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Latent Gaussian modeling and INLA:
A review with focus on space-time applications

Titre: Modèles à processus gaussiens latents et inférence INLA :
un survol orienté vers les applications spatio-temporelles

Thomas Opitz1

Abstract: Bayesian hierarchical models with latent Gaussian layers have proven very flexible in capturing com-
plex stochastic behavior and hierarchical structures in high-dimensional spatial and spatio-temporal data. Whereas
simulation-based Bayesian inference through Markov Chain Monte Carlo may be hampered by slow convergence and
numerical instabilities, the inferential framework of Integrated Nested Laplace Approximation (INLA) is capable to
provide accurate and relatively fast analytical approximations to posterior quantities of interest. It heavily relies on the
use of Gauss–Markov dependence structures to avoid the numerical bottleneck of high-dimensional nonsparse matrix
computations. With a view towards space-time applications, we here review the principal theoretical concepts, model
classes and inference tools within the INLA framework. Important elements to construct space-time models are certain
spatial Matérn-like Gauss–Markov random fields, obtained as approximate solutions to a stochastic partial differential
equation. Efficient implementation of statistical inference tools for a large variety of models is available through the
INLA package of the R software. To showcase the practical use of R-INLA and to illustrate its principal commands
and syntax, a comprehensive simulation experiment is presented using simulated non Gaussian space-time count data
with a first-order autoregressive dependence structure in time.

Résumé : Les modèles bayésiens hiérarchiques structurés par un processus gaussien latent sont largement utilisés dans
la pratique statistique pour caractériser des comportements stochastiques complexes et des structures hiérarchiques
dans les données en grande dimension, souvent spatiales ou spatio-temporelles. Si des méthodes d’inférence bayésienne
de type MCMC, basées sur la simulation de la loi a posteriori, sont souvent entravées par une covergence lente et des
instabilités numériques, l’approche inférentielle par INLA (”Integrated Nested Laplace Approximation”) utilise des
approximations analytiques, souvent très précises et relativement rapides, afin de calculer des quantités liées aux lois
a posteriori d’intérêt. Cette technique s’appuie fortement sur des structures de dépendance de type Gauss–Markov
afin d’éviter des difficultés numériques dans les calculs matriciels en grande dimension. En mettant l’accent sur les
applications spatio-temporelles, nous discutons ici les principales notions théoriques, les classes de modèles accessibles
et les outils d’inférence dans le contexte d’INLA. Certains champs Markoviens Gaussiens, obtenus comme solution
approximative d’une équation différentielle partielle stochastique, sont la base de la modélisation spatio-temporelle.
Pour illustrer l’utilisation pratique du logiciel R-INLA et la syntaxe de ses commandes principales, un scénario de
simulation-réestimation est présenté en détail, basé sur des données simulées, spatio-temporelles et non gaussiennes,
avec une structure de dépendance autorégressive dans le temps.
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INLA for space-time statistics 63

1. Introduction

The rapidly increasing availability of massive sets of georeferenced data has spawned a strong
demand for suitable statistical modeling approaches to handle large and complex data. Bayesian
hierarchical models have become a key tool for capturing and explaining complex stochastic
structures in spatial or spatio-temporal processes. Many of these models are based on latent
Gaussian processes, typically embedded in a parameter characterizing the central tendency of
the distribution assumed for the likelihood of the data, and extend the Gaussian random field
modeling brought forward by classical geostatistics. Using a conditional independence assumption
for the data process with respect to the latent Gaussian layer makes inference tractable in many
cases. Typically, closed-form expressions for the likelihood are not available for these complex
models, and simulation-based inference through Markov chain Monte Carlo (MCMC) has become
a standard approach for many models. An important alternative, superior to MCMC inference
under certain aspects, has been developed through the idea of Integrated Nested Laplace Approx-
imation, proposed in the JRSS discussion paper of Rue et al. (2009). Many case studies have
been conducted through INLA in the meantime, with space-time applications to global climate
data (Lindgren et al., 2011), epidemiology (Bisanzio et al., 2011), disease mapping and spread
(Schrödle and Held, 2011; Schrödle et al., 2012), forest fires (Serra et al., 2014; Gabriel et al.,
2016), air pollution risk mapping (Cameletti et al., 2013), fishing practices (Cosandey-Godin et al.,
2014) or econometrics (Gómez-Rubio et al., 2015a). More generally, INLA has been successfully
applied to generalized linear mixed models (Fong et al., 2010), log-Gaussian Cox processes (Illian
et al., 2012; Gómez-Rubio et al., 2015b) and survival models (Martino et al., 2011), amongst many
other application fields. The recent monograph of Blangiardo and Cameletti (2015) reviews INLA
in detail and gives many practical examples. Instead of applying simulation techniques to produce
a representative sample of the posterior distribution, INLA uses analytic Laplace approximation
and efficient numerical integration schemes to achieve highly accurate analytical approximation
of posterior quantities of interest with relatively small computing times. In particular, we get
approximations of univariate posterior marginals of model hyperparameters and of the latent
Gaussian variables. By making use of latent Gauss–Markov dependence structures, models remain
tractable even in scenarios that are very high-dimensional in terms of observed data and latent
Gaussian variables.

The INLA-based inference procedures are implemented in the R-package INLA (referred to as
R-INLA in the following) for a large variety of models, defined through basic building blocks
of three categories: the (univariate) likelihood specification of data, the latent Gaussian model
and prior distributions for hyperparameters. Functionality of R-INLA is continuously extended
(Martins et al., 2013; Lindgren and Rue, 2015; Rue et al., 2016). This review and the code
examples refer to R-INLA version 0.0-1463562937. The R-INLA software project is hosted on
http://www.r-inla.org/, where one can find lots of INLA-related resources, amongst them details
on the specification of likelihoods, latent models and priors, a discussion forum with very active
participation of the members of the INLA core team, tutorials and codes, an FAQ section, etc.
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64 T. Opitz

2. Modeling and estimation with INLA

2.1. Latent Gaussian modeling

The structured latent Gaussian regression models amenable to INLA-based inference can be
defined in terms of three layers: hyperparameters, latent Gaussian field, likelihood model. The
univariate likelihood captures the marginal distribution of data and is often chosen as an exponen-
tial family (Gaussian, gamma, exponential, Weibull, Cox, binomial, Poisson, negative binomial,
...) similar to the framework of generalized linear models, where models like the exponential,
Weibull or Cox ones are available as survival models allowing for right- and left-side censoring.
The mean (or some other parameter related to the central tendency) of the likelihood distribution
is determined by the latent Gaussian predictor through a link function such that E(y | η) = h−1(η)
in case of the mean, where y is the observation, η is a Gaussian predictor and h is an appropriately
chosen link function. Hyperparameters can appear in the likelihood as dispersion parameters like
the variance of the Gaussian distribution, the overdispersion parameter of the negative binomial
one or the shape parameter of the gamma one, or they can characterize the structure of the latent
Gaussian model, for instance through variances, spatial correlation parameters or autoregression
coefficients. Formally, this hierarchical model can be written as

