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Integration and variable selection of ‘omics’ data
sets with PLS: a survey

Titre: Une revue sur l’intégration et la sélection de variables ‘omiques’ avec la PLS

Kim-Anh Lê Cao1 and Caroline Le Gall2

Abstract: ‘Omics’ data now form a core part of systems biology by enabling researchers to understand the integrated
functions of a living organism. The integrative analysis of these transcriptomics, proteomics, metabolomics data that
are co jointly measured on the same samples represent analytical challenges for the statistician to extract meaningful
information and to circumvent the high dimension, the noisiness and the multicollinearity characteristics of these
multiple data sets. In order to correctly answer the biological questions, appropriate statistical methodologies have to
be used to take into account the relationships between the different functional levels. The now well known multivariate
projections approaches greatly facilitate the understanding of complex data structures. In particular, PLS-based
methods can address a variety of problems and provide valuable graphical outputs. These approaches are therefore an
indispensable and versatile tool in the statistician’s repertoire.
Variable selection on high throughput biological data becomes inevitable to select relevant information and to propose
a parsimonious model. In this article, we give a general survey on PLS before focusing on the latest developments of
PLS for variable selection to deal with large omics data sets. In a specific discriminant analysis framework, we compare
two variants of PLS for variable selection on a biological data set: a backward PLS based on Variable Importance in
Projection (VIP) which good performances have already been demonstrated, and a recently developed sparse PLS
(sPLS) based on Lasso penalization of the loading vectors.
We demonstrate the good generalization performance of sPLS, its superiority in terms of computational efficiency and
underline the importance of the graphical outputs resulting from sPLS to facilitate the biological interpretation of the
results.

Résumé : Les données ‘Omiques’ sont largement utilisées en biologie des systèmes pour comprendre les mécanismes
biologiques impliqués dans le fonctionnement des organismes vivants. L’intégration de ces données transcriptomiques,
protéomiques ou métabolomiques parfois mesurées sur les mêmes échantillons représente un challenge pour le
statisticien. Il doit être capable d’extraire de ces données les informations pertinentes qu’elles contiennent, tout en
devant composer avec des données à grandes dimensions et souffrant fréquemment de multicolinéarité. Dans ce contexte,
il est primordial d’identifier les méthodes statistiques capables de répondre correctement aux questions biologiques,
mélant parfois des relations entre différents niveaux de fonctionnalité. Les techniques statistiques multivariées de
projections dans des espaces réduits facilitent grandement la compréhension des structures complexes des données
omiques. En particulier, les approches basées sur la méthode PLS constituent un outil indispensable à la panoplie du
statisticien. Leur grande polyvalence permet d’adresser une large variété de problèmes biologiques tout en fournissant
des résultats graphiques pertinents pour l’interprétation biologique.
Etant donné le grand nombre de variables considérées (gènes, protéines ...), la sélection de variables est devenue une
étape inévitable. L’objectif est de sélectionner uniquement l’information pertinente afin de construire le modèle le plus
parcimonieux possible. Dans cet article, nous présentons la méthode PLS puis nous mettons l’accent sur les derniers
développements en matière de sélection de variables pour la PLS dans le cadre de données omiques abondantes. Deux
approches de sélection de variables avec PLS sont comparées dans le cas d’une analyse discriminante appliquée à un
jeu de données biologiques : une approche descendante (‘backward’) basée sur le critère du VIP (‘Variable Importance
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in Projection’) pour laquelle de bonnes performances ont déjà été démontrées dans la littérature et la sparse PLS
(sPLS), une approche récente basée sur une pénalisation Lasso des vecteurs ‘loadings’.
La sparse PLS montre de très bonnes perfomances globales ainsi qu’une très nette supériorité en temps de calcul. Elle
permet aussi de démontrer l’efficacité des représentations graphiques issues de la PLS dans l’interprétation biologique
des résultats.
Keywords: Partial Least Squares regression, variable selection
Mots-clés : régression Partial Least Squares, sélection de variables
AMS 2000 subject classifications: 6207, 62H99, 62P10, 62H30

Introduction

Challenges when n << p and variable selection. Each omics platform is now able to generate
a large amount of data. Genomics, proteomics, metabonomics/metabolomics, interactomics are
compiled at an ever increasing pace and now form a core part of the fundamental systems
biology framework. These data are required to understand the integrated functions of the living
organism. However, the abundance of data is not a guarantee of obtaining useful information in
the investigated system if the data are not properly processed and analyzed to highlight this useful
information.
From a statistical point of view, the goodness of a model is often defined in terms of prediction
accuracy - for example in a regression framework. However, parsimony is crucial when the number
of predictors is large, as most statistical approaches predict poorly because of the noisiness and
the multicollinearity characteristics of the data. Simpler and sparse models with few covariates
are preferred for a better interpretation of the model, a better prediction of the response variable,
as well as a better understanding of the relationship between the response and the covariates.

