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Abstract: Regularization is an important theme in statistics and machine learning and provides a principled way to
address problems which would otherwise be ill-posed. It can be thought of as a restriction of the set of functions in
which an empirical risk minimization is performed. If the original empirical risk minimization problem is ill-posed in
the sense that it admits several solutions or that the solution is very sensitive to small changes in the data, constraining
the optimization to a small set of functions is known to sometimes yield better estimates of the true (population) risk
minimizer. In particular, when one expects a good estimate to have a certain type of regularity, using this measure of
regularity to build the constraint can decrease the variance of the estimator without adding too much bias. In a context
of growing availability of biological data from high-throughput technologies like microarrays or next generation
sequencing, being able to apply statistical learning methods to predict which treatment is best suited to a patient or how
his disease is likely to evolve is of utmost importance. Since in practical situations few samples are available compared
to the dimension of the data (typically tenth of thousand of measures), designing adequate regularity measures from
biological prior information is important to make these problems amenable to statistical learning. Several such measures
have been proposed in the recent years to address particular problems. In this work, we review some of these methods.
We also present in more detail one of them, designed to enforce the support of a linear function to be a union of
predefined overlapping groups of covariates, and discuss its performances on a breast cancer dataset.

Résumé : La régularisation est un thème important en statistiques et apprentissage automatique. Elle fournit un
cadre général rigoureux pour résoudre des problèmes qui seraient autrement mal posés. On peut la présenter comme
la restriction de l’ensemble des fonctions dans lequel on applique une minimisation du risque empirique. Lorsque
le problème de minimisation du risque empirique est mal posé, dans le sens où il n’admet pas de solution unique
ou que celle-ci est très sensible à de petits changements dans les données, contraindre l’optimisation dans un petit
ensemble de fonctions améliore parfois l’estimation du minimum du vrai risque (en population). En particulier, si
l’on s’attend à ce qu’un bon estimateur possède un certain type de régularité, utiliser cette mesure de régularité pour
construire la contrainte peut permettre de diminuer la variance de l’estimateur sans pour autant trop augmenter son
biais. La disponibilité grandissante des données biologiques issues de technologies dites à haut débit, telles que les
puces à ADN ou le séquençage à haut débit rendent possible l’utilisation de méthodes d’apprentissage statistique pour
prédire le traitement le plus adapté à un patient ou l’évolution la plus vraisemblable de sa maladie. Ces applications
fondamentales sont limitées par le fait que peu d’échantillons sont généralement disponibles comparé à la dimension
des données (typiquement des dizaines de milliers de mesures). La conception de mesures de régularité adaptées à ces
problèmes est donc nécessaire. De nombreuses mesures, adaptées à des problèmes variés ont été récemment proposées.
Nous proposons une revue de ces méthodes, et présentons plus en détail l’une d’entre elles, conçue pour contraindre
le support de l’estimateur à une union de groupes de variables potentiellement chevauchants définis a priori. Nous
présentons et discutons également ses performances sur un problème de prédiction impliquant des données de cancer
du sein.
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52 L. Jacob

1. Introduction

The recent development of high-throughput technologies in biology has lead to an explosion
of available data. Along with the systematic organisation of experimental knowledge in large
public databases, this opens the possibility of using statistical learning methods to address crucial
problems. Of particular interest is the problem of predicting some properties of a biological
sample based on its molecular features.

DNA microarrays [8], or more recently RNA-Seq [36, 59], are used to quantify the expression
of several genes in a particular tissue. Each of the approximately 30,000 genes in the human
genome essentially codes for a protein, which is the functional element of the cell : variations of
quantity of a particular protein in a cell has direct effects on its behavior, which suggests that the
expression of genes can be a good feature on which to build functions predicting properties of
a biological sample. More precisely, the actual genes are coded in DNA molecules, which stay
in the cell nucleus and are (under normal circumstances) in constant quantity (e.g. 2 copies of
each gene in the human genome) and are the same in every cell of the same organism. These
genes are transcribed in RNA molecules which then leave the cell nucleus and are translated
into proteins. DNA microarrays and RNA-Seq technologies aim at quantifying the RNA present
in a cell for each gene in a particular sample, with the hope that these quantities relate to the
behavior of the cell [2, 15]. Properties whose accurate prediction is of practical importance include
tumor characterization, diagnostic, prognostic and drug response prediction [4, 6, 37, 54]. Better
treatments can be designed if one can determine which type of cancer affects a patient, his risk
of metastasis in the next 15 years or how much benefit he can expect from various therapies. In
particular, one may want to take more risk with toxic treatments like chemotherapies for a patient
with a poor prognosis, but spare it to a patient for whom surgery is likely to be enough.

In the particular case of cancer, dysfunctioning is often known to arise from changes in the
genome, i.e., at the DNA level. For example, some genes regulating the cell duplication may be
deleted, or some genes positively involved in this same process can be duplicated, here again
leading to a disappearing or change in relative quantities of certain proteins and to a functional
deregulation of the cell activity. Therefore, a complementary approach is to measure the number
of copies of each gene in a cell, using CGH arrays [10, 11, 39, 52] or DNA-Seq [33], and use
these tenth of thousands of measures for each individual as descriptors on which to build functions
predicting prognostic or response to a treatment [1, 51].

Another example of growing quantity of data is high-throughput screening, where the activity
of a large number of molecules against a particular biological target is assessed in vitro. Statistical
learning methods may be used on these data to help in the discovery of new drugs [32] by
predicting which molecules among a very large number of candidates bind to the target. Once
a deregulated protein is identified as causing a disease, a possible next step in the drug design
process is indeed to find a small molecule binding the protein and inhibiting its activity [18].

In all these examples however, the number of available examples is typically very small
compared to the description space dimensionality. Studies rarely involve more than a few hundreds
of patients, a small number compared to the tenth of thousands of gene expression or copy
number values being measured for each patient. In addition, the measuring process, including the
technology itself, is prone to a lot of biological and technical noise. Classical statistics are not
designed to handle this type of data, essentially because finding a function separating two sets of
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points in high dimension is an ill-posed problem, with no unique solution, even less a robust one.
Fortunately, ill-posed problems, in particular those involving less data points than dimensions, are
not new in statistics and statistical machine learning [17]. The answer often involves to bias the
solution towards a simpler class of functions to make the problem well-posed and the estimate
more robust. This approach is often known as penalized or regularized learning, and bears a direct
relation to the definition of prior distributions in the context of Bayesian learning [5, 12]. While
historically based on constraints on the Hilbert norm of the function and leading to smoother
functions, this method lends itself well to non-Hilbertian measures of complexity. In particular,
there has been a growing interest in the recent years for complexity measures of parametric
functions based on `1 norms, which lead to “sparse” solutions [9, 49], i.e. to solutions with many
zero weights.

If one has a good idea or prior on some regularity properties the true function should have, such
as a particular type of smoothness or a particular sparsity pattern, then restricting oneself to the
class of functions having this particular regularity should guide the learning process by making it
work in a smaller set of functions which still contains good estimates of the true function, i.e., by
decreasing the variance without increasing too much the bias of the resulting estimator. Different
biological questions, for which different priors were available, have led to the development of
a variety of regularized statistical learning methods. Section 2 introduces the formal motivation
of regularized learning in the context of structural risk minimization. Section 3 reviews some
of these methods, and Section 4 gives a more detailed description of one of them along with its
applications. Section 5 provides a discussion of the presented methods.

