log(P[X = x])

and H(X|Y) the conditional entropy of X given Y:

H(X|Y) = H(X,Y)−H(X)

where H(X,Y) is the entropy of the joint variable (X,Y).
Methods based on the mutual information measure compare the strength of the joint prediction

ability of Xi and X j the sum of their individual prediction abilities in explaining Y can be divided
into three main classes: (1) information gain methods, (2) relative information gain methods
and (3) interaction information methods. All these methods aim at testing the null hypothesis
H0

BioGeno
S S I in Equation (5).

Information gain methods
Information gain methods are a class of methods that aim at quantifying the gain in mutual

information between Xi and X j by conditioning on the knowledge of Y .
In Fan et al. (2011), the authors proposed to measure gain in information by comparing

the mutual information between Xi and X j conditional to Y = 1 to the unconditional mutual
information. The following statistic has therefore been proposed:

IGFan = I(Xi,X j|Y = 1)− I(Xi,X j) (15)

where:

I(Xi,X j|Y = 1) =
∑

xi∈{AA,Aa,aa}

∑
x j∈{BB,Bb,bb}

P[Xi = xi,X j = x j|Y = 1] log
(

P[Xi = xi,X j = x j|Y = 1]
P[Xi = xi|Y = 1]P[X j = x j|Y = 1]

)
In Chen et al. (2011) and more recently in Su et al. (2015), a similar approach is proposed

where the Cumulative Mutual Information CMI(Xi,X j,Y) is used instead of I(Xi,X j|Y = 1) in
Equation (15):

IGChen = CMI(Xi,X j,Y)− I(Xi,X j) (16)
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where:

CMI(Xi,X j,Y) =
∑

xi∈{AA,Aa,aa}

∑
x j∈{BB,Bb,bb}

∑
Y∈{0,1}

P[Xi = xi,X j = x j,Y = y] log
(

P[Xi = xi,X j = x j|Y = y]
P[Xi = xi|Y = y]P[X j = x j|Y = y]

)

Alternatively, in Kwon et al. (2014), the information gain is measured by comparing the
unconditional entropy for Y to its entropy conditional to (Xi,X j). The following measure has
therefore been proposed:

IGIgent = H(Y)−H(Y |Xi,X j) (17)

Relative information gain methods
The class of methods based on relative information gain aims at normalizing the information

gain and refers to normalized mutual information measures (Yee et al., 2013). For example, several
papers proposed a normalized version of IGIgent in Equation (17) (see Dong et al. (2008); Yee
et al. (2013); Kwon et al. (2014)) by studying the following measure:

RIGIgent =
H(Y)−H(Y |Xi,X j)

H(Y)
(18)

A slightly different approach is taken by Chattopadhyay et al. (2014), where the normalized
entropy score ES is provided as a measure of relative information gain:

ES =
min(H(Xi),H(X j))−H(Xi,X j))

min(H(Xi,H(X j))
(19)

Interaction information methods
In Mielniczuk and Rdzanowski (2017) an interaction information score, II is introduced to

compared the joint prediction capacity of (Xi,X j) to the sum of the marginal prediction capacities:

II(Xi,X j,Y) = I((Xi,X j),Y)− I(Xi,Y)− I(X j,Y) (20)

It is argued that Xi and X j interact predictively in explaining Y when II(Xi,X j,Y) is positive.

Strengths for entropy-based methods. The main advantage of entropy-based methods is that they
do not rely on any model assumption and have the ability to catch any type of interaction signal,
such as for example interaction at the genotype level.

Weaknesses for entropy-based methods. However the practical use of entropy-based methods
suffers from several limitations that are all related to the lack of known distribution under the null
hypothesis. Significance testing therefore relies on resampling methods, such as permutations,
which dramatically increase the computational cost and is likely to generate overfitting.

4. Gene-Gene interaction

In contrast to SNP-level approaches, gene-level testing can help characterizing functional, compo-
sitional and statistical interactions (Phillips, 2008). Such tests allow for all the SNPs within the
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Table 4. Summary of the four features, related to the statistical power, of SNP-based statistical methods (Model free,
capacity to detect genotype interaction, closed formulation and control of type-I error rate). Each feature is evaluated
according to three scales of ability: + for a good ability, ◦ for a moderate ability and - for a poor ability.

Model Detection of Closed Control of
free genotype interaction formulation the type-I error

Regression-based methods
1 dof logistic (PLINK) - - ◦ +

4 dof logistic, Poisson (BOOST) - + ◦ +

Methods based on Wald-like tests
WZhao, WWu + - + +

IndOR + + + +

Entropy-based methods
IGFan, IGChen, IGIgent, RIGIgent, ES , II + + - -

region of a gene to be jointly modeled as a set and can take into account the LD structure within a
gene (Huang et al., 2011). Thus, by aggregating signals across variants in a gene, statistical power
is likely to be increased in situations when multiple causal interactions influence the phenotype
of interest (Wu et al., 2010a). Furthermore, the use of the gene as the statistical unit can greatly
facilitate the biological interpretation of findings (Jorgenson and Witte, 2006; Neale and Sham,
2004). As detailed in Equation (6), each gene is a collection of respectively m1 and m2 SNPs.
The observed genotypes for gene X1 can be represented by a n×m1 matrix: X1 that is further
decomposed into a nc ×m1 matrix Xc

1 and a nd ×m1 matrix Xd
1 to distinguish between controls

(Y = 0) and cases (Y = 1) observations. Similar notations are used for gene X2.

From a statistical point-of-view, detecting interaction at the SNP-set level is challenging.
Tackling the two issues of SNP-set association and interaction indeed requires the simultaneous
modeling of the correlation within and between the two SNP-sets. Nevertheless, the very recent
years have seen the development of statistical methods dedicated to the detection of interaction
at the SNP-set level. First the issue of detecting SNP-sets interaction can be seen as a signal
detection problem where interaction is tested for each pair of SNPs within genes. By doing
so, a total of m1 ×m2 tests are performed and those tests are correlated. Therefore testing for
gene-gene interaction is considered by testing whether at least one SNP pair is significant by the
minimum p-value (minP, Emily, 2016a), a Gene-Based Association Test Using Extended Simes
(GATES, Li et al., 2011), and two truncated tests, the truncated tail strength (tTS, Jiang et al.,
2011) and the truncated product p-values (tProd, Zaykin et al., 2002). Next, instead of combining
single SNP-pairs, another approach consists in reducing the dimensionality of each gene X1
and X2 using a Principal Component Analysis. Interaction is then tested between the retrieved
components in each gene in a multivariate logistic model Li et al., 2009). A third class of methods
is based on the comparison of the conditional joint covariance structures between X1 and X2
in controls and cases. Proposed methods aim at modeling the joint distribution of SNPs within and
between two genes through Composite Linkage Disequilibrium (CLD, Rajapakse et al., 2012),
Canonical Correspondance Analysis (CCA, Peng et al., 2010), Kernel Canonical Correspondance
Analysis (KCCA, Larson et al., 2014), Partial Least Square Path Modeling (PLSPM, Zhang
et al., 2013). A final statistical procedure relies on the Shannon entropy and aims at proposing a
Gene-Based Information Gain Method (GBIGM, Li et al., 2015). Table 5 provides a summary of
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the underlying null hypothesis addressed by each Gene-Gene method considered in this review.

Table 5. Summary of the Gene-Gene interaction methods and their respective class of underlying null hypothesis.

