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Quantization/Clustering: when and why does
k-means work?

Titre: Quantification et/ou Classification non-supervisée : quand et pourquoi la méthode des centres
mobiles marche-t-elle ?

Clément Levrard1

Abstract: Though mostly used as a clustering algorithm, k-means is originally designed as a quantization algorithm.
Namely, it aims at providing a compression of a probability distribution with k points. Building upon Levrard (2015);
Tang and Monteleoni (2016a), we try to investigate how and when these two approaches are compatible. Namely, we
show that provided the sample distribution satisfies a margin like condition (in the sense of Mammen and Tsybakov,
1999 for supervised learning), both the associated empirical risk minimizer and the output of Lloyd’s algorithm provide
almost optimal classification in certain cases (in the sense of Azizyan et al., 2013). Besides, we also show that they
achieved fast and optimal convergence rates in terms of sample size and compression risk.

Résumé : Bien qu’utilisé comme algorithme de classification, les k-moyennes sont à la base conçus pour fournir un
quantifieur, c’est-à-dire un moyen de compresser une distribution de probabilités avec k points. En nous appuyant sur
les travaux de Levrard (2015) et Tang and Monteleoni (2016a), nous essayerons d’expliquer en quoi et sous quelles
conditions ces deux objectifs a priori distincts sont compatibles. Plus précisément, nous montrerons que dans le cas
où la distribution d’où sont tirés les points satisfait une condition de type marge (baptisée ainsi par analogie avec
les conditions de marge établies en classification supervisée dans Mammen and Tsybakov, 1999), non seulement le
minimiseur théorique du risque empirique associé mais aussi le résultat fourni par l’algorithme de Lloyd fournissent
d’une part une classification sinon optimale (au sens de Azizyan et al., 2013) du moins pertinente et d’autre part une
compression rapide (en la taille de l’échantillon) et optimale.
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1. Introduction

Due to its simplicity, k-means algorithm, introduced in MacQueen (1967), is one of the most
popular clustering tool. It has been proved fruitful in many applications: as a last step of a spectral
clustering algorithm Ng et al. (2001), for clustering electricity demand curves Antoniadis et al.
(2011), clustering DNA microarray data Tavazoie et al. (1999); Kim et al. (2007) or EEG signals
Orhan et al. (2011) among others. As a clustering procedure, k-means intends to group data that
are relatively similar into several well-separated classes. In other words, for a data set {X1, . . . ,Xn}
drawn in a Hilbert space H , k-means outputs Ĉ = (C1, . . . ,Ck) that is a collection of subsets of
{1, . . .n}. To assess the quality of such a classification, it is often assumed that a target or natural
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classification C ∗ = (C∗1 , . . . ,C
∗
k ) is at hand. Then a classification error may be defined by

R̂classi f (Ĉ ,C ∗) = inf
σ∈Sk

1
n

k

∑
j=1

∣∣Ĉσ( j)∩ (C∗j )c
∣∣,

where σ ranges in the set of k-permutations Sk. Such a target classification C ∗ may be provided
by a mixture assumption on the data, that is hidden i.i.d latent variables Z1, . . . ,Zn ∈ {1, . . . ,k}
are drawn and only i.i.d Xi’s such that X |Z = j ∼ φ j are observed. This mixture assumption on
the data is at the core of model-based clustering techniques, that cast the clustering problem
into the density estimation framework. In this setting, efficient algorithms may be designed,
provided that further assumptions on the φ j’s are made. For instance, if the φ j’s are supposed to be
normal densities, this classification problem may be processed in practice using an EM algorithm
Dempster et al. (1977).

However, by construction, k-means may rather be thought of as a quantization algorithm.
Indeed, it is designed to output an empirical codebook ĉn = (ĉn,1, . . . , ĉn,k), that is a k-vector of
codepoints ĉn, j ∈H , minimizing

R̂dist(c) =
1
n

n

∑
i=1

min
j=1,...,k

‖Xi− c j‖2,

over the set of codebooks c = (c1, . . . ,ck). Let Vi(c) denote the j-th Voronoi cell associated with
c, that is Vj(c) =

{
x| ∀i 6= j ‖x− c j‖ ≤ ‖x− ci‖

}
, and Qc the function that maps every Vj(c)

onto c j, with ties arbitrarily broken. Then R̂dist(c) is Pn‖x−Qc(x)‖2, where Pn f means integration
with respect to the empirical distribution Pn. From this point of view, k-means aims at providing
a quantizer Qĉn that realizes a good k-point compression of P, namely that has a low distortion
Rdist(ĉn) = P‖x−Qĉn(x)‖2.

This quantization field was originally developed to answer signal compression issues in the late
40’s (see, e.g. Gersho and Gray, 1991), but quantization may also be used as a pre-processing step
for more involved statistical procedures, such as modeling meta-models for curve prediction by k
“local” regressions as in Auder and Fischer (2012). This domain provides most of the theoretical
results for k-means (see, e.g., Linder, 2002; Biau et al., 2008), assessing roughly that it achieves
an optimal k-point compression up to 1/

√
n in terms of the distortion P‖x−Qc(x)‖2, under a

bounded support assumption on P. Note that other distortion measures can be considered: Lr

distances, r ≥ 1 (see, e.g., Graf and Luschgy, 2000), or replacing the squared Euclidean norm by
a Bregman divergence (Fischer, 2010).

In practice, k-means clustering is often performed using Lloyd’s algorithm (Lloyd, 1982). This
iterative procedure is based on the following: from an initial codebook c(0), partition the data
according to the Voronoi cells of c(0), then update the code point by computing the empirical
mean over each cell. Since this step can only decrease the empirical distortion R̂dist , repeat until
stabilization and output ĉKM,n. Note that this algorithm is a very special case of the Classification
EM algorithm in the case where the components are assumed to have equal and spherical variance
matrices (Celeux and Govaert, 1992). As for EM’s algorithms, the overall quality of the Lloyd’s
algorithm output mostly depends on the initialization. Most of the effective implementation use
several random initializations, as for k-means ++ (Arthur and Vassilvitskii, 2007), resulting in an
approximation of the true empirical distortion minimizer. This approximation may be build as
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When does k-means work? 3

close as desired (in terms of distortion) to the optimum (Kumar et al., 2005) with high probability,
provided that enough random initializations are allowed.

Roughly, these approximation results quantify the probability that a random initialization
falls close enough to the empirical distortion minimizer ĉn. It has been recently proved that,
provided such a good random initialization is found, if Pn satisfies some additional clusterability
assumption, then some further results on the misclassification error of the Lloyd’s algorithm
output can be stated. For instance, if mini 6= j ‖ĉn,i− ĉn, j‖/

√
n is large enough, then it is proved

that ĉKM,n provides a close classification to ĉn (Tang and Monteleoni, 2016a). In other words, if
C (ĉKM,n) and C (ĉn) denote the classifications associated with the Voronoi diagrams of ĉKM,n and
ĉn, then R̂classi f (C (ĉKM,n),C (ĉn)) is small with high probability, provided that the empirically
optimal cluster centers are separated enough.

This empirical separation condition has deterministic counterparts that provide classification
guarantees for k-means related algorithms, under model-based assumptions. Namely, if the sample
is drawn according to a subGaussian mixture, then a separation condition on the true means of
the mixture entails guarantees for the classification error R̂classi f (Ĉ ,C ∗), where C ∗ is the latent
variable classification (Lu and Zhou, 2016; Bunea et al., 2016). As will be detailed in Section 2, it
is possible to define a separation condition without assuming that the underlying distribution is a
subGaussian mixture (see, e.g., Levrard, 2013, 2015). This so-called margin condition turns out
to be satisfied under model-based clustering assumptions such as quasi-Gaussian mixtures. It also
holds whenever the distribution is supported on finitely many points.

Section 2 introduces notation and basic structural properties that the margin condition entails
for probability distributions. To be more precise, a special attention is paid to the connection
between classification and compression such a condition provides. For instance, it is exposed that
whenever P satisfies a margin condition, there exist finitely many optimal classifications. Section
3 focuses on the compression performance that an empirical risk minimizer ĉn achieves under this
margin condition. We state that fast convergence rates for the distortion are attained, that imply
some guarantees on the classification error of ĉn. At last, Section 4 intends to provide similar
results, both in compression and classification, for an output ĉKM,n of the Lloyd’s algorithm. We
show that our deterministic separation condition ensures that an empirical one in satisfied with
high probability, allowing to connect our approach to that of Tang and Monteleoni (2016a). On the
whole, we prove that ĉKM,n performs almost optimal compression, as well as optimal classification
in the framework of Azizyan et al. (2013).