A variety of biological questions. A major challenge with the integration of omics data is the
extraction of discernible biological meaning from multiple omics data. It involves the identification
of patterns in the observed quantities of the dynamic intercellular molecules (mRNAs, proteins,
metabolites) in order to characterize all the elements that are at work during specific biological
processes. Studying biology at the system level enables (a) to identify potential functional
annotation, for instance, to assign specific enzymes to previously uncharacterized metabolic
reactions when integrating genomics and metabolomics data, (b) to identify biomarkers associated
with disease states and elucidate signalling pathway components more fully, for instance to
define prognosis characteristics in human cancers by using transcriptomics signatures to identify
activated portions of the metabolic network (c) to address fundamental evolutionary questions,
such as identifying cellular factors that distinguish species; these factors likely have had roles in
speciation events (d) to interpret toxicological studies (toxicogenomics) or (e) to study the complex
reactions between the human body, nutritional intake and the environment (nutrigenomics). Many
other central questions can be addressed with omics data integration. These data may not be
sufficient to understand all the underlying principles that govern the functions of biological
systems but they will nonetheless allow investigators to tackle difficult problems on previously
unprecedented scales.

A variety of statistical approaches. Many statistical approaches can be used to analyse omics
data. We list some of them and discuss why multivariate projection methods might be adequate to
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give more insight into omics data sets and, ultimately, to enable a more fundamental understanding
of biology.
Univariate analysis. Univariate analysis has been extensively used in microarray analysis to look
for the expression of differentially expressed genes. However, it does not take into account the
relations between the variables. Multi-variable patterns can be significant, even if the individual
variables are not. Most importantly, in the case of data integration in systems biology, it is abso-
lutely crucial to take into account the relationships between the different omics data.
Machine learning approaches. Machine learning approaches take into account the correlation
between the variables but are often considered as black boxes. They also often require dimension-
ality reduction and are extremely computationally demanding.
Network analyses. The inference of networks is of biological importance and is intrinsically linked
to data integration. It provides useful outputs to visualize the correlation structure between the
omics data sets and allows to check/propose new hypotheses on biological pathways.
Multivariate projection methods. In the omics era, data-driven analysis by means of multivariate
projection methods greatly facilitates the understanding of complex data structures. The advan-
tages of multivariate projection methods is their application to almost any type of data matrix,
e.g. matrices with many variables, many observations, or both. Their flexibility, versatility and
scalability make latent variable projection methods particularly apt at handling the data-analytical
challenges arising from omics data, and they can effectively handle the hugely multivariate nature
of such data. They produce score vectors and weighted combinations of the original variables that
enable a better insight into the biological system under study.
Multivariate projection methods, such as PLS-based methods are seen as remarkably simple
approaches, and they often have been overlooked by statisticians as it has been considered as
an algorithm rather than a rigorous statistical model. Yet within the last years, interest in the
statistical properties of PLS has risen. PLS has been theoretically studied in terms of its variance
and shrinkage properties [37, 22, 8, 24]. The literature regarding PLS methods is very extensive.
The reader can refer to the reviews of [49, 52, 38, 7]. PLS is now seen as having a great potential
to analyse omics data, not only because of its flexibility and the variety of biological questions
it can address, but also because its subsequent graphical outputs allow to interpret the results
[16, 30, 17]. In particular, a variant called O2-PLS has been extensively used in metabonomics
data [9] but will not be presented in this review.

In this review. In Section 1, we first survey variants of PLS for the integration of two omics
data sets and present different analysis frameworks. In Section 2, we then particularly emphasize
on variable selection with PLS for large biological data sets in order to select the relevant
information and remove noisy variables. Extremely valuable by-products of PLS-based methods
are the graphical outputs which facilitate the interpretation of the results and give a better
understanding of the data. In Subsection 3.1, on a biological data that include transcripts and
clinical variables, we illustrate how these graphical outputs can help give more insight into the
biological study. In Subsection 3.2 and in a classification framework, we numerically compare
two PLS variants for variable selection on the transcriptomics data: the first variant is a backward
approach based on VIP, which good performances have been demonstrated by [11]; the second
variant, sparse PLS-Discriminant Analysis (sPLS-DA) was recently developed by [31, 28] and
includes Lasso penalization [44] on the loading vectors to perform variable selection. We show
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the good generalization performance of sPLS-DA and its superiority in terms of computational
efficiency. In Section 4, we finally discuss the validation of PLS results for the integration of
complex biological data sets characterized by a very small number of samples.

1. Integrating two data sets with PLS

PLS is a multivariate method that enables the integration of two large data sets. In this section we
present the Partial Least Square regression (PLS) algorithm and explain why PLS is efficient in a
highly dimensional setting.

1.1. Notations

Throughout the article, we will use the following notations: the two matrices X and Y are of size
n× p and n×q and form the training data, where n is the number of samples, or cases, and p and
q are respectively the number of variables in X and Y . We will first present the general regression
framework case of PLS2 where the response Y is a matrix - that also includes the regression
(PLS1) for which q = 1. We will then focus on two other framework analyses that are special cases
of PLS2: PLS-canonical mode uses a different deflation of the matrices to model a symmetric or
bidirectional relationship between the two data sets and PLS-Discriminant Analysis deals with
classification problems by coding Y as a dummy matrix. In this Section, we will primarily focus
on a general PLS algorithm where q≥ 1.
Note that X and Y should be matched data sets, i.e. the two types of variables are measured on the
same samples.