Statistical model Underlying null hypothesis Reference

minP, GATES, tTS and tProd Signal detection Emily (2016a)
PCA Dimension reduction Li et al. (2009)
CCA, KCCA, PLSPM, CLD Equality of Y-conditional Peng et al. (2010); Yuan et al. (2012)

covariances structures Larson et al. (2014); Zhang et al. (2013)
Rajapakse et al. (2012)

Entropy Nullity of the gain Li et al. (2015)
in Shannon information Li et al. (2015)

The remainder of this section is devoted to the detailed presentation of these methods. Further-
more, for each method, a qualitative evaluation is proposed with respect to four main characteris-
tics: (1) the ability to detect non-linear interaction (2) the robustness to the structure of the data,
(3) the need for manual parameterization and (4) the computational efficiency. A summary of the
respective advantages and drawbacks is proposed in Table 6.

4.1. Signal detection: combination of statistics

Testing for interaction between two sets of SNPs can be addressed by considering such combina-
tion as an extension of SNP-SNP interaction tests. Gene-gene interaction can indeed be performed
by applying SNP-SNP interaction tests to all possible SNP pairs between two genes, thus resulting
in a total of m1 ×m2 tests. Let denote Wi j the statistic used to test the interaction between X1

i ,
the ith SNP of X1, and X2

j , the jth SNP of X2. All pairwise tests are summarized into a m1×m2
vector of statisticsW = [W11, . . . ,Wm1m2] (see Figure 2). Testing for the significance of the vector
W therefore consists in combining a set of statistics and can be formalized as a signal detection
problem as defined by Donoho and Jin (2004). If we consider, without loss of generality, that
underH0: Wi j = 0, then testing the significance ofW can be performed by testing the following
statistical hypothesis:

H0 : ∀1 ≤ i ≤ m1 and ∀1 ≤ j ≤ m2, Wi, j = 0, (21)

H1 : ∃(i, j) where 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2, Wi, j , 0.

Since the X1
i ’s (resp. X2

i ’s) are expected to be correlated within X1 (resp. X2) and each Xi is
used in several pairs, the elements ofW are not independent. Therefore, the covariance matrix for
W, denoted by Σ and displayed in Figure 2, is not diagonal and the issue of detecting interaction
between two SNP sets falls into the paradigm of signal detection under dependence (Hall and Jin,
2010).

In Emily (2016a), the author introduced a framework that aims at aggregating p-values obtained
at the SNP level into a test at the gene level. Let consider a standard logistic regression to model
the association between the two SNPs, X1

i and X2
j , and the phenotype Y:

log

 P[Y = 1|X1
i = x1,X2

j = x2]

1−P[Y = 1|X1
i = x1,X2

j = x2]

 = β
i, j
0 +β

i, j
1 x1 +β

i, j
2 x2 +β

i, j
3 x1x2 (22)

Journal de la Société Française de Statistique, Vol. 159 No. 1 27-67
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2018) ISSN: 2102-6238



A survey for gene-gene interaction 43

Figure 2. Flowchart of the signal detection approach in gene-gene testing. All pairwise tests between a SNP from the
set X1 and a SNP from the set X2 are stored in m1 ×m2 vectorW. The covariance matrix ofW is given by Σ.

where βi, j
3 is interpreted as the regression coefficient that weight of the interaction between the two

SNPs. The interaction between the two SNPs is then tested by means of the following statistical
null and alternative hypothesis:H0 : βi, j

3 = 0 and H1 : βi, j
3 , 0. To testH0 againstH1, we used

the following Wald statistic:

Wi j =
β

i, j
3

σ
(
β

i, j
3

) (23)

Therefore underH0 in Equation (21), we have:

W = [W11, . . . ,Wm1m2] ∼ N(0,Σ),

where N(0,Σ) is the multivariate normal density with mean 0, the m1 ×m2 null vector, and
covariance matrix Σ for which an estimation is proposed in Emily (2016a). Four main methods
developed to aggregate p-values are proposed: the minimum p-value minP (Liu et al., 2010), the
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GATES procedure (Li et al., 2011) and two truncated tests, the truncated product p-values (Zaykin
et al., 2002) and the truncated tail strength (Jiang et al., 2011).

minP
In the minP procedure, to combine a set of p-values, the maximum of the absolute values

for the observed Wald statistics is compared to the asymptotic distribution expected underH0.
More precisely the probability, minP, that at least one absolute value for Wald statistics is as
large as the maximum of the observed absolute values under the null hypothesis is computed.
Let Z = [Z1, . . . ,Zm1m2] be a multivariate Gaussian random vector with the following distribution
Z ∼ N(0,Σ) and Wmax = max{|W11|, . . . , |Wm1m2 |} be the maximum of the absolute values for the
observed Wald statistics. Thus, the minP probability is obtained by the following formula:

minP = 1−P
[
max(|Z1|, |Z2|, . . . , |Zm1m2 |) < Wmax

]
. (24)

Since the SNP-SNP interaction test is two-sided, one can remark that Wmax = Φ−1 (1−Pmin/2),
where Φ is the standard normal distribution function and Pmin the minimum of the observed
p-values. Equation (24) is then equivalent to the one proposed by Conneely and Boehnke in
(Conneely and Boehnke, 2007).

Strengths. As shown by Emily (2016a), minP is highly robust to a wide range of data structure
as well as nature of signal. It is also easy to run since no parameters has to be set by the user.

Weaknesses. However, based on the definition of Wi j in Equation (23), the minP method is not
designed to catch non-linear interaction. Furthermore, the computation of Equation (24) requires
the calculation of the probability distribution of a multivariate normal random variable. Such
calculation can be approximated by the pmvnorm function from the R package mvtnorm (Genz
and Bretz, 2009). However, the function pmvnorm is applicable to arbitrary covariance structures
and dimensions up to 1000. Some heuristics are necessary to scale up to more than 1000 pairs of
SNPs.

GATES
The GATES procedure, proposed by (Li et al., 2011), is an extension of the Simes procedure

used to assess the gene level association significance. Let p(1), . . . , p(m1m2) be the ascending
SNPxSNP interaction m1×m2 p-values, GATES p-value is then defined in Equation (25):

pGAT ES = min
(
mep(1)

me(1)
,
mep(2)

me(2)
, . . . ,

mep(m1m2)

me(m1m2)

)
(25)

where me is the number of effective tests among the m1×m2 tests and me(i) the number of effective
tests among the i most significative tests associated with the lowest order p-values p(1), . . . , p(i).
The number of effective tests ought to characterize the number of independent tests equivalent
to the correlated tests that are really performed and is often used to account for dependence in a
multiple testing correction.

Although no formal definition of the number of effective tests has been formulated in the
literature, several procedures have been proposed to estimate such number. All methods are based
on a transformation of the set of eigenvalues of the SNP covariance matrix assuming that (1) if the
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SNPs are independent, the number of effective tests is the total number of tests, (2) if the absolute
value of the correlation between any pair of SNPs is equal to 1, the number of effective tests is
1. The most popular calculation of the number of effective tests are: Cheverud-Nyholt method
(Cheverud, 2001; Nyholt, 2004), Keff method (Moskvina and Schmidt, 2008), Li and Ji method
(Li and Ji, 2005) and Galwey (Galwey, 2009).

Strengths. In principle the GATES method is an attractive method to cope with correlated data
through the use of the effective number of tests.

