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Abstract: Wildfires due to natural origin or arson come along with important economic and ecological risks. Typically,
the structure of relative risk of fire events is highly complex, shows strong variation over space and time and is
driven by numerous covariates like land use, climate and weather. We here adopt a point process approach to study
space-time large-scale variations and local interaction behavior in a data set reporting geolocalized fire events and burnt
surfaces on a daily basis in the Bouches-du-Rhone county in Southern France, marked by a Mediterranean climate
and high touristic activity. After a review of the existing literature, we explore the influence of land use and climatic
covariates like temperature and precipitation on the probability of event occurrence. Statistical challenges arise from
the multi-scale structure of data defined over various supports like fine grids for land use covariates, coarse grids for
fire position leading to positional uncertainty, and meteorogical series observed at irregularly spaced measurement sites.
We fit a log-Gaussian Cox process including covariate information and nonparametric spatial and temporal effects to
our data through the technique of Integrated Nested Laplace Approximation, and we analyze the residual interaction
structure through the space-time K-function adapted to the setting of second-order intensity reweighted stationarity.
Specifically, we also study inhibitive effects that arise locally in time and space after fire events with relatively large
burnt surfaces.

Résumé : Les feux de forét, qu’ils soient d’origine naturelle ou malveillante, représentent d’importants risques
économiques et écologiques. La structure relative aux éclosions de feux est complexe, avec de fortes variations
spatiales et temporelles, souvent dirigées par de nombreuses covariables telles que 1’occupation des sols, le climat et la
météo. Dans cet article, nous nous intéressons a I’éclosion de feux recensés quotidiennement depuis 1981 dans les
Bouches-du-Rhone, région trés touristique marquée par un climat méditérannéen, et pour lesquels nous connaissons la
surface briilée associée. Nous adoptons une approche basée sur les processus ponctuels afin d’étudier les variations
spatio-temporelles a grande échelle et les interactions a petite échelle. Apres un apercu sur la litterature existante, nous
explorons I’influence des covariables climatiques (comme la température, les précipitations) et de 1I’occupation des
sols sur la probabilité d’occurrence d’un feu. Les questions statistiques sont soulevées par la structure multi-échelles
des données, qui sont de plus définies sur des supports variés, comme des grilles tres fines pour 1’occupation des sols,
des grilles grossieres pour la localisation des feux qui engendrent de I’incertitude de positionnement, et des séries
météorologiques observées en des sites irrégulierement répartis. Nous ajustons a ces données un modele de Cox log-
gaussien incluant I’information des covariables et des effets spatio-temporels via la méthode INLA (Integrated Nested
Laplace Approximation) et nous analysons la structure d’interaction résiduelle via la fonction K spatio-temporelle
inhomogene. Nous mettons en évidence et modélisons en particulier les effets inhibiteurs localement présents dans
I’espace et dans le temps induits par de trés grandes surfaces briilées.
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Space-time analysis of wildfires 87
1. Introduction

Mediterranean climate is characterized by hot, dry summers and cool, wet winters. Such a climate
associated with vegetation types and human activity makes Mediterranean countries very exposed
to wildfires, which have become the primary cause of forest destruction in this region. Wildfire
prevention begins with understanding the stochastic mechanisms governing the intensity of
occurrences and the severity of fires. The scientific reflection on risk prevention needs to consider
realistic modeling of wildfires and their consequences in order to propose and improve decision
tools that should remain simple and easy to use. Point processes offer a suitable setting to tackle
realistic spatio-temporal modeling of wildfire occurrences and their spatial extent based on climate
and environmental data, allowing us to take into account their complex interaction structures.

Since 1973, the French Government maintains the continuously updated Prométhée database !
of wildfire occurrences in the Mediterranean region to develop statistical tools for spatial and
temporal comparisons and a better knowledge of wildfire causes. Locations and dates of wildfires
are recorded with associated characteristics such as the burnt area. In this paper, we analyze and
model wildfires in Bouches-du-Rhone (Southern France) since 1981. Wildfire occurrence may
depend on the presence and concomitance of several factors: climatic (temperature, humidity,
wind speed), environmental (vegetation types, urbanization, road network) and human activity.
Whilst human activity is the main cause of wildfires, climatic and environmental conditions
are a prior condition to their outbreak and their propagation. Thus, before modeling wildfire
occurrences, it is necessary to better understand the correlations between these phenomena to
allow a good estimation and prediction of risks.

The analysis of point patterns allows us to highlight the factors driving trends and interactions
in the spatial distribution and the temporal structure of points and determine the observation
scales of these relationships. The methods for analyzing and modeling point processes have been
used in the context of wildfires (Genton et al., 2006; Serra et al., 2014; Turner, 2009; Xu and
Schoenberg, 2011), but the spatial and temporal data have been treated separately or strongly
aggregated (per year, per spatial area) which is unsatisfactory when one wants to understand
and model the stochastic mechanisms of spatio-temporal interaction. However, some statistical
methods exist for studying the spatio-temporal structures of such data (Bonneu, 2007; Gabriel
and Diggle, 2009); they yield a mechanistic or empirical modeling approach Gabriel (2016).