2. Notation and margin condition

Throughout this paper, for M > 0 and a in H , B(a,M) will denote the closed ball with center a
and radius M. For a subset A of H ,

⋃
a∈A B(a,M) will be denoted by B(A,M). With a slight abuse

of notation, P is said to be M-bounded if its support is included in B(0,M). Furthermore, it will
also be assumed that the support of P contains more than k points. Recall that we define the closed
j-th Voronoi cell associated with c = (c1, . . . ,ck) by Vj(c) =

{
x| ∀i 6= j ‖x− c j‖ ≤ ‖x− ci‖

}
.

We let X1, . . . ,Xn be i.i.d. random variables drawn from a distribution P, and introduce the
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following contrast function,

γ :

{
(H )k×H −→ R

(c,x) 7−→ min
j=1,...,k

∥∥x− c j
∥∥2 ,

so that Rdist(c) = Pγ(c, .) and R̂dist(c) = Pnγ(c, .). We let M denote the set of minimizers of
Pγ(c, .) (possibly empty). The most basic property of the set of minimizers is its stability with
respect to isometric transformations that are P-compatible. Namely

Lemma 1. (Graf and Luschgy, 2000, Lemma 4.7)
Let T be an isometric transformation such that T ]P = P, where T ]P denotes the distribution

of T (X), X ∼ P. Then
T (M ) = M .

Other simple properties of M proceed from the fact that c 7→ ‖x− c j‖2 is weakly lower
semi-continuous (see, e.g., Brezis, 2011, Proposition 3.13), as stated below.

Proposition 1. (Fischer, 2010, Corollary 3.1) and (Levrard, 2015, Proposition 2.1)
Assume that P is M-bounded, then
i) M 6= /0.
ii) If B = infc∗∈M ,i 6= j ‖c∗i − c∗j‖, then B > 0.
iii) If pmin = infc∗∈M ,i P(Vi(c∗)), then pmin > 0.

Proposition 1 ensures that there exist minimizers of the true and empirical distortions Rdist and
R̂dist . In what follows, ĉn and c∗ will denote minimizers of R̂dist and Rdist respectively. A basic
property of distortion minimizers, called the centroid condition, is the following.

Proposition 2. (Graf and Luschgy, 2000, Theorem 4.1) If c∗ ∈M , then, for all j = 1, . . . ,k,

P(Vj(c∗))c∗j = P
(

x1Vj(c∗)(x)
)
.

As a consequence, for every c ∈H k and c∗ ∈M ,

Rdist(c)−Rdist(c∗)≤ ‖c− c∗‖2.

A direct consequence of Proposition 2 is that the boundaries of the Voronoi diagram V (c) has
null P-measure. Namely, if

N(c∗) =
⋃
i6= j

{
x| ‖x− c∗i ‖= ‖x− c∗j‖

}
,

then P(N(c∗)) = 0. Hence the quantizer Qc∗ that maps Vj(c∗) onto c∗j is well-defined P a.s. For a
generic c in B(0,M), this is not the case. Thus, we adopt the following convention: W1(c) =V1(c),
W2(c) = V2(c) \W1(c), . . ., Wk(c) = Vk(c) \Wk−1(c), so that the Wj(c)’s form a tessellation of
Rd . The quantizer Qc can now be properly defined as the map that sends each Wj(c) onto c j. As
a remark, if Q is a k-points quantizer, that is a map from Rd with images c1, . . . ,ck, then it is
immediate that Rdist(Q)≥ Rdist(Qc). This shows that optimal quantizers in terms of distortion are
to be found among nearest-neighbor quantizers of the form Qc, c in (Rd)k.

An other key parameter for quantization purpose is the separation factor, that seizes the
difference between local and global minimizers in terms of distortion.
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When does k-means work? 5

Definition 1. Denote by M̄ the set of codebooks that satisfy

P(Wi(c))ci = P
(
x1Wi(c)(x)

)
,

for any i = 1, . . . ,k. Let ε > 0, then P is said to be ε-separated if

inf
c∈M̄ \M

Rdist(c)−Rdist(c∗)≥ ε,

where c∗ ∈M .

The separation factor ε quantifies how difficult the identification of global minimizer might be.
Its empirical counterpart in terms of R̂dist can be thought of as the minimal price one has to pay
when the Lloyd’s algorithm ends up at a stationary point that is not an optimal codebook.

Note that local minimizers of the distortion satisfy the centroid condition, as well as p-optimal
codebooks, for p < k. Whenever H = Rd , P has a density and P‖x‖2 < ∞, it can be proved that
the set of minimizers of Rdist coincides with the set of codebooks satisfying the centroid condition,
also called stationary points (see, e.g., Lemma A of Pollard, 1982). However, this result cannot be
extended to non-continuous distributions, as proved in Example 4.11 of Graf and Luschgy (2000).

Up to now, we only know that the set of minimizers of the distortion M is non-empty. From
the compression point of view, this is no big deal if M is allowed to contain an infinite number of
optimal codebooks. From the classification viewpoint, such a case may be interpreted as a case
where P carries no natural classification of H . For instance, if H = R2 and P∼N (0, I2), then
easy calculation and Lemma 1 show that M =

{
(c1,c2)| c2 =−c1, ‖c1‖= 2/

√
2π
}

, hence
|M |=+∞. In this case, it seems quite hard to define a natural classification of the underlying
space, even if the c∗’s are clearly identified. The following margin condition is intended to depict
situations where a natural classification related with P exists.

Definition 2 (Margin condition). A distribution P satisfies a margin condition with radius r0 > 0
if and only if

i) P is M-bounded,
ii) for all 0≤ t ≤ r0,

sup
c∗∈M

P(B(N(c∗), t)) := p(t)≤ Bpmin

128M2 t. (1)

Since p(2M) = 1, such a r0 must satisfy r0 < 2M. The constant 1/128 in (1) is not optimal
and should be understood as a small enough absolute constant. The margin condition introduced
above asks that every classification associated with an optimal codebook c∗ is a somehow natural
classification. In other words P has to be concentrated enough around each c∗j . This margin
condition may also be thought of as a counterpart of the usual margin conditions for supervised
learning stated in Mammen and Tsybakov (1999), where the weight of the neighborhood of the
critical area {x| P(Y = 1|X = x) = 1/2} is controlled.

The scope of the margin condition allows to deal with several very different situations in the
same way, as illustrated below.
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6 Levrard, C.

2.1. Some instances of ’natural classifications’

Finitely supported distributions: If P is supported on finitely many points, say x1, . . . ,xr.
Then, M is obviously finite. Since, for all c∗ in M , P(N(c∗)) = 0, we may deduce that
infc∗, j d(x j,N(c∗)) = r0 > 0. Thus, p(t) = 0 for t ≤ r0, and P satisfies a margin condition with
radius r0.

Truncated Gaussian mixtures: A standard assumption assessing the existence of a natural
classification is the Gaussian mixture assumption on the underlying distribution, that allows to
cast the classification issue into the density estimation framework. Namely, for H = Rd , P̃ is a
Gaussian mixture if it has density

f̃ (x) =
k

∑
i=1

θi

(2π)d/2
√
|Σi|

e−
1
2 (x−mi)

t Σ−1
i (x−mi),

where the θi’s denote the weights of the mixture, the mi’s the means and the Σi’s are the d×d
covariance matrices of the components.

Also denote by B̃ = mini 6= j ‖mi−m j‖ the minimum distance between two components, and
by σ2 and σ2

− the largest and smallest eigenvalues of the Σi’s. It seems natural that the larger B̃
is compared to σ , the easier the classification problem would be. To this aim, we may define,
for C and C ∗ two classifications the classification risk as the probability that a random point is
misclassified, that is

Rclassi f (C ,C ∗) = inf
σ∈Sk

P

(
k⋃

j=1

Cσ( j)∩ (C∗j )c

)
.