1.2. PLS regression

Introduction on PLS. Partial Least Squares regression (PLS) can be considered as a general-
ization of multiple linear regression (MLR). It relates two data matrices X and Y by a multivariate
model, but it goes beyond traditional multiple regression in that it also models the structure of
X and Y . Unlike MLR, PLS has the valuable ability to analyze many, noisy, collinear and even
incomplete variables in both X and Y , and simultaneously models several response variables Y .
Our regression problem is to model one of several dependent variables - or responses, Y by means
of a set of predictor variables X . Example in genomics, if we consider the biology dogma, includes
relating Y = expression in metabolites to X = expression of transcripts. The modelling of Y by
means of X is traditionally performed using MLR, which works well as long as the X- variables
are in small number and fairly uncorrelated, i.e. X is of full rank.
PLS therefore allow us to consider more complex problems. Given the deluge of data we are
facing in genomics, it allows us to analyze available data in a more realistic way. However, the
reader should keep in mind that we are far from a good understanding of the complications of
biological systems and the quantitative multivariate analysis is still in its infancy, in particular
with many variables and few samples.

The PLS algorithm. In PLS, the components called latent variables are linear combinations
of the initial variables. However, the coefficients that define these components are not linear,
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FIGURE 1. PLS scheme: the data sets X and Y are successively decomposed into sets of latent variables (ξ1, . . . ,ξH),
(ω1, . . . ,ωH) and loading vectors (u1, . . . ,uH), (v1, . . . ,vH). The vectors (c1, . . . ,cH) and (d1, . . . ,dH) are the partial
regression coefficients and H is the number of deflations or dimensions in the PLS algorithm.

as they are solved via successive local regressions on the latent variables. The data sets X and
Y are simultaneously modelled by successive decompositions. The objective function involves
maximizing the covariance between each linear combination of the variables from both data sets:

arg max
‖uh‖=1,‖vh‖=1

cov(Xuh,Y vh) h = 1 . . .H. (1)

The loading vectors are the vectors uh and vh for each PLS dimension h (H is the number of
deflations), and the associated latent variables are denoted ξh = Xuh and ωh = Y vh . The loading
vectors uh and vh are directly interpretable, as they indicate how the variables from both data
sets can explain the relationships between X and Y . The latent variables ξh and ωh contain the
information regarding the similarities or dissimilarities between individuals or samples.

In the following we present the PLS algorithm for the first deflation h = 1 (see also Fig. 1).
Start: set ω to the first column of Y

1. u = XT ω/ωT ω , scale u to be of length one. u is the loading vector associated to X

2. ξ = Xu is the latent variable associated to X

3. v = Y T ξ/(ξ T ξ ), scale v to be of length one. v is the loading vector associated to Y

4. ω = Y T v/(vT v) is the latent variable associated to Y

5. If convergence then 6 else 1

6. c = XT ξ/ξ T ξ , d = Y T ξ/ξ T ξ are the partial regression coefficients from the regression of
X (Y ) onto ξ (ω)

7. Compute the residual matrices X → X−ξ cT and Y → Y −ξ dT

Step 6 performs local regressions of X and Y onto ξ and ω . By using successive local regressions
on the latent vectors, the PLS algorithm therefore avoids the computation of the inverse of
covariance or correlation matrix that might be singular.
The next set of iterations starts with the new X and Y residual matrices from previous iteration 7
(deflation step). The iterations can continue until a stopping criterion is used, such as the number
of dimensions - chosen by the user, or if X becomes the zero matrix.
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Note that the PLS algorithm actually performs in a similar way to the power iteration method of
determining the largest eigenvalue for a matrix and will converge rapidly in almost all practical
cases (less than 10 iterations).

The underlying model of PLS. We can write the multiple regression model of PLS as [14]:

X = ΞC′+ ε1 Y = ΞD′+ ε2 = Xβ + ε2,

where Ξ is the (n×H) column matrix of the latent variables ξh, and β (p×H) is the coefficient
regression matrix. The column matrices C and D are defined such that ch = X ′h−1ξh/(ξ

′
hξh) and

dh = Y ′h−1ξh/(ξ
′
hξh), and ε1 (n× p) and ε2 (n× q) are the residual matrices, h = 1 . . .H. An

insightful explanation on the geometric interpretation of PLS can be found in the review of [52].

Data scaling. The results of PLS or any projection method depend on the scaling of the data. In
the absence of knowledge about the relative importance of the variables, the standard approach is
to center each variable and scale them to unit variables. This corresponds to giving each variable
(column) the same weight in the analysis.

1.3. PLS to highlight correlations

While PLS2 models an asymmetric or uni-directional relationship between the two data matrices,
PLS-canonical mode can model a symmetric or bi-directional relationship. It can be used to
predict Y from X and X from Y . For example, [30] applied this variant in a case where the
same samples were measured using two different types of transcriptomics platforms to highlight
correlated transcripts accross the two platforms. This variant is particularly useful as an alternative
to Canonical Correlation Analysis (CCA), which is limited by the number of variables leading to
singular correlation matrices and ill-posed matrix problems.
In step 7 of the PLS algorithm, the data matrices can be symmetrically deflated with respect to
each latent variable (see [49] for a detailed review). This deflation mode has been called canonical
([43], also called “PLS-mode A"), where the two matrices are deflated as follows:

c = XT ξ/ξ T ξ e = Y T ω/ω ′ω
X → X−ξ cT Y → Y −ωeT

When analyzing standardized data sets, [43] showed that PLS-canonical mode and CCA gave
different, although similar results when n < p+q.
In following Section 2.2.3, we present several sparse variants of PLS-canonical mode that have
been recently proposed in the literature.