The spatio-temporal structure of the distribution of wildfires is very complex since, in practice,
the dependence cannot be separated in space and time. The spatial heterogeneity of wildfires
depends on the spatial distribution of current land use like vegetation, urban zones or wetlands
(Juan et al., 2012; Mgller and Diaz-Avalos, 2010; Pereira et al., 2013; Serra et al., 2014). However,
as it will be shown in Section 3, it also depends on the past, because changes in vegetation due to
fires affect the probability of wildfire occurrence during a regeneration period. In the literature,
the hypothesis of separability in space and time is often assumed without any test because it
allows decomposing the problem into two modeling steps, one in space and one in time, or to
consider separable covariance matrices. This simplifying assumption led thus to progress on other
scientific barriers.

We aim to detect and model multi-scale spatio-temporal structures in wildfire occurrences.
Log-Gaussian Cox processes, along with the INLA method for inference and prediction, are

I http://www.promethee.com/
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FIGURE 1. Left: Map of forest fire locations recorded in the Bouches-du-Rhone department in Southern France. Right:
Mean yearly number of forest fires with burnt surface superior to 1ha with respect to months.

particularly useful to model clustered events (see, e.g., Pereira et al., 2013 and Serra et al., 2014
in the context of wildfires). In this paper we show that they can also deal with more complex
structures, allowing further temporal inhibition at small spatial scales and thus providing more
accurate predictions.

The paper is structured as follows. Section 2 introduces the data and analyzes the influence of
covariates through exploratory statistics and plots. Multi-scale spatio-temporal dependence and
interaction are tested and described in Section 3. The log-Gaussian Cox process models and the
related predictions are presented in Section 4.

2. Wildfire-related data for Southern France
2.1. The Prométhée dataset

We consider a record of fire starting points for the years 1981 to 2015 for the Bouches-du-Rhone
department in Southern France whose surface area amounts to around 5100km?. The spatial
resolution is given by the DFCI coordinates spanning a grid in the Lambert 93 projection with
quadratic grid cells covering approximately 4km?> each. The point coordinates of fires correspond
to the center of the grid cell where the fire started. The value of burnt surface is also available for
each event. The left display of Figure 1 shows a map of the Bouches-du-Rhone area, at the border
of the Mediterranean sea, with black dots for the positions of DFCI cell centers where wildfires
having burnt more than 1ha of surface have taken place. The right display of Figure 1 reports
yearly means of the number of fire occurrences with respect to the twelve months. Clearly, the
event intensity peaks during the hot summer season, but we also observe a high value for January,
perhaps owing to accidental fires from New Year’s Eve festivities and fireworks.

For weather data, we use freely available observation series from the Global Historical Climate
Network (GHCN) hosted by the National Climatic Data Center 2 (NCDC). We here work with

2

www.ncdc.noaa.gov/cdo-web/
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daily observation series of average temperatures, cumulated precipitation and maximum sustained
wind speed for one measurement station (Marignane Airport, close to Marseille) in the Bouches-
du-Rhone department; the observation record covers the full Prométhée period with only relatively
few missing data. Since spatial interpolation of climate data is a very complex task in itself,
we will not take into account the spatial variation of climate variables, but rather consider the
Marignane data as a good proxy for the whole study region Bouches-du-Rhone, which is relatively
small.

2.2. Detecting the influence of dynamic and static covariates

The Bouches-du-Rhoéne region and Southern France in general welcome large numbers of tourists
and local holiday-makers especially during the hot summer season. Therefore, it would be
interesting to take their impact on forest fire risk into consideration. For lack of related data in our
analysis, we cannot directly study this effect. Nevertheless, climatic covariates can be considered
as a very rough proxy for touristic activity, which avoids the difficult tasks of quantifying tourist
activity of and disentangling the highly correlated climate and touristic effects. In unreported
preliminary work, we have further investigated the effect of weekdays (e.g., week-end vs. other
days of the week), but we could not detect a significant effect. An isolated peak in the event counts
also appears around New Year’s Eve, which we conjecture to be attributable to accidents with
fireworks.

Land use

We can expect land use to be highly informative on the risk of wildfires. The presence of
vegetation and its type (conifer forests, deciduous forests, heathland, ...) is crucial, and we can
trivially exclude fire occurrence over expanses of water. The effects of infrastructure are more
difficult to capture (road networks, tourism, urbanization, ...). Moreover, almost one-dimensional
land elements like roads or rivers have little surface and would require a spatial resolution that is
computationally prohibitive, or they have to be transformed into more appropriate, heuristically
motivated representations like local densities or distances to the closest element.

The influence of the land use covariate information available in our data is not straightforward
to estimate since it requires a spatially explicit model with high resolution in order to disentangle
the effect of land use and other unknown spatially varying effects; moreover, the resolution of
fire positions is considerably lower in our data set. Land use is a dynamic process evolving over
time, but our data are static and report the current state; they therefore do not take into account
changes that may have taken place between the start and the end of the study period. Concerning
the estimation of regression coefficients to describe the influence of land use covariates, we refer
to the modeling Section 4 where all effects are jointly estimated in a log-Gaussian Cox process
model.