θθθ ∼ π(θθθ) hyperparameters (1)

xxx | θθθ ∼N (000,QQQ(θθθ)−1) latent Gaussian field (2)

yyy | xxx,θθθ ∼∏
i

π(yi | ηi(xxx),θθθ) observations (3)

where QQQ(θθθ) is the precision matrix (i.e., inverse covariance matrix) of the latent Gaussian vector xxx
and ηηη(xxx) = AAAxxx with the so-called observation matrix AAA that maps the latent variable vector xxx to the
predictors ηi = ηi(xxx) associated to observations yi. If yyy and xxx can be high-dimensional when using
INLA, an important limitation concerns the hyperparameter vector θθθ ∈Θ whose dimension should
be moderate in practice, say < 10 if these hyperparameters are estimated with the default settings
of R-INLA (although R-INLA supports using a higher number of hyperparameters); this is due
to numerical integration that has to be carried out over the hyperparameter space Θ. Notice that
the Gaussian likelihood is particular since, conditional to the hyperparameters, the observations
are still Gaussian. In practice, the precision hyperparameter of the Gaussian likelihood (i.e., the
inverse of its variance) can correspond to a measurement error or a nugget effect, and we can fix a
very high value for the precision hyperparameter if we want the model for data yyy to correspond
exactly to the latent Gaussian predictors ηηη . The dependence structure between observations yi is
captured principally by the precision matrix QQQ(θθθ) of the latent field xxx. In practice, it is strongly
recommended or even indispensable from the point of view of computation time and memory
requirements to choose Gauss–Markov structures with sparse QQQ(θθθ) whenever model dimension
is high.

The resulting joint posterior density of latent variables xxx and hyperparameters θθθ is

π(xxx,θθθ | yyy) ∝ exp

(
−0.5xxx′QQQ(θθθ)xxx+∑

i
logπ(yi | ηi,θθθ)+ logπ(θθθ)

)
. (4)

Journal de la Société Franaise de Statistique, Vol. 158 No. 3 62-85
http://www.sfds.asso.fr/journal

© Socit Franaise de Statistique et Socit Mathmatique de France (2017) ISSN: 2102-6238
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This density over a high-dimensional space does usually not characterize one of the standard
multivariate families and is therefore difficult to interpret and to manipulate. In practice, the
main interest lies in the marginal posteriors of hyperparameters θ j, of latent variables xi and of
the resulting predictors ηi, where the latter can be included into xxx for notational convenience.
Calculation of these univariate posterior densities requires integrating with respect to θθθ and xxx:

π(θ j | yyy) =
∫ ∫

π(xxx,θθθ | yyy)dxxxdθθθ− j =
∫

π(θθθ | yyy)dθθθ− j, (5)

π(xi | yyy) =
∫ ∫

π(xxx,θθθ | yyy)dxxx−i dθθθ =
∫

π(xi | θθθ ,yyy)π(θθθ | yyy)dθθθ . (6)

We notice that the use of astutely designed numerical integration schemes with respect to the
moderately dimensioned hyperparameter space Θ can yield satisfactorily accurate approximation
of the outer integral. On the other hand, calculating the inner integral with respect to xxx, often of
very high dimension (≈ 102 to 108), is intricate.

2.2. Gauss–Markov models

We say that a random vector xxx | θθθ ∼N (000,QQQ−1) is Gauss–Markov if the number of nonnull
entries of its n× n precision matrix QQQ = (qi j)1≤i, j≤n is O(n). Such sparse precision matrices
allow efficient numerical computation of matrix operations like LR-decomposition (with sparse
factors L and R), determinant calculation, matrix-vector products, etc. For instance, complexity of
matrix inversion decreases from O(n3) for matrices without any structural constraints to around
O(n3/2) for sparse matrices. Using Gauss–Markov structures fundamentally shifts the dependence
characterization from covariance matrices QQQ−1 to precision matrices QQQ. Notice that the conditional
expectation is easily expressed through the regression E(xi | xxx−i) =−∑ j 6=i(qi j/qii)x j where only
a small number of the sum terms, also called the neighborhood of xi, are non-zero owing to
the sparse structure of QQQ. The conditional variance is V(xi | xxx−i) = 1/qii. R-INLA uses fast and
efficient algorithms for sparse matrix calculations (Rue and Held, 2005), already implemented
in the GMRFLib library. For efficient calculations, it is important to make the precision matrix
QQQ “as diagonal as possible” by reordering variables to regroup nonzero elements as close as
possible to the diagonal. R-INLA has implemented several of those reordering strategies; see
Rue and Held (2005) for more details on reordering algorithms. If certain Gauss–Markov models
exist for spatially indexed graphs, useful covariance functions defined over Rd and leading to
Gauss–Markov covariance matrices are difficult to establish. An exception is the very flexible
approximate Gauss–Markov representation of Matérn-like covariances based on certain stochastic
partial differential equations (often referred to as the SPDE approach in the literature), which is
also implemented in R-INLA; see Section 3.1 for more details.

2.3. INLA

The fundamental idea of INLA consists in applying the device of Laplace approximation to
integrate out high-dimensional latent components. This theoretical foundation is combined with
efficient algorithms and numerical tricks and approximations to ensure a fast yet accurate approx-
imation of posterior marginal densities of interest like those of the latent field xxx (including the
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66 T. Opitz

predictors ηi) in (6) or of hyperparameters θ j in (5). Since the details of methods implemented in
the INLA approximation are quite technical, we here content ourselves with a presentation of the
main ideas and the related options available in R-INLA.

2.3.1. The principle of Laplace approximation

We first recall the principle of the Laplace approximation and its calculation in practice. Typically,
one seeks to evaluate an integral

∫
f (xxx)dxxx, where the positive integrand function f , here written

as f (xxx) = exp(kg(xxx)) with a scale variable k ≥ 1, is defined over a high-dimensional space and is
“well-behaved” in the sense that it satisfies some minimal regularity requirements, is unimodal
and its shape is not too far from gaussianity; for instance, requiring strict log-concavity of f is
useful, see Saumard and Wellner (2014). Since the integral value is mainly determined by the
behavior around the mode of g, a second-order Taylor approximation of g can be substituted
for g to calculate an approximate value of the integral. Assuming that xxx? is the unique global
maximum of g, we get g(xxx)≈ g(xxx?)+0.5(xxx− xxx?)′HHH(g)(xxx?)(xxx− xxx?) for values xxx close to xxx? with
the Hessian matrix HHH(g)(xxx?). Notice that −HHH(g)(xxx?) is positive definite. An approximate value
of the integral can be calculated using the fact that a multivariate Gaussian density integrates to 1.
The resulting following integral approximation in dimension d is expected to become more and
more accurate for higher values of k, i.e., when the area below the integrand exp(kg(xxx)) becomes
concentrated more and more closely around the mode:∫