1.4. PLS-Discriminant Analysis

Although PLS is principally designed for regression problems, it performs well for classifica-
tion and discrimination problems, and has often been used for that purpose [4, 35, 42]. PLS-
Discriminant Analysis (PLS-DA) is a special case of PLS2 and can be seen as an alternative to
Linear Discriminant Analysis (LDA). LDA has often been shown to produce the best classification
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Integration and variable selection of omics data 83

results, but faces numerical limitations when dealing with too many correlated predictors as it
uses too many parameters which are estimated with a high variance.
In PLS-DA, the response matrix Y is qualitative and is recoded as a dummy block matrix that
records the membership of each observation. The PLS regression is then run as if Y was a contin-
uous matrix. Note that this might be wrong from a theoretical point of view, however, it has been
previously shown that this works well in practice and many authors have used dummy matrices
in PLS for classification [4, 35, 7, 13]. The reader can refer to the article of [4] which gives a
formal statistical explanation of the connection between PLS and Linear Discriminant Analysis to
explain why the Y-space penalty is not meaningful in this special case.
The PLS-DA model can be formulated as follows:

Y = Xβ + e,

where β is the matrix of regression coefficients and e the residual matrix. The prediction of a new
set of samples is then

Ynew = XnewβPLS,

with βPLS = P(UT P)−1V T , where P is the weight matrix of the X space and U and V are the
matrices containing the singular vectors from the X and Y space respectively. The identity of the
class membership of each new sample (each row in Ynew) can be assigned as the column index of
the element with the largest predicted value in this row. This is a naive method for prediction that
we call (maximum distance). Three other distances are implemented in the mixOmics 1 package
[29]. The class distance allocates the predicted individual x to the class Ck minimizing dist(x,Cl),
where Ck, k = 1, ...,K are the indicator vectors corresponding to each class.
In following Section 3, we illustrate the use of one sparse variants of PLS-DA on a biological
data set.

2. PLS for variable selection

From a biological point of view, parsimonious models are needed as the biologists are often
interested in the very few relevant genes, proteins or metabolites amongst the thousands for
which expression or abundance is measured in high throughput experiments. Their aim is to
improve their understanding of the system under study and, if necessary, to perform further
validations with reduced experimental costs. From a statistical point of view, parsimonious models
are needed in order to be explanatory, interpretable and with a good predictive performance.
Many authors have worked on the problem of variable selection with PLS. It first began in the
field of chemistry before being applied to or further developed for multivariate omics data analysis.

In this section, we illustrate how variable selection with PLS can be used in the different
contexts that were presented in previous Section 1:

– to select predictive variables in multiple linear regression (PLS1, PLS2),
– to select relevant variables while modelling bi-directional relationships between the two data

sets (PLS-canonical mode),

1 http://www.math.univ-toulouse.fr/~biostat/mixOmics
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– to select discriminative variables in a classification framework (PLS-DA).

We review some of the PLS variants developed for variable selection in the different contexts
cited above. Remember that PLS1 considers a single vector of dependent variable Y , whereas
PLS2 considers a whole matrix Y of dependent variables.
According to [18], there exists three types of variable selection with PLS:

– subset selection: subsets of variables are selected according to a model’s performance that is
not necessary in line with PLS. PLS is then performed after the variable selection step.

– dimension-wise selection: the PLS model is progressively built by removing non informative
variables or by adding relevant variables.

– model-wise elimination: the PLS model is built with all variables and an internal criteria is
used to select the most informative variables.

We will particularly focus on two specific PLS2 variants (Backward PLS-VIP and sparse PLS)
that will be numerically compared in Section 3.

2.1. Variable selection for PLS1

2.1.1. Subset selection

GOLPE. [5] first proposed a factorial design to build a PLS model based on different combi-
nations of variables. The same authors then proposed GOLPE (Generating Optimal Linear PLS
Estimations, [6]), a D-optimal design that preselects non-redundant variables. A factorial design
procedure is then used to run several PLS analyses with different combinations of these variables.
Variables that significantly contribute to the prediction of the model are selected, while the others
are discarded.

GA-PLS. [32] proposed a novel approach combining Genetic Algorithms (GA) with PLS for
variable selection. GA is one of the methods used to solve optimization problems, in particular
to select the most informative variables. The response variable used in the GA algorithm is the
cross-validated explained variance. GA is performed on a training set, and once PLS is run, the
performance of the subset is evaluated by the root mean square error in the test set. Note that GA
is very sensitive to the ratio number of variables/number of samples and is not adequate when
n << p.

Clustering approach. The aim of clustering techniques is to reduce the initial set of variables
into a subset of new variables which are able to summarize the entire information initially
contained. There exists different types of clustering methods. [19] used a descending approach.
Principal components or arithmetic mean can also be chosen to represent the clusters of variables.
PLS is then performed on these new variables.

Simple regression. Several simple regressions of Y on each variable from X are first performed.
Variables with a significant Student test are then selected, based on the assumption that these
variables can better predict the response variable. Therefore, noise is removed from the initial
data set [19]. PLS is then performed on this subset of variables. The α risk is usually fixed at 5%
but this threshold may vary depending on the number of selected variables.
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Backward, forward or stepwise. Backward, forward or stepwise multiple regressions are
widely used techniques to keep or select the most significant variables in the model. The selection
of the variables is based on the choice of the α risk. Backward selection is a descending approach:
at first, all variables are included, they are then removed one by one according to the α risk.
Forward selection is an ascending approach whereas stepwise selection is a mixture of both. PLS
is then performed on the reduced set of variables [19].