In the case k = 2, θi = 1/2 and Σi = σ2Id , (Azizyan et al., 2013, Theorem 1 and 2) show that

inf
Ĉ

sup
σ/B̃≤κ

ERclassi f (Ĉ,C ∗)� κ
2

√
d
n
,

up to log factors, where C ∗ denote the Bayes classification. Note that in this case, the Bayes
classification is given by C∗j =Vj(m), that is the Voronoi diagram associated with the vector of
means. Similarly we will show that for σ/B̃ small enough, a margin condition is satisfied.

Since Gaussian mixture have unbounded distributions, we may define a truncated Gaussian
mixture distribution by its density of the form

f̃ (x) =
k

∑
i=1

θi

(2π)d/2Ni
√
|Σi|

e−
1
2 (x−mi)

t Σ−1
i (x−mi)1B(0,M)(x),

where Ni denotes a normalization constant for each truncated Gaussian variable. To avoid boundary
issues, we will assume that M is large enough so that M ≥ 2sup j ‖m j‖. On the other hand, we also
assume that M scales with σ , that is M ≤ cσ , for some constant c. In such a setting, the following
hold.

Proposition 3. Denote by η = mini 1−Ni. Then there exists constants c1(k,η ,d,θmin) and
c2(k,η ,d,θmin,c−,c) such that
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When does k-means work? 7

— If σ/B̃≤ 1
16c1
√

d
, then for all j and c∗ in M , ‖c∗j −m j‖ ≤ c1σ

√
d.

— Assume that σ− ≥ c−σ , for some constant c−. If σ/B̃≤ c2, then c∗ is unique and P satisfies
a margin condition with radius B̃/8.

A possible choice of c1 is
√

k2d+2

(1−η)θmin
.

A short proof is given in Section 6.1. Proposition 3 entails that (truncated) Gaussian mixtures
are in the scope of the margin condition, provided that the components are well-separated. As will
be detailed in Section 4, this implies that under the conditions of Proposition 3 the classification
error of the outputs of the k-means algorithm is of order κ2

√
d/n as in Azizyan et al. (2013).

2.2. An almost necessary condition

As described above, if the distribution P is known to carry a natural classification, then it is likely
that it satisfies a margin condition. It is proved below that conversely an optimal codebook c∗
provides a not so bad classification, in the sense that the mass around N(c∗) must be small. To
this aim, we introduce, for c in B(0,M)k, and i 6= j, the following mass

pi j(c, t) = P
({

x| 0≤
〈

x−
ci + c j

2
,
c j− ci

ri, j(c)

〉
≤ t
}
∩Vj(c)

)
,

where ri, j(c) = ‖ci− c j‖. It is straightforward that P(B(N(c), t))≤ ∑i6= j pi, j(c, t). The necessary
condition for optimality in terms of distortion is the following.

Proposition 4. Suppose that c∗ ∈M . Then, for all i 6= j and t < 1/2,∫ tri, j(c∗)

0
pi, j(c∗,s)ds≤ 2t2ri, j(c∗)

[
pi(c∗)
1−2t

∧
p j(c∗)
1+2t

]
,∫ tri, j(c∗)

0
pi, j(c∗,s)ds≤ t2ri, j(c∗)

pi(c∗)+ p j(c∗)
2

,

where p j(c∗) denotes P(Vj(c∗)).

A proof of Proposition 4 is given in Section 6.2. Whenever pi, j(c∗, .) is continuous, Proposition
4 can provide a local upper bound on the mass around N(c∗).

Corollary 1. Assume that c∗ ∈M and, for all i 6= j and t ≤ t0 pi, j is continuous on [0, t0]. Then
there exists r0 > 0 such that, for all r ≤ r0,

P(B(N(c∗),r))≤ 8k
B

r.

Note that whenever H = Rd and P has a density, the assumptions of Corollary 1 are satisfied.
In this case, Corollary 1 states that all optimal codebooks satisfy a condition that looks like
Definition 2, though with a clearly worse constant than the required one. Up to a thorough work
on the constants involved in those results, this suggests that margin conditions (or at least weaker
but sufficient versions) might be quite generally satisfied. As exposed below, satisfying such a
condition provides interesting structural results.
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2.3. Structural properties under margin condition

The existence of a natural classification, stated in terms of a margin condition in Definition 2, gives
some guarantees on the set of optimal codebooks M . Moreover, it also allows local convexity of
the distortion Rdist . These properties are summarized in the following fundamental Proposition.

Proposition 5. (Levrard, 2015, Proposition 2.2) Assume that P satisfies a margin condition with
radius r0, then the following properties hold.

i) For every c∗ in M and c in B(0,M)k, if ‖c− c∗‖ ≤ Br0
4
√

2M
, then

Rdist(c)−Rdist(c∗)≥
pmin

2
‖c− c∗‖2. (2)

ii) M is finite.
iii) There exists ε > 0 such that P is ε-separated.
iv) For all c in B(0,M)k,

1
16M2 Var(γ(c, .)− γ(c∗(c), .))≤ ‖c− c∗(c)‖2 ≤ κ0 (Rdist(c)−Rdist(c∗)) , (3)

where κ0 = 4kM2
(

1
ε
∨ 64M2

pminB2r2
0

)
, and c∗(c) ∈ argmin

c∗∈M
‖c− c∗‖.

Properties ii) and iii) guarantee that whenever a margin condition is satisfied, there exist finitely
many optimal codebooks that are clearly separated in terms of distortion. When P∼N (0, Id),
since |M |=+∞, P does not satisfy a margin condition. This finite set property also allows to give
some structural results about the optimal codebooks. Namely, we can easily deduce the following.

Corollary 2. Let T be the isometry group of P, and let c∗ ∈M . If P satisfies a margin condition,
then |T (c∗)|<+∞.

An easy instance of application of Corollary 2 can be stated in the truncated Gaussian Mixture
model exposed in Section 2.1. Let S(m) denote the subset of {1, . . . ,d} such that, for all j
and r /∈ S(m) m(r)

j = 0, where m(r)
j denotes the r-th coordinate of m j. Under the conditions of

Proposition 3, if we further require that for all j and r,s in S(m)× S(m)c, Σ j,rs = 0, then it is
immediate that S(c∗) ⊂ S(m). Such a property might be of particular interest when variable
selection is performed as in Levrard (2018).

Properties i) and iv) of Proposition 5 allow to make connections between the margin condition
defined in Definition 2 and earlier results on improved convergence rates for the distortion.
To be more precise, it is proved in Chou (1994) that if P has a continuous density, unique
optimal codebook c∗, and if the distortion function Rdist has a positive Hessian matrix at c∗, then
Rdist(ĉn)−Rdist(c∗) = OP(1/n). It is straightforward that in the case where P has a continuous
density and a unique optimal codebook, (2) yields that the Hessian matrix of the distortion is
positive, hence the margin condition gives the convergence rate in OP(1/n) for the distortion in
this case.

On the other hand, it is proved in (Antos et al., 2005, Theorem 2) that, if Var(γ(c, .)−
γ(c∗(c), .)≤ A(Rdist(c)−Rdist(c∗)), for some constant A, then the convergence rate E(Rdist(ĉn)−
Rdist(c∗))≤C/n can be attained for the expected distortion of an empirical distortion minimizer.
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When does k-means work? 9

Thus, if P satisfies a margin condition, then (3) shows that P is in the scope of this result. In the
following section, more precise bounds are derived for this excess distortion when P satisfies a
margin condition.

At last, Properties i) and iv) allow to relate excess distortion and excess classification risk,
when appropriate. For a codebook c in H k, we denote by C (c) its associated Voronoi partition
(with ties arbitrarily broken).

Corollary 3. Assume that P satisfies a margin condition (Definition 2) with radius r0. Let δ

denote the quantity pminB2r2
0

64M2 ∧ ε . For every c ∈H k such that Rdist(c)−Rdist(c∗)≤ δ , we have

Rclassi f (C (c),C (c∗(c)))≤
√

pmin

16M

√
Rdist(c)−Rdist(c∗),

where c∗(c) is a closest optimal codebook to c.

A short proof of Corollary 3 is given in Section 6.3. Corollary 3 summarizes the connection
between classification and distortion carried by the margin condition: if a natural classification
exists, that is if P is separated into k spherical components, then this classification can be inferred
from quantizers that are designed to achieve a low distortion. As exposed in the following section,
an other interest in satisfying a margin condition is achieving an improved convergence rate in
terms of distortion for the empirical distortion minimizer.