∞∞∞

−∞∞∞

f (xxx)dxxx =
∫

∞∞∞

−∞∞∞

exp(kg(xxx))dxxx (7)

k→∞∼
∫

∞∞∞

−∞∞∞

exp(kg(xxx?)+0.5k(xxx− xxx?)′HHH(g)(xxx?)(xxx− xxx?))dxxx

=

(
2π

k

)d/2

|HHH(g)(xxx?)|−1/2 exp(kg(xxx?)); (8)

here a ∼ b means that a = b(1+O(1/k)) (Tierney and Kadane, 1986). In statistical practice,
k may represent the number of i.i.d. replications, each of which has density exp(g(xxx)). Higher
values of k usually lead to better approximation, and more detailed formal results on the quality
of approximation have been derived (Tierney and Kadane, 1986; Rue et al., 2009). Many of the
models commonly estimated with INLA have no structure of strictly i.i.d. replication, but the
Laplace approximation remains sufficiently accurate in most cases since there usually still is
a structure of internal replication; ideally, for each latent variable xi0 we have at least several
observations yi which contain information about xi0 (and which are conditionally independent
with respect to xxx by construction of the model).

In the context of INLA, the following observation will be interesting and useful. Fix k = 1 in
(7) and suppose that f (xxx) = exp(g(xxx)) = π(xxx,θθθ), where π(xxx,θθθ) is the joint probability density
of a random vector (xxx,θθθ). Then, in (8), the term exp(g(xxx?)) is the value of π at its mode xxx?

for fixed θθθ , whereas (2π)d/2 |HHH(g)(xxx?)|−1/2 is 1/πG(xxx? | θθθ) with πG a Gaussian approximation
with mean vector xxx? to the conditional density of xxx | θθθ . In practice, we can determine the
mean µµµ? = xxx? and the precision matrix QQQ? = −HHH(g)(xxx?) of πG through an iterative Newton–
Raphson optimization. Starting from the joint posterior (4) of our latent Gaussian model, we
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set g(xxx) = −0.5xxx′QQQ(θθθ)xxx + ∑i logπ(yi | ηi,θ). We further write gi(xi) = logπ(yi | xi,θθθ) and
calculate its second-order Taylor expansion gi(xi) ≈ gi(µ

(0)
i )+ bixi− 0.5cix2

i . Without loss of
generality, we here assume that the linear predictor ηηη corresponds to the latent Gaussian vector
xxx. We start the iterative optimization with initial values QQQ(1) = QQQ+ diag(ccc) and µµµ(1), where
QQQ(1)

µµµ(1) = bbb. We then iterate this procedure until convergence such that µµµ( j)→ µµµ? = xxx? and
QQQ( j)→QQQ? = QQQ+diag(ccc?), j = 1,2, . . ., j→ ∞, where an appropriate convergence criterion must
be used. Notice that the conditional independence assumption of observations yi with respect to
(ηi,θθθ) allows preserving the sparse structure in QQQ?. Moreover, a strictly log-concave likelihood
function xi 7→ π(yi | xi,θθθ) ensures ci > 0 such that QQQ( j) are valid precision matrices and local
curvature information around µ

( j)
i can be used for constructing a useful Gaussian approximation.

It is further possible to impose linear constraints MMMxxx = eee onto xxx and xxx? with given matrix MMM and
vector eee by using the approach of conditioning through kriging (Rue et al., 2009).

2.3.2. Posterior marginal densities of hyperparameters

To calculate

π(θ j | yyy) =
∫ ∫

π(xxx,θθθ | yyy)dxxxdθθθ− j =
∫

π(θθθ | yyy)dθθθ− j, (9)

we use the Laplace approximation of the inner integral
∫

π(xxx,θθθ | yyy)dxxx = π(θθθ | yyy) as described in
Section 2.3.1 such that the approximated density π̃ satisfies

π̃(θθθ | yyy) ∝
π(xxx,θθθ ,yyy)

πG(xxx | θθθ ,yyy)
|xxx=xxx?(θθθ) (10)

with xxx?(θθθ) the mode of the joint density π(xxx,θθθ ,yyy) for fixed (θθθ ,yyy) and a Gaussian density πG that
approximates π(xxx | θθθ ,yyy):

πG(xxx | θθθ ,yyy) = (2π)n/2|QQQ?(θθθ)|1/2 exp
(
−0.5(xxx− xxx?(θθθ))′QQQ?(θθθ)(xxx− xxx?(θθθ))

)
. (11)

Notice that the Gaussian approximation πG is exact if the data likelihood π(yi | ηi,θθθ) itself is
Gaussian. An approximation of the posterior marginal of θ j in (9) is now obtained through a
numerical integration with a set of integration nodes θθθ ` chosen from a numerical exploration of
the surface of the density π̃(θθθ− j,θ j | yyy) (with θ j held fixed). This yields

π̃(θ j | yyy) =
L

∑
`=1

ω`π̃(θθθ ` | yyy) (12)

with weights ω` (which are chosen to be equal in the approaches implemented in R-INLA). In
R-INLA, θθθ ` can either be chosen as a grid around the mode of π̃(θθθ | yyy) (int.strategy="grid",
the most costly variant), or through a simpler so-called complete composite design which is less
costly when the dimension of θθθ is relatively large (int.strategy="ccd", the default ap-
proach), or we may use only one integration node given as the mode value (int.strategy="eb",
corresponding to the idea of an empirical Bayes approach).
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2.3.3. Posterior marginal densities of the latent Gaussian field

For calculating the marginal density π(xi | yyy) of a latent variable xi, we lean on representation (6).
Numerical integration with respect to θθθ can be done in analogy to the procedure described in
Section 2.3.2, and the Laplace approximation (10) allows approximating π(θθθ | yyy). It thus remains
to (approximately) evaluate π(xi | θθθ ,yyy). A simple and fast solution would be to use the univariate
Gaussian approximation resulting from the multivariate Gaussian approximation (11) whose mean
value is x?i (θθθ) and whose variance can easily and quickly be calculated from a partial inversion
of the precision QQQ?(θθθ) (Rue, 2005) (strategy="gaussian" in R-INLA). However, this
Gaussian approximation often fails to capture skewness behavior and can generate nonnegligible
bias in certain cases – an important exception to this issue being the case where the data likelihood
is Gaussian. In the general case, using again a Laplace-like approximation

π(xxx,θθθ ,yyy)
πG(xxx−i | xi,θθθ ,yyy)

|xxx−i=xxx?−i(xi,θθθ) (13)

with mode xxx?−i(xi,θθθ) of π(xxx,θθθ ,yyy) for fixed (xi,θθθ ,yyy) would be preferable, but is relatively costly
(strategy="laplace" in R-INLA). Instead, Rue et al. (2009) propose a so-called simplified
Laplace approximation based on third-order Taylor developments of numerator and denominator in
(13) that satisfactorily remedies location and skewness inaccuracies of the Gaussian approximation
(strategy="simplified.laplace" in R-INLA, the default). Notice that the “Nested”
in INLA refers to this second Laplace-like approximation.