2. Structural risk minimization

Let X be the space of the observations (e.g Rp when observing samples in terms of p gene
expressions), and Y the space of the output associated with each observation (e.g., {−1,1} for
binary outputs such as good or bad prognostic).

2.1. Population and empirical risks

Supervised learning aims at finding the function f which minimizes

R( f ) =
∫

X ×Y
L(y, f (x))dP, (1)

where R is the risk of f , i.e., the mean cost of using it to predict y from x on the joint distribution
for a particular cost or loss function L. L quantifies the error made when predicting output f (x) if
the true output is y. A typical classification loss is 1 when f (x) = y and 0 otherwise, but convex
surrogates such as the hinge and the logistic losses are often used in practical estimation [17]. A
typical regression loss is the squared loss (yi− f (xi))

2.
This quantity defined in (1) will be referred to as the population risk hereafter. It cannot

be computed in a real situation because the joint distribution P is unknown. In practice, this
distribution is therefore replaced by the empirical distribution of the training pairs (xi,yi) yielding
the following empirical risk :

Rn( f ) =
1
n

n

∑
i=1

L(yi, f (xi)). (2)
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Choosing the f which minimizes Rn is a procedure known as empirical risk minimization. As
stated in the introduction for a finite sample size n the function which minimizes Rn may not be
unique and some of the minimizers may have a very high population risk R. For example in a
regression problem where Y = R, any function f taking the correct values at the training points,
i.e., f (xi) = yi, i = 1, . . . ,n and any value everywhere else will have a zero empirical risk for any
reasonable regression loss function (e.g. the squared loss (yi− f (xi))

2).

2.2. Bias-variance tradeoff

The theory of statistical learning [56, 57] gives bounds on the distance between Rn( f ) and R( f )
as a function of the sample size n and the complexity of the class of functions H on which
the empirical risk is minimized. The key to obtain a function having a low population risk and
therefore better generalization abilities on (x,y) pairs which were not in the training set is to
control the complexity of H . Indeed when looking for the best classifier f in a given space of
functions H , the Bayes regret R( f )−R∗, where R∗ is the population risk of the Bayes rule which
is the optimal classifier knowing the true distribution, can classically be decomposed as :

R( f )−R∗ =
(

R( f )− inf
g∈H

R(g)
)
+

(
inf

g∈H
R(g)−R∗

)
. (3)

The second term is called the approximation error and corresponds to the minimum excess risk
which can be achieved by using a member of H . It is a bias term, which does not depend on the
data but only on the richness of H , or at least on its ability to approximate the Bayes rule. It will
be small if H contains a function whose population risk (not based on the data, therefore not
observable) is not too high compared to the optimal classifier. The first term in turn is called the
estimation error, and corresponds to the excess risk of f with respect to the best possible function
in H . Again, the reason why it is not trivial to find functions f for which this term is zero is that
it is not possible to observe R. We only have access to Rn, and as explained above, a function with
a low Rn may have an arbitrarily large R in the general case.

Interestingly, when choosing f by empirical risk minimization over H , it can be shown that if
f ∗n minimizes Rn, then :

Rn( f ∗)− inf
f∈H

R( f )≤ 2 sup
f∈H
|Rn( f )−R( f )|,

so the estimation error can be thought of like a variance term, which grows with the size, or more
precisely the complexity of H .

The variance term in the Bayes regret decomposition (3) is larger for complex function spaces,
while the bias term penalizes spaces which do not contain good approximations of the true
function. In order to obtain a low population risk when minimizing the empirical risk, it is
therefore necessary to minimize it over function spaces which are not too complex, but are rich
enough to contain good approximations of the true function.

2.3. Structural risk minimization

This bias-variance trade-off is generally dealt with using the following structural risk minimization
procedure [55] :

Journal de la Société Française de Statistique, Vol. 152 No. 2 51-76
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2011) ISSN: 2102-6238



55

1. Define a structured family of function complexity classes,

2. Find the empirical risk minimizer on each complexity class,

3. Choose the minimizer giving the best generalization performances.

A practical approach to step 1-2 is to solve the sequence of problems : min
f∈H

Rn( f )

Ω( f )≤ µ,
(4)

where Ω is a measure of complexity of the function f and µ ∈R+. This constrained formulation
highlights the fact that µ indeed parameterizes a “structured family of function complexity classes”
as for each µ > 0, the feasible f to solve (4) will include the ones that were feasible for smaller
µ along with some new functions which are more complex in the sense of Ω. Each µ defines a
new function space in which the empirical risk minimization can be performed, with the hope
that one of them is simple enough to have a small variance term yet rich enough to have a small
bias term. This procedure underlines the importance of designing good Ω functions : since it
defines the sequence of function spaces in which empirical risk minimization is performed, an
excellent complexity measure Ω may give function spaces which are simple yet contain good
approximations of the true function. In particular, this may happen if the constraint enforces some
a priori about what type of regularity the true function should have. Step 3 in turn is done by
computing the empirical risk of the selected function on a hold out part of the training set which
was not used in the two previous steps. More generally, one often resorts in practice to cross
validation procedures [17].

In the remainder of this article, we will abuse the notation and denote L( f ) the empirical risk
Rn( f ) = ∑

n
i=1 L(xi, f (xi)), because this matches the most used convention in machine learning.

Furthermore, we will restrict our discussion to the case of linear functions f (x) = β>x for some
vector of parameters β ∈ Rp. The empirical risk of such a function will be denoted by L(β ).

3. Review of some existing complexity measures Ω

As outlined in Section 2.3, effectiveness of structural risk minimization relies on the definition
of an adequate structured family of function complexity classes for the problem at hand, often
implicitely defined by a complexity measure Ω. Gradually decreasing the constraint of this
complexity indeed defines a nested sequence of function spaces. This section presents several
algorithms developed in this framework, with various convex complexity measures Ω enforcing
in each case an appropriate type of regularity for the problem at hand.

3.1. Relation to classical methods

First note that for convex loss L and complexity measure Ω, (4) is equivalent to the following
penalized (but unconstrained) optimization problem :

min
β∈Rp

L(β )+λΩ(β ), (5)
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sometimes referred to as Tikhonov formulation and where λ is a function of µ . This formula-
tion subsumes several classical methods from the statistics and machine learning literatures, in
particular :

– when L(β ) = ∑
n
i=1(yi−β>xi)

2 and Ω(β ) = ‖β‖2, (5) is the ridge regression.
– when L(β ) = ∑

n
i=1 max(0,1− yiβ

>xi) and Ω(β ) = ‖β‖2, (5) is the support vector machine.
– when L(β ) = ∑

n
i=1(yi−β>xi)

2 and Ω(β ) = ‖β‖1, (5) is the lasso.
The `2 and `1 norms used in these classical formulations enforce particular types of regularity

for β . A function of small `2 norm is smooth in the sense that two close points x,x′ have close
evaluations by β . Indeed, by the Cauchy-Schwarz inequality,

|β>x−β
>x′| ≤ ‖β‖.‖x− x′‖,

so if x and x′ are close, ‖x− x′‖ is small and since ‖β‖ is constrained to be small |β>x−β>x′|
has to be small as well.

Because of its non-differentiability, the `1 norm leads to optima of (5) with a lot of coordinates
of β exactly at zero. This is further discussed in Section 3.4. In both cases, if there exists a function
of low population risk R which is smooth (resp. sparse), enforcing the penalty will not bias much
the estimation, but will guide it by forcing the optimization to occur in a smaller function space
(to which the correct function, or at least a good estimate, belongs).