2.1.2. Dimension-wise selection

Twenty methods of variable selection were compared in [19] in the context of PLS1 regression,
amongst which two may be classified as dimension-wise selection.

Backward Q2
cum. This approach is a backward selection approach where the variables with the

smallest PLS regression coefficient (in absolute value) are removed at each step. Finally, the
optimal number of variables to select is defined by the Q2

cum, a predictive criterion obtained by
cross-validation (see [43] for further details).

Backward SDEP. This approach is similar to the once previously described, except that the
Q2

cum criterion is replaced by the square root of the mean square error estimated on a test set
(Standard Deviation of Error Prediction).

2.1.3. Model-wise elimination

UVE-PLS. Uninformative Variable Elimination for PLS [10] consists in evaluating the relevancy
of each variable in the model through a variable selection criterion, such as the stability of each
variable. The uninformative variables are then eliminated. UVE-PLS has been widely applied in
analytical chemistry.

IPW-PLS. Iterative Predictor Weighting-PLS [18] multiplies the variables by their importance
in the cyclic iterations of the PLS algorithm. It is thus crucial to get a correct PLS model for the
purpose of variable selection.

Amongst the 20 methods compared by [19], four can be classified as model-wise elimination:

Correlation method. PLS is first performed with all variables and the PLS dimension is chosen
by cross-validation. The correlations between all the PLS latent components and all the variables
are then calculated. Variables with at least one non significant correlation coefficient with the
latent components are then removed (α risk usually fixed at 5%).

Coefficient method. The adopted strategy is similar to the correlation method, except that it is
the ratios between the maximum coefficient of the PLS regression coefficients and the coefficient
of each variable that are calculated. Variables with a ratio greater than a threshold fixed by the
user are then removed.
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Confidence Interval method. This approach is similar to the correlation or coefficient methods.
Variables for which their PLS regression coefficient confidence interval includes zero are removed
(confidence level usually fixed at 95%). The standard deviation estimator used for the confidence
interval is defined in [43].

Jack method. This is the same approach as the confidence interval method, except that the
standard deviation for the confidence interval is calculated with Jacknife re-sampling.

2.2. Variable selection for PLS2

2.2.1. Subset selection

In our survey and in the case of PLS2 we did not identify any subset variable selection approach.

2.2.2. Dimension-wise selection

PLS-forward. The PLS-forward consists in selecting variables from an algorithm developed
by [26] with a forward approach. The criterion to include a variable within the model is the
redundancy index that was introduced by [41]:

RI(Y,X) =
∑

q
i=1 S2

Y(i)R
2
Y(i)X

∑
q
i=1 S2

Y(i)

, (2)

where q is the number of variables in Y , R2
Y(i)X is the squared sample multiple correlation coefficient

between the ith variable of Y and the data set X and S2
Y(i) , the sample variance of the ith variable of

Y . In the PLS regression framework, Y is replaced by the PLS latent components matrix.

IVS-PLS. [33] developed an Interactive Variable Selection approach for PLS. The algorithm is
based on the loading vectors of the X variables obtained from the PLS model. Variables with a
loading value lower than a threshold fixed by the user are removed from the model. The remaining
loading values are then adjusted to keep the unit norm of the loading vector. This step is repeated
until there remains only one variable. The best model is then chosen according to a predictive
criterion obtained by cross-validation.

Backward PLS-VIP. Stepwise backward and forward regression methods are widely used
for variable selection. However, when dealing with the case of omics data characterized by a
high multicollinearity, these methods have a poor performance but PLS2 can circumvent this
issue. Co-jointly used with the Variable importance in projection (VIP) score [51], backward PLS
enables to perform variable selection. The VIP score is calculated for each variable as defined by
[43]:

V IPH j =

√
p

RI(Y,ξ1,ξ2, ...,ξH)

H

∑
l=1

RI(Y,ξl)w2
l j, (3)

where H is the PLS dimension, (ξ1, ...,ξH) are the H latent components, p the number of variables
in X , j = 1, ..., p and RI is the redundancy index defined previously.
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Detailed backward PLS VIP algorithm.
Start: define the maximum number of variables ps to be selected (usually arbitrarily chosen by

the user).

1. Using cross-validation, determine the PLS dimension H.
2. Perform a PLS regression of Y on X with all the available variables on H dimensions.
3. Remove the variable with the smallest VIP.

Re-iterate these three steps until the number of selected variables is greater than ps.

Review. [11] have demonstrated the good performance of the VIP selection method compared to
other criteria. They also studied the VIP cut-off value to assess variable relevancy. The generally
used cut-off value is set to one, but depending on the data properties such as the correlation
structure, the authors demonstrated that this cut-off value should actually be greater than one. [27]
have also compared the VIP approach for variable selection in the case of PLS1.

2.2.3. Model-wise elimination

PLS-bootstrap. The PLS-bootstrap [27] assumes a multivariate normal distribution for (Y,X).
This method consists in sampling (Y,X) with replacement and in building the PLS model for each
sample. From this bootstrap re-sampling, confidence intervals are then estimated for each PLS
regression coefficient. A variable is removed if zero is included in the confidence interval.