3. Space-time modeling approaches

Modeling trends over space and time and spatio-temporal dependence in repeated spatial obser-
vations is paramount to understanding the dynamics of processes observed over space and time.
We here review approaches to integrating the time component into the latent Gaussian predictor
ηst that are suitable for high-dimensional space-time inference with INLA. In principle, any
space-time Gaussian process ηst could be used, but the requirement of a Gauss–Markov structure
for fast matrix calculations and the current scope of models implemented in R-INLA impose some
constraints. Flexible, Matérn-like spatial Gauss–Markov models with continuous sample paths are
available in R-INLA and will be discussed in Section 3.1. A generalization of such purely spatial
models to flexible nonseparable space-time dependence structures is still pending, but R-INLA
allows extending such spatial models to capture temporal dependence through autoregressive
structures, which will be discussed in the following and explored in the examples of Section
4. New approaches to generic nonseparable space-time Gauss–Markov model classes and their
implementation in R-INLA are projected by members from the scientific community working on
the SPDE approach. Any other nonseparable covariance model would in principle be amenable to
INLA-based inference without difficulty as long as it keeps a Markovian structure when using a
high-dimensional latent model.

We start by formulating a generic latent Gaussian space-time model for the predictor ηst that
covers many of the models that can be fitted with R-INLA. We denote by ζstk, k = 1, . . . ,K given
covariate data, which may depend on space or time only. In some cases, one may obtain useful
dynamical structures by constructing artificial covariates at time t based on the observations at
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time t−1. Notice that in cases where covariates are not available except at the observation points
(si, ti), i = 1, . . . ,n of yi, one may have to include them into the observation vector yyy and formulate
a latent Gaussian model for their interpolation over space and time. This would give a model that
achieves both interpolation of covariate values and prediction of yyy at the same time. Here, we
consider

ηst = x0 +
K

∑
k=1

xkζstk +
L

∑
k=1

fk(ζstk)+ xt + xs + xst . (14)

The linear coefficients x0, . . . ,xK are known as fixed effects, whereas functions fk(·) and the
processes xt , xs and xst are referred to as random effects. Notice that xt and xs are to be understood
as marginal models that capture purely spatial or temporal marginal effects. We now shortly
present some typical examples of Gaussian prior models that are commonly used and available in
R-INLA for the intercept x0, the linear covariate effects xk, the nonlinear covariate effects fk(·),
the marginal temporal effect xt , the marginal spatial effect xs and the space-time effect xst .

A temporal effect xt could be modeled as an autoregressive process or as a random walk, where
autoregression coefficients and the step variance of the random walk represent hyperparameters
that could be estimated. A nonparametric spatial effect xs could be modeled with a Gauss–Markov
Matérn-like prior random field, the details of whose construction are presented in the following
section 3.1. A simple extension to a space-time effect xst is obtained from considering independent
replicates of the spatial field for each time point. An important class of space-time models xst

that allows for temporal dependence and preserves the Gauss–Markov structure are the stationary
first-order autoregressive models

xst = axs,t−1 +
√

1−a2εst , (15)

where a ∈ (−1,1] and εst is a stationary spatial innovation process, i.i.d. in time, typically chosen
as the Gauss–Markov Matérn-like field. If the process starts in t = 1 with xs,1 = εs,1, then its
marginal distributions are stationary. We here allow for a = 1 to include the purely spatial case;
temporal independence arises for a = 0. This AR model is a group model where spatial groups εst ,
t = 1,2, . . ., are joined through an AR group model. In R-INLA, it is possible to work with more
general group models that define a type of dependence like “autoregressive”, “exchangeable”,
“random walk” or “besag” between certain groups of latent variables. When marginal variances
tend to increase over time, an interesting alternative to the autoregressive model (15) may be to
link spatial random fields through a random walk structure such that xst = xs,t−1+εst ; the variance
of the innovation fields εst then determines the marginal variance at instant t. It is further possible
to specify certain graph structures among latent variables; we here refer to www.r-inla.org for full
details about the specification of a large variety of available latent models. Owing to issues of
identifiability and model complexity, usual only a subset of the terms in (14) is used to construct
the latent field in practical applications.

3.1. Spatial Gauss–Markov random fields based on the SPDE approach

The spatial SPDE model of Lindgren et al. (2011) defines a Gauss–Markov random field as the
approximate solution to a certain stochastic partial differential equation. It is an important building
block for latent Gaussian models with spatial and spatio-temporal effects. Contrary to classical
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covariance function models, this approach provides sparse precision matrices that make numerical
procedures efficient even for very high-dimensional problems. Formally, a Gaussian process x(s)
on RD is defined through(

κ
2−∆

)α/2
x(s) =W (s), α = ν +D/2, s ∈Ω (16)

with the Laplace operator ∆y = ∑
D
j=1 ∂ 2y/∂ 2x j, a standard Gaussian white noise process W (s)

and a nonempty spatial domain Ω⊂ RD with regular boundary. Depending on the value of ν and
D, the Laplace operator

(
κ2−∆

)α/2 is fractionary with noninteger exponent α/2, and it must
be defined in an appropriate way (Lindgren et al., 2011). The only stationary solution to (16) for
Ω = RD is a Gaussian random field with the Matérn covariance function whose shape parameter
is ν (with ν = 0.5 yielding the exponential covariance model) and whose scale parameter is
1/κ . The marginal variance is Γ(ν)/[Γ(ν +D/2)(4π)D/2κ2ν ], and the “empirical range” where a
correlation of approximately 0.1 is attained between two points is around

√
8ν/κ . The Matérn

model is known to be very flexible through its scale and shape parametrization, with regularity
properties of sample paths governed by the shape parameter ν .

In practice, when working on a finite domain Ω⊂ R2, boundary effects come into play. One
can assume a polygon-shaped boundary ∂Ω, as it is implemented in R-INLA. An interesting
choice of boundary condition is the Neumann condition with zero normal derivatives at the
boundary such that the Gaussian field is “reflected” at the boundary. Lindgren et al. (2011) show
that Neumann conditions principally lead to an increase in variance close to the boundary, the
factor being approximately 2 when there is one close linear boundary segment, and 4 when we
are close to the 90-degree angle of a rectangle where two linear segments meet. Whereas such
boundary conditions may be interesting for some applications, we often prefer to extend the
domain Ω beyond the study region towards a larger domain, such that boundary effects become
negligible within the study region. This requires that the extended domain’s boundary is separated
by a distance superior to the empirical range from the study region.