Weather and climate

Weather conditions at the day under consideration and during the period preceding this day are
known to have a strong impact on the risk of wildfire occurrences. Indeed, it is natural to assume
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that heat waves without significant precipitation characterize high-risk periods. The effect of
wind may be less obvious. In general, winds may fan the flames and can lead to a rapid spread
of fire and sparks across large areas. However, during days with the strong, so-called Mistral
winds blowing through the Bouches-du-Rhone area touristic outdoor activities may be rather
low; therefore, certain risks are reduced during such days, and the effect of wind could be highly
nonlinear and difficult to detect. Notice that, in practice, the effect of high-risk weather may be
further mitigated by administrative measures, as for instance the limitation of public access to
natural areas with vegetation.

We start with an exploratory analysis. The scatterplot in Figure 2 illustrates daily tempera-
ture/precipitation data with additional information on wildfire occurrence in the Bouches-du-
Rhone, and the associated wind speeds. Since durations of high-temperature periods and the
cumulation of precipitation over several days are more important than isolated instantaneous
measures of such variables, we here propose to consider the average temperature and the cumu-
lated precipitation over the 7 or 28 preceding days including the day of study. We expect that
such "aggregated" variables will lead to more significant effects. We see that most fire events are
associated to rather high temperatures and to rather low cumulated precipitation amounts for both
aggregation periods, with mostly O values in the case of 7 day aggregation. A clear influence of
wind speed is difficult to discern. To investigate further if climatic variables are different from
seasonal mean behavior when fires occur, we look at Figure 3. It shows monthly boxplots for the
above-mentioned 7 day aggregated weather variables by distinguishing days with fire from the
totality of days in the study period. Average temperatures preceding fire events (Figure 3, left
display) may be slightly higher during summer months, but the effect of temperature over the
whole year is mixed. For precipitation (Figure 3, middle display) we observe a general tendency
towards lower values before fires occur. Finally, we cannot make out noteworthy effects of wind
speed (Figure 3, right display) on the wildfire risk. We now turn to Figure 4, which reports spline
regression curves that explain the effect of the different segments of values of the precedingly
defined weather covariates on the presence of daily fire occurrences in the Bouches-du-Rhone.
Bernoulli regression was conducted through R’s glm-function. Effects are clearly nonlinear, and
the results also confirm that the co-occurrence patterns of temperature and precipitation have a
strong impact on fire risk.

Finally, we try to shed some more light on the influence of wind speeds through the exploratory
diagrams in Figure 5. The left plot shows the counts of daily fire events against observed wind
speeds, while the right one opposes burnt surfaces of fire events to the wind speed observed
at the event date. Again, drawing conclusions from a visual inspection of these plots is not
straightforward. In particular, we cannot detect any monotonous effect of wind speed on the burnt
surfaces. There may even be a contrary effect since very large fires never co-occur with very large
wind speeds in our data.

3. Interaction of wildfire occurrences over space and time

Our data set is of the form {(s;,7),i = 1,...,n =2831}, where (s;,#;) corresponds to a wildfire
spatially indexed by a DFCI cell center s; = (x;,y;) and year f;. These data can be viewed
as a realization of a spatio-temporal process observed in a bounded spatial window W (which
corresponds to the Bouches-du-Rhone department) and a finite temporal window 7 = [1981,2015].
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FIGURE 2. Climate covariates and fire events. Climate covariates (left: average 7 day temperature preceding the
reported day, base-10 logarithm of 1+cumulated precipitation; right: with average 28 day values) are shown for all
days of the study period. Days with fire events are marked red, and the size of the x symbol is proportional to the wind
speed observed at the event date.
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FIGURE 3. Boxplots of weather data by month. Red boxplots represent the subsample of days with observed fire events.
Left: 7 day average temperature preceding the reported day. Middle: 7 day cumulated precipitation preceding the
reported day. Right: Wind speed for the reported day.
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climate covariates. Regression curves are based on linear splines with interior knot locations indicated by dashed
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predicted from 7 day average temperatures. Middle: Occurrence probabilities predicted from 7 day cumulated
precipitation. Right: Occurrence probabilities predicted from average temperatures and cumulated precipitation
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FIGURE 5. Fire events in the Bouches-du-Rhone with respect to wind speeds. Left: Daily event count plotted against
observed wind speeds. Right: Burnt surface against observed wind speed.
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We refer to the recent review of Gonzalez-Monsalve et al. (2016) which describes statistical models
and methods that can be used to analyze the spatio-temporal behaviour of point patterns. Spatio-
temporal patterns of wildfires are essentially characterized through two components: a trend and
some interaction between events (see e.g. Mgller and Diaz-Avalos, 2010; Juan et al., 2012). As it
will be described in Section 4, the trend incorporates covariate information. In this section, we
analyze the interaction of wildfires over space and time.