3.2. Smoothness on a network using the Laplacian norm

An interesting example of design of such a complexity measure is the case of gene expression data
classification when gene networks are available. Gene networks are formed by the accumulation
of a particular empirical biological knowledge : which proteins activate or inhibit the transcription
of some genes (regulation networks), which proteins are involved in a particular sequence of
chemical reactions (metabolic networks) or which proteins interact with each other in an organism
(protein-protein interaction networks). The growing availability of these types of network makes
them relevant as a side information to build a penalty. The intuition is that genes which are close
in the network can be expected to have similar weights in the classification function. Indeed, since
two close genes are generally involved in the same or in related biological processes, if one of
them has a strong weight in the classifier, the other one is likely to have a strong weight as well.

In terms of regularization, this should translate in a complexity measure Ω which is small for
smooth functions on the network (in the sense that weights associated to close genes are similar),
and large for functions which are less regular on the network. A typical approach is to use the
following penalty in (5) :

Ωspectral = ∑
k∼l

(βk−βl)
2 , (6)

where k∼ l denotes that genes k and l are connected in the network. This penalty measures how
different the weights of connected nodes are. It is straightforward to check that this penalty can
also be written β>L β where L = D−A is the unormalized graph Laplacian matrix expressed
in terms of the adjacency and degree matrices A and D. L being positive semidefinite, Ωspectral(β )

can be thought of as
(

Λ
1
2 U>β

)>(
Λ

1
2 U>β

)
where L =UΛU> is the spectral decomposition
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of L expressed in terms of an orthogonal matrix whose columns are the eigenvectors of L and
Λ is a diagonal matrix whose diagonal elements are the eigenvalues. In other words, this amounts
to projecting β on the eigenvectors of L , multiplying each projection by the square root of the
corresponding eigenvalue and taking the `2 norm of the resulting vector. Since for each eigenvector
ui and its corresponding eigenvalue λi, by definition Ωspectral(ui) = λi, the eigenvectors of L
can be thought of as a basis of vectors of increasing Ωspectral(.), and a graph equivalent of the
Fourier basis. Alternatively by a change of variables, it is possible to show that using (6) in (5)
amounts to applying an `2 norm after projecting the data points xi on L − 1

2 =UΛ−
1
2 U>, that is,

after mapping the data to the graph-Fourier space, shrinking each graph-Fourier coefficient by one
over the square root of the corresponding eigen value, and mapping back to the original space,
which can be thought of as a filtering of the data to shrink the high frequency parts of its signal.
This observation is of practical interest, because it shows that minimization of an empirical risk
under constraint on (6) can be directly implemented by projecting the data on L − 1

2 and using any
classical `2-penalized algorithm on the transformed data.

[41] used a similar approach to separate two sets of yeast samples (irradiated with a low
radiation dose vs non-irradiated). The only difference is the shrinkage function they used for
the graph-Fourier coefficients : instead of one over the square root of the eigenvalue, they tried
an exponential function and a Heaviside function which set the coefficients corresponding to
eigenvalues above a certain cutoff to 0. The resulting penalty doesn’t have a simple interpretation
in terms of differences of weights for connected coefficients like in (6), but is expected to yield
similar results. In these experiments, the use of this particular notion of regularity didn’t improve
the performances, which were the same as the ones obtained by a regular SVM. This suggests that
this prior didn’t lead to complexity classes that were better than the regular smoothness assumption
made when using the `2 norm. This may be because the assumption of regularity on the network is
wrong in the first place, because the best classification function is poorly approximated by a linear
function, regular or not, or because the available network is flawed, contains wrong annotations or
misses important ones. An interesting result however, is that by construction, this method yields
classifiers which are coherent with the network and therefore more interpretable while keeping
the same accuracy.

Related works include the addition of a `1 norm penalty to (6) to enforce sparsity in addition to
the network-smoothness [30] and alternative measures of measures of network-smoothness to the
one based on the regular Laplacian matrix [45].

3.3. Multi-task learning

Another way of restricting the complexity of the function space in which empirical risk mini-
mization is performed is to use data from related learning problems, or tasks, and to force the
learned function to be similar in some sense to the ones learned for the related tasks. This family
of approaches is known as multi-task learning. A typical way of relating the tasks is to force their
`2 distance to be low, i.e., to penalize

Ωmixed(β ) =
T

∑
t=1
‖βt − β̄‖2 +λ2

T

∑
t=1
‖βt‖2, (7)
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where βt is the function used to classify the data from learning task t and β̄ = 1
T ∑

T
t=1 βt is the

average of the T functions.
This approach was used in the context of vaccine and drug design [20, 23]. In both cases, the

problem is to discriminate between elements that bind to a particular target and those who don’t.
For vaccine design, one wants to identify which fragments of a pathogen can bind to MHC-I
molecules, as this is a necessary condition for them to be immunogenic. The MHC is a very
polyallelic group of genes, and for the molecule resulting from some alleles, few binders are
known. Reducing the complexity by using data from related problems is therefore crucial in
this case. Similarly for drug discovery, one is interested in finding small molecules that bind to
a particular protein, some of which have very few known binders. In both applications, using
related learning tasks to restrict the complexity of the function space lead to better prediction
performances on average over all the targets, and this improvement was particularly strong for
targets with few known binders. Performances were further improved by generalizing this idea to
use descriptors for both the ligands and the targets.

Alternative approaches include simultaneously learning which classifiers should be constrained
to be close to each others and which ones should not [19] or enforcing other types of relation
among the learning tasks such as their belonging to the same low-rank subspace [46, 47] or their
sharing of a common sparsity pattern [38].

3.4. Sparsity-inducing penalties

Regularization by the `1 constraint was introduced independently in the statistics [49] and the
signal processing [9] literatures in two very close formulations. In statistics, it was first proposed
in a regularized regression problem, the least absolute shrinkage and selection operator (Lasso) :min

β

n

∑
i=1

(yi− xiβ )
2

‖β‖1 ≤C,

(8)

whereas in signal processing it was introduced as the basis pursuit :min
β

‖β‖1

Xβ = y,
(9)

as a mean to recover exactly the signal β from a given overcomplete dictionary X (the basis
pursuit denoising formulation is equivalent to the Lasso).

The most intuitive and visual way of understanding why constraining the `1 norm leads to
sparse estimates is to see the `1 ball as the tightest convex relaxation of the `0 one. The `0 penalty
simply counts the number of non-zero elements in a vector. It is not a proper norm because it is
not positive homogeneous but it is the direct mathematical translation of the sparsity requirement.
Figure 1 shows that the `1 ball is the tightest possible convex relaxation of the `0 constraint which
intuitively make it a good candidate to enforce the sparsity prior while keeping the computational
and analytical advantages of having an estimator defined as the solution of a convex optimization
problem.
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FIGURE 1. Unit balls for the `p norms in two dimensions, for p = 0, 2
3 ,1,

3
2 .

However, the fact that the `1 ball is a relaxation of the `0 does not suffice to explain that it still
induces sparse estimates (for example, the `2 ball is also a relaxation of the `0 one and it does
not yield sparse estimates). The two following arguments explain why penalizing by the `1 norm
favors sparse solutions :

Geometric argument : Figure 2 illustrates in two dimensions the minimization of a smooth
function, represented by the contour lines under `1 and `2 constraints represented by the
green zones. It is visually clear that the shape of the `2 ball doesn’t favor sparse solutions,
as the ellipse doesn’t hit it on one of the axes. In particular if the smooth function has a
spherical shape and βmin is the minimizer of the smooth function (the center of the circles),
the point inside the `2 ball of radius C which minimizes the function is the projection of
βmin on the ball, C. βmin

‖βmin‖ , which is colinear to βmin and has no reason to have any zero
coordinate (unless βmin itself has zero coordinates, which has probability zero under any
reasonable noise setting).
Under the `1 constraint on the other hand, the β minimizing the smooth function generally
lies on one of the singularities of the ball as this is visually where the ellipse lines first hit
the `1 ball, so the constrained solution typically has zero coordinates.