Approximate solutions to (16) are obtained based on the finite element approach commonly
used in the numerical solution of partial differential equations. Using a triangulation of the spatial
domain leads to a high-dimensional multivariate representation with Gaussian variables located
in the triangulation nodes si. Spatial interpolation between nodes is achieved by considering
these Gaussian variables as weights for piecewise linear basis functions ψi(s), one for each node.
Basis functions are of compact support giving by the triangles touching the node si (“pyramid
functions”); see Figure 1 for an example of a basis function and of the approximation of a
spatial surface through a linear combination of such basis functions. By “projecting” the SPDE
(16) on the space spanned by the Gaussian variables, one can calculate the precision matrix QQQ
governing the dependence structure between these variables. There are certain rules of thumb
to be respected for a construction of the triangulation that does not strongly distort the actual
dependence structure of the exact solution to (16) and that remains numerically stable with respect
to certain matrix computations, mainly concerning maximum sizes of triangles and minimum
sizes of interior angles. For numerical efficiency, overly fine triangulations can be avoided by
requiring minimum edge lengths, for instance; see Lindgren et al. (2011) for further details on
the finite element construction. The approximate Gauss–Markov solution has mean zero and its
precision matrix QQQ has entries that are determined by the SPDE. We refer to the Appendix section
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FIGURE 1. Illustration taken from Blangiardo et al. (2013). Example of a Gaussian surface (left) and its finite
element approximation (right). On the right display, we can further see the triangulation and one of the finite element
pyramid-shaped basis functions.

of Lindgren et al. (2011) for the calculation of QQQ, which is explicit. Based on the approximate
solutions for α = 0 and α = 1, an approximate solution of the SPDE for α +2 can be obtained
by injecting the solution for α at the place of the white noise W (s) in (16). For non-integer values
of α > 0, additional approximations are necessary to obtain a solution, see the authors’ response
in the discussion of the Lindgren et al. (2011) paper. We have here considered κ and τ to be
constant over space. It is possible to allow spatial variation of these parameters for nonstationary
models with κ = κ(s) as in (16) and a precision-related parameter τ = τ(s) that varies over
space. To wit, Ingebrigtsen et al. (2014) apply such second-order nonstationary modeling to
precipitation in Norway, where altitude is used as a covariate that acts on the local covariance
range in the dependence structure; the recent contribution of Bakka et al. (2016) uses second-order
nonstationarity to account for physical barriers in species distribution modeling. The SPDE (16)
is also well-defined over manifolds Ω, for instance the sphere S2 embedded in R3. In general,
Lindgren et al. (2011) show that the approximate solution converges to the true solution of the
SPDE for an adequately chosen norm when the triangulation is refined in a way such that the
maximum diameter of a circle inscribed into one of the triangles tends to 0.
R-INLA currently implements calculation, estimation and simulation of the Gauss–Markov

SPDE solution for α ≤ 2, for Ω a subset of R1, R2 or a two-dimensional manifold embedded
into R3, and for spatially constant or varying values κ(s) and τ(s). A large number of tools is
available to construct numerically efficient and stable triangulations.

4. Using R-INLA on a complex simulated space-time data set

To execute the following code, the INLA package of R must be installed; see www.r-inla.org for
information on the R command recommended for installing this package, which is not hosted on
the site of the Comprehensive R Archive Network (CRAN) due to its use of external libraries. We
here illustrate the powerful estimation and inference tools of R-INLA in a controlled simulation
experiment with data simulated from a latent Gaussian space-time model with the Poisson
likelihood. The full code for the simulation study below can be requested from the author.
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4.1. Simulating the data

We simulate a space-time count model based on a latent first-order autoregressive Gaussian
process defined on [0,1]2 for t = 1, . . . ,60. We use two covariates, given as z1(t) = t/60 and z2(t)
simulated according to an autoregressive time series model. The simulated model is

Y (s, t) | η(s, t)∼ Pois(exp(η(s, t))) i.i.d.

η(s, t) =−1+ z1(t)+0.5z2(t)+W (s, t)

W (s,1) = ε(s,1)

W (s, t) = 0.5W (s, t−1)+(1−0.5)2
ε(s, t), t = 2, . . . ,60.

The covariance function of the standard Gaussian field ε(s, t) is chosen of Matérn type with
shape parameter ν = 1 and effective range 0.25 (corresponding to a Matérn scale parameter
1/κ ≈ 0.09). We now fix 50×60 = 3000 observation points (si, ti) of Y (s, t), determined as the
Cartesian product of 50 sites uniformly scattered in [0,1] and ti = i, i = 1, . . . ,60.

To illustrate the simulation capacities of R-INLA, we here use the SPDE approach to achieve
simulation based on the Gauss–Markov approximation of the Matérn correlation structure of
the spatial innovations. After loading the INLA-package and fixing a random seed for better
reproducibility of results, we start by defining the κ , τ and α parameters of the SPDE. To avoid
boundary effects in the SPDE simulation, we will use the square [−0.5,1.5]2 as spatial support.

library(INLA)
seed=2;set.seed(seed)
n.repl=60;n.sites=50
nu=1;alpha=nu+1;range0=0.25;sigma0=1;a=.5
kappa=sqrt(8*nu)/range0
tau=1/(2*sqrt(pi)*kappa*sigma0)

Next, we create a fine 2D triangulation mesh for relatively accurate simulation, with maximum
edge length 0.04 within [0,1]2 and 0.2 in [−0.5,1.5]2 \ [0,1]2. The minimum angle between
two edges is set to 21, a value recommended to avoid ill-conditioned triangulations containing
very elongated triangles. Polygon nodes should be given in counterclockwise order, whereas
polygon-shaped holes in the support would be specified by clockwise order of nodes; see the left
display of Figure 2 for the resulting triangulation.

nodes.bnd=matrix(c(0,0,1,0,1,1,0,1),ncol=2,byrow=T)
segm.bnd=inla.mesh.segment(nodes.bnd)
nodes.bnd.ext=matrix(c(-.5,-.5,1.5,-.5,1.5,1.5,-.5,1.5),ncol=2,byrow=T)
segm.bnd.ext=inla.mesh.segment(nodes.bnd.ext)
mesh.sim=inla.mesh.2d(boundary=list(segm.bnd,segm.bnd.ext),

max.edge=c(.04,.2),min.angle=21)
plot(mesh.sim)

The list slot mesh.sim$n informs us that there are 2401 triangulation nodes. The mesh object
mesh.sim has a slot mesh$loc which contains a three column matrix. The first two columns
indicate the 2D coordinates of mesh nodes. In our case, the third coordinate, useful for specifying
2D manifolds in 3D space, is constant 0. We continue by creating the SPDE model through an
R-INLA function inla.spde2.matern whose main arguments are used to pass the mesh
object and to fix parameters α , τ and κ . Its arguments B.tau and B.kappa are matrices with
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one row for each mesh node. If only 1 row is given, it describes a model with stationary values
of κ and τ , which will be duplicated internally for all nodes. For simulating a model with fixed
parameters κ and τ , these matrices have only one column that must be specified as logκ or logτ

respectively. Then, we extract the precision matrix QQQ of the resulting SPDE model and use it to
create independent samples of ε(s, t), t = 1, . . . ,60 through the function inla.qsample. We
fix the random seed for simulation through its seed=... argument. Finally, we manually create
the first order AR model with coefficient 0.5.