3.1. Temporal inhibition at close spatial distances

An important aspect of modeling is the study of the geometric small-scale patterns that can arise at
close distances in space and time around a given fire event. Physically, we expect that vegetation
and other combustible material has been burnt throughout the surface covered by a wildfire and
will progressively regenerate afterwards. Therefore, it is natural to assume that no wildfires can
take place over the same surface immediately after an event, and ecological knowledge about
regeneration cycles suggests that this inhibitive pattern between neighboring events can span
several years. To provide empirical evidence of this claim, we here propose a simple and robust
measure through the normalized empirical intensity ratio index I, for years t = 1981,1982,...
defined as the ratio of two counts: (i) number of events observed in T¢o/iow = [t + 1,7+ At] that are
spatially close to wildfires observed in Ty.s = [t —2,¢] and (ii) number of events observed outside
the period Tojiow U Tref = [t — 2,1+ Ar] that are spatially close to wildfires observed in 7,, 7. In
addition, we normalize these counts with the respective global intensities for the periods T r
and (Tfot1ow U Tre f)c. Therefore, index values below 1 indicate temporal inhibition between fire
events at close distances, while values above 1 suggest temporal clustering. More precisely, the
following notion of proximity is used in the calculation of the index. For wildfires (s;,a;) observed
around s; with surface a; taking place during 7., we consider the union of discs centered at
s; with area aa;, where o > 0 is a scaling parameter, which we try to tune for minimizing the
positional uncertainty. Ideally, we would like to work with the number of follow-up events taking
place on the precise position of burnt surfaces, but due to the lack of precise locations for fire
sites and burnt surfaces in our data this is not possible. Instead, after having checked several
values for « in preliminary analyses, we here choose o = 0.75% and consider only relatively large
conditioning events from T}, s. Discs are centered at the grid cell centers of the DFCI coordinates
of the events under consideration. Figure 6 shows indexes calculated from the full data in the
Prométhée data base for pivotal years t = 1981 to 2012 and various minimum surface parameters
for events entering into the calculation. The results indicate that it is difficult to detect inhibitive
patterns when keeping relatively small events exceeding 10ha (Figure 6, left display) owing to
the noisy positional data, but inhibition becomes more clear when using conditioning events in
T,.y above 50ha (middle display) or above 100ha (right display) where many follow-up periods
T¢o110w contain no event at all spatially close to the ones in T,.¢. Although it would be rather
complicated to calculate suitable confidence intervals for these index values, we still underline
that the event counts for the various indicator sets are sufficiently high to draw reliable conclusions
on the presence of temporal inhibition from Figure 6. We will thus consider temporal inhibition at
close distances as a fact. A good explicative and predictive generative model should therefore
integrate a component that allows quantifying its extent. Moreover, the space-time exploratory
statistics related to the K-function reported in the following section may reveal further details
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FIGURE 6. Normalized empirical intensity ratio index I; for various parameters. Left: Results for events with at least
10ha of burnt surface and a S year follow-up period. Middle: Results for conditioning events with at least 50ha of burnt
surface and other events with 20ha minimum surface, and 3 year follow-up period. Right: Results for conditioning
events with at least 100ha of burnt surface and other events with 25ha minimum surface, and a 3 year follow-up period.

about small-scale and intermediate-scale interaction patterns.

3.2. Spatio-temporal inhomogenous K-function

By making second-order stationarity and isotropy assumptions, one assumes that the intensity
of the process is constant over the spatio-temporal domain and that the second-order moment
intensity reduces to a function of spatial and temporal distances. Whilst widely used in practice,
the assumption of second-order stationarity is not plausible in most of environmental applications
and can lead to the detection of spurious interaction patterns. Gabriel and Diggle (2009) extended
to the spatio-temporal setting the definition of a weaker assumption: the second-order intensity
reweighted stationarity (SOIRS), see Baddeley et al. (2000). For SOIRS and isotropic spatio-
temporal point processes @, Gabriel and Diggle (2009) define the spatio-temporal inhomogenous
K-function as:

1 L8 s <gtei—ty1<m }

K(hxaht) = WE A,(S”l‘l‘)A/(Sj,tj) ’

(S,' ,t,‘)E('I)ﬁA (S.,'J.,')Eq)\ (S,',ti)
where hg,h, > 0, A is a compact, and its related empirical estimator is

1 L psimssi<n s 1oty <n )

Klhh) =Y Y — Asit)A(sjt)

i=1j£i Wij

where w;; is a spatio-temporal edge correction factor, for instance one of those defined in Gabriel
(2014).

As illustrated in Gabriel et al. (2010); Tamayo-Uria et al. (2014), the spatio-temporal inhomo-
geneous K-function can be used to test for spatio-temporal clustering and interaction. Under the
null hypothesis H{ that the pattern is a realization of a Poisson process with intensity A (s,7), we
have K (hs, ;) = 2mh?h,. We can construct confidence envelopes from simulations of the process
with distribution Zois (A(s,t)). Under the null hypothesis, HJ, that the pattern is a realization of
a pair of independent spatial and temporal, second-order intensity reweighted stationary point
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TABLE 1. Summary of intensity models used for estimating the spatio-temporal inhomogeneous K-function.