PLS-VIP. The VIP (Variable Importance in the Projection) method ([51], see description above)
was implemented in the SIMCA-P software [46]. The VIP estimates the explanatory performance
of the variables within PLS. Variables with (V IP > 1) are then selected.

Sparse PLS. The sparse PLS (sPLS) proposed by [31, 30] was proposed to identify subsets of
correlated variables from two different types, e.g. transcriptomics and metabolomics measured on
the same samples. It consists in soft-thresholding penalizations of the loading vectors of Y and X
to perform variable selection.
The approach is based on Singular Value Decomposition (SVD) of the cross product Mh = XT

h Yh
that can also be used to solve PLS in a more computationally efficient way. We denote uh (vh) the
left (right) singular vector from the SVD, for iteration h, h = 1 . . .H where H is the number of
performed deflations. These singular vectors are the loading vectors in the PLS context. Sparse
loading vectors are then obtained by applying l1 penalization on both uh and vh. Therefore, many
elements in these vectors are exactly set to zero. The objective function can be written as:

max
uh,vh

cov(Xuh,Y vh) (4)

subject to ‖uh‖= 1,‖vh‖= 1 and Pλ1(uh)≤ λ1,Pλ1(vh)≤ λ2,
where Pλ1 and Pλ2 are soft-thresholding penalty functions that approximate Lasso penalty functions
(h = 1 . . .H). The objective function is actually solved by formulating sPLS as a least squares
problem using SVD [40, 31]. sPLS minimizes the Frobenius norm between the current cross
product matrix and the loading vectors:

min
uh,vh
||Mh−uhv′h||2F +Pλ1(uh)+Pλ2(vh), (5)
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where Pλ1(uh) = sign(uh)(|uh|−λ1)+, and Pλ2(vh) = sign(vh)(|vh|−λ2)+ are applied componen-
twise [40]. They are simultaneously applied on both loading vectors. The problem (5) is solved
with an iterative algorithm and the Xh and Yh matrices are subsequently deflated for each iteration
h for either a regression or canonical deflation mode (see [31] for more details).
The penalization parameters can be simultaneously chosen by computing the prediction error
with cross-validation. In a regression analysis context however, it is easier to use a criterion such
as prediction error Q2 [43, 31] to help tuning the number of variables. We further discuss this
issue in Section 4. In the mixOmics R package where the sPLS is implemented, for practical
purposes, the user chooses the number of variables to select on each dimension rather than tuning
the penalization parameters λ1 and λ2.

Other variant. [12] also developed a sparse PLS version for regression with Lasso penalization,
but their approach only permits variable selection on the X data set.

2.3. Variable selection for PLS-canonical mode

Similar to the sPLS approach described above, sparse approaches have been proposed by [47,
36, 50, 30] for a sparse Canonical Correlation Analysis (CCA, [25]) based on the PLS-canonical
mode algorithm (see Section 1.3). These methods either include l1 (Lasso) or l1 and l2 (Elastic
Net, [54]) penalizations.

PCCA. [47] proposed an approximation of the Elastic Net penalization applied on the loading
vectors. This penalization combines the advantages of the ridge regression to obtain a grouping
effect and the Lasso for built-in variable selection. Their penalized CCA (PCCA) was applied
on brain tumour data sets with gene expression and copy numbers. Later on, the same authors
proposed to extend their approach for longitudinal data in a two step procedure involving mixed
models and penalized CCA. They illustrated their approach on Single Nucleotide Polymorphisms
(SNPs) and repeatedly measured intermediate risk factors [48].

SCCA. [36] applied soft-thresholding penalization using a Lagrange form of the constraints on
the loading vectors. They also proposed an extension of their sparse CCA by including adaptive
Lasso [53] that includes additional weights in the Lasso constraint. The approach was applied on
gene expression and SNPs human data.

sPLS-canonical mode. Similar to [36], [30] implemented sparse PLS with a canonical deflation
mode (as presented in Section 1.3) with Lasso penalization as presented above. They compared
their approach to [47] and Co Inertia analysis [15] on NCI gene expression data sets measured on
two different platforms (cDNA and Affymetrix chips) to highlight complementary information
from both platforms. Co-Inertia was found to select redundant information compared to the two
other approaches.

sparse CCA. [50] proposed to apply Lasso or fused Lasso [45] in a bound form of the penalties.
They extended their sparse CCA to sparse supervised as well as multiple CCA and illustrated
their approaches on copy numbers data from diffuse large B-cell lymphoma study.
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[47, 36, 50] proposed to tune the number of variables to select by estimating canonical correla-
tion using cross-validation. However, in this particular canonical mode case, the selection of the
optimal number of variables remains an open question as the more numerous the variables used to
compute the correlation, the larger the correlation coefficient. There must therefore be a trade-off
between maximum correlation and the sparsity of the variables.

2.4. Variable selection for PLS-Discriminant Analysis

sPLS-DA. The extension of sparse PLS to a supervised classification framework is straightfor-
ward. The response matrix Y of size (n×K) is coded with dummy variables to indicate the class
membership of each sample.
In this specific case, we will only perform variable selection on the X data set, i.e., we want to
select the discriminative features that can help predicting the classes of the samples. Therefore,
we set Mh = XT

h Yh and the optimization problem of the sPLS-DA can be written as:

min
uh,vh
||Mh−uhv′h||2F +Pλ (uh),

with the same notation as in sPLS.