3. Convergence of an empirical risk minimizer

If P is M-bounded, then the excess distortion of an empirical distortion minimizer can be bounded
by

E(Rdist(ĉn)−Rdist(c∗))≤
C(k)M2
√

n
.

Such a result can be found in Linder (2002) for the case H =Rd , and in Biau et al. (2008) for the
general case where H is a separable Hilbert space. When P satisfies a margin condition, faster
rates can be achieved. The following Theorem is a refined version of (Levrard, 2015, Theorem
3.1).

Theorem 1. We assume that P satisfies a margin condition (Definition 2) with radius r0, and we
let δ denote the quantity pminB2r2

0
64M2 ∧ ε . Then,

E(Rdist(ĉn)−Rdist(c∗))≤
C
(
k+ log

(∣∣M̄ ∣∣))M2

npmin
+

[
20kM2
√

n
−δ

]
1

δ< 12kM2√
n

+

[
e−

n
2M4

(
(δ− 12kM2

√
n )
)2 M2
√

n

]
1

δ≥ 12kM2√
n
,

where C denotes a (known) constant and
∣∣M̄ ∣∣ denotes the number of optimal codebooks up to

relabeling.

A short proof is given in Section 6.4. Theorem 1 confirms that the fast 1/n rate for the distortion
may be achieved as in Pollard (1982) or Antos et al. (2005), under slightly more general conditions.
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10 Levrard, C.

It also emphasizes that the convergence rate of the distortion is “dimension-free”, in the sense that
it only depends on the dimension through the radius of the support M. For instance, quantization
of probability distributions over the unit L2-ball of L2([0,1]) (squared integrable functions) is in
the scope of Theorem 1. Note that a deviation bound is also available for Rdist(ĉn)−Rdist(c∗),
stated as (9).

In fact, this result shows that the key parameters that drive the convergence rate are rather
the minimal distance between optimal codepoints B, the margin condition radius r0 and the
separation factor ε . These three parameters provide a local scale δ such that, if n is large enough
to distinguish codebooks at scale δ in terms of slow-rated distortion, i.e.

√
nδ ≥ 12kM2, then the

distortion minimization boils down to k well separated mean estimation problems, leading to an
improved convergence rate in kM2/(npmin). Indeed, Theorem 1 straightforwardly entails that, for
n large enough,

E(Rdist(ĉn)−Rdist(c∗))≤
C′(k+ log(|M̄ |)M2

npmin
.

Thus, up to the log(|M̄ |) factor, the right-hand side corresponds to ∑
k
j=1E

(
‖X− c∗j‖2|X ∈Vj(c∗)

)
.

Combining Theorem 1 and Corollary 3 leads to the following classification error bound for the
empirical risk minimizer ĉn. Namely, for n large enough, it holds

E
[
Rclassi f (C (ĉn),C (c∗(ĉn)))

]
≤C′

√
k+ log(|M̄ |√

n
.

This might be compared with the 1/
√

n rate obtained in (Azizyan et al., 2013, Theorem 1) for
the classification error under Gaussian mixture with well-separated means assumption. Note
however that in such a framework C (c∗) might not be the optimal classification. However, under
the assumptions of Proposition 3, C (c∗) and C (m) can be proved close, and even the same in
some particular cases as exposed in Corollary 4.

Next we intend to assess the optimality of the convergence rate exposed in Theorem 1, by
investigating lower bounds for the excess distortion over class of distributions that satisfy a margin
condition. We let D(B−,r0,−, p−,ε−) denote the set of distributions satisfying a margin condition
with parameters B ≥ B−, r0 ≥ r0,−, pmin ≥ p− and ε ≥ ε−. Some lower bound on the excess
distortion over these sets are stated below.

Proposition 6. (Levrard, 2015, Proposition 3.1) If H = Rd , k ≥ 3 and n≥ 3k/2, then

inf
ĉ

sup
P∈D(c1Mk−1/d ,c2Mk−1/d ,c3/k,c4M2k−2/d/

√
n)
E [Rdist(ĉ)−Rdist(c∗)]≥ c0

M2k
1
2−

1
d

√
n

,

where c0, c1,c2,c3 and c4 are absolute constants.

Thus, for a fixed choice of r0, B and pmin, the upper bound given by Theorem 1 turns out to be
optimal if the separation factor ε is allowed to be arbitrarily small (at least δ . kM2/

√
n). When

all these parameters are fixed, the following Proposition 7 ensures that the 1/n rate is optimal.
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When does k-means work? 11

Proposition 7. Let d = dim(H ). Assume that n≥ k, then there exist constants c1, c2, c3 and c0
such that

inf
ĉ

sup
P∈D(c1Mk−1/d ,c2Mk−1/d ,1/k,c3M2k−(1+2/d)

E [Rdist(ĉ)−Rdist(c∗)]≥ c0
M2k1− 2

d

n
.

A proof of Proposition 7 can be found in Section 6.5. Proposition 7 ensures that the 1/n-
rate is optimal on the class of distributions satisfying a margin condition with fixed parameters.
Concerning the dependency in k, note that Proposition 7 allows for d =+∞, leading to a lower
bound in k. In this case the lower bound differs from the upper bound given in Theorem 1 up to a
1/pmin ∼ k factor. A question raised by the comparison of Proposition 6 and Proposition 7 is the
following: can we retrieve the 1/

√
n rate when allowing other parameters such as B− or r0,− to be

small enough and ε− fixed? A partial answer is provided by the following structural result, that
connects the different quantities involved in the margin condition.

Proposition 8. Assume that P satisfies a margin condition with radius r0. Then the following
properties hold.

i) ε ≤ B2

4 .
ii) r0 ≤ B.

A proof of Proposition 8 is given in Section 6.7. Such a result suggests that finding distributions
that have B small enough whereas ε or r0 remains fixed is difficult. As well, it also indicates
that the separation rate in terms of B should be of order Mk−1/dn−1/4. Slightly anticipating, this
can be compared with the n−1/4 rate for the minimal separation distance between two means
of a Gaussian mixture to ensure a consistent classification, as exposed in (Azizyan et al., 2013,
Theorem 2).

4. Convergence of the k-means algorithm

Up to now some results have been stated on the performance of an empirical risk minimizer ĉn, in
terms of distortion or classification. Finding such a minimizer is in practice intractable (even in
the plane this problem has been proved NP-hard, Mahajan et al., 2012). Thus, most of k-means
algorithms provide an approximation of such a minimizer. For instance, Lloyd’s algorithm outputs
a codebook ĉKM,n that is provably only a stationary point of the empirical distortion R̂dist . Similarly
to the EM algorithm, such a procedure is based on a succession of iterations that can only decrease
the considered empirical risk R̂dist . Thus many random initializations are required to ensure that
at least one of them falls into the basin of attraction of an empirical risk minimizer.

Interestingly, when such a good initialization has been found, some recent results ensure that
the output ĉKM,n of Lloyd’s algorithm achieves good classification performance, provided that the
sample is in some sense well-clusterable. For instance, under the model-based assumption that X
is a mixture of sub-Gaussian variables with means m and maximal variances σ2, (Lu and Zhou,
2016, Theorem 3.2) states that, provided B̃/σ is large enough, after more that 4 log(n) iterations
from a good initialization Lloyd’s algorithm outputs a codebook with classification error less that
e−B̃2/(16σ2). Note that the same kind of results hold for EM-algorithm in the Gaussian mixture
model, under the assumption that B̃/σ is large enough and starting from a good initialization (see,
e.g., Dasgupta and Schulman, 2007).
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12 Levrard, C.

In the case where P is not assumed to have a mixture distribution, several results on the
classification risk R̂classi f (ĉKM,n, ĉn) are available, under clusterability assumptions. Note that this
risk accounts for the misclassifications encountered by the output of Lloyd’s algorithm compared
to the empirical risk minimizer, in opposition to a latent variable classification as above.

Definition 3. (Tang and Monteleoni, 2016a, Definition 1) A sample X1, . . . ,Xn is f -clusterable if
there exists a minimizer ĉn of R̂dist such that, for j 6= i,

‖ĉn,i− ĉn, j‖ ≥ f
√

R̂dist(ĉn)

(
1
√

ni
+

1
√n j

)
,

where n` denotes |{i| Xi ∈V`(ĉn)}|.