95

Model
A B C D
Space-time
Space-time separable with
. . . . Kernel
Purely spatial separable with time-replicated .
. smoothing
random walk Gaussian
random field
Spatial intensity
land use covariates v v v
W (s): spatial marginal effects v v
W (s): spatial effects i.i.d in time v
Gaussian kernel v
Temporal intensity
uniform over the years v
climate covariates v v
W (t): temporal marginal effects v
Gaussian kernel v

processes, we have K (hy, hy) o< Ks(hs)Kr (h); i.e., the process is second-order separable (Gabriel
and Diggle, 2009; Mgller and Ghorbani, 2012). We can build confidence envelopes from estimates
calculated from independent permutations of event times, holding their locations fixed Diggle
et al. (1995). For simulations and estimation, we here used the package stpp (Gabriel et al., 2013)
of the R (R Core Team, 2016) software library.

To perform these analyses, we assumed that the intensity is separable in space and time. It
has been estimated by incorporating different spatial and temporal effects as summarized in
Table 1 and described in Section 4. For each of these models we computed the spatio-temporal
inhomogeneous K-function both from the data and from 100 patterns simulated under each of
the null hypotheses H§ and Hé. Figure 7 highlights spatial and temporal distances at which
spatio-temporal clustering (in yellow), interaction (in red), or both (in orange) has been detected.
When modeling the inhomogeneity through a purely spatial intensity reflecting land use covariates
(intensity model A) or by more complex non-parametric estimation of the spatial and temporal
components (model D), we mainly observe that there is spatio-temporal clustering for different
ranges of spatial and temporal distances (as the spatial intensity is simply an average over the
years). Clustering is absent at small spatial distances, and we conjecture that this is at least partly
due to the spatio-temporal inhibition highlighted in the previous section, which also leads to the
existence of spatio-temporal interaction. Models B and C correct these effects. In particular, model
C features a spatial random effect, i.i.d. in time, which can capture the spatial inhomogeneity
separately for each year. It further shows some spatio-temporal interaction at spatial and temporal
distances below 20 km and 8 years respectively. Model B appears to be the one leading to the
weakest spatio-temporal residual structure.
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spatio-temporal clustering (yellow), interaction (red), both (orange), when the intensity is estimated according to
model A (top left), model B (top right), model C (bottom left) and model D (bottom right).
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4. Log-Gaussian Cox process models
4.1. Model building and inference

In the light of the previous analyses, we here propose to construct stochastic models that incorpo-
rate the available covariate information for the sake of predicting wildfire risk intensities. Notice
that the predicted intensities of the models below have already been used in the estimation of the
space-time inhomogeneous K function in the preceding section. We concede that some if not all
of our models will not capture the full extent of the stochasticity in the wildfire event process,
but still provide highly valuable information. The challenging task of constructing and fitting
a model that captures the full complexity of the space-time intensity variations and stochastic
structure is left for future research. We consider models with a stochastic intensity of log-Gaussian
type and a space-year resolution for incorporating covariate information. Models of different
complexity are considered for a Gaussian space-time effect W (s, ), whose spatial component is
always based on the flexible yet computationally convenient Matérn-like spatial Gauss—Markov
random fields arising as approximate solutions to certain stochastic partial differential equations
(see Lindgren et al., 2011; Simpson et al., 2016 for details). The model is specified for years
t € {1981,...,2015} in the following way:

3
A(s,1) = exp | o+ BinnibZinniv(5:1) + Y. Brand.iziana,i(s) + Y, Betim,jZctim,j (1) + W (s,1) | ,
land use j=1
(1)

with covariates z;4,4; related to land use, z iy, ; to climate and z;, to fires in the same DFCI cell
during the 5 years preceding ¢.

We now explain the components in more detail. We have studied the following three structures
for W (s,t):

W(s,t) =W(s) spatial marginal effect,  (2)
W(s,t) =W(s)+W(r) spatial and temporal marginal effects, 3)
W (s,t) =W (s) spatial effects i.i.d. in time for r = 1981,...,2015. 4)

Models (2) and (3) can be considered either as a relatively simple log-Gaussian Cox processes,
or as a Bayesian model for a Poisson process where the prior for the intensity is purely spatial
in (2) and is space-time separable in (3). The marginal temporal effect W (¢) is here chosen as a
first-order random walk with a sum-to-zero constraint. Model (4) incorporates higher stochasticity
into the model through its replicated spatial effects; it is therefore capable to model clustering of
events at the yearly level. To correctly normalize the spatio-temporal intensity for each year of the
full observation period in models (2) and (3), we add the offset term —log(number of observation
years) to log A(s,1).