KKT argument : Consider the minimization of the following general problem :

min
β

L(β )+λ‖β‖p, (10)

for 1 ≤ p ≤ ∞, where ‖β‖p =
(
∑

d
j=1 |β j|p

) 1
p , denotes the `p norm of β . This problem is
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FIGURE 2. Sparsity induction by the `1 norm.

equivalent to minβ L(β )+ λ̃‖β‖p
p for some λ̃ and generalizes the ridge regression, the

Lasso, and several other regularized problems.
For a convex loss function L, since q≥ 1, (10) is a convex optimization problem, whose
solution is characterized by its KKT conditions [7]. In particular, at the optimum, β must
satisfy the stationarity conditions. For p > 1, ‖β‖p is differentiable everywhere, and the
stationarity conditions are :

∀ j,
∂L
∂β j

=−λ
∂‖β‖p

∂β j
=−λ sign(β j)

|β j|p−1

‖β‖p−1
p

, (11)

where sign(β j) is 1 for a positive β j, −1 for a negative β j and 0 for β j = 0. This condition
simply means that at the optimum, the derivative of the loss function with respect to
each parameter is cancelled out by the absolute value of the parameter (weighted by the
strength λ of the constraint), which intuitively makes sense : the former tries to increase the
parameter value in order to minimize the loss, whereas the latter penalizes large values of
the parameter. As a consequence, for a β j to be 0 at the optimum for any λ > 0, the KKT
conditions impose that the corresponding ∂L

∂β j
be 0 as well, which has probability 0 under

any non-idealized setting.
For p = 1 on the other hand, |β j|p is non-differentiable at 0, so for β j = 0, the stationarity
condition, in terms of the subdifferential ∂β j of the loss and the penalty functions becomes :

0 ∈ ∂β j (L(β )+λ‖β‖p)⇔
∣∣∣∣ ∂L
∂β j

∣∣∣∣≤ λ , (12)

because the subdifferential of the absolute value is the [−1,1] set. Therefore, any parameter
with respect to which the gradient of the loss has an amplitude less than λ will be 0 at the
optimum.

Note that in the previous argument, the zone where the parameter is left to 0 because it doesn’t
help enough the loss decrease is created by the non-differentiability of the penalty. This will be a
useful fact to define more elaborate sparsity-inducing norms. Section 3.5 introduces an example
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where this strategy is used to constrain estimates to have some coordinates exactly equal. The
entire Section 4 is devoted to the study of a penalty where this observation on non-differentiability
regions is used to obtain estimates whose non-zero elements are unions of pre-defined groups of
covariates. The Lasso penalty itself has been successfully used in several practical applications,
including some biological ones [14, 43].

Finally as the `1 can serve two purposes (accurate estimation of y from x and estimation of the
sparsity pattern of β ), a natural question is whether the best parameter λ for risk minimization
is also the best one for covariate selection. The answer is no [29], which means that selecting
the regularization parameter by cross validation does not necessarily yield good performances in
model selection.

3.5. Piecewise-constant functions using the fused norm

In the context of cancer data, it is also interesting to quantify the number of copies of each gene in
the DNA of a particular tissue (typically a tumor). Indeed, amplification and deletion of particular
genes are often at the center of tumorigenesis. These events do not occur specifically at the level
of one gene, but rather of a DNA segment which can cover several genes, sometimes a whole
chromosome. When using these counts in a classifier, a natural prior is therefore that two genes
which are next to each other on the chromosome have exactly the same weight, since even if the
quantitative values which are measured by the array are not exactly the same, they are likely to
correspond to the same number of copies plus some noise. In other words, the linear classifier
can be expected to be piecewise constant along the genome. This prior can be encoded using the
following penalty :

Ωfused(β ) =
p−1

∑
i=1
|βi−βi+1|. (13)

Just like the `1 norm leads to sparse estimates, (13) leads to piecewise constant classifiers,
because it is simply an `1 norm applied to the differences of neighboring weights, and it therefore
results in classifiers in which many of these differences are zero, i.e., which are piecewise constant.

This penalty was first proposed in [28] and used in [16] for change-point detection. It was
studied in combination with an `1 norm in [50] where it was applied to expression and mass
spectrometry data. It was further refined in [42] where an adaptive formulation was proposed.
[40] and [51] used this same combination of fused and `1 norm to classify array CGH (gene copy
number) data. [40] tested the method on two cancer datasets and observed an improvement in the
classification performances for one of them, no change for the other one.

4. Structured sparsity penalties for outcome prediction

We now focus on a particular penalty developed in [22] to deal with gene expression data. The
motivation is that among all the genes whose expression is measured, only those involved in a
small number of biological functions are worth using to predict the outcome (e.g., metastasis).
This is a slightly more general hypothesis than the usual sparsity, in which one adds a prior
regarding which genes should be selected simultaneously in the model. We present this structured
prior, some of its properties and its performances on real data.
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4.1. Overlapping group lasso

When dealing with gene expression data, it is of course possible to directly use the `1 penalty to
simultaneously learn a linear classifier and select a few genes to establish a predictive signature [14,
43]. In terms of feature selection however, it is known [62] that the Lasso fails to recover the
correct sparsity pattern when the covariates are too correlated, which is likely to be the case
with gene expression data. Indeed, the expression of each gene can be positively or negatively
regulated by the expression of other genes, which systematically correlates their expressions.
More generally, most biological mechanisms involve several interacting genes and therefore act
as latent variables whose activation activates a whole group of genes, making their expressions
strongly correlated. This suggests that instead of imposing sparsity at the gene level, one may try
to constrain the number of biological functions involved in the classifier. This may also avoid the
selection of genes spuriously associated with the output because of the noise, as such a spurious
association is much less likely for a whole set of genes. While some algorithms like the elastic
net [63] lean on the empirical covariance to jointly select correlated covariates, the method we
present in this section relies on pre-defined groups of genes known to all be involved in a particular
process, and available from public databases. None of the two paradigms really dominates the
other : algorithms relying on the empirical covariance may suffer in the small sample regime
when the estimation of the covariance becomes inaccurate, and algorithms relying on pre-defined
structures on the covariates can perform arbitrarily bad in case of severe misannotation, i.e., if the
grouping they define is wrong or not relevant for the problem at hand.

A generalization of the Lasso penalty coined group-lasso was proposed by [60] to deal with
group-sparsity, i.e., the case where one expects some pre-defined groups of covariates to be either
all selected in the model or all have zero weights :

Ωgroup = ∑
g∈G
‖βg‖, (14)

where G is the set of pre-defined groups forming a partition of the variables and βg ∈ Rp are
the vectors whose entries are the same as β for the covariates in g, and are 0 for other other
covariates. (14) is the `1 norm of the `2 norms of the βg, often referred to as a mixed norm. Just
like the `1 norm leads to estimates with many weights at zero because it relaxes the `0 count
of non-zero variables, (14) leads to estimates with many groups of variables at zero because it
relaxes the count of groups of covariates whose corresponding restriction βg has non-zero `2
norm. Generalizations of the geometric and KKT-based arguments developed to show that the
`1 yielded sparse estimates can be straightforwardly derived for this `1/`2 norm. In particular,
the ball corresponding to this norm (shown on Figure 3 for a special case in 3 dimensions) has
singularities at points where some groups have exactly zero norm.