It is important to mention that other definitions of clusterability might be found, for instance in
Kumar and Kannan (2010); Awasthi and Sheffet (2012), each of them requiring that the optimal
empirical codepoints are well-separated enough. Under such a clusterability assumption, the
classification error of ĉKM,n can be proved small provided that a good initialization is chosen.

Theorem 2. (Tang and Monteleoni, 2016a, Theorem 2) Assume that X1, . . . ,Xn is f -clusterable,
with f > 32 and let ĉn denote the corresponding minimizer of R̂dist . Suppose that the initialization
codebook c(0) satisfies

R̂dist(c(0))≤ gR̂dist(ĉn),

with g < f 2

128 −1. Then the outputs of Lloyd’s algorithm satisfies

R̂classi f (ĉKM,n, ĉn)≤
81
8 f 2 .

The requirement on the initialization codebook c(0) is stated in terms of g-approximation of an
empirical risk minimizer. Finding such approximations can be carried out using approximated
k-means techniques (k-means ++ Arthur and Vassilvitskii, 2007), usual clustering algorithms
(single Linkage Tang and Monteleoni (2016a), spectral clustering Lu and Zhou (2016)), or even
more involved procedures as in Ostrovsky et al. (2012) coming with complexity guarantees. All
of them entail that a g-approximation of an empirical risk minimizer can be found with high
probability (depending on g), that can be used as an initialization for the Lloyd’s algorithm.

Interestingly, the following Proposition allows to think of Definition 3 as a margin condition
(Definition 2) for the empirical distribution.

Proposition 9. Let p̂(t), B̂ and p̂min denote the empirical counterparts of p(t), B and pmin. If

p̂
(

16M2 f
√

np̂minB̂

)
≤ p̂min,

then X1, . . . ,Xn is f -clusterable.

A proof of Proposition 9 can be found in Section 6.8. Intuitively, it seems likely that if X1, . . . ,Xn

is drawn from a distribution P that satisfies a margin condition, then X1, . . . ,Xn is clusterable in
the sense of Definition 3. This is formalized by the following Theorem.
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Theorem 3. Assume that P satisfies a margin condition. Let p > 0. Then, for n large enough, with

probability larger than 1−3n−p− e−
n

2M4

(
(δ− 12kM2

√
n )
)2

, X1, . . . ,Xn is
√

pminn-clusterable. Moreover,
on the same event, we have

‖ĉn− ĉKM,n‖ ≤
60M
np2

min
.

A proof of Theorem 3 can be found in Section 6.9. Combining Theorem 3 and Theorem 2
ensures that whenever P satisfies a margin condition, then with high probability the classification
error of the k-means codebook starting from a good initialization, R̂classi f (ĉKM,n, ĉn), is of order
1/(npmin). Thus, according to Corollary 3, the classification error R̂classi f (ĉKM,n,c∗(ĉKM,n)) should
be of order

√
(k+ log(|M̄ |)/n, for n large enough. This suggests that the misclassifications of

ĉKM,n are mostly due to the misclassifications of ĉn, rather than the possible difference between ĉn

and ĉKM,n.
Combining the bound on ‖ĉn− ĉKM,n‖ with a bound on ‖ĉn− c∗(ĉn)‖ that may be deduced

from Theorem 1 and Proposition 5 may lead to guarantees on the distortion and classification risk
Rdist(ĉKM,n) and Rclassi f (ĉKM,n,c∗(ĉKM,n)). An illustration of this point is given in Corollary 4.

Note also that the condition on the initialization in Theorem 2, that is g≤ f 2/128−1, can be
written as g≤ npmin/2−1 in the framework of Theorem 3. Thus, for n large enough, provided
that Rdist(c∗)> 0, every initialization c(0) turns out to be a good initialization.

Corollary 4. Under the assumptions of Proposition 3, for k = 2, Σi = σ Id , and pmin = 1/2, if n
is large enough then

ERclassi f (C (ĉKM,n),C (m))≤Cσ

√
log(n)

n
,

where ĉKM,n denotes the output of the Lloyd’s algorithm.

Note that in this case C (m) corresponds to the Bayes classification C ∗. Thus, in the “easy”
classification case σ

B small enough, the output of the Lloyd’s algorithm achieves the optimal
classification error. It may be also worth remarking that this case is peculiar in the sense that
C (c∗) = C (m), that is the classification targeted by k-means is actually the optimal one. In full
generality, since c∗ 6= m, a bias term accounting for Rclassi f (C (c∗),C (m)) is likely to be incurred.

5. Conclusion

As emphasized by the last part of the paper, the margin condition we introduced seems a relevant
assumption when k-means based procedures are used as a classification tool. Indeed, such an
assumption in some sense postulates that there exists a natural classification that can be reached
through the minimization of a least-square criterion. Besides, it also guarantees that both a true
empirical distortion minimizer and the output of the Lloyd’s algorithm approximate well this
underlying classification.

From a technical point a view, this condition was shown to connect a risk in distortion and a
risk in classification. As mentioned above, this assesses the relevance of trying to find a good
classifier via minimizing a distortion, but this also entails that the distortion risk achieves a fast
convergence rate of 1/n. Though this rate seems optimal on the class of distributions satisfying a
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14 Levrard, C.

margin condition, a natural question is whether fast rates of convergence for the distortion can
occur more generally.

In full generality, the answer is yes. Indeed, consider P0 a two-component truncated Gaussian
mixtures on R satisfying the requirements of Proposition 3. Then set P has a distribution over R2,
invariant through rotations, and that has marginal distribution P0 on the first coordinate. According
to Corollary 2, P cannot satisfy a margin condition. However, by decomposing the distortion of
codebooks into a radial and an orthogonal component, it can be shown that such a distribution
gives a fast convergence rate for the expected distortion of the empirical distortion minimizer.

The immediate questions issued by Proposition 4 and the above example are about the possible
structure of the set of optimal codebooks: can we find distributions with infinite set of optimal
codebooks that have finite isometry group? If not, through quotient-like operations can we always
reach a fast convergence rate for the empirical risk minimizer? Beyond the raised interrogations,
this short example allows to conclude that our margin condition cannot be necessary for the
distortion of the ERM to converge fast.

6. Proofs

6.1. Proof of Proposition 3

The proof of Proposition 3 is based on the following Lemma.

Lemma 2. (Levrard, 2018, Lemma 4.2) Denote by η = sup j=1,...,k 1−Ni. Then the risk R(m)
may be bounded as follows.

R(m)≤ σ2kθmaxd
(1−η)

, (4)

where θmax = max j=1,...,k θ j. For any 0 < τ < 1/2, let c be a codebook with a code point ci such
that ‖ci−m j‖> τB̃, for every j in {1, . . . ,k}. Then we have

R(c)>
τ2B̃2θmin

4

(
1− 2σ

√
d√

2πτB̃
e−

τ2B̃2

4dσ2

)d

, (5)

where θmin = min j=1,...,k θ j. At last, if σ− ≥ c−σ , for any τ ′ such that 2τ + τ ′ < 1/2, we have

∀t ≤ τ
′B̃ p(t)≤ t

2k2θmaxMd−1Sd−1

(2π)d/2(1−η)cd
−σd

e−
[ 1

2−(2τ+τ ′)]
2

B̃2

2σ2 , (6)

where Sd−1 denotes the Lebesgue measure of the unit ball in Rd−1.

Proof. Proof of Proposition 3 We let τ = c1
√

dσ

B̃ , with c1 =
√

k2d+2

(1−η)θmin
. Note that σ

B̃ ≤
1

16
√

dc1

entails τ ≤ 1
16 . Let c be a codebook with a code point ci such that ‖ci−m j‖> τB̃, for every j in
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When does k-means work? 15

{1, . . . ,k}. Then (5) gives

R(c)>
c2

1σ2θmind2−d

4

>
kσ2d
(1−η)

> R(m),

according to (4). Thus, an optimal codebook c∗ satisfies, for all j = 1, . . . ,k, ‖c∗j −m j‖ ≤ c1
√

dσ ,

up to relabeling. Under the condition σ

B̃ ≤
1

16
√

dc1
and τ = c1

√
dσ

B̃ , we have, since τ ≤ 1
16 , for every

c∗ ∈M and j = 1, . . . ,k,

B̃≥ B
2
, and B

(
m j,

B̃
4

)
⊂Vj(c∗).