Weaknesses. However, in practice the estimation of the effective number of tests suffers from
major limitations. It has been shown that the validity of the estimation of the number of effective
tests is very sensitive to SNPs set characteristics Hendricks et al. (2014). Furthermore, the
computation of the effective number of tests requires the computation of eigen decomposition
which is known to raise issue in a high-dimensional setting. Finally, similar to minP, GATES is
not designed to detect non-linear interaction.

tTS and tProd
tTS and tProd procedures are two truncated tail strength methods that aim at combining signals

from all single-SNP p-values less than a predefined cutoff value (Jiang et al., 2011). Denoting by
τ the cutoff value, the two truncated p-values are defined as follows (Zaykin et al., 2002):

tTS =
1

m1m2

m1m2∑
i=1

I(p(i) < τ)
(
1− p(i)

m1m2 + 1
i

)
(26)

tProd =

m1m2∏
i=1

pI(pi<τ)
i (27)

where I is the indicator function. When p-values are correlated, the null distributions of tTS
and tProd are unknown. Following the approach proposed by (Zaykin et al., 2002), a p-value is
obtained by computing an empirical null distribution using Monte-Carlo (MC) simulations. For
each MC iteration, an empirical value for tTS (or tProd) is obtained by simulating a vector of W jk

with respect to a multivariate normal distribution with a vector of 0 means and Σ̂ as covariance
matrix. The empirical p-value is calculated as the proportion of simulated statistics larger than the
observed statistic on the “true" set of W jk.

Strengths. The computation of tTS and tProd is rather simple and fast which allows their use for
large SNP sets.

Weaknesses. However, in practice tTS and tProd both require the tuning of a cutoff value τ.
The choice of τ is critical to warrant a control of the type-I error and to improve the statistical
power (Zaykin et al., 2002). An optimal choice for τ is very sensitive to the number of p-values
to be combined and to the correlation structure among those p-values. Furthermore, as based on
Equation (23), tTS and tProd are not designed to detect non-linear interaction.
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4.2. Multidimensional methods

Instead of combining tests at the SNP level, a class of methods aim at modeling the joint
distribution of SNPs within and between two genes in a multidimensional settings. Several
multidimensional methods have been proposed in the literature to tackle the issue of gene-gene
interaction using either Principal Components Analysis, U-like statistics or Modeling of covariance
structures or entropy measures.

Principal Component Analysis - PCA
In Li et al. (2009), the authors proposed to test the interaction between the two sets X1 and

X2 by comparing their respective decomposition in principal components. More precisely, a
likelihood ratio test is performed to compare the modelMInter to the modelMNo, whereMInter

refers to the logistic model including interaction effects whileMNo does not consider interaction
terms. Formally,MInter is defined in Equation (28):

logit
(
P
[
Y = 1|PC1

X1
. . .PCn1

X1
,PC1

X2
. . .PCn2

X2

])
= β0 +

n1∑
i=1

PCi
X1

+

n2∑
j=1

PC j
X2

+

n1∑
i=1

n2∑
j=1

PCi
X1

PC j
X2

(28)
andMNo in Equation (29):

logit
(
P
[
Y = 1|PC1

X1
. . .PCn1

X1
,PC1

X2
. . .PCn2

X2

])
= β0 +

n1∑
i=1

PCi
X1

+

n2∑
j=1

PC j
X2

(29)

In modelsMInter andMNo, PCi
X1

and PC j
X2

are the ith principal component of X1 and the jth

principal component of X2. The number of principal components, n1 and n2, kept in the interaction
test is determined by the percentage of inertia retrieved by the PCA. Such a percentage is fixed
beforehand and Li et al. (2009) suggested to retrieve 80% of inertia for both X1 and X2.

Strengths. The computation of the PCA method is very efficient and allows for large scale
testing. Furthermore it is quiet robust to the structure of the data since PCA aims at reducing the
dimensionality of the data.

Weaknesses. However, the practical use of the PCA method require the choice of the amount of
variability the PCA should retrieve. Such a choice is likely to impact the stability of the result as
well as the computational performance. Indeed, the higher the percentage of inertia is, the higher
the number of components is kept in the regression models (28) and (29).

U-like statistics
Several studies have proposed statistical tests based on a U-like statistic that can be defined as

follows:

U =
zd − zc√
V(zd − zc)

. (30)

The main idea behind Equation (30) is to measure relationship between X1 and X2 in the two
subpopulations of cases (Y = 1) and controls (Y = 0) separately. Two measures of interaction are
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then calculated, zd in cases and zc in controls, and compared by normalizing the difference zd − zc

in Equation (30). Therefore, if the absolute value of the U statistic is high enough then it means
that the amount of interaction of X1 and X2 is different between Y = 1 and Y = 0, thus indicating
that Y is associated with the interaction between X1 and X2.

In Peng et al. (2010), the authors proposed to used the following U-statistic:

UCCA =
zd

CCA− zc
CCA√

V
(
zd

CCA− zc
CCA

) (31)

where zd
CCA = 1

2

(
log(1 + rd)− log(1− rd)

)
is the Fisher transformation of rd defined as the maximal

canonical correlation coefficient between Xd
1 and Xd

2 . zc
CCA is defined similarly by considering the

canonical correlation is the control population. The use of the Fisher transformation allows for
UCCA to follow a standard normal distribution under H0 of no association: UCCA ∼H0 N(0,1).
However V

(
zd

CCA− zc
CCA

)
in Equation (31) is not known and Peng et al. (2010) proposed a

bootstrap estimation for V
(
zd

CCA− zc
CCA

)
.

By definition of the canonical correlation analysis, UCCA is limited to detect linear interaction
between X1 and X2. To overcome such limitation, UCCA has been extended to UKCCA in Yuan
et al. (2012) and Larson et al. (2014) by using a kernelized version of the canonical correlation as
follows:

UKCCA =
zd

KCCA− zc
KCCA√

V
(
zd

KCCA− zc
KCCA

) (32)

Compared to zd
CCA in UCCA, zd

KCCA is defined as the Fisher transformation of the maximum kernel
canonical coefficient. In Larson et al. (2014), the authors used a Gaussian mapping of the original
data by applying a Radial Basis kernel function. As for UCCA, based on the Fisher transformation
the significance UKCCA can be tested by comparing the observed value with the standard gaussian
distribution since UKCCA ∼H0 N(0,1). Similar to UCCA, the variance in Equation (32) is unknown
and can be estimated using resampling techniques, such as bootstrap as proposed in Yuan et al.
(2012) and Larson et al. (2014).

A third U-statistic, called UPLS PM and based on Partial Least Square Path Modelling, has been
introduced in the litterature by Zhang et al. (2013). More precisely, UPLS PM is defined as follows:

UPLS PM =
zd

PLS PM − zc
PLS PM√

V
(
zd

PLS PM − zc
PLS PM

) (33)

where zd
PLS PM (resp. zc

PLS PM) is defined as the path coefficient between Xd
1 and Xd

2 (resp. Xc
1 and

Xc
2). Since the distribution of the path coefficient is not known, the distribution of UPLS PM under
H0 is not known. To test the significance of UPLS PM, Zhang et al. (2013) therefore proposed a
permutation procedure where the distribution of UPLS PM underH0 is estimated by permuting the
observed value for Y .

Strengths. U-like statistics consists in an attractive way to summarize the multidimensionality of
the interaction into a one-dimensional statistic. It can be designed to catch non-liner interactions,
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through the use of Kernel Correspondence Analysis or Partial Least Square Path Modeling.
Furthermore, it can be computationally efficient with the Canonical Correlation Analysis where
no additional parameter needs to be set.

Weaknesses. However, with the KCCA, the choice of the kernel is crucial in terms of power and
drastically decreases the computational efficiency. Finally, the main limitation of U-like statistics
is the lack of robustness to data structure. Such a characteristic is mainly due to the underlying
gaussian assumption of the compared coefficients, namely zd and zc, in Equation (30).