SPLSDA. [13] recently proposed a similar approach except that the variable selection and
the classification steps are performed separately - whereas the prediction step in sPLS-DA is
directly obtained from the by-products of the sPLS. The authors therefore proposed to apply
different classifiers once the variable selection was performed: Linear Discriminant Analysis
(SPLSDA-LDA) or a logistic regression (SPLSDA-LOG). The authors also proposed a one-stage
approach SGPLS by incorporating sPLS into a generalized linear model framework for a better
sensitivity for multiclass classification. These approaches are implemented in the R package spls.
A thorough comparison between the different variants of sPLS-DA can be found in [28], who
showed that only SPLSDA-LDA could give similar performance to sPLS-DA, while SGPLS was
seriously limited by too large data sets.

In the following Section 3.2, we compare backward PLS-VIP and sPLS-DA on a real biological
data set and assess their generalization performance with the maximum and the class distances.

3. Illustration on liver toxicity study

Data. In the liver toxicity study [23], 64 male rats of the inbred strain Fisher 344 were exposed
to non-toxic (50 or 150 mg/kg), moderately toxic (1500 mg/kg) or severely toxic (2000 mg/kg)
doses of acetaminophen (paracetamol) in a controlled experiment. Necropsies were performed
at 6, 18, 24 and 48 hours after exposure and the mRNA from liver was extracted. Ten clinical
chemistry measurements of variables containing markers for liver injury are available for each
object and the serum enzymes levels can be measured numerically. The expression data are
arranged in a matrix X of n = 64 objects and p = 3116 expression levels after normalization and
pre-processing, the clinical measurements (Y , q = 10) can be predicted using the gene expression
matrix in a PLS framework.
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FIGURE 2. Liver toxicity study. Sample representation using the first 2 latent variables from PLS (no variable selection)
and sPLS (50 genes selected on each dimension) with mixOmics.

3.1. PLS2 regression: examples of graphical outputs using sPLS

The great advantage of PLS and similar projection methods is that they can provide powerful
views of the data that are compressed in two to three dimensions. An inspection of the latent
variables of loading vectors plots may reveal groups in the data that were previously unknown or
uncertain. In this Subsection, we present some of the graphical outputs that can be obtained on
the liver toxicity study in using sPLS in a regression framework.

In Figure 2, we compared the sample representations of PLS (with no variable selection) and
sparse PLS where 50 genes were selected on each dimension. We can see that variable selection
enables better clusters of the samples as only the relevant variables are kept and are used to
compute the latent variables. sPLS is therefore able to highlight similarities between the rats
which were exposed to either low or high doses of acetaminophen. We can also observe strong
differences between the different times of necropsies. The reader can refer to [31] for insightful
graphical outputs on transcriptomics and metabolomics yeast data sets.

Correlation circles can be used to represent the variables and to understand how they contribute
to the separation of each dimension and as well as illustrating the relative importance of each
variable (Fig. 3). In the case of data integration, these valuable graphical outputs give more
insight into the correlation structure between the two types of variables (here the selected clinical
measurements and the transcripts). The reader can refer to [43, 39] and [20, 29] for an illustration
in the context of omics data integration. In particular, [30] showed that the clusters of genes
obtained on such correlation circles were related to particular types of tumours.

Recently, further improvements have been done in mixOmics to evaluate pair-wise associations
between the variables and represent the correlations between the two types of variables using rele-
vance networks (Fig. 4, see also [29]). These inferred networks model both direct and undirected
interactions between the two types of variables. They have been shown to bring relevant results as
they seem to reproduce known biological pathways [21]. These types of graphical outputs will
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FIGURE 3. Liver toxicity study. Variable representation using correlation circle with the first 3 dimensions of sPLS.
The red dots represent the genes and the blue labels the clinical measurements selected with sPLS. The coordinates of
each variable are obtained by computing the correlation between the latent variable vectors and each variable to be
projected on correlation circles. This is an example of a 3D representation obtained from mixOmics.
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FIGURE 4. Liver toxicity study. Pair-wise relevance networks obtained with sPLS. Edge colours represent the degree of
correlation between the clinical measurements (blue rectangles) and transcripts (pink circles) selected with sPLS.
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FIGURE 5. Liver toxicity study. Estimated classification error rates in a discriminant analysis framework (10-fold
cross-validation averaged 50 times) with respect to the number of selected genes, black (blue) line represent the
generalization performance of PLS-VIP (sPLS-DA) using maximum or class distance for prediction.

undoubtedly help the user to give more insight into the data.

3.2. PLS - Discriminant Analysis: numerical comparison of sPLS-DA and backward
PLS-VIP

For a PLS-DA framework, we set Y = necropsy time as the class response vector and X = gene
expression data and compared the results of backward PLS-VIP and sPLS-DA.
Both approaches generate the same type of outputs. In the case of sPLS-DA, we obtain the
sparse loading vectors (u1, . . . ,uH) which indicate which variables (genes) were selected on each
dimension and the H latent components (ξ1, . . . ,ξH). The user can choose the number of variables
to select. In the case of PLS-VIP, we obtain the names of the variables that were kept in the
backward approach. During the evaluation process, we trained both approaches on training data
sets, extracted the names of the selected genes, and tested the prediction of the associated test
samples on this same set of genes. We performed 10-fold cross-validation averaged 50 times and
computed the classification error rate while varying the variable selection size.