We thus deduce that

pmin ≥
θmin

(2π)
d
2

∫
B(0, B̃

4 )
e−

‖u‖2
2 du

≥ θmin
d
2

(
1− 4σ

√
d√

2πB̃
e−

B̃2

16dσ2

)d

≥ θmin

2d(2π)
d
2
.

Recall that we have M ≤ cσ for some constant c > 0, and σ− ≥ c−σ . If B̃/σ additionally satisfies
B̃2

σ2 ≥ 32log
(

2d+5Sd−1k2cd+1

(1−η)θmincd
−

)
, choosing τ ′ = 1

8 in (6) leads to, for t ≤ B̃
8 ,

p(t)≤ t
2k2Md−1Sd−1

(2π)
d
2 (1−η)cd

−σd
e−

B̃2

32σ2

≤ t
θminMd−1

2d+4cd+1σd(2π)
d
2

≤ t
B̃θmin

(2π)
d
2 2d+8M2

≤ Bpmin

128M2 .

Hence P satisfies a margin condition with radius B̃/8. Note that according to Proposition 5,
no local minimizer of the distortion may be found in B(c∗,r), for c∗ ∈M and r = Br0

4
√

2M
.

Note that r ≥ B̃2

64
√

2cσ
and ‖c∗−m‖ ≤ c1σ

√
kd. Thus, if σ2

B̃2 ≤ 1
128
√

2c1c
√

kd
, c∗ is unique (up to

relabeling).

6.2. Proof of Proposition 4

Proof. Let 0 ≤ t < 1
2 , c∗ ∈M , and for short denote by ri j, Vi, pi the quantities ‖c∗i − c∗j‖,

Vi(c∗) and pi(c∗). Also denote by ui j the unit vector
c∗j−c∗i

ri j
, ct

i = c∗i + 2t(c∗j − c∗i ), and by Ht
i j =
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16 Levrard, C.{
x| ‖x− ct

i‖ ≤ ‖x− c∗j‖
}

. We design the quantizer Qt
i as follows: for every ` 6= i, j, Qt(V`) = c∗` ,

Qt((Vi∪Vj)∩Ht
i j) = ct

i , and Qt((Vi∪Vj)∩ (Ht
i j)

c) = c∗j . Then we may write

0≤ Rdist(Qt
i)−Rdist(c∗) = 4pir2

i jt
2 +P

(
(‖x− ct

i‖2−‖x− c∗j‖2)1Vj∩Ht
i j
(x)
)
. (7)

On the other hand, straightforward calculation show that Vj∩Ht
i j =

{
x| 0≤

〈
x− c∗i +c∗j

2 ,ui j

〉
≤ tri j

}
.

Besides, for any x ∈Vj ∩Ht
i j, denoting by s the quantity

〈
x− c∗i +c∗j

2 ,ui j

〉
, we have

‖x− ct
i‖2−‖x− c∗j‖2 = 2

〈
(1−2t)(c∗j − c∗i ),x−

c∗i + c∗j
2
− t(c∗j − c∗i )

〉
= 2

[
ri js(1−2t)− t(1−2t)r2

i j
]

= 2ri j(1−2t)(s− tri j).

Thus (7) may be written as

(1−2t)
∫ tri j

0
(tri j− s)d pi j(s)≤ 2piri jt2.

Integrating by parts leads to
∫ tri j

0 (tri j− s)d pi j(s) =
∫ tri j

0 pi j(u)du. Thus∫ tri j

0
pi j(c∗,s)ds≤ 2t2ri j(c∗)

pi(c∗)
1−2t

.

The other inequalities follows from the same calculation, with the quantizer moving c∗i to c∗i −
2t(c∗j−c∗i ), and the quantizer moving c∗i and c∗j to c∗i + t(c∗j−c∗i ) and c∗j + t(c∗j−ci)

∗, leaving the
other cells V` unchanged.

6.3. Proof of Corollary 3

Proof. According to (Levrard, 2015, Lemma 4.4), if Rdist(c)−Rdist(c∗)≤ δ , then ‖c−c∗(c)‖≤ r,
with r = Br0

4
√

2M
. We may decompose the classification error as follows.

Rclassi f (C (c),C (c∗(c))) = P

(⋃
j 6=i

Vj(c∗)∩Vi(c)

)
.

According to (Levrard, 2015, Lemma 4.2),

⋃
j 6=i

Vj(c∗)∩Vi(c)⊂B

(
N(c∗(c)),

4
√

2M
B
‖c− c∗(c)‖

)
.

Thus, since P satisfies a margin condition with radius r0,

Rclassi f (C (c),C (c∗(c)))≤ 4
√

2pmin

128M
‖c− c∗(c)‖

≤
√

pmin

16M

√
Rdist(c)−Rdist(c∗),

according to Proposition 5.
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6.4. Proof of Theorem 1

The proof of Theorem 1 relies on the techniques developed in the proof of (Levrard, 2015,
Theorem 3.1) and the following result from Biau et al. (2008).

Theorem 4. (Biau et al., 2008, Corollary 2.1) Assume that P is M-bounded. Then, for any x > 0,
we have

Rdist(ĉn)−Rdist(c∗)≤
12kM2 +M2

√
2x√

n
,

with probability larger than 1− e−x.

We are now in position to prove Theorem 1.

Proof. Proof of Theorem 1 Assume that P satisfies a margin condition with radius r0, and denote
by r = Br0

4
√

2M
, δ = pmin

2 r2 ∧ ε , where ε denotes the separation factor in Definition 1. For short

denote, for any codebook c∈ (R)k, by `(c,c∗) = Rdist(c)−Rdist(c∗). According to (Levrard, 2015,
Lemma 4.4), if ‖c−c∗(c)‖ ≥ r, then `(c,c∗)≥ pmin

2 r2∧ ε . Hence, if `(c,c∗)< δ , ‖c−c∗(c)‖< r.
Using Theorem 4, we may write

P(`(ĉn,c∗)> δ )≤ e−
n

2M4

(
(δ− 12kM2

√
n )
)2

. (8)

Now, for any x > 0 and constant C we have

P

[(
`(ĉn,c∗)>C

2
pmin

(
k+ log

(∣∣M̄ ∣∣))M2

n
+

288M2

pminn
x+

64M2

n
x

)
∩ (`(ĉn,c∗)< δ )

]

≤ P

[(
`(ĉn,c∗)>C

2
pmin

(
k+ log

(∣∣M̄ ∣∣))M2

n
+

288M2

pminn
x+

64M2

n
x

)
∩ (ĉn ∈B(M ,r))

]
.

Proceeding as in the proof of (Levrard, 2015, Theorem 3.1) entails, for every x > 0,

P

[(
`(ĉn,c∗)>C

2
pmin

(
k+ log

(∣∣M̄ ∣∣))M2

n
+

288M2

pminn
x+

64M2

n
x

)
∩ (ĉn ∈B(M ,r))

]
≤ e−x,

(9)

for some constant C > 0. Note that (8) and (9) are enough to give a deviation bound in probability.

For the bound in expectation, set β =
2C(k+log(|M̄ |))M2

npmin
. On one hand, Theorem 4 and (8) yield
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18 Levrard, C.

that

E(`(ĉn,c∗)1`(ĉn,c∗)>δ )≤
∫

∞

δ

P(`(ĉn,c∗)> u)du

≤

[
12kM2
√

n
−δ +

∫
∞

12kM2√
n

P(`(ĉn,c∗)> u)du

]
1

δ< 12kM2√
n

+

[∫
∞

0
P(`(ĉn,c∗)−

12kM2
√

n
≥ (δ − 12kM2

√
n

)+u)du
]
1

δ≥ 12kM2√
∗n

≤
[

20kM2
√

n
−δ

]
1

δ< 12kM2√
n

+

[∫
∞

0
e−

n
2M4

(
(δ− 12kM2

√
n )+u

)2

du

]
1

δ≥ 12kM2√
∗n

≤
[

20kM2
√

n
−δ

]
1

δ< 12kM2√
n

+

[
e−

n
2M4

(
(δ− 12kM2

√
n )
)2 M2
√

n

]
1

δ≥ 12kM2√
n
,

where we used
√

π ≤ 2 and (a+b)2 ≥ a2 +b2 whenever a,b≥ 0. On the other hand, (9) entails

E(`(ĉn,c∗)1`(ĉn,c∗)≤δ )≤ (β −δ )1δ<β +

[
β +

∫
∞

β

P((`(ĉn,c∗)≥ u)∩ (ĉn ∈B(M ,r)))du
]
1δ≤β

≤ β +
252M2

npmin
,

where we used pmin ≤ 1. Collecting the pieces gives the result of Theorem 1.