Covariance structures based method
In Rajapakse et al. (2012), the authors proposed to test the association between Y and the

interaction between two sets X1 and X2 by comparing the covariance structures in cases (Y = 1)
and controls (Y = 0). More precisely, Rajapakse et al. (2012) introduced the Composite Linkage
Disequilibrium (CLD) method that is based on the normalized quadratic distance (NQD) and is
defined in Equation (34):

δ2 = tr.
(
(D̃− C̃)W−1(D̃− C̃)W−1

)
(34)

where D̃, C̃ and W are three (m1 + m2)× (m1 + m2) matrices of the covariance between the whole
set of SNPs that combines SNPs from both genes. More precisely, D̃ and C̃ are defined as follows:

D̃ =

W11 D12

D21 W22

 C̃ =

W11 C12

C21 W22

 (35)

where W11 (resp. W22) is the pooled estimate of the covariance matrix for X1 (resp. X2, D12(= D′21)
and C12(= C′21) are the sample covariance matrix between the two genes estimated from

(
Xd

1 ,X
d
2

)
and

(
Xc

1,X
c
2

)
respectively. In more details, the sample covariance matrices in cases, denoted by D,

and in controls, denoted by C, can be partitioned in 4 blocks as follows in Equation (36):

D = Cov
(
Xd

1 ,X
d
2

)
=

D11 D12

D21 D22

 C = Cov
(
Xc

1,X
c
2

)
=

C11 C12

C21 C22

 (36)

The pooled estimate of the covariance matrix, W, can thus be obtained by Equation (37):

W =
ncC + ndD

nc + nd
=

W11 W12

W21 W22

 (37)

Since the distribution of δ2 is not known under the null hypothesis, significance testing is
performed using permutation tests, as proposed by (Rajapakse et al., 2012).

Strengths. The main advantage of the CLD method is its flexibility to detect a large panel
of interaction signal including non-linear interaction. By including genetical knowledge in the
decomposition of covariance, CLD is robust to various data structure.

Weaknesses. Conversely, the use of arguments from genetics is a limitation of the use of CLD
outside association genetics. Nevertheless, the main limitation of CLD is the use of permutation to
test for significance. Although the computation of δ2 in Equation (34) is relatively fast, a large of
permutation is required to reach significance level, thus substantially reducing the computational
cost.
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Entropy-based methods
As for the investigation of interaction at the individual level of the Xi’s, entropy-based methods

are appropriate to detect nonlinear interactions between two sets of Xi (Shannon, 2001). Therefore,
methods based on information gain have been extended to detect interaction at the level of the
gene. For example, the Gene based Information Gain Method (GBIGM) method, introduced by
(Li et al., 2015), is based on the information gain rate ∆R1,2. ∆R1,2 is defined as in Equation (38):

∆R1,2 =
min(H1,H2)−H1,2

min(H1,H2)
(38)

where H1, H2, H1,2 are the conditional entropies (given Y) of X1, X2 and the pooled SNP set
(X1,X2) respectively. Assuming that H(.) is the classical entropy function, we have:

H1 = H(Y,X1)−H(X1) (39)

H2 = H(Y,X2)−H(X2) (40)

H1,2 = H(Y,X1,X2)−H(X1,X2) (41)

Since the distribution of ∆R1,2 is unknown, the significance testing is performed by permutations
as suggested by (Li et al., 2015).

Strengths. The main advantage of the GIBGM method is its ability to detect non-linear interac-
tion. As being based on measures from the information theory, no additional parameter needs to
be set prior to the analysis.

Weaknesses. However, in practice GBIGM suffers from several limitations. First, as shown in
Emily (2016a), GBIGM is very sensitive to the data structure and control of the type-I error is not
guarantee. Next, GBIGM is highly time consuming because of the permutation based significance
testing and since the computation of ∆R1,2 in Equation (38) can substantially increase with the
size of the SNP set.

Table 6. Summary of the four features, related to the statistical power, of gene-based statistical methods (Capacity to
detect non-linear interaction, robustness to data structure, robustness to parameter settings and computational
efficiency). Each feature is evaluated according to five scales of ability: ++ for a very good ability, + for a good ability,
◦ for an average ability, - for a poor ability and – for a very poor ability.

Detection of Robustness to Parameters Computational
non-linear interaction data structure free efficiency

Combination of tests
minP - - + + + + -
GATES - - ◦ - ◦

tTS and tProd - - - - - +

Multidimensional methods
PCA - - + ◦ + +

UCCA - - + + + +

UKCCA + + - - - -
UPLS PM + - - + + - -
Covariance modeling (CLD) + + + + ◦

Entropy (GBIGM) + + - - + + - -
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5. Large-scale testing for interaction

The ultimate goal of statistical methods for detecting interaction in GWAS is to analyze the whole
genome at a time, which corresponds to deal with interaction between hundred of thousand of
variables. Such a deep modification in the scale at which interaction can be investigated not only
raises the question of the scalability of the methods introduced in Sections 3 and 4, but also
allows the use of multidimensional regression models or machine learning approaches. Those two
latter classes of methods do not restrict themselves to pairwise testing but have the potential to
integrate higher order of interactions. Because of the enormous number of potential interacting
signals, a large number of statistical strategies have been proposed to test for pairwise interaction
at the genome level. From a statistical point-of-view, these strategies can be grouped into 3
main classes. First, the genome can be seen as a large set of SNPs or genes. Therefore a first
strategy consists in extending the methods proposed at the SNP level (Section 3) or at the Gene
level (Section 4) to more than one SNP pair or one pair of SNP sets. In a second modeling
strategy, rather than aggregating pairwise tests, multidimensional regression can be performed
to simultaneously account for all pairs. In this context, to cope with the curse of dimensionality,
penalized regressions are encouraged. However, regression-based methods are often criticized
for their inability to deal with nonlinear models and with high-dimensional data that contain
many potentially interacting predictor variables (McKinney et al., 2006; Koo et al., 2013; Mackay
and Moore, 2014). In this context, a third class, refers to as machine-learning methods, is often
cited as an attractive alternative. These methods do not fit a single prespecified model, nor do
they attempt an exhaustive search, but rather they attempt to step through the space of possible
models, including potentially large numbers of main effects and multiway interactions, in a
computationally efficient way (Cordell, 2009).

For the remainder of this section, we focus on representative methods for each of the three
classes: (1) exhaustive search method, (2) regression-based methods and (3) machine-learning
methods. Each method is evaluated through six main features known to impact their respective
computational and statistical efficiencies: the ability to detect pure epistasis, to identify a causal
pair and to scale up to genome level, the sensitivity to an underlying model assumption and to
the hand-tuning of parameters as well as the robustness to the data structure. Table 7 provides a
qualitative summary of these characteristics per method.

5.1. Exhaustive pairwise testing

A natural extension of the methods proposed in Sections 3 and 4 is to perform an exhaustive
pairwise testing at the genome scale. When considering the SNP level, as displayed in the design
(1), an exhaustive strategy consists in testing all pairs (Xi,X j) with one of the SNP-SNP method
presented in Section 3, thus resulting in set of p(p− 1)/2 SNP-SNP tests. Although several
hypothesis can be tested by combining these p(p−1)/2 tests, it is common to test whether none
of the pair (Xi,X j) is associated with Y . Such an hypothesis can be formalized as follows:

H0 =
{
∀(i, j) ∈ [1 . . . p]2,Y⊥⊥ (Xi : X j)

}
vs.H1 =

{
∃(i, j) ∈ [1 . . . p]2,Y 6⊥⊥ (Xi : X j)

}
(42)

When considering the gene level, we can assume that the genome is decomposed into L
predefined blocks: X1, . . . ,XL. An exhaustive strategy at the gene level thus consists in testing all
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pairs of blocks with one of the method presented in Section 4. It results in a total of L(L−1)/2
tests from which the following hypothesis can be tested:

H0 =
{
∀(`1, `2) ∈ [1 . . .L]2,Y⊥⊥ (X`1 : X`2) vs.H1 =

{
∃(`1, `2) ∈ [1 . . .L]2,Y 6⊥⊥ (X`1 : X`2)

}
(43)

Strengths. One of the main advantage of exhaustive search is that such strategies are based on
pairs testing and thus are appropriate to detect pure epistasis. Furthermore SNP-SNP exhaustive
testing is dedicated to the identification of causal pairs thus proposing a direct interpretation of
the findings. However for gene-gene interaction, the purpose is not to detect a causal pair of SNPs
but a causal pair of genes which, in some cases, can facilitate the functional interpretation of
the results. Furthermore, since SNP-SNP and Gene-Gene methods are robust to the design of
experiments, exhaustive tests are robust to the structure of the data set. However, it is noteworthy
that the correlation structure of the variables has to be accounted for in the hypothesis testing (42)
and (43). Considering that the structure of the genome is complex and multilevel, an appropriate
correction for multiple testing is not straightforward, especially for SNP-SNP interaction. Finally,
due to the exhaustivity of the approach no parameter has to be set before running the analysis.