Classification performance. We compared the generalization performances of backward PLS-
VIP and sPLS-DA with the maximum and class distances. There is a large difference between the
two distances and the maximum distance seems to give the best prediction of the test samples for
this multiclass problem. Both variable selection approaches seem to perform similarly, although
the backward PLS-VIP has a higher error rate variability than sPLS-DA.
The estimation of the generalization performance also enables to select the ‘optimal’ number of
variables to select (the number of variables for which the classification error rate is at its lowest).
However, the reader should keep in mind that in such complex and highly dimensional problems,
this is a rather challenging question to be addressed.
It is interesting to notice that in overall, both approaches have a similar generalization perfor-
mance, even though the proportion of commonly selected variables is pretty low: it varied from

Journal de la Société Française de Statistique, Vol. 152 No. 2 77-96
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2011) ISSN: 2102-6238



Integration and variable selection of omics data 93

30% of overlap for 6-15 selected variables up to 70% overlap for 1,000 selected variables, see
Supplemental File. The next important step would therefore to assess the biological relevancy of
these different variable selections with respect to the biological study.
Based on these results, we would advise to use sPLS-DA rather than backward PLS-VIP. In
addition, the backward selection is much more computationally demanding than sPLS as PLS-VIP
needs to be performed in a stepwise manner for each possible variable selection size. As a result,
it took PLS-VIP 1 hour to train instead of few seconds for sPLS-DA for a chosen selection size of
50 variables 2. Note that the computational time of PLS-VIP could certainly decrease for a larger
variable selection size and with a much improved programming code.

More comparisons of sPLS-DA with similar PLS-based approaches can be found on [28]. In
this article, sPLS-DA was extensively compared with other sparse Linear Discriminant Analysis
approaches (sLDA, [1]) and 3 versions of SPLSDA from [13], as well as some widely used wrapper
approaches for gene selection. In many cases, sPLS-DA was found to be clearly competitive to
the tested approaches, as well as computationally efficient. Furthermore, the variety of graphical
outputs that are proposed in mixOmics offer a clear advantage to the other sparse exploratory
approaches.

4. Discussion on the validation of the results

Numerical validation. We illustrated the use of PLS for variable selection in a regression/predic-
tive framework. A rather straightforward way to validate the results would be to assess the pre-
dictive ability of the obtained models. However, when dealing with omics data, one has to deal
with a very small number of samples. Most often, it is impossible to validate the PLS model on an
independent data set. An alternative way is to perform cross-validation on the training data set
that was used for modelling. This has been used extensively with microarray data analysis, where
the number of samples is often ‘large’ (i.e. 50−100). However, gathering omics data on matched
samples is much more costly and this can lead to extremely small data sets in most cases (n < 50).
Cross-validation, leave-one-out validation, resampling techniques will allow to compute criteria
such as the proportion of explained variance, or the proportion of predicted variance (Q2). Re-
cently, stability analysis was proposed by [34, 3] to assess the stability of the variable selection
(see also [28]). However, the user must keep in mind the limitation of such validation techniques
in this small n large p problems.

Biological validation. The use of graphical outputs such as the ones illustrated in Section 3.1
can guide the interpretation of the results. Most importantly, combined with a thorough biological
interpretation of the selected transcripts, metabolites, these outputs will give a clear indication
whether the proposed model answers the biological questions. The use of biological softwares
(GeneGo [2], Ingenuity Pathways Analysis 3, to cite a few) or a thorough search in the biological
literature to further investigate if these selected variables have a biological meaning with respect
to the study is the ultimate way to validate the results. The statistician analysing such data must
keep in mind the biological question to be answered.

2 run on a 2.66GHz machine with 4GB of RAM using R
3 Ingenuity® Systems, www.ingenuity.com
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How many variables to select? Another critical issue is the optimal number of variables to
select. In a regression/classification framework, this can be answered using cross-validation and
different criteria such as Q2

cum or the classification error rate. In practice however, this may not be
interesting for the biologist. The selection size might be too small and in that case the results cannot
be processed further through biological software (not enough information), or, conversely, the
selection size might be too large which makes an experimental validation impossible. Therefore,
it may often happen that the number of variables to be selected has to be guided by the biologist
rather than by using statistical criteria.

Conclusion

PLS-based methods are useful and versatile approaches for modelling, monitoring and predicting
complex problems and data structures encountered within the omics field. The other virtue of
such approaches is that their results can be graphically displayed in many different ways. In many
studies, PLS-based methods were shown to bring biologically relevant results as they are able to
capture the dominant, latent properties of the studied system. The use of PLS and derived methods
for data reduction is becoming increasingly relevant to handle the current explosion of the size of
analytical data sets obtained from any biological system.
In this review, we presented the recent developments in PLS modelling for variable selection and
demonstrated the usefulness of such improvements in PLS to deal with the new challenges posed
by the systems biology arena. Variable selection within PLS can select relevant information while
integrating omics data sets. The graphical outputs inherent from PLS are a valuable addition to
enable a clear vizualization of the results, as illustrated on one data set. In a discriminant analysis
framework and on a real data set, we compared the classification performance of two PLS-based
variable selection approaches: backward PLS-VIP and sPLS-DA. sPLS-DA was found to be the
most efficient in terms of generalization ability and computational performance. This type of
approach is easily applicable to systems biology studies and will undoubtedly help in addressing
fundamental biological questions and in understanding systems as a whole.
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