When dealing with gene sets corresponding to biological functions, the problem is slightly
different, because these sets often overlap and therefore do not form a partition of the genes.
When the groups in G overlap, (14) is still a norm (if all covariates are in at least one group),
but the complexity that it measures, and the effect its penalization has on the estimate do not
correspond to the prior that few biological functions should be involved in the model. Indeed, (14)
by construction leads to estimates in which groups of weights are zero. By complementarity, this
also means that the non-zero pattern is a union of groups when the groups form a partition, but in
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FIGURE 3. Unit ball of the group-lasso in 3 dimensions with G = {{1,2},{3}}.

⇒
‖βg1‖= ‖βg3‖= 0

FIGURE 4. Effect of penalty (14) on the support. Removing any group containing a variable removes the variable from
the support.

the general case it leads to non-zero patterns which are complements to unions of groups. This is
illustrated on a simple example with three groups in Figure 4. When groups 1 and 3 are set to
zero, the remaining weights are not the ones in group 2, but the ones that are neither in 1 nor in 3.

This type of effect can be relevant for some applications as studied e.g. in [24, 25]. In the case
of gene expression data, this may not be the definition of regularity one wants to enforce. If a
gene is an important marker of the property to be predicted, all the gene sets which include this
gene will have to be non-zero for the gene to be involved in the classifier. In order to enforce the
notion of regularity that we need, we should design a measure which is small when several gene
sets are discarded but without necessarily enforcing that all genes in a discarded gene sets have
zero weight. Rather, we want genes to have zero weight if all the gene sets to which they belong
have been discarded.

In terms of penalized empirical risk minimization, this objective may be expressed under the
following form :
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FIGURE 5. Latent decomposition of β over (vg)v∈G . Applying the `1/`2 penalty to the decomposition instead of
applying it to the βg removes only the variables which do not belong to any selected group.


min
β ,v

L(β )+λ ∑
g∈G
‖vg‖

β = ∑g∈G vg

supp(vg)⊆ g,

(15)

where each group is assigned a latent vector vg on which the mixed norm is applied, while the
classifier used in the loss function is formed by adding all the latent variables. The penalty term
induces group-sparsity, but any covariate can remain in β as long as at least one vg which includes
the covariate has non-zero norm, as illustrated on Figure 5.

Sparsity patterns resulting from the minimization of (15) are by construction unions of groups.
Indeed, if we denote by G1 ⊂ G the set of groups g with vg 6= 0, then we immediately get
β = ∑g∈G1 vg, and therefore:

supp(β )⊂
⋃

g∈G1

g .

For analysis purpose, it is good to notice that problem (15) can be reformulated under the
more classical form (5). Indeed, the only part of problem (15) which depends on v is the penalty
term and the constraints. It is therefore possible to move the minimization over v and the related
constraints to the last term, and see the problem as a minimization over β of a new functional
which includes another minimization problem (over v) :

min
β ,v

L(β )+λ ∑
g∈G
‖vg‖

β = ∑g∈G vg

supp(vg)⊆ g,

= min
β

L(β )+λΩ
G
overlap (β ) , (16)

with
Ω

G
overlap (β ) = min

v∈VG ,∑g∈G vg=β
∑

g∈G
‖vg‖ . (17)

where VG ⊂ Rp×G is the set of |G |-tuples of vectors v = (vg)g∈G , where each vg is a vector in
Rp, that satisfy supp(vg)⊂ g for each g ∈ G .
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To summarize, it is possible to enforce the prior we have on the linear classifier by introducing
new variables in the optimization problem (such that a gene has zero weight in the classifier if all
the gene sets to which it belongs have been set to zero by the penalty). This new problem can
be re-written as a classical minimization of the empirical risk, penalized by a particular penalty
ΩG

overlap (.). This penalty itself associates to each function β the solution of a particular constrained
optimization problem. While this formulation may not be the most intuitive, it allows to reframe
the problem in the classical context of penalized empirical risk minimization. In particular, the
next sections show that ΩG

overlap (.) is a norm, derive some of its properties and show under which
conditions its penalization leads to model-consistent estimation.

4.2. Properties of the resulting penalty

We now focus on the properties of ΩG
overlap (.) as defined in (17). The section follows the lines

of [22]. We will prove that ΩG
overlap (.) is a norm. We will then derive a dual version of the norm,

along with some of its properties, in particular the fact the optimal weights associated to the
group-support are uniquely defined. Finally, one can notice that the set of solutions of the dual
formulation corresponds to the subgradient of the norm. These last properties will be of interest in
the next section to prove some consistency results. Proofs are given in appendix.

Let us first introduce some notation. V(β ) ⊂ VG denotes the set of |G |-tuples of vectors
v = (vg)g∈G which reach the minimum in (17), i.e., which satisfy

β = ∑
g∈G

vg and Ω
G
overlap (β ) = ∑

g∈G
‖vg‖ .

The objective of (17) is a convex and coercive function, so that the set of solutions V(β ) is
non-empty and convex. Moreover,

Lemma 1. β 7→ΩG
overlap (β ) is a norm.

Again, in the general case this norm is expressed in a variational form (as the solution of an
optimization problem). To the best of our knowledge, no closed form is available in the general
case (although a closed form can be derived in some simple particular cases)

We now give a dual formulation of the norm ΩG
overlap (.) yielding some important properties.

Lemma 2. 1. It holds that:

Ω
G
overlap (β ) = sup

α∈Rp:∀g∈G ,‖αg‖≤1
α
>

β . (18)

2. A vector α ∈ Rp is a solution of (18) if and only if there exists v = (vg)g∈G ∈ V(β ) such
that:

∀g ∈ G , if vg 6= 0, αg =
vg

‖vg‖
else ‖αg‖ ≤ 1 (19)

3. Conversely, a G -tuple of vectors v = (vg)g∈G ∈ VG such that β = ∑g vg is a solution to (17)
if and only if there exists a vector α ∈ Rp such that (19) holds.
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Recall that neither the primal nor the dual formulation admit a unique minimizer or maximizer,
i.e., several feasible v (resp. α) can reach the minimum of (17) (resp. the maximum of (18)). The
next result however shows that the part of the optimal α associated to the group-support of β is
uniquely defined. Denote by G1 the group-support of β , i.e., the set of groups belonging to the
support of at least one optimal decomposition of β : G1 = {g ∈ G | ∃v = (vg)g ∈ V(β ), vg 6= 0}
and J1 the corresponding set of variables J1 = ∪g∈G1 g.

Lemma 3. Let α be an optimum in the formulation (18) of the ΩG
overlap (·) norm, then αJ1 is

uniquely defined.

The following corrolary transposes this result to the primal formulation :

Corollary 1. For any v,v′ ∈ V(β ) and for any g ∈ G ,

‖vg‖×‖v′g‖= 0 or ∃γg ≥ 0 s.t. v′g = γvg . (20)

So far, we have only considered properties of ΩG
overlap (.) itself, not in the context of any statisti-

cal learning task. The next result expresses the optimality conditions of a regularized learning
problem involving ΩG

overlap (.) in terms of the optimum of (18). Consider a learning scenario where
we use ΩG

overlap (β ) as the regularization term in (5), with a convex and differentiable objective
function L :

min
β∈Rp

L(β )+λΩ
G
overlap (β ) , (21)

where λ > 0 is a regularization parameter. We first derive optimality conditions for any solution
of (21). For that purpose, let us denote AG (β ) the set of vectors α ∈ Rp solution of (18).