Weaknesses. Conversely, the exhaustive search is computationaly intensive. For SNP-SNP
exhaustive testing and using a DNA chip with 500 000 SNPs, the total number of interaction
tests reach 125 billions. Although computational cost can be reduced using parallel coding and
high-performance grid computing, performing an exhaustive search at the genome scale is still
challenging (Prabhu and Pe’er, 2012). Another main drawback of the exhaustive approach is the
lack of flexibility of such methods to detect a wide range of interaction models.

5.2. Regression-based methods

Logic regression
Logic regression has been introduced to reduce the dimensionality induced by the amount of

variable combinations (Kooperberg and Ruczinski, 2005). This method uses Boolean logic to
select a subset of categorical variables that are associated with the disease outcome. The categories
of the selected variables are converted into binary variables, and using logic models (i.e. logic
expressions involving binary variables), a logistic model is fitted as follows:

log
(

P[Y = 1|X = x]
1−P[Y = 1|X = x = (x1, . . . , xp)]

)
= β0 +

K∑
i=1

βiLi(x)

where Y is the disease status and Li is the Boolean expression of the p predictors (x1, . . . , xp) such
as Li = (X1 OR X3) AND X2. Li is referred as a logic tree as the Li are organized in a tree form
(see Figure 3). Using this logic tree representation it is possible to obtain any other logic tree by a
finite number of operations such as growing of branches, pruning of branches, and changing of
leaves.

As proposed by Kooperberg and Ruczinski (2005), Markov Chain Monte Carlo approaches,
such as simulated annealing, can be used to select logic trees. Extensions of the original method
have been proposed to measure the importance of identified interactions (Schwender and Ickstadt,
2008) and to propose a test of the importance of the variables involved in detected combinations
(Schwender et al., 2011).
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Figure 3. Logic tree representing the logic expression Li = (X1ORX3)ANDX2

Strengths. The main advantages of logic regression is its ability to catch interaction and to
identify causal pairs of variables. Furthermore, logic regression is robust to the design of the
dataset and correlation structure between variables can be accounted for in the model.

Weaknesses. Conversely, logic regression is based on the Boolean transformation of the data
that need to be set by the user. Although model selection techniques (such as stepwise selection)
can be performed to select the most appropriate Boolean transformations, it has to be balanced
with an increase of the overfitting. Finally, despite the efforts put to propose efficient solution of
the model, its use at the genome scale is still an issue.

Penalized logistic regression
When considering the multivariate set of Xi to explain the disease status Y , it can be natural to

consider a multivariate logistic regression. Moreover in the context of the detection of pairwise
interaction, the logistic model can be written as follows:

log
(
P[Y = 1|X = x]
P[Y = 0|X = x]

)
= α+

p∑
i=1

βixi +

p−1∑
i=1

p∑
j=i+1

γi jxix j (44)

Since GWAS fall into the paradigm of high-dimensional data, estimation of regression coef-
ficients can be performed by penalizing the log-likelihood of model (47), denoted by `(α,β,γ),
where β = [β1, . . . ,βp] and γ = [γ12, . . . ,γp−1p].

In Park and Hastie (2008), regression coefficients are estimated by maximizing the log-
likelihood subject to a size constraint on L2 norm of the coefficients that corresponds to minimizing
the following equation:

̂(α,β,γ)L2
= argmin

(
−`(α,β,γ) +

λ

2
||(β,γ)||22

)
(45)

According to the authors, the use of the L2 penalty has a number of attractive properties that
overcome usual limitations, such as the stability of estimation, the multicollinearity and the
presence of zero-cells in contingency tables Park and Hastie (2008).

However, in the context of variable (or pair of interacting variables) selection, it is preferable
to perform an L1 instead of an L2 penalization. In principle the least absolute shrinkage and
selection operator (LASSO) uses the L1 penalty to perform both variable selection and shrinkage
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and estimates the coefficients of model (47) as by minimizing:

̂(α,β,γ)LAS S O = argmin

−`(α,β,γ) +λ

 p∑
i=1

|βi|+

p−1∑
i=1

p∑
j=i+1

|γi j|


 (46)

In Wu et al. (2009), the authors proposed a two-step procedure to identify potential interaction
at the genome scale. In a first step, a set of individual variables Xi is selected using a LASSO
procedure based on logistic regression without interaction coefficient (i.e. model in Equation (47)
with γi j = 0 for all i and j). In a second step, a second penalized logistic model is estimated based
on the variables selected in the first step and by accounting for interaction between those variables.
Such a strategy induces a hierarchy that restricts an interaction to be included in the model only
if both variables are marginally important. In order to formalize this hierarchy, a set of convex
constraints has been added to the LASSO to produce sparse interaction (Bien et al., 2013). An
extension of the hierarchical interaction in the LASSO aims at proposing progressive penalization
in order to allow a computationally fast penalization (Zhu et al., 2014).

Identification of interaction between set of SNPs can also be performed by considering a
group-LASSO penalty as introduced by Meier et al. (2008). Such approach has been proposed in
the context of genetic association studies in Yang et al. (2010) and more recently in Stanislas et al.
(2017).

More recently, Gao et al. (2014) proposed the use of a LASSO penalization to estimate high
order interaction in GWAS. The authors extended the model in Equation (47) by accounting for
high-order interactions effects as follows:

log
(
P[Y = 1|X = x]
P[Y = 0|X = x]

)
= α+

p∑
i=1

βixi +

p−1∑
i=1

p∑
j=i+1

γi jxix j +

p−2∑
i=1

p−1∑
j=i+1

p∑
k= j+1

δi jkxix jxk + . . . (47)

As an extension of the two steps procedure proposed by Wu et al. (2009), Gao et al. (2014)
proposed a forward LASSO shrinkage estimator by first selecting variables with a marginal effects.
Then k-order interaction terms are recursively included in the model using the following scheme:
(1) form k−order interaction terms among the whole sets of variables and variables with non-zero
k−1-way interaction effect, (2) shrink all k-order interactions, k−1-order interactions ... to zero
in a LASSO regression by minimizing Equation 48:

̂(α,β,γ,δ, . . . )LAS S O_HO = argmin

−`(α,β,γ) +λ

 p∑
i=1

|βi|+

p−1∑
i=1

p∑
j=i+1

|γi j|

+

p−2∑
i=1

p−1∑
j=i+1

p∑
k= j+1

|δi jk|

 . . .


(48)

Strengths. As for logic regression, the main advantage of penalized logistic regression is the
ability to catch interaction and to identify causal pairs of variables.

Weaknesses. However, the practical application of a penalized logistic regression model at
the genome scale raised several issues. First, the computation of the LASSO algorithm (and
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subsequent versions) at the genome scale require the estimation of several parameters, especially
the regularized parameters. Such parameters are usually estimated using cross-validation which
can hardly be performed genome-wide. Finally, LASSO methods are known to be unstable when
dealing with correlated data. Therefore, in the context of GWAS, LASSO method are likely to
lack in robustness to the data structure.