In models (2) and (3), a purely temporal effect is given through Z;z 1 Betim, jzetim,j(t) +W(t),
while Y11 use Bland. iZiand.i(s) + W (s) is a purely spatial effect. The inhibition effect BnipZinnip (5, 1)
is a novelty in our model compared to the existing literature and breaks the space-time separation
of our model. It artificially integrates a repulsive pattern into the process, which remains well-
defined since we can simulate the process iteratively for each time step by conditioning on the
realization of the preceding time steps.
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For land use, we include the covariate values averaged over each cell when we use a spatial dis-
cretization that is different from the initial very precise spatial resolution of the raw covariate data:
proportions of land occupied by water (water), by forest (forest), specifically by coniferous
forest (conif), specifically by deciduous forests (decid), by paved roads (road), by paths and
dirt roads (path), by buildings (build), or by any kind of vegetation (veget); average values of
altitude (alti) and of the norm of the gradient (grad).

Aggregating climate information to a yearly scale is far from being straightforward and
many approaches could be used to encode interesting information and to obtain significant
variables. To our knowledge, existing literature does not provide in-depth analysis of how exactly
climate data should be aggregated for fire risk prediction in our study region. Therefore, we have
conducted a preliminary descriptive analysis of correlation patterns between various aggregation
approaches over one week to one month, whose results are not reported in detail. Based on this
preliminary analysis of the correlation structure between various candidates of aggregated climatic
covariates, we use three variables z¢jim j(¢), j = 1,...,3,1 =1981,...,2015, in our model. Their
calculation relies on two aggregated daily variables computed for each day of the observation
period, consisting of the mean temperature and the cumulated precipitation amount over the
4 weeks preceding the day under consideration. For each year, zq, (¢) is then given as the
proportion of days where this temperature variable lies above the 1 —28/365.25 quantile and
this precipitation variable falls below the 28/365.25 quantile, with quantiles calculated over
all 35 years. Therefore, z.im,1(¢) indicates the proportion of times that 4-week return levels
are exceeded for extreme hot 4-week temperatures and are underrun for extreme low 4-week
precipitation in year ¢. Next, z.;m 2 (¢) reports the proportion of underruns of the median of 4-week
precipitation during year ¢, and z;, 3(t) the proportion of underruns of the the 0.1-quantile of
4-week precipitation during year ¢. To make these 3 yearly climate covariates better comparable
between years, we divide each by its mean over the whole observation period. For instance, if
Zetim2(2001) = 2, then we had twice as much exceedances of the median of 4-weekly cumulated
precipitation in 2001 compared to the average year.

Finally, we have included a covariate z;,p(s,7) that is related to the proportion of a DFCI cell
affected by fires in the 5 years preceding ¢. A fire in the cell s during t — At with Ar € {1,...,5}
and burnt surface a contributes (6 — Ar) /5 x min(a, cell surface)/(cell surface) to zjuup(s,t) (with
cell surface equals to 4km? for the DFCI cells).

For estimating the posterior means of covariate coefficients and of the spatio-temporal effect
W (s,t), we use the framework of Integrated Nested Laplace Approximation (Rue et al., 2009),
implemented in the INLA package of R (Lindgren and Rue, 2015). Appropriate, only weakly
informative priors were chosen for the estimated effects and hyperparameters like the effective
range and the variance of the spatial Gaussian fields. The triangulation of space used to discretize
the Gaussian random fields for obtaining a Gauss—Markov approximation according to the
approach of Lindgren et al. (2011) is shown in Figure 8. The dense triangulation nodes inside
the Bouches-du-Rhone department (and stretching slightly beyond) correspond to the DFCI
cell centers. Notice that we here have to extend the triangulation to a larger domain to ensure
approximate second-order stationarity of the Gaussian fields within the study region. To keep
computing costs moderate, a less dense triangulation has been chosen for the nodes relatively
far away from the study region; see Lindgren et al. (2011) and Lindgren and Rue (2015) for
more technical details on these calculations and tuning steps. Overall, this mesh has 3054 nodes,
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FIGURE 8. Triangulation used for the discretization of the spatial effect W (s). Red curve: boundary of the study
region (Bouches-du-Rhone department). Inner blue curve: boundary of densely triangulated region. Outer blue curve:
boundary of the extended domain.

meaning that W (s) and each of the replicates W; (s) forr = 1981, 1982, ..., are represented through
3054 Gaussian variables located at the nodes of the mesh. Owing to the high computational
complexity when estimating hyperparameters in models with a complicated latent Gaussian
structure like model (4), we fix the i.i.d. Gaussian fields’ effective range to 15km and the variance
to 1.

4.2. Estimation results

Computing times on a standalone computer with 2 cores available for R-INLA were approximately
15 minutes for models (2) and (3), and 60 minutes for model (4). To start, we look at the spatial
prediction of yearly fire event intensities in Figure 9 from the fit of the purely spatial intensity
model (2) where time-varying covariates are set to 0; i.e., Bjuip = 0 and Bejim,j =0, j=1,2,3.
Notice that we have computed the predicted intensities over the 250 x 250 high-resolution
image grid by injecting the recalculated average covariate values for the grid cells of the image
grid into the fitted model. This corresponds to a change of spatial support with respect to the
covariate information in the fitted model. The combination of spatial covariate information with
a nonparametric spatial effect appears to have well reproduced the spatial variation in event
intensities.