6.5. Proof of Proposition 7

Proof. Assume that dim(H ) = d, and let z1, . . . ,zk be in B(0,M−∆/8) such that ‖zi− z j‖ ≥ ∆,
and ∆≤ 2M. Then slightly anticipating we may choose

∆≤ 3M
4k1/d .

Let ρ = ∆/8, and for σ ∈ {−1,1}k and δ ≤ 1 denote by Pσ the following distribution. For any
A⊂H , and i = 1, . . . ,k,

Pσ (A∩B(zi,ρ)) =
1

2ρk
[(1+σiδ )λ1(e∗1(A− zi)∩ [0,ρ]+ (1−σiδ )λ1(e∗1(A− zi)∩ [−ρ,0]] ,

where e∗1 denotes the projection onto the first coordinate and λ1 denote the 1-dimensional Lebesgue
measure. Note that for every i, Pσ (B(zi,ρ)) = 1/k. We let cσ denote the codebook whose
codepoints are cσ ,i = zi +σiδ/2. For such distributions Pσ ’s, it is shown in Section 6.6 that

pmin = 1
k ,

B ≥ 3∆

4 ,

r0 ≥ ∆

4 ,

ε ≥ ∆2

96k .

Half of the proof of Proposition 7 is based on the following Lemma. For simplicity, we write
R(ĉ,Pσ ) for the distortion of the codebook ĉ when the distribution is Pσ .
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When does k-means work? 19

Lemma 3. For every σ , σ ′ in {−1,+1}k,

R(cσ ′ ,Pσ )−R(cσ ,Pσ ) =
2δ 2ρ2

k
H(σ ,σ ′) =

2
k
‖cσ − c′σ‖2,

where H(σ ,σ ′) = ∑
k
i=1 |σi−σ ′i |/2. Moreover, for every codebook ĉ there exist σ̂ such that, for

all σ ,

R(ĉ,Pσ )−R(cσ ,Pσ )≥
1
4k
‖cσ̂ − cσ‖2.

Lemma 3, whose proof is to be found in Section 6.6, ensures that our distortion estimation
problem boils down to a σ estimation problem. Namely, we may deduce that

inf
Q̂

sup
σ

E(R(Q̂,Pσ )−R(cσ ,Pσ ))≥
δ 2ρ2

4k
inf
σ̂

sup
σ

H(σ̂ ,σ)).

The last part of the proof derives from the following.

Lemma 4. If k ≥ n and δ ≤
√

k/2
√

n, then, for every σ and σ ′ such that H(σ ,σ ′) = 1,

h2(P⊗n
σ ,P⊗n

σ ′ )≤ 1/4,

where h2 denotes the Hellinger distance.

Thus, recalling that ∆ = 3M/(4k1/d) and ρ = ∆/8, if we choose δ =
√

k
2
√

n , a direct application
of (Tsybakov, 2008, Theorem 2.12) yields

inf
Q̂

sup
σ

E(R(Q̂,Pσ )−R(cσ ,Pσ ))≥
9

216 M2 k1− 2
d

n
.

6.6. Intermediate results for Section 6.5

First we prove Lemma 3.

Proof. Proof of Lemma 3 We let Ii denote the 1 dimensional interval [zi−ρe1,zi+ρe1], and Vi the
Voronoi cell associated with zi. At last, for a quantizer Q we denote by Ri(Q,Pσ ) the contribution
of Ii to the distortion, namely Ri(Q,Pσ ) = Pσ‖x−Q(x)‖2

1Vi(x) = Pσ‖x−Q(x)‖2
1Ii(x). Since

∆/2−3ρ > 0, Ii ⊂Vi(cσ ), for every i and σ . According to the centroid condition (Proposition 2),
if |Q(Ii)|= 1, that is only one codepoint is associated with Ii, then

R(Q,Pσ ) = R(cσ ,Pσ )+
k

∑
i=1

Pσ (Ii)‖Q(Ii)− cσ ,i‖2, (10)

hence the first part of Lemma 3, with Q associated to cσ ′ .
Now let c be a codebook, and denote by Q the associated quantizer. Denote by ni = |Q(Ii)|,

nin
i = |Q(Ii)∩Vi| and nout

i = |Q(Ii)∩V c
i . If nout

i ≥ 1, then there exists x0 ∈ Ii such that ‖Q(x0)−
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20 Levrard, C.

x0‖ ≥ ∆/2−ρ . Then, for any x ∈ Ii it holds ‖Q(x)− x‖ ≥ ‖Q(x)− x0‖− 2ρ ≥ ∆/2− 3ρ . We
deduce that for such an i, and every σ ,

Ri(Q,σ)≥ 1
k

∥∥∥∥∆

2
−3ρ

2
∥∥∥∥= ρ2

k
.

The second base inequality is that, for every Q such that Q(Ii) = zi, and every σ ,

Ri(Q,σ) =
ρ2

3k
.

We are now in position to build a new quantizer Q̃ that outperforms Q.
— If nin

i = 1 and nout
i = 0, then Q̃(Ii) = πIi(Q(Ii)), where πIi denote the projection onto Ii.

— If nout
i ≥ 1, then Q̃(Ii) = zi.

— If nin
i ≥ 2 and nout

i = 0, then Q̃(Ii) = zi.
Such a procedure defines a k-point quantizer Q̃ that sends every Ii onto Ii. Moreover, we may
write, for every σ

R(Q,Pσ ) = ∑
nin

i =1,nout
i =0

Ri(Q,Pσ )+ ∑
nout

i ≥1
Ri(Q,Pσ )+ ∑

nout
i =0,nin

i ≥2

Ri(Q,Pσ )

≥∑
i

Ri(Q̃,Pσ )+
∣∣{i|nout

i ≥ 1}
∣∣ 2ρ2

3k
−
∣∣{i|nout

i = 0,nin
i ≥ 2}

∣∣ ρ2

3k
.

Since |{i|nout
i ≥ 1}| ≥

∣∣{i|nout
i = 0,nin

i ≥ 2}
∣∣, we have R(Q,Pσ ) ≥ R(Q̃,Pσ ), for every σ . Note

that such a quantizer Q̃ is indeed a nearest-neighbor quantizer, with images c̃i ∈ Ii. For such a
quantizer c̃, (10) yields, for every σ ,

R(c̃,Pσ )−R(cσ ,Pσ ) =
‖c̃− cσ‖2

k
.

Now, if cσ̂ denotes argmincσ
‖cσ − c̃‖, then, for every σ we have

‖c̃− cσ‖ ≥
‖cσ̂ − cσ‖

2
.

Thus, recalling our initial codebook c, for every σ , R(c,Pσ )−R(cσ ,Pσ )≥ 1
4k‖cσ̂ − cσ‖2.

6.7. Proof of Proposition 8

Let c∗ ∈M and i 6= j such that ‖c∗i − c∗j‖ = B. We denote by Qi, j the (k− 1)- points quan-

tizer that maps V`(c∗) onto c∗` , for ` 6= i, j, and Vi(c∗)∪Vj(c∗) onto
c∗i +c∗j

2 . Then Rdist(Qi, j)−
Rdist(c∗) = (pi(c∗)+ p j(c∗))B2

4 ≤
B2

4 . Thus, denoting by c∗,(k−1) an optimal (k−1)-points quan-
tizer, Rdist(c∗,(k−1))−Rdist(c∗)≤ B2

4 . Since ε ≤ Rdist(c∗,(k−1))−Rdist(c∗), the first part of Propo-
sition 8 follows.

For the same optimal codebook c∗, we denote for short by p(t) the quantity

p(t) = P
({

x| 0≤
〈

x−
ci + c j

2
,

ci− c j

ri, j(c∗)

〉
≤ t
}
∩Vi(c)

)
,
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and by pi = pi(c∗). According to Proposition 2, we have

pi
B
2
= P

(〈
x−

c∗i + c∗j
2

,
c∗i − c∗j

ri, j

〉
1Vi(c∗)(x)

)
=
∫ 2M

0
td p(t). (11)

Assume that r0 > B. Then

p(B)≤ Bpmin

128M2 B

≤ pmin

32
.