Lemma 4. A vector β ∈ Rp is a solution of (21) if and only if −∇L(β )/λ ∈AG (β ).

Proof. The proof follows from the same Lagrangian based derivation as for Lemma 2, adding
only the loss term.

Remark 1. By point 2 of Lemma 2, an equivalent formulation is the following: a vector β ∈ Rp

is a solution of (21) if and only if it can be decomposed as β = ∑g∈G vg where, for any g ∈ G ,
vg ∈ Rp, supp(vg) = g, and if vg = 0 then ‖∇gL(β )‖ ≤ λ , and ∇gL(β ) =−λvg/‖vg‖ otherwise.

4.3. Model consistency of ΩG
overlap (.) minimization

An important problem when studying sparsity-inducing penalties is their model consistency : under
which settings do they recover the correct sparsity pattern when the number of data points grows?
[61] and [62] showed that in the case of a finite number of parameters and for an adequate choice
of the regularization parameter, the Lasso is consistent under some irrepresentable conditions,
stating that when the variables of the model are not too correlated with the variables which are
not in the model. [3] gave model consistency conditions for the group-lasso, yielding similar
irrepresentable conditions as for the Lasso. In this section, we give conditions for the consistency
of ΩG

overlap (.) minimization.
Consider the linear regression model Y = X β̄ + ε , where X ∈ Rn×p is a design matrix, Y ∈ Rp

is the response vector and ε ∈ Rp is a vector of i.i.d. random variables with mean 0 and finite
variance. We denote the true regression function by β̄ . We assume that
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1. (H1) Σ := 1
n X>X is positive definite.

2. (H2) There exists a neighborhood of β̄ in which (17) has a unique solution.

If G1 is the set of group supporting the unique solution of (17), we denote G2
∆
= G \G1 and

J2
∆
= [1, p ]\J1. For convenience, for any group of covariates g we note Xg the n× |g | design

matrix restricted to the predictors in g, and for any two groups g,g′ we note Σgg′ = X>g Xg′ . We can
then provide a condition under which minimizing the least-square error penalized by ΩG

overlap (β )
leads to an estimator with the correct support. Consider the two conditions:

∀g ∈ G2, ‖ΣgJ1Σ
−1
J1J1

αJ1(β̄ )‖ ≤ 1 (C1)

∀g ∈ G2, ‖ΣgJ1Σ
−1
J1J1

αJ1(β̄ )‖< 1 (C2)

Lemma 5. With assumptions (H1-2), for λn → 0 and λnn1/2 → ∞, conditions (C1) and (C2)
are respectively necessary and sufficient for the solution of (21) to estimate consistently the
group-support of β̄ .

These conditions are very similar to the ones obtained in [3] for the usual group lasso. The βg
‖βg‖

factor of the usual group lasso is replaced here by αJ1(β̄ ). These expressions are the subgradients
of the corresponding norms, which makes this result a direct generalization of the group-lasso
one. In particular, in the case where the groups in G form a partition, (17) boils down to the `1/`2

norm, and αg(β̄ ) =
βg
‖βg‖ . Another difference arises from the ΣgJ1 factor. The equivalent factor in

the case of non-overlapping groups only depends on the correlation among the unique covariates.
In the context of an orthogonal design for example, it only has zero elements by definition. In
the case of overlapping groups, the term also depends on the level of intersection between g and
J1. If a group is almost included in J1, the term can therefore become very close to 1 even in the
case of an orthogonal design. Note that this is not really a weakness of the algorithm, but more an
illustration of the fact that identifying the correct group support in the case of overlapping group
can be a much more difficult task than in the case of a partition.

4.4. Algorithm

We now present a practical way to optimize (16). We consider loss functions L which only depend
on β through dot products with the data points Xi, i.e. L(β ) = L̃(Xβ ), which is the case of many
loss functions of interest.

In this case, a simple way to optimize (16) is to explicitly duplicate the variables in the design
matrix. Indeed, eliminating β in (16) by plugging the first constraint β = ∑g vg into L̃(Xβ ), we
can write : 

min
β ,v

L̃(Xβ )+λ ∑
g
‖vg‖

β = ∑g vg

supp(vg)⊆ g.

= min
ṽ

L̃(X̃ ṽ)+λ ∑
g
‖ṽg‖, (22)
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where X̃∈Rn×∑|g| is defined by the concatenation of copies of the design matrix restricted each
to a certain group g, i.e., X̃ = [Xg1 ,Xg2 , ...,Xg|G | ], with G = {g1, . . . ,g|G |}, and where we denote
ṽg = (vgi)i∈g and ṽ = (ṽ>g1

, . . . , ṽ>g|G |)
>.

On our simple example with 3 overlapping groups used in Figures 4 and 5, this gives :

Xβ = X .

ṽ1

0

+X .

0

ṽ2

0

+X .

0

ṽ3

= (Xg1 ,Xg2 ,Xg3) .

ṽ1

ṽ2

ṽ3

∆
= X̃ ṽ.

That way the vector ṽ ∈ R∑|g| can be directly estimated from X̃ with a classical group lasso for
non-overlapping groups : the right hand side of (22) is the same as (5) with penalty (14), i.e., a
classical group-lasso, performed on new variables.

For the experiments presented in the next section, we implemented the approach of [34] to esti-
mate the group lasso in the expanded space, combined with the active set strategy of [44]. This ac-
tive set strategy allows experiments to run quite fast even when a large number of groups/covariates
are present, as long as only the beginning of the regularization path (for large values of λ ) is
needed. This is the case in our experiments, as the perfomances degrade quickly when including
too many covariates, and the 5 5-fold double cross-validations of Section 4.5 run in a couple of
hours on a laptop.

The code is freely available at
http://cbio.ensmp.fr/~ljacob/documents/overlasso-package.tgz.

4.5. Result

To illustrate the effect of using the gene set information through ΩG
overlap (.) penalization, we

compare the performances of a classifier learned using ΩG
overlap (.) to the performances of a

classifier learned using `1 penalization. The latter is a natural alternative to ΩG
overlap (.) which was

used as a comparison in [22] and corresponds to the simpler prior that few genes are involved in
the true prediction function (as opposed to few gene sets).

Like in [22], we use the gene expression dataset compiled by [53] and the canonical gene sets
or pathways from MSigDB [48] containing 639 groups of genes, 637 of which involve genes
from our study. The gene expression dataset consists of gene expression data for 8,141 genes in
295 breast cancer tumors (78 metastatic and 217 non-metastatic). We restrict the analysis to the
3510 genes which are in at least one pathway.

[22] obtained interesting results from a gene set selection point of view, namely they managed
to build classifiers as accurate as the one learned with the `1 penalty, but involving much fewer
pathways. This was a positive result from an interpretability perspective, but somehow disap-
pointing because it did not lead to a substantial increase in performances, suggesting that the
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TABLE 1. Balanced classification error for the `1 and ΩG
overlap (.) on average over 5 folds, for 5 different folding

choices.