In the remainder of this section, we analyze the results in more detail and we focus on models
which include all covariates such that time-dependence is captured. In model (3), we estimated
several hyperparameters: the posterior mean of the effective spatial range in W (s) where the
correlation is approximately 0.1 is 15.4km, with 95% credible interval (10.9,21.4)km; for the
variance of W (s), we obtain the posterior mean 1.37 with credible interval (1.06,1.76); for the
variance of the yearly random walk innovations, we get a posterior estimate of 0.14.
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FIGURE 9. Posterior means of spatial intensities of yearly fire events (per km?). Left: posterior mean. Right: log of
posterior mean. Points indicate fire events observed over the observation period; they are located at the DFCI cell
centers where fires have been observed and the surface of points is proportional to the number of observed fire events.
Image points with more than 95% of water surface, corresponding to approximate O values, are shown in white.

TABLE 2. Summary of posterior estimates for the coefficients of the fixed effects (intercept, preceding fire events,
climatic and land use covariates). Significant effects according to 95% credible intervals are marked with *.

Covariate Posterior mean 95% credible interval

intercept* 7.3 [-8.06,-6.56]
inhib -0.13 [-0.64,0.35]
clim1* 0.07 [0.05,0.1]
clim2* 0.57 [0.39,0.75]
clim3* 0.25 [0.2,0.31]
water™ -3.64 [-5.03,-2.36]
forest 0.59 [-0.01,1.19]
conif* 0.79 [0.19,1.4]
decid -0.3 [-1.12,0.51]
alti* -0.54 [-0.79,-0.28]
grad* 0.25 [0.11,0.38]
road* 0.49 [0.33,0.65]
path* 0.29 [0.12,0.47]
build -0.04 [-0.1,0.01]
veget* 0.67 [0.13,1.22]
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Table 2 sums up the estimates of the linear covariate coefficients. Although our exploratory
analysis on a larger region provided empirical evidence for an inhibitive effect when fire events
took place in the preceding years at close distance, this effect is not significant for the Bouches-
du-Rhone data since inhib’s credible interval covers 0. Here, this is probably due to the smaller
data set and also to the inclusion of smaller events whose burnt surface is negligible compared to
the DFECI cell size, leading to high positional uncertainty. Nevertheless, the posterior mean of the
coefficient is slightly negative, hinting at a tendency towards inhibition. On the other hand, this
result also indicates that the occurrence of a wildfire does not considerably reduce the risk of new
occurrences shortly after and nearby in a radius of around one to two kilometers corresponding to
the size of a DFCI cell. The three climate covariates are clearly significant: hot and dry weather
increases fire risk. It is striking that the strongest effects are due only to the scarcity of precipitation
over longer periods, whereas temperature seems to play a (relatively) minor role. Nevertheless,
such results should be interpreted with caution, since there also is a strong negative correlation
between temperature and precipitation during the summer months in the study region. With respect
to land use, we can state that the presence of coniferous forests strongly favors wildfires, whereas
the credible interval of forest presence stretches slightly beyond 0. The risk for deciduous forest
appears to be relatively lower compared to forest in general, although the effect is not significant
in our model. Other significant effects are the presence of vegetation and of dense road or path
networks. Fire risk tends to significantly decrease with altitude in our study region, whereas
strong gradients (hillsides, ...) come along with higher relative risk. The presence of buildings
seems to be associated to relatively smaller fire risk. This seems logical since there usually is
little combustible vegetation material in highly urbanized places, and even in the contrary case
where buildings are embedded into natural or semi-natural spaces and therefore close to potential
high-risk sites we can assume that surveillance is high.

We now investigate in more detail if our intensity model is able to capture the temporal
fluctuation in the number of yearly fire events. Figure 10 shows the time effects when averaging
the posterior mean over space for each year. The left hand plot corresponds to model (2) which
does not include a nonparametric time effect through the random walk W (¢); therefore, temporal
variability is captured solely through climate covariates. The right hand plot of Figure 10 reports
the estimated intensity when including the random walk effect W (r) as in model (3). We see
that our climate covariates does indeed explain part of the temporal variability, but adding the
nonparametric effect to the model improves the fit considerably. More specifically, 17 out of the
35 random walk innovations are significantly different from O at the 95% level, i.e., they have
credible intervals that do not overlap 0.

4.3. Fire risk prediction

Our statistical models allow prediction of fire risk into the future if observed or artificial covariates
are available for these years. When they have not (yet) been observed, one may use a predictive
model for such covariates to study fire risk with respect to the predicted mean or quantiles of
covariates; otherwise, it may be instructive to compare the fire risk predictions for a small number
of manually defined scenarios. Based on the preceding results, we illustrate this approach by
making prediction of fire intensities for the year 2016 by fitting model (3) with marginal spatial
and temporal effects using fire data until 2015 and climatic covariates observed for 2016. By
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FIGURE 10. Spatially averaged posterior means of temporal intensities of yearly fire events. Left: temporal variability
captured through climate covariates only. Right: temporal variability captured through climate covariates and random
walk. The blue points indicate the observed number of fire events for each year.