5.3. Machine learning methods

With the emergence of big data, the last few years have seen the development of numerous
machine learning methods in many fields. Gene-gene interaction detection in GWAS is not exempt
from this rule. Machine learning methods that can be adapted to gene-gene interaction fall into
two main classes: tree-based methods and pattern recognition methods. In the remainder of this
section, we focus on two tree-based methods (Classification and regression trees and random
forests) and on three pattern recognition methods (Multifactor Dimensionality Reduction, Neural
Networks and Support Vector Machine). The potential for those methods to detect gene-gene
interaction have been identified in previous reviews (McKinney et al., 2006; Koo et al., 2013;
Upstill-Goddard et al., 2013).

5.3.1. Tree-based methods

Classification and regression trees (CART)
Initially developed by Breiman et al. (1984), a classification tree consists in a set of nodes

conferring a tree-like dichotomous structure. The building of the tree is decomposed into two
main steps: a recursive partitioning step and a pruning step. The recursive partitioning of the tree
consists in splitting each node into two offspring nodes according to the values of one variable.
First, the top node, usually called the root of the tree, contains the entire training sample. The top
node produces two child nodes defined to optimize the distribution homogeneity of the response
variable, which is disease status Y in our context. Such a process is recursively repeated to
each node to reach a terminal node containing a maximally homogeneous subsample. A popular
splitting rule is to use the variable that maximizes the reduction in a quantity known as the Gini
impurity at each node. By doing so it is hoped that the terminal nodes are pure, meaning that they
only contain individuals with the same response. The second step consists in a bottom-up pruning
process to remove some of the later splits or branches according to certain rules (Breiman et al.,
1984) to avoid overfitting and to produce a final more parsimonious model.

To illustrate the use of CART in association studies, we used a publicly available dataset that
contains the genotypes of more than 300 SNPs in a total of 429 patients (163 individuals affected
by Rheumatoid Arthritis and 266 Health controls) (Chang et al., 2013; Emily et al., 2017). In
Figure 4, the tree, obtained by restricting the analysis to 10 variables, show that after the pruning
step only three variables have been used to build the splitting rules. From Figure 4, we can deduce
that SNP rs10184179, rs1006273 and rs10400863 are interacting in susceptibility with the
disease outcome.

Strengths. One of the main advantage of the CART method is its ability to deal with large scale
dataset, thus making it applicable at the genome scale. Furthermore, CART is a model free method
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Figure 4. Example of classification tree with 2 internal nodes and 4 final nodes. Splitting rule are based on the
genotype of 3 SNPs rs10184179, rs1006273 and rs10400863) that can be considered in interaction.

so that any type of signal can potentially be detected. In particular, non-linear interaction are
likely to be reported by CART.

Weaknesses. However, it is noteworthy that a classification tree do not include interaction
variables per se in the model. Rather, the trees constructed allow for interaction in the sense
that each path through a tree corresponds to a particular combination of values taken by certain
predictor variables, thus including the potential interactions between them. Therefore, because it
conditions on the main effects of variables at the first stage and on the main effects conditional on
previously selected variables at subsequent stages, pure interactions in the absence of main effects
can be missed (McKinney et al., 2009). By following paths in the trees, it is possible to identify
causal pairs of variables. However, the pruning process has to be strong enough to cut edges so
that low-level of interaction can be identified. To be computed, the CART required the tuning of
some sensitive parameters such as the the measure of the splitting rule and the pruning method.
Furthermore, the CART method is known to be unstable in the context of correlated data and to
be sensitive to unbalanced design, thus making CART not robust to the structure of the studied
dataset.

Random Forest
Rather than using a single tree, classification accuracy can be improved by growing an ensemble

of trees. One of the most popular ensemble tree approach is the random forests approach introduced
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by Breiman (2001) and used in several genetic studies (for example Bureau et al. (2005)).
Compared to the CART method, a random forest aims at generating a collection of n unpruned
trees, where each unpruned tree is learnt on a bootstrap sample of the original individuals.
Furthermore, at each node, rather than considering all possible predictor variables, only a random
subset of the possible predictor variables is considered. This procedure thus results in a forest of
trees, each of which will have been trained on a particular bootstrap sample of observations. The
observations that were not used for growing a particular tree can be used as out-of-bag instances
to estimate the prediction error. The out-of-bag observations can also be used to estimate variable
importance in different ways including through use of a permutation procedure (McKinney et al.,
2006, 2009).

Strengths. Similar to the CART method, random forest has good computational performances
so that it can be performed at the genome scale.

Weaknesses. However, the efficiency of a random forest depends on a high number of features.
First, two main parameters (the number of trees and how many splitting rules are applied to
each node) have to fixed beforehand. Next, as for the CART method, random forest implicitly
considers interactions, further work is required to separate main effects from interactions in
random forests since variable importance measures reflect both main and interaction effects
(Bureau et al., 2005; Winham et al., 2012). Unfortunately, previous work has shown that RF is
not designed to explicitly test for SNP interactions (Winham et al., 2012). Therefore, modeling
needs to be done carefully to detect interactions and new methodologies need to be designed to
capture the pure interactions without main effects between SNPs when modeling with random
forest. Very recently, a permutation based random forest approach has been however introduced
to capture pure epistasis (Li et al., 2016).

5.3.2. Pattern recognition methods

Multifactor Dimensionality Reduction: MDR
In genetic epidemiology, a popular series of methods is based on the Multifactor Dimensionality

Reduction (MDR) approach (Gola et al., 2016). The basis of the MDR method is an induction
algorithm that converts two or more variables to a single variable. As firstly described by Ritchie
et al. (2001), MDR aims at reducing the dimensionality of a set of categorical variables, Xi’s, by
pooling the sets of categories into high-risk and low-risk groups, thus reducing to a single binary
variable. The identification of the two groups (high-risk and low risk) is performed according to
the ratio of cases and controls in each class.

The original MDR procedure is presented in the algorithm 1. In more details, let consider
k ∈ [1, . . . ,K], the order of interaction set in the analysis, where K is the maximal interaction
order (K ≤ p). Let us also introduce `k ∈

[
1, . . . ,

(
k
p

)]
, where `k identifies the `th

k combination of k
variables among the p predictors. For example, if `2 = 1, the subset of k = 2 variables (X1,X2)
is considered, if `3 = 3, we considered the subset of 3 variables (X1,X2,X5) or if `4 =

(
4
p

)
then

(Xp−3,Xp−2,Xp−1, ,Xp) is considered.
Finally, let us introduce gk,`k : (x1, . . . , xp)→ [1, . . . ,3k] a function that maps the observed

p genotypes into a set of values restricted to the k variables in the subset `k . For example,
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g2,1(0,0, x3, . . . , xp) = 1 (∀x3, . . . , xp), g3,3(0,0, x3, x4,2, x6, . . . , xp) = 3 (∀x3, x4, x6, . . . , xp), g4,(4
p) =

(x1, . . . , xp−4,0,0,0,0) = 1 (∀x1, . . . , xp−4) or g4,(4
p)(x1, . . . , xp−4,2,2,2,2) = 34 (∀x1, . . . , xp−4). The

main purpose is to find the optimal subset of k variables as follows:

(kopt, `
opt
k ) = arg min

(k,`k)
{err(k, `k)} (49)

where

err(k, `k) =
1

n.CV

n.CV∑
cv=1

err(k, `k,P(cv)) (50)

and
err(k, `k,Pcv) =

∑
i∈I

̂yPcv(i,k, `k,I) , yi (51)

where ̂yPcv(i,k, `k,I) = 1 means that i is predicted to belong to the high-risk class. Individual
i belong the high-risk class if the case-control ratio of individuals having the same k selected
genotypes as i in the training set of individuals I is higher than a threshold τ. It can be formalized
as follows where r is the case-control ratio function, estimated for each of the 3k combination of k
genotypes in the training set:

̂y(i,k, `k,I) = 1 iif r(gk,`k (xi,1, . . . , xi,p),k, `k,I) > τ (52)

r(g,k, `k,I) =

∑
i∈I;yi=1 I{gk,`k (xi,1,...,xi,p)=g}∑
i∈I;yi=0 I{gk,`k (xi,1,...,xi,p)=g}

(53)

Therefore, the final best model, the kopt-variables combination model, is the model that mini-
mizes the prediction error which estimated in the cross-validation procedure Ritchie et al. (2001).
Therefore, MDR finds both the optimal interaction order kopt and the corresponding kopt factors
that are significant in determining the disease status.