B.kappa=matrix(log(kappa),1,1)
B.tau=matrix(log(tau),1,1)
model.sim=inla.spde2.matern(mesh.sim,alpha=alpha,

B.tau=B.tau,B.kappa=B.kappa)
Q=inla.spde2.precision(model.sim)
x=inla.qsample(n=n.repl,Q,seed=seed)
a=.5
for(i in 2:n.repl){x[,i]=a*x[,i-1]+sqrt(1-aˆ2)*x[,i]}

It remains to fix covariate values and to generate the time trend in the mean to add it to the
centered Gauss–Markov space-time field. We fix an intercept −1 and the two covariates covar1
covar2.

covar1=1:n.repl/n.repl
covar2=as.numeric(arima.sim(n=n.repl,model=list(ma=rep(1,5))))
xtrend=-1+covar1+0.5*covar2
x=t(t(x)+xtrend)
plot(xtrend,type="l",xlab="time",ylab="trend",lwd=2)

For the observed data yyy to be used in estimation, we sample uniformly 50 sites among the tri-
angulation nodes contained in [0,1]2. By using R-INLA’s methods inla.mesh.projector
and inla.mesh.project to project a spatial field with known values for triangulation nodes
onto a regular grid necessary for standard plotting methods, we further provide a plot of W (s,19)
and the observation sites. At t = 19, we observe the maximum value of the time trend, and we
will later use R-INLA to do spatial prediction for t = 19.

nodes=mesh.sim$loc[,1:2]
idx.inside=which(pmin(nodes[,1],nodes[,2])>=0&pmax(nodes[,1],nodes[,2])<=1)
idx.obs=sample(idx.inside,size=n.sites)
sites=nodes[idx.obs,]
eta.i=as.numeric(x[idx.obs,])
y=rpois(length(eta.i),lambda=exp(eta.i))
t.pred=which.max(xtrend)
n.grid=100
grid=inla.mesh.projector(mesh.sim,dims=c(n.grid,n.grid))
image(grid$x,grid$y,inla.mesh.project(grid,field=x[,t.pred]),xlab="x",

ylab="y",asp=1)
points(sites,pch=19, cex=.5)

Figure 2 shows the trend component −1+ z1(t)+ 0.5z2(t) (middle display) and the spatial
field η(s,19) at a fixed instant t = 19 with observation sites indicated (right display).
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Constrained refined Delaunay triangulation
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FIGURE 2. Simulated latent Gaussian model. Left: triangulation used for the approximate SPDE simulation. Middle:
time trend. Right: simulation of the linear predictor for t = 19, with observation sites marked by black dots.

4.2. Fitting a complex space-time model with INLA

We now define and fit different candidate models to the above data y and its covariates covar1
and covar2. In Section 4.4, we will then explore tools for goodness-of-fit checks and model
selection within the R-INLA package. We will first consider a model with prior structure similar
to the simulated one, but we will also compare it to models where covariates are missing, where
the Matérn shape parameter ν takes a different value or where the likelihood is not Poisson, but
of the negative binomial type (with an additional hyperparameter for overdispersion).

First, let us define the triangulation mesh and the corresponding prior spatial SPDE model
for estimation. For estimation, we must be careful about the dimension of the latent model to
minimize memory requirements and high-dimensional matrix calculations. Therefore, will use
a mesh with a lower resolution than for simulation, which may slightly increase the approxi-
mation error with respect to the stationary Matérn correlation structure. It is often reasonable
to use observation sites as initial nodes of the triangulation and to refine it by adding nodes
where necessary, or by removing nodes too close together which could be source for numer-
ical instabilitities. R-INLA implements standard methods from the finite element literature
and offers a conveniently parametrized interface to produce numerically stable and moderately
dimensioned triangulations. R-INLA’s prior parametrization of κ and τ is a bit technical; it essen-
tially assumes that log(τ) = bτ,0 +θ1bτ,1 +θ2bτ,2 + . . . and log(κ) = bκ,0 +θ1bκ,1 +θ2bκ,2 + . . .,
where the values bi correspond to the columns of B.tau and B.kappa. The first column b0 is
a fixed offset that must always be specified (even if it is 0), whereas the following columns
correspond to hyperparameters θi that are estimated when bi 6= 0 for τ or κ . For instance,
specifying B.tau=B.kappa=matrix(c(0,1),nrow=1) would lead to a model where
κ = τ = exp(θ1). In our model, we fix the offset b0 = 0 and we estimate two hyperparameters, one
corresponding to log(τ), the other to log(κ). This can be seen as the standard prior specification
of the SPDE model in R-INLA. We fix the “correct” simulated value of α in the SPDE model.

mesh=inla.mesh.2d(sites,offset=c(-0.125,-.25),cutoff=0.075,min.angle=21,
max.edge=c(.1,.25))

plot(mesh)
points(sites,col="red",pch=19,cex=.5)
spde=inla.spde2.matern(mesh=mesh,alpha=alpha,B.tau=matrix(c(0,1,0),nrow=1),

B.kappa=matrix(c(0,0,1),nrow=1))
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The mesh counts 294 nodes. Notice that further arguments of the inla.spde2.matern(...)
function can be set to modify default priors, impose ”integrate-to-zero” constraints, etc. We now
run a first estimation by considering a model with Poisson likelihood and prior structure of the
latent Gaussian field corresponding to the model that we simulated to generate the data. Naturally,
this model should provide a good fit and we will later compare it to a number of alternative
models. The observation matrix AAA links observations yyy to the latent variables xxx through AAAxxx = yyy
and must therefore be of dimension (50×60)×(number of latent variables) for our
model. Since construction of this matrix and certain preprocessing steps before estimation like the
removal of duplicate rows is rather complicated for complex models involving the spatial SPDE
solution, R-INLA has helper methods that allow constructing this matrix and keeping track of
latent variable indices more easily. In the following, the inla.spde.make.index command
creates an index named ”spatial”, i.e., a data frame with a vector spatial (an index to match
latent variables and triangulation nodes), a vector spatial.group (an index that indicates the
membership of a latent variable in a ”group” , here given as the instant t ∈ {1, . . . ,60}), and a
vector spatial.repl (an index that indicates the group membership when groups are i.i.d.
replicates). In our case, all values of spatial.repl are 1 since there is no structure of i.i.d.
blocks in our space-time model due to the non-zero autoregression coefficient.

idx.spatial=inla.spde.make.index("spatial",n.spde=spde$n.spde,n.group=n.repl)
A.obs=inla.spde.make.A(mesh,loc=sites,index=rep(1:nrow(sites),n.repl),

group=rep(1:n.repl,each=nrow(sites)))
stack.obs=inla.stack(data=list(y=y),A=list(A.obs,1),effects=list(idx.spatial,

data.frame(intercept=1,covar1=rep(covar1,each=n.sites),
covar2=rep(covar2,each=n.sites))),tag="obs")

In practice, we may want to use a fitted model for prediction at unobserved sites. A natural
way to achieve prediction in the Bayesian framework of INLA is to add the prediction points
to the data by considering the associated observations as missing data. To illustrate R-INLA’s
facilities for this approach, we here consider prediction at instant t = 19 over a regular spa-
tial grid covering [0,1]2. Therefore, we first create a separate observation matrix and a stack
for the prediction points with missing data, and we will then use R-INLA’s join-mechanism
that allows regrouping several groups of predictors ηηηk through their observation matrices AAAk.
The inla.stack.join(stack1,stack2,...)-function creates a single model corre-
sponding to a structure (AAA′1,AAA

′
2, ...)