comparing observed fire events in 2016 with predictions, we can check the practical utility of our
model. In 2016, we only have climatic covariates and fire event data from January to October
such that our predictions and comparisons can only be approximate, but they already cover the
summer period where most fire events take place. Predictions are obtained by refitting model (3)
with INLA, where we include the year 2016 with observed covariates but with missing fire event
data; notice that making predictions in the Bayesian framework of INLA corresponds to using NA
data for the values to predict. We then take the resulting posterior means of intensity estimates for
2016 as our prediction. Figure 11 shows a rather good match in terms of spatial variation between
the predicted log-intensities and the observed fire events from 2016. It is noteworthy that there
has been a jump in the number of observed events (98) compared to preceding years (28 in 2013,
26 in 2014, 39 for 2015); thanks to climatic covariate information, this jump is appropriately
captured by our model whose prediction for the overall number of events in 2016 amounts to 90.

5. Discussion

After reviewing statistical methods from the literature to explore and model wildfire risk, we have
adopted a point process approach from stochastic geometry to provide a detailed analysis of data
collected for the Bouches-du-Rhone department in Southern France. The high complexity of such
data is due to the strong nonstationarities over space and time, often explicable through various
effects of covariates, and to multiple observations scales of event data and covariates in terms of
spatial and temporal discretization and aggregation.

The results on the exploratory analysis with the space time intensity-reweighted K-function
indicate that it is important to further investigate space-time interaction structures between events
at the local level and to extend the class of models to true space-time dependence structures
beyond the simple inclusion of a local inhibitive effect after fire events. It would further be useful
to take into account the size of individual fires by considering a point process marked through
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FIGURE 11. Predicted spatial log-intensity for 2016 (per km>) based on the model (3) fitted with fire event data until
2015 and climatic covariates for 2016. Points indicate fire events observed in 2016 from January to October; they
are located at the DFCI cell centers where fires have been observed and the surface of points is proportional to the
number of observed fire events. Image points with more than 95% of water surface, corresponding to approximate 0
values, are shown in white.

burnt surfaces. Intensities and the strength of inhibitive patterns could then be estimated for each
class of fire sizes, although the relatively small number of very large fires and the positional
uncertainty in the fire database may render such modeling intricate.

Fires propagation can be related to wind direction leading to anisotropic shapes of burnt
surfaces. Here, for sake of simplicity we have considered the isotropic case, both in the shape of
burnt surfaces and in the point pattern. However further investigation could be done to check for
anisotropic behavior in the point pattern, for instance using Comas et al. (2017)’s approach. If
it were, our log-Gaussian Cox process model could include anisotropy as in Siino et al. (2017).
Then, to handle anisotropy in INLA, we should estimate the anisotropy, model it and manually
build precision matrices.

Concerning the approximations conducted when fitting the log-Gaussian Cox models in Section
4, several improvements are possible. Currently, our triangulation of the domain allows triangle
edges to cross boundaries between two DFCI cells such that the random effects spill over between
neighboring cells. A finer triangulation could remedy this problem. Explicit modeling of intra-year
dynamics in wildfire risk would be an important progress and would enable the integration of
climate covariate data with higher temporal and spatial resolution than in our model. However,
such improvements make the model more complex, and consequently increase the estimation
uncertainty, require more substantial computing resources and carry potential for problematic
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numerical and computational instabilities. Finally, using separate effects depending on the size of
burnt surfaces similar to the approach of Serra et al. (2014) could be expedient to distinguish risk
factors for small and large surface wildfires. In future work, we therefore project proposing a more
complex space-time log-Gaussian Cox process model that adequately captures temporal intensity
and dependence effects at small scales. It would further be interesting to investigate through
statistical approaches the impact of forest fires on eco-systems and human society; for instance,
an important challenge would be to propose joint modeling of forest fires and particulate matter
concentrations like PM10 values, which are known to peak after important fire events. We estimate
that the work on particulate matter modeling over mainland France proposed in RESSTE Network
(2016) will be highly valuable for these follow-up research projects. The flexible modeling and
fast estimation through INLA (Rue et al., 2009), see also the review oriented towards space-time
modeling in Opitz (2016), give us justified hope that we can succeed in proposing complex
and practically useful models of such multivariate multi-scale structures over space and time.
We further think that functional regression approaches could improve the choice of indices and
aggregated values that we use to characterize the contribution of recent weather conditions to
instantaneous fire risk. This choice is currently conducted in a rather simplistic, informal and
heuristic manner and it is yet based on observations from a single measurement site; but again, we
are confident to propose a tractable semi-parametric functional regression approach with spatial
dependence within the INLA framework, which may integrate improved physical knowledge
about climate-related wildfire causes and may allow a more objective choice of aggregated climate
variables with good predictive properties through formal model selection tools.

Finally, we plan to extend our statistical analysis to the data collected in the Prométhée base
over a larger region covering most of Southern France, including the island of Corsica; we already
used part of this data set to substantiate the local inhibitive effect after big wildfires. On the
one hand, statistical modeling based on this larger data set could improve statistical power for
inferring effects that are homogeneous over larger regions, while it also allows identifying regional
differences at smaller scales in the relative risk of wildfires.
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