On the other hand, (11) also yields that

pi
B
2
≥
∫ 2M

B
td p(t)

≥ B(pi− p(B))

≥ piB
31
32

,

hence the contradiction.

6.8. Proof of Proposition 9

The proof of Proposition 9 is based on the following Lemma, that connects the clusterability
assumption introduced in Definition 3 to another clusterability definition introduced in Kumar
and Kannan (2010).

Lemma 5. (Tang and Monteleoni, 2016b, Lemma 10) Assume that there exist drs’s, r 6= s, such
that, for any r 6= s and x ∈Vs(ĉn),

Pn ({x| ‖xrs− ĉr‖ ≤ ‖xrs− ĉs‖+drs})< p̂min,

where xrs denotes the projection of x onto the line joining ĉr and ĉs. Then, for all r 6= s,

‖ĉr− ĉs‖ ≥ drs.

Proof. Proof of Proposition 9 Now let x ∈ {x| ‖xrs− ĉr‖ ≤ ‖xrs− ĉs‖+drs}∩Vs(ĉn), for drs ≤
2M. Then

‖x− ĉr‖ ≤ ‖x− ĉs‖+drs

‖x− ĉs‖ ≤ ‖x− ĉr‖.

Taking squares of both inequalities leads to〈
ĉs− ĉr,x−

ĉr + ĉs

2

〉
≥ 0

2
〈

ĉs− ĉr,x−
ĉr + ĉs

2

〉
≤ d2

rs +2drs‖x− ĉr‖ ≤ 8Mdrs.
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We deduce from above that d(x,∂Vs(ĉn))≤ 8M
B̂

drs, hence x ∈B(N(ĉn),
8M
B̂

drs). Set

drs =
2M f
√

nmin
≥ f
√

R̂dist(ĉn)

(
1
√

nr
+

1
√

ns

)
,

and assume that p̂
(

16M2 f√
np̂minB̂

)
≤ p̂min. Then Lemma 5 entails that for all ĉn minimizing R̂dist and

r 6= s, ‖ĉr− ĉs‖ ≥ drs. Hence X1, . . . ,Xn is f -clusterable.

6.9. Proof of Theorem 3

Proof. Assume that P satisfies a margin condition with radius r0. For short we denote Rdist(c)−
Rdist(c∗) by `(c,c∗). As in the proof of Theorem 1, according to (8), (9), choosing x = p log(n),
for n large enough, it holds, for every minimizer ĉn of R̂dist ,

`(ĉn,c∗)≤C
M2 p log(n)

npmin

`(ĉn,c∗)≥
pmin

2
‖ĉn− c∗(ĉn)‖2,

with probability larger than 1−n−p− e−
n

32M4

(
(δ− 12kM2

√
n )
)2

. On this probability event we may thus
write

‖ĉn− c∗(ĉn)‖ ≤CM

√
p log(n)

pmin
√

n
. (12)

Since N(ĉn)⊂B(N(c∗(ĉn),
√

2‖ĉn− c∗(ĉn)‖), we get

p̂(t)≤ p

(
t +
√

2CM

√
p log(n)

pmin
√

n

)
(13)

≤ Bpmint
128M2 +C

B
√

p log(n)
M
√

n
,

when n is large enough so that rn < r0 and for t ≤ r0− rn, with rn =CM
√

p log(n)
pmin
√

n . It remains to

connect p̂min and B̂ with their deterministic counterparts. First, it is straightforward that

B̂≥ B−
√

2rn ≥
B
2
, (14)

for n large enough. The bound for p̂min is slightly more involved. Let i and ĉn such that p̂min =
Pn (Vi(ĉn)). Then we may write

p̂min = Pn (Vi(ĉn))

= Pn (Vi(c∗(ĉn)))−Pn (Vi(c∗(ĉn))∩Vi(ĉn)
c)+Pn (Vi(c∗(ĉn))

c∩Vi(ĉn)) .
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According to (Levrard, 2015, Lemma 4.2), Vi(c∗(ĉn))∆Vi(ĉn)⊂B
(

N(c∗(ĉn),
4
√

2M
B rn)

)
, where

∆ denotes the symmetric difference. Hoeffding’s inequality gives∣∣∣∣∣(Pn−P)
⋃

c∗∈M
N(c∗,

4
√

2M
B

rn)

∣∣∣∣∣≤
√

2p log(n)
n

,

with probability larger than 1−n−p. Hence

Pn (Vi(c∗(ĉn))∆Vi(ĉn))≤ p

(
4
√

2M
B

rn

)
+

√
2p log(n)

n

≤C

√
p log(n)√

n
,

for n large enough so that 4
√

2M
B rn ≤ r0. Concerning Pn (Vi(c∗(ĉn))), using Hoeffding’s inequality

again we may write

Pn (Vi(c∗(ĉn)))≥ pmin− sup
c∗∈M̄ ,i=1,...,k

|(Pn−P)Vi(c∗)|

≥ pmin−

√
2(p log(n)+ log(k|M̄ |)

n
,

with probability larger than 1−n−p. We deduce that

p̂min ≥ pmin−C

√
p log(n)√

n
≥ pmin

2
,

for n large enough. Thus, (13) gives

p̂(t)≤ B̂p̂min

32M2 t +C
B̂
√

p log(n)
M
√

n
.

For n large enough so that C B̂
√

p log(n)
M
√

n ≤ p̂min
2 , Proposition 9 ensures that X1, . . . ,Xn is

√
pminn-

clusterable.
According to Theorem 2, on this probability event, at most 10

pmin
points are misclassified by

ĉKM,n compared to ĉn. Thus, denoting by n j = nPnVj(ĉn) and n̂ j = n(PnVj(ĉKM,n)), we may write

k

∑
j=1

n j‖ĉ j− ĉKM, j‖ ≤
k

∑
j=1
‖n jĉ j− n̂ jĉKM, j‖+

∣∣n j− n̂ j
∣∣‖ĉKM, j‖

≤
k

∑
j=1

∥∥∥∥∥ n

∑
i=1

Xi(1Vj(ĉn)(Xi)−1Vj(ĉKM,n)(Xi))

∥∥∥∥∥+ 20M
pmin

,

since ĉKM,n and ĉn satisfy the centroid condition (Proposition 2). Thus,

k

∑
j=1

n j‖ĉ j− ĉKM, j‖ ≤
30M
pmin

.
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At last, since for all j = 1, . . . ,k, n j
n ≥ p̂min ≥ pmin

2 , we deduce that

‖ĉn− ĉKM,n‖ ≤
60M
np2

min
.

6.10. Proof of Corollary 4

Proof. We recall that under the assumptions of Proposition 3, c∗ is unique and P satisfies a margin
condition with radius B̃/8. As in the proof of Theorem 3, we assume that

‖ĉn− c∗‖ ≤C

√
1log(n)

pmin
√

n
.

This occurs with probability larger than 1− n−1− e−
n

32M4

(
(δ− 12kM2

√
n )
)2

. It can be deduced from
(Biau et al., 2008, Corollary 2.1) that, with probability larger than 1−2e−x,

sup
c∈B(0,M)k

∣∣R̂dist(c)−Rdist(c)
∣∣≤ 6kM2 +8M2

√
2x√

n
.

Therefore, for n large enough, it holds

R̂dist(ĉn)≥
Rdist(c∗)

2
,

with probability larger than 1−1/n. On this probability event, a large enough n entails that every
initialization of the Lloyd’s algorithm is a good initialization. According to Theorem 1 and 3, we
may write

‖ĉKM,n− c∗‖ ≤C
M
√

log(n)√
n

.

Since, according to (Levrard, 2015, Lemma 4.2), Vi(c∗)∆Vi(ĉKM,n)⊂B
(

N(c∗, 4
√

2M
B ‖ĉKM,n− c∗‖

)
,

the margin condition entails that

Rclassi f (C (ĉKM,n),C (c∗))≤CM

√
log(n)

n
≤Cσ

√
log(n)

n
.

Using Markov’s inequality yields the same result in expectation. It remains to note that in the case
k = 2, Σi = σ2Id and p1 = p2 =

1
2 , though c∗ may differ from m, we have C (c∗) = C (m).
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