Strengths. The success of the MDR method in the genetic community is mainly due its compu-
tational efficiency that has allowed MDR to be applied at the genome scale. Furthermore, since
MDR is model free, it has the ability to catch any type of interaction signal, such as non linear
interaction and pure interaction signals. The flexibility of the method is further examplified by the
vast amount of extensions and modifications of the original idea of MDR that has been proposed
in the literature (see Gola et al. (2016) for a nice review of these evolution).

Weaknesses. Nevertheless, MDR-based methods suffer from main limitations. First, rather than
testing for interaction, MDR seeks to identify combinations of variables that influence a disease
outcome, possibly by interactions or by main effects. Such measure of heterogeneity might prevent
from detecting pure epistasis and from identifying a true causal pair of variables. Furthermore, as
illustrated by the numerous variations of the MDR method (Gola et al., 2016), the performances
of the MDR depends on many parameters, such as K, τ, n.CV in Algorithm ??, that has to be set
by the user. Such instability of MDR-based methods is further enhanced by their sensitivity to
the design of dataset and especially to the case/control ratio. Finally, although resampling and
cross-validation techniques are used throughout the MDR pipeline, MDR-based methods are
known to suffer from overfitting.
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Algorithm 1 MDR algorithm
Require: nCV , {nCV is the number of cross-validations}
Require: K {K is the maximal order of interaction}
Require: τ {τ is the threshold case-control ratio for determining high-risk group}

for k ∈ [1, . . . ,K] do
for `k ∈

[
1, . . . ,

(
k
p

)]
do

for tCV ∈ [1, . . . ,nCV] do
Split the whole set of individuals I in ten subsets Is such as ]Is = ]I/10 {{I1, . . . , I10} = Pcv in Equa-
tion (50)}
for ITest ∈ {Is} do

Set ITrain = ITest
for g ∈

[
1, . . . ,3k

]
do

Compute r(g,k, `k,ITrain) as detailed in Equation (53)
end for

end for
Compute the test error rate err(k, `k, {I1, . . . , I10}), based on the current partitionPcv = {I1, . . . , I10}, according
to Equation (51)

end for
Compute the test error rate err(k, `k) as described in Equation (50)

end for
end for
Select the optimal interaction order kopt and the corresponding subset of variables `opt

k as defined in Equation 49
return kopt, `

opt
k

Neural networks (NN)
NNs have been introduced to mimic the brain’s ability to solve problems. An NN can be seen as

an indirected graph composed of nodes that characterize the processing elements (or neurons) and
directed edges that represent the connections of the nodes (or synaptic connections including the
flow of information). Nodes are arranged in layers of three types: an input layer, a set of hidden
(or internal) layers and an output layer (see Figure 5). Nodes from the input layer represents
the p input variables (X1, . . . ,Xp) while, in the context of association studies, the output layer
is composed of only one node characterizing the response variable Y . The K hidden layers are
made by nk (k = 1 . . .K) nodes respectively, where K and nk are the two main parameters of the
architecture of the NN. Each hidden node, as well as the output node, can be represented as a
weighted sum of its inputs as follows:

∀ j ∈ [1,n1] : H1, j = f

 p∑
i=1

v j,iXi


∀k ∈ [2,K],∀ j ∈ [1,nk] : Hk, j = f

nk−1∑
i=1

wk−1
j,i Hk−1,i


Y = f

 nK∑
i=1

ziHK,i


where f is a nonlinear function and v j,i, wk−1

j,i , zi are weights of connections between two nodes in
two consecutive layers. More precisely, v j,i is the weight between Xi and H1, j, wk−1

j,i the weight
between Hk−1,i and Hk, j and zi the weight between HK,i and Y . It is worth noting that f can be
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Figure 5. Example of an architecture of a neural network with p variables in the input layer, K = 2 hidden layers with
n1 and n2 nodes and an output layer with one node corresponding to a one-dimensional response variable.

any nonlinear function, however, f is usually chosen to be sigmoid ( f (x) = 1/(1 + e−x)) or the
Heaviside function ( f (x) = 1 if x > 0 and 0 otherwise).

The architecture of neural networks is the key of success for detecting gene-gene interactions
(Koo et al., 2013) and several strategies have been proposed to address this issue such as back
propagation neural network (BPNN), genetic programming neural network (GPNN) and gram-
matical evolution neural networks (GENN). In BPNN, the optimization algorithm minimizes the
error by changing the weights following each pass through the network. For that purpose, BPNN
proposes small changes to the weights until it reaches a value to which any change makes the error
higher, indicating the the error has been minimized (Skapura, 1995; Ritchie et al., 2003). GPNN
was also proposed by Ritchie et al. (2003) to optimize the neural network. Genetic Programming
was used to optimize the inputs from a larger pool of variables, the weights, and the connectivity
of the network, including the number of hidden layers and the number of nodes in the hidden layer.
Thus, the algorithm attempts to generate the appropriate network architecture for a given dataset.
Finally, GENN is based on an evolutionary algorithm that uses genomes knowledge and grammars
to define the observed populations Motsinger-Reif et al. (2008). Compared to GPNN, where only
two connections between nodes are possible, in GENN the grammar allows for defining multiple
connections between nodes selected by the algorithm. Variable numbers of connections allows for
more complicated neural networks to be evolved and potentially makes GENN more powerful
than GPNN.

Strengths. Neural networks are not based on a pre-specified model thus conferring to the method
the flexibility to detect any type of signal (potentially pure epistatic signal). Since neural network
is largely studied in the computer science community, its computational performances allow to
handle with large scale data sets. However, neural network does not yet scale up to the genome
level.
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Weaknesses. One of the main drawback of neural network is the need to specify the neural
architecture a priori. Therefore, neural network might fail at catching interaction because of a miss-
specification of the architecture. Furthermore neural network is known to suffer from overfitting
and therefore depends on the structure of the data. Finally, one of the major criticisms in association
studies is their being black boxes, since no satisfactory explanation of their behavior has been
offered. Output models are difficult in the interpretation and always need for comprehensive
validation, thus preventing neural network to clearly identify causal pairs.

Support Vector Machine: SVM
Support Vector Machine or SVM is one of the most popular methods among machine learning

algorithm to perform classification or regression. Considering the context of association studies
with p markers (X1, . . . ,Xp), SVM basically aims at building a p−1 dimensional hyperplane (or
set of hyperplanes in a high-dimensional space), which can be used to separate each individual
(seen as a p-dimensional point) with response to response variable Y . A good separation between
cases (Y = 1) and controls (Y = 0) is achieved by the hyperplane that has the largest distance to the
nearest training-data point of any class (so-called functional margin) (Cortes and Vapnik, 1995).
The application of SVM technique in the detection of gene-gene interaction has been proposed in
Chen et al. (2008). The authors combined SVM with combinatorial optimization methods (such as
genetic algorithm) and showed the good performance of SVM-based methods when dealing with
unbalanced data. In Shen et al. (2010), it has been proposed to first use a L1 penalty to identify
the most promising predicting interaction.