′xxx = (ηηη ′1,ηηη
′
2, ...)

′, where information relative to AAAkxxx = ηηηk is
regrouped in stackk for k = 1,2, . . .

n.grid=51
xgrid=0:(n.grid-1)/(n.grid-1)
grid.pred=as.matrix(expand.grid(xgrid,xgrid))
A.pred=inla.spde.make.A(mesh,loc=grid.pred,index=1:nrow(grid.pred),

group=rep(t.pred,nrow(grid.pred)),n.spde=spde$n.spde,n.group=n.repl)
stack.pred=inla.stack(data=list(y=rep(NA, n.gridˆ2)),A=list(A.pred,1),

effects=list(idx.spatial,data.frame(intercept=1,
covar1=rep(covar1[t.pred],n.gridˆ2),

covar2=rep(covar2[t.pred],n.gridˆ2))),tag="pred")
stack=inla.stack(stack.obs,stack.pred)

We now run the estimation with the inla(...) function. Its syntax ressembles that of R’s
glm(...)-function for generalized linear models, although with a variety of extensions and addi-
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tional arguments. We need a model formula given in the usual R notation. For better handling of the
intercept term, it is often preferable to make it appear explicity (form=y -1+intercept+...),
such that it can later be directly included into the latent space(-time) model. Fixed effects (i.e.,
the intercept and covariates whose linear regression coefficients are estimated) are added to
the formula in the usual way, whereas random effects are added with the f(...) function. In
our model, the approximate SPDE solution is a random effect. The first argument of f is the
name of the ”covariate” associated to the random effect. Having created an index with name
spatial beforehand, we now have a covariate spatial in the data set that indicates the
triangulation node index of the spatial SPDE model (repeated 60 times since the spatial model is
duplicated for each observation time). For prior SPDE models, we further specify the argument
model=spde in f, where spde is the R object already created for the SPDE prior model.
The SPDE model is of purely spatial nature whereas we have observations in space and time,
such that we can use the group-functionality of R-INLA to define the type of dependence be-
tween the 60 groups of spatially indexed Gaussian variables. Corresponding to the simulated
model, we here use an AR(1)-group model that models site-wise first-order autoregression of
variables over time. Since we have created the index spatial, we can specify the argument
group=spatial.group to indicate group membership of the covariates, and we have to set
control.group=list(model="ar1") for the AR(1)-model between groups.

Data must be passed to the fitting function inla(...) as a data.frame or list, and the
inla.stack.data-function allows convenient extraction of the preprocessed data object
from the stack. Further control arguments to inla(...) can be specified explicitly through
R’s usual control.?=list(...) syntax, which allows overriding the default control argu-
ments. Here, ? should be replaced by one of inla (for controlling INLA-related details like the
reordering scheme used for making the precision matrix as diagonal as possible), compute (for
specifying which quantities should be calculated, e.g. goodness-of-fit and model selection criteria),
predictor (for specifying the observation matrix AAA if there is one, and for indicating which
posterior quantities should be calculated for the predictor vector ηηη), family (for modifying
the default prior of likelihood hyperparameters), amongst others. The choice of prior distribu-
tions is often not a straightforward exercise in Bayesian statistics. R-INLA proposes default
choices, as for instance non informative priors for fixed effects, but the user can override the
default settings by using the hyper=list(...) syntax in the control.family list (for
hyper parameters related to the likelihood family) or in the f(...) function when generating
random effects; for fixed effects, the mean and precision elements of the control.fixed
list allow modifying the prior. In the following, we here fix the METIS-reordering strategy in
control.inla to avoid the higher memory requirements of the standard reordering scheme
(which were too high for the machine with 16GB of memory used for fitting, leading to a ”bus
error”). In control.predictor, we pass the observation matrix AAA that can be extracted from
the stack via inla.stack.A(stack), and we advise the program to calculate (discretized)
posterior densities for the predictor variables ηi (compute=T). Moreover, for a correct prediction
of the NA values, we must tell inla to use the link function from the first likelihood family in
control.family (in our case, there is only one) by indicating link=1. By default, R-INLA
would have assumed an identity link for NA values. In control.compute, we here demand
the calculation of CPO-values (cross-validated predictive measures, see Held et al. (2010) for a
comparison of Markov chain Monte Carlo and INLA), the marginal likelihood π(yyy), the Deviance
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Information Criterion (DIC) and the Watanabe–Akaike Information Criterion (WAIC, Watanabe
(2010); Gelman et al. (2014)), where the latter can be considered as a Bayesian variant of the com-
mon AIC. The CPO-related values are the density and cdf of the posterior distribution π(yi | yyy−i),
evaluated at the observed yi. With INLA, these cross-validation quantities can be calculated
quickly without explicitly reestimating the model, see Rue et al. (2009) for details. However,
certain theoretical assumptions might be violated such that some or all of these CPO-related
values are not trustworthy, which is then indicated in the inla-output in fit$cpo$failure.
In such a case, the inla.cpo(...)-function can be used for “manual” reestimation of the
cross-validated model for the concerned data points yi. We now construct the inla(...)-call.
For later use, we here also store the data and parameters of this first model in an object mod1:

data=inla.stack.data(stack,spde=spde)
form=y˜-1+intercept+covar1+covar2+f(spatial,model=spde,

group=spatial.group,control.group=list(model="ar1"))
cc=list(cpo=T,dic=T,mlik=T,waic=T)
cp=list(A=inla.stack.A(stack),compute=T,link=1)
ci=list(reordering="metis")
mod1=list(stack=stack,data=data,A.pred=A.pred,A.obs=A.obs,

idx.spatial=idx.spatial,spde=spde,form=form,cp=cp,ci=ci,cc=cc)
fit=inla(form,family="poisson",data=data,control.compute=cc,

control.predictor=cp,control.inla=ci)