METHOD ΩG
OVERLAP (.) `1

ERROR FOLDING 1 0.29±0.05 0.36±0.04
ERROR FOLDING 2 0.30±0.08 0.42±0.04
ERROR FOLDING 3 0.34±0.14 0.37±0.10
ERROR FOLDING 4 0.31±0.11 0.37±0.08
ERROR FOLDING 5 0.35±0.05 0.37±0.05

enforced prior was not a good one. In the experiment we present here, we didn’t take into account
the gene sets of more than 50 genes in the penalty. Intuitively, including very large gene sets in
the regularization defeats the purpose of parsimony-based regularization : adding a large group
to the model is cheap (in terms of `0 cost, it would be the same cost as adding a small group)
and gives more degrees of freedom to fit the model and decrease the empirical risk. In practice,
one can observe that very large groups of genes always enter the model at the beginning of the
regularization path.

We learn a linear classifier by solving problem (5) for a balanced logistic loss function and
either an `1 or ΩG

overlap (.) penalty. The other difference with the experiments of [22] is that we
estimate error on 5 fold cross validation and since we observed a high variance of the performance
across the choice of the 5 folds, we present the results for 5 folding choices. As in [22], λ is
selected by internal cross validation on each training set, i.e., for each train/test pair, we do another
cross-validation within the training set along a grid of λ parameters, pick the parameter yielding
the best internal cross-validation performances, train a new model using this parameter and the
whole training set and evaluate its error on the test set. The chosen criterion is the balanced error,
i.e., the mean of sensitivity and specificity.

The results are presented in Table 1, and show a uniform improvement of the classification
performances of the ΩG

overlap (.) regularized method against the `1 one. This suggests that the
prior of gene set parsimony enforced by ΩG

overlap (.) is relevant and can lead to performances
improvements under the condition that the gene set family is cleaned by removing very large
pathways.

5. Discussion

We have presented an introduction to regularized empirical risk minimization : why it is expected
to improve performances in practical cases of learning in high dimension, and several of its
applications in computational biology along with existing penalties designed for these cases.

We have also presented more in details one particular penalty designed to restrict the function
space to those whose support is formed by a union of pre-defined overlapping groups of covariates,
along with its application to outcome prediction from gene expression data. Interestingly, this
particular problem lead to the design of a new non-Hilbertian norm rather than the use or
combination of existing ones.

The main motivation behind the design of these penalties is generally to reduce the complexity
of the function space in which empirical risk minimization is performed, thereby reducing
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the variance without increasing too much the bias if the true function is expected to be well
approximated by a function lying in the simpler function space, i.e., having low penalty. To obtain
this effect, it is necessary that the prior which is used to design the penalty is accurate enough. A
first condition for this is of course that the intuition behind the prior is correct e.g., there exists a
good approximating function which is smooth on the gene network, or piecewise constant along
the genome. But it is also necessary that the side information used to build the prior, like the
position of the genes along the genome, the wiring of the gene network or the grouping of genes
in pathways is accurate enough, and relevant in terms of the prior. This may explain why the prior
enforced in (6) didn’t lead to improvements in classification accuracy : the annotation of gene
networks is known to be incomplete and inaccurate, and a good linear classifier may be smooth
on some gene networks (say, an hypothetical complete and accurate regulation network) but not
on metabolic networks. Similarly, the results presented in Section 4.5 suggest that using the raw,
unfiltered set of gene pathways from MSigDB doesn’t lead to a good penalty (17), while the same
penalty yields substantial improvements when using only gene sets of reasonable size. Finally in
some cases, working with linear functions may be a bad choice : if no linear function is a good
approximation of the function of lowest population risk, i.e. if the bias incurred by restricting
oneself to linear function is large enough, playing with the variance term by designing penalties
may not change much the performances.

A second motivation can be the effect on the properties on the estimated function. In some cases,
this effect can actually be the main goal, for example when the objective is to detect breakpoints in
several copy number profiles using a group fused lasso penalty with a regression loss [58] : in this
case, the goal is not really to minimize the population risk, i.e. to find good approximation of the
copy number profiles in terms of `2 error, but to detects regions of the genome which are amplified
or deleted. The used of the fused norm is showed to lead to higher accuracy in breakpoint detection
on synthetic data. More generally, one may be interested in both the learned function and its
characteristics induced by the penalty. Typically, enforcing some regularity constraints makes
the function more interpretable, e.g. in the context of a known network or in terms of genes or
biological functions involved (not necessarily as a cause though). The Laplacian norm used by [41]
for example allowed to obtain a linear classifier whose weights were coherent with known biology
of the studied phenomenon, such as upregulation of the oxidative phosphorylation pathway as
well as DNA and RNA replication and repair. Clinicians are generally more comfortable with
interpretable gene signatures than with black box classification functions, and functions involving
few covariates (gene expressions or protein levels) are easier to use in practical conditions, e.g.
using dedicated chips measuring the expression level of a few genes [35]. Moreover, obtaining
sparse classifiers can also be a way to detect important genes or gene sets as potential drug targets.
This is classically done by statistical hypothesis testing, namely two-sample test at the gene level,
and can be extended at the pathway level [21, 31]. Sparse learning approaches are expected to
yield less redundant results in the sense that only one among several correlated genes or gene sets
should be selected, which can be a good or a bad thing depending if the dropped entities actually
correspond to non-causal elements, or if on the contrary important causal elements are dropped
because correlated non-causal ones are selected.

A last remark is that controlling the bias-variance tradeoff on very noisy data with few samples
in high dimension may require more extreme biases than just working in particular balls of the
space of linear functions, and some alternative approaches consider much simpler classification
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functions like ratios of two gene expressions, yielding good and very stable performances [13].
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Appendix A: Proof of Lemma 1

Positive homogeneity and positive definiteness hold trivially. We show the triangular inequality.
Consider β ,β ′ ∈ Rp; let (vg)g∈G and (v′g)g∈G be respectively optimal decompositions of β and
β ′ so that ΩG

overlap (β ) = ∑g ‖vg‖ and ΩG
overlap (β

′) = ∑g ‖v′g‖. Since (vg + v′g)g∈G is a (a priori
non-optimal) decomposition of β +β ′, we clearly have :

Ω
G
overlap

(
β +β

′)≤ ∑
g∈G
‖vg + v′g‖ ≤∑

g
(‖vg‖+‖v′g‖) = Ω

G
overlap (β )+Ω

G
overlap

(
β
′) .
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Appendix B: Proof of Lemma 2

Let us introduce slack variables t = (tg)g∈G ∈ RG and rewrite the optimization problem (17) as
follows:

min
t∈RG ,v∈VG

∑
g∈G

tg s.t. ∑
g∈G

vg = w and ∀g ∈ G ,‖vg‖ ≤ tg .

We can form a Lagrangian [7] for this problem with the dual variables α ∈ Rp for the constraint
∑g∈G vg = w, and (δ ,γ) ∈ VG ×RG with ‖δg‖ ≤ γg for the conic constraints ‖vg‖ ≤ tg, and get:

L = ∑
g∈G

tg +α
>
(

w− ∑
g∈G

vg

)
− ∑

g∈G

(
δ
>
g vg + γgtg

)
.

The minimum of L with respect to the primal variables t and v is non trivial only if γg = 1 and
αg =−δg for any g ∈ G . Therefore, we get the dual function:

min
t,v

L =

{
α>w if γg = 1 and αg =−δg for all g ∈ G ,

−∞ otherwise.