When the original data are not linearly separable, the Xi are mapped into higher dimensional
space, also called feature space, with the hope of a linear separation of the data in that space.
Mappings are designed to ensure that dot products may be computed easily by defining them
in terms of a kernel function K(xi, x j), which refers to the kernel trick. In Missiuro (2010), the
authors used kernel SVM to predict which genes are genetically interacting with each other.

Strengths. SVM has been designed to avoid the specification of a model and therefore is a model
free method and can detect complex interactions between variables.

Weaknesses. However, SVM has not been designed to identify variables associated with a
response but rather to propose classifiers that combine variable. Therefore, SVM are designed
neither to detect pure epistasis nor to identify causal pairs. Furthermore, its efficiency is based on
the choice of several parameters, such as an appropriate kernel. Such a parameter dependency is
one main reason why SVM is known to suffer from overfitting. Finally, the data transformation by
means of a kernel function, can be costly in time of computation, thus preventing the use of SVM
at the genome scale.

6. Statistical perspectives in gene-gene interaction

The investigation of gene-gene interaction has a long history in plant, animal and human genetics
(Cordell, 2009) and has raised many statistical issues, thus allowing for significant statistical
advances. In the context of GWAS, although a huge number of methods have been proposed
and although the proposed methods cover the whole landscape of statistics, reported interaction
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Table 7. Summary of the six features, related to the statistical power, of statistical methods at the genome scale
(Capacity to detect pure interaction, capacity to identify the causal pair, the genome-wide scalability, robustness to a
model specification, robustness to parameter settings and robustness to data structure). Each feature is evaluated
according to five scales of ability: ++ for a very good ability, + for a good ability, ◦ for an average ability, - for a poor
ability and – for a very poor ability.

Detection Identification Genome Model Parameters Robustness
of pure causal -wide free free to data

epistasis pairs scalability structure
Exhaustive search

SNP-SNP + + + + - - - - + + +

Gene-Gene + + + - - - - + + + +

Regression-based methods
Logic regression + + + + ◦ ◦ - +

Penalized logistic regression + + + - - - ◦ ◦

Machine learning methods
Tree-based methods

CART - - ◦ + + + ◦ -
Random Forest - - + - - -

Pattern recognition methods
MDR ◦ - + + + - - - -
NN ◦ - - ◦ + - - -
SVM - - - ◦ + + - - -

remains very rare. However, genetic interaction is still considered to play a major role for
tackling complex human disease genetics (Mackay and Moore, 2014). Furthermore, in the era of
personalized medicine, there is growing evidence that detecting interaction is crucial to improve
our understanding of major complex diseases.

The very low number of reported gene-gene interaction can therefore be explained by a lack of
statistical power and biological interpretation. More efforts should be put in addressing several
statistical issues. Among these issues, tackling the questions of computational burden alleviation,
multiple testing correction and visualisation interpretation is central in future improvements.

6.1. Computational burden

One of the main limitations in performing genome-wide gene-gene interaction is the computational
burden encountered in all strategies (exhaustive search, penalized regression or machine learning
methods). To overcome such limitation, the incorporation of prior biological knowledge has been
rapidly proposed (Emily et al., 2009). Many tools have been developed to incorporate biological
knowledge in the analysis such as protein-protein interaction approaches, pathway approaches
or comprehensive knowledge approaches (Ritchie, 2015). Although biological knowledge-based
methods are seen as powerful strategies, they raise several issues. First, the uncertainty in bio-
logical knowledge is (almost) never accounting for when reducing the search space. However,
ignoring uncertainty may result in a lack of power or in an uncontrolled type-I error rate, thus
inflating the amount of false positive. Next, filtering the search space by conditioning on some
biological prior generates threshold models from which genome-wide interpretation is not feasible.
However, in the era of big data, we can hope that improvements in data management, data storage,
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computer performances and distributed computing could help reducing the computational cost.

6.2. Multiple comparison issue

Another important limitation of gene-gene interaction search in GWAS is the statistical confidence,
related to the issue of multiple testing correction, in the obtained results. Multiple testing is a
commonly encountered inference problem in large-scale genetic association studies as a result
of simultaneous testing of multiple hypotheses. In the exhaustive pairwise testing approach, the
number of tests performed, given by L(L−1)/2 where L can be either the number of SNPs or
the number of genes, is expected to be very high. Furthermore, tests cannot be assumed to be
independent and correlation between them arise from two main sources: (1) the pair (Xi,X j) is
obviously correlated with the pair (Xi,Xk) due to the common variable Xi and (2) because of the
genome correlation structure if Xi and X j are correlated (as being in Linkage Disequilibrium
for example), each pair (Xi,Xk) is correlated with each pair (X j,X`). Large numbers of tests and
complex correlated tests lead to complicated error control in interaction analyses (Musani et al.,
2007). Current solutions for controlling the family-wise error rate (FWER) or the false discovery
rate (FDR) in gene-gene interaction at the genome scale are mainly based on the estimation of
the effective number of tests (Hendricks et al., 2014). Such a strategy is limited by the lack of a
proper definition of the effective number of tests and efforts from the statistical community should
provide a better understanding of its behaviour in various correlation contexts.

To account for the complex correlation in the data, resampling strategies are commonly used
to assess a significant level. This has been performed in single-testing, where the genome-wide
significant threshold for p-value has been estimated to 5× 10−8 using extensive permutations
(Jannot et al., 2015). However, this can hardly be done for interaction because of the computa-
tional burden relative to the very low threshold to be reached. Furthermore, assessing very low
significance levels with permutations is likely to suffer from a sample overfitting.

6.3. Visualization and lack of interpretation

A final major issue in gene-gene interaction in GWAS is the lack of interpretation of the results.
The complexity of the search space as well as the complexity of interaction models make the
interpretation of the results challenging. Furthermore, compared to single-testing approaches
where results can easily be visualized with Manahattan plots and QQ plots (Clarke et al., 2011),
visualisation is much more complex when dealing with interaction. Very few tools have been
developed to address this issue and main focuses are made on heatmap and circos representation
(Wu et al., 2013; Emily et al., 2017). However, thanks to the emergence of a new generation of
data science, visualization is a rapidly growing area of research and it is certain that gene-gene
interaction would benefit from it.

Another important aspect in the interpretation of the results is its reproducibility. Most the
methods presented in this paper have been implemented in home made softwares that are for most
of them available only on request to the authors and at best have a web interface. Thus, searching
for gene-gene interaction is not straightforward. Furthermore, a comprehensive comparison of
such methods, in terms of power and computational performances, remains hardly feasible. As
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proposed in (Emily et al., 2017), it is important to develop generic computational and statistical
tools.

6.4. Concluding words

Although high-throughput technologies evolve rapidly with the emergence of next-generation
sequencing, such as RNA and single cell sequencing, GWAS are still widely used. Compared
to more recent technologies, GWAS data are indeed less expensive and less noisy, thus having
the potential to reliably test for gene-gene interaction. More than computational issues that are
likely to be solved in a near future, statistical issues remain challenging. However, improvements
in the statistical community provide hope for a better detection of gene-gene interaction. First,
the recent advances in the multiple testing community to account for correlation in the correction
gives promises in improving the statistical procedures as well as proposing reliable interpretation.
Furthermore, the rapid evolution of machine learning techniques open the way to the development
of new methods able to embrace the complexity gene-gene interaction (Mackay and Moore, 2014;
S. Uppu, 2016).
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