By strong duality (since, e.g., Slater’s condition is fulfilled), the optimal value ΩG
overlap (w) of

the primal is equal to the maximum of the dual problem. Maximizing this dual function over
γg = 1, ‖δg‖ ≤ γg and αg =−δg is equivalent to maximizing α>w over the vectors α ∈ Rp such
that ‖αg‖ ≤ 1 for all g ∈ G , which proves (18). To prove the second point, we note that the
variables (t,v,α,δ ,γ) are primal/dual optimal for this convex optimization problem if and only if
the Karush-Kuhn-Tucker (KKT) conditions are satisfied, i.e., if and only if, for all g ∈ G :

supp(vg) = g,‖vg‖ ≤ tg and w = ∑g∈G vg

supp(δg) = g,‖δg‖ ≤ γg

αg =−δg and γg = 1
δ>g vg + γgtg = 0

Eliminating δ and γ with the stationarity conditions, all conditions are fulfilled if and only if
w = ∑g∈G vg and for all g ∈ G , (i) either vg = 0 and ‖αg‖ ≤ 1, (ii) or vg 6= 0 and αg = vg/‖vg‖. If
a pair (α,v) fulfills these conditions, then we obtain a primal/dual solution by taking tg = ‖vg‖,
δg =−αg and γg = 1. This proves points 2 and 3.

Appendix C: Proof of Lemma 3

Consider any solution v = (vg)g∈G of (17). Let α be any optimal solution of (18). Since (v,α)
form a primal/dual pair, they must satisfy the KKT conditions. In particular, for all g such that
vg 6= 0, αg is defined uniquely by αg =

vg
‖vg‖ . Since this is true for all solutions v ∈ V(w), αJ1 is

uniquely defined.

Appendix D: Proof of Corollary 1

If vg 6= 0 and v′g 6= 0, let α be solution of (18), by the previous lemma αg is unique and αg =
vg
‖vg‖ =

v′g
‖v′g‖

.
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Appendix E: Proof of Lemma 5 (consistency)

In order to prove the consistency result on ΩG
overlap (.), we will need the following lemma.

Lemma 6. Assume that for all β ′ in a small neighborhood U of β , β ′ admits a unique decompo-
sition (v′g)g∈G of minimal norm supported by the same set of groups G1 as β . Writing ηg = ‖vg‖,
there exists a neighborhood U0 of βJ1 in R|J1| and a neighborhood U ′0 of (αJ1 ,ηG1) in R|J1|×|G1|

such that there exists a unique continuous function

φ : βJ1 7→ (αJ1(β ),ηG1(β ))

from U0 to U ′0.

Proof. The dual problem (18) is equivalent to the saddle-point problem

min
α

max
η

L′(α,η ,β ) s.t. ηg ∈ R+,

with Lagrangian
L′(α,η ,β ) =−α

>
β + ∑

g∈G

ηg

2
(‖αg‖2−1)

and KKT conditions:
∀g ∈ G ,‖αg‖2 ≤ 1, (primal feas.)
∀g ∈ G ,ηg ≥ 0, (dual feas.)
∀i ∈ [1, p],−βi +

(
∑g3i ηg

)
αi = 0, (stationarity)

∀g ∈ G ,ηg(‖αg‖2−1) = 0, (comp.slack.)

By stationarity, (vg)g∈G defined by vg = ηgαg is a decomposition of β ; it is optimal because it
satisfies property 3 of lemma 2; finally we have ηg = ‖vg‖ consistently with our definition of
ηg(β ). For any β with the same set of supporting groups G1, we have ‖αg(β )‖= 1 for all g ∈ G1
and ηg = 0 for all g ∈ G \G1. For all βJ1 with group-support no smaller than G1, the corresponding
pair (αJ1(β ),ηG1(β )) is therefore a solution of the set of non-linear equations:{

∀i ∈ J1,−βi +
(
∑g3i ηg

)
αi = 0

∀g ∈ G1,‖αg‖2−1 = 0
(23)

In other words consider the function

F : R|J1|×|J1|×|G1| → R|J1|×|G1|

(βJ1 ,αJ1 ,ηG1) 7→
((
−βi +

[
∑g3i ηg

]
αi
)

i∈J1

(‖αg‖2−1)g∈G1

)
,

then (23) is equivalent to F(βJ1 ,αJ1 ,ηG1) = 0. We use the implicit function theorem for non-
differentiable function of [27]. The theorem states that for a continuous function

F : R|J1|×R|J1|×|G1|→ R|J1|×|G1|,
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such that F(β0,(α0,η0)) = 0, if there exist open neighborhoods U ⊂ R|J1| and U ′ ⊂ R|J1|×|G1| of
β0 and (α0,η0) respectively, such that, for all β ∈U , F(β , ·) : U ′→ R|J1|×|G1| is locally one-to-one
then there exist open neighborhoods U0 ⊂ R|J1| and U ′0 ⊂ R|J1|×|G1| of β0 and (α0,η0), such that,
for all β ∈U0, the equation F(β ,(α,η)) = 0 has a unique solution (α,η) = φ(β ) ∈U ′0, where
φ is a continuous function from U0 into U ′0. By continuity of the addition, the product and the
Euclidean norm, the above defined F is continuous. For each β fixed, F(β , ·) is bijective, because
of the assumption of the existence of a unique decomposition in a neighborhood of β . Applying
the theorem of [27] then yields the desired result.

We follow the line of proof of [3] but consider a fixed design for simplicity of notations. Let
us first consider the subproblem of estimating a vector only on the support of β̄ by using only
the groups in J1 in the penalty, i.e., consider β1 ∈ RJ1 a solution of minβJ1∈R

J1
1
2n ‖Y −XJ1βJ1 ‖

2 +

λnΩ
G1
overlap (βJ1) . By standard arguments, we can prove that β1 converges in Euclidean norm to β̄

restricted to J1 as n tends to infinity [26]. In the rest of the proof we show how to construct a vector
β ∈Rp from β1 which under condition (C2) is with high probability a solution to (21). By adding
null components to β1, we obtain a vector β ∈Rp whose support is also J1, and u= β− β̄ therefore
satisfies supp(u)⊂ J1. A direct computation of the gradient of the loss L(β ) = ‖Y −Xβ‖2 gives
∇L(β ) = Σu−B , where B = 1

n Xε . From this we deduce that u = Σ
−1
J1J1

(∇J1L(β )+BJ1), and since
∇J1L(β ) =−λnαJ1(β ) we have :

∇J2L(β ) = ΣJ2J1Σ
−1
J1J1

(BJ1−λnαJ1(β ))−BJ2 .

To show that β is a feasible solution to (21) it is enough to show that ∀g ∈ G2, ‖∇gL(β )‖ ≤ λn.
Moreover, since the noise has bounded variance,

ΣJ2J1Σ
−1
J1J1

BJ1−BJ2 = X>J2

[
1
n

XJ1Σ
−1
J1J1

X>J1
− I
]

ε

is
√

n-consistent and

1
λn
‖∇gL(β )‖ ≤ ‖ΣgJ1Σ

−1
J1J1

αJ1(β )‖+Op(λ
−1
n n−1/2).

By Lemma 6, we have that αJ1 is a continuous function of β in a neighborhood of β̄ so that

βJ1

P→ β̄J1 implies αJ1(β )
P→ αJ1(β̄ ). Since we chose λn such that λ−1

n n−1/2→ 0, we have

1
λn
‖∇gL(β )‖ ≤ ‖ΣgJ1Σ

−1
J1J1

αJ1(β̄ )‖+op(1).

Hence the result for the sufficient condition. Symmetrically, for the necessary condition we have

1
λn
‖∇gL(β )‖ ≥ ‖ΣgJ1Σ

−1
J1J1

αJ1(β̄ )‖−op(1).
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