Here we have used the default prior for a, which is defined as a Gaussian prior with ini-
tial value 2, mean 0 and precision 0.15 on log((1+ a)/(1− a)). We could have modified it
by specifying the hyper argument in control.group; for example, control.group
=list(model="ar1", hyper=list(rho=list(prior="normal", initial=0,
param=c(0,25))) would keep the Gaussian prior and set a high precision of 25, therefore
leading to an informative prior concentrating strongly around the value a = 0 resulting in temporal
independence. Since our likelihood is not Gaussian (but Poisson) and since the latent model is
quite complex, the inla run takes some time (around 50 minutes on a state-of-the art 4 core ma-
chine), and memory requirements are rather high. Notice that the standard reordering scheme for
the precision matrix could lead to a reduced computation time. We remark that inla(...) has
a num.threads argument which allows fixing the maximum number of computation threads
used by R-INLA. By default, R-INLA takes control over all available cores of the machine
for parallel execution, which can lead to problems in terms of too high memory requirements
since each thread occupies a certain amount of memory. As it is usual in R, we can now call
summary(fit) to obtain principal results of the fit. Part of its output is as follows:

[...]
Time used:
Pre-processing Running inla Post-processing Total

1.0956 2766.6987 1.0865 2768.8808
Fixed effects:

mean sd 0.025quant 0.5quant 0.975quant mode kld
intercept -0.9094 0.1451 -1.1959 -0.9091 -0.6251 -0.9084 0
covar1 0.7827 0.2352 0.3193 0.7829 1.2444 0.7833 0
covar2 0.5092 0.0262 0.4579 0.5091 0.5610 0.5089 0
Random effects:
Name Model
spatial SPDE2 model
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Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode

Theta1 for spatial -3.5143 0.0670 -3.6459 -3.5142 -3.3828 -3.5139
Theta2 for spatial 2.2750 0.0696 2.1385 2.2750 2.4119 2.2750
GroupRho for spatial 0.4892 0.0325 0.4256 0.4889 0.5532 0.4875

Expected number of effective parameters(std dev): 1020.18(24.28)
Number of equivalent replicates : 2.941
Deviance Information Criterion (DIC) ...: 8544.98
Effective number of parameters .........: 979.41
Watanabe-Akaike information criterion (WAIC) ...: 8522.71
Effective number of parameters .................: 745.45
Marginal log-Likelihood: -4752.98
[...]

We see that the posterior means of the autoregression coefficient (GroupRho) and of co-
variate coefficients of covar1 and covar2 are not far from the actually simulated values,
and the true values of those parameters lie clearly inside the 95% credible intervals. The
object fit is of list type; its various slots contain a multitude of information. For our
model, we could be interested in a better interpretable representation of the hyperparameter
estimates of the spatial SPDE model in terms of effective range and variance. In the following,
inla.spde.result(...) extracts the fitting result for the spatial index spatial associ-
ated to the SPDE. Then, for instance, inla.qmarginal allows extracting posterior marginal
quantiles, and inla.emarginal(FUN, ...) calculates posterior marginal expectations
of FUN(X), where FUN is a function and X is the posterior marginal distribution (note that
expectations are particular since EFUN(X) 6= FUN(EX)).

result.spatial=inla.spde.result(fit,"spatial",spde)
inla.emarginal(identity,result.spatial$marginals.range.nominal[[1]])

[1] 0.2914313

inla.qmarginal(c(0.025,0.25,0.5,0.75,0.975),
result.spatial$marginals.range.nominal[[1]])

[1] 0.2539053 0.2773829 0.2906817 0.3046177 0.3327678

inla.emarginal(identity,result.spatial$marginals.variance.nominal[[1]])

[1] 0.9515285

inla.qmarginal(c(0.025,0.25,0.5,0.75,0.975),
result.spatial$marginals.variance.nominal[[1]])

[1] 0.8368486 0.9083829 0.9490067 0.9918896 1.0788070

Summary statistics for any marginal distribution can further be obtained through the function
inla.zmarginal(...). We also plot a histogram of the cross-validated π(yi | yyy−i) cdf
values, and give a histogram of the fit$cpo$failure values (between 0 and 1), where values
far from 0 indicate a violation of internal assumptions in the calculation of cdf values (see Figure
3 for the resulting displays):

hist(fit$cpo$pit,breaks=50,main="",xlab="PIT value",ylab="number")
hist(fit$cpo$failure,breaks=50,main="",xlab="failure indicator",ylab="number")
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FIGURE 3. Left: histogram of Internally cross-validated cdf values for π(yi | yyy−i). Right: histogram of the failure
indicator of trustworthiness of calculated cdf values.

Cdf values are not very far from being uniform, which indicates that there are no strong
systematic biases in posterior predictions made with the model. A certain proportion of the failure
indicator values are above zero and some are even 1, meaning that there are some cdf values that
must be interpreted with caution.

Since we have done prediction for t = 19, we now extract and visualize the marginal poste-
rior mean and standard deviation over the prediction grid. To get the index of predicted vari-
ables, we can apply the inla.stack.index function to the stack object by indicating
the prediction sub-stack through the argument tag="pred". The following code visualizes
the predictions η̂i and the originally simulated Gaussian values on the prediction grid. The
inla.mesh.projector function allows switching between the finite element representation
and a regular grid by calculating the Gauss–Markov finite element approximation value to the
SPDE for the grid positions by using the ”pyramid” basis functions to interpolate between trian-
gulation nodes. We use the inla.emarginal-function for calculating posterior expectations,
where the standard deviation is calculated as

√
EX2− (EX)2 in the following code:

idx.pred=inla.stack.index(stack, tag="pred")$data
eta.marginals=fit$marginals.linear.predictor[idx.pred]
eta.mean=unlist(lapply(eta.marginals,function(x) inla.emarginal(identity,x)))
eta.mean=matrix(eta.mean,n.grid,n.grid)
image(x=xgrid,y=xgrid,eta.mean,asp=1,xlab="x",ylab="y",main="posterior mean")
proj=inla.mesh.projector(mesh.sim,xlim=c(0,1),ylim=c(0,1),dims=c(n.grid,n.grid))
image(grid$x,grid$y,inla.mesh.project(proj,field=x[,t.pred]),xlab="x",

ylab="y",xlim=c(0,1),ylim=c(0,1), asp=1,main="original")
points(sites,pch=19,cex=1)
eta2.mean=unlist(lapply(eta.marginals,function(x) inla.emarginal("ˆ",x,2)))
eta2.mean=matrix(eta2.mean,n.grid,n.grid)
eta.sd=sqrt(eta2.mean-eta.meanˆ2)
image(x=xgrid,y=xgrid,eta.sd,asp=1,xlab="x",ylab="y",main="posterior sd")
points(sites,pch=19,cex=1)

Figure 4 shows the resulting displays. As expected, uncertainty is lower close to observation
sites. The prediction captures the spatial variation of the actual data, and a deeper analysis shows
that the predicted surface is smoother than the original values: since the Gaussian prior on the
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FIGURE 4. Predictions of the latent Gaussian field for t = 19. Left: original simulated data. Middle: posterior mean.
Right: posterior standard deviation.

predictor is centered at 0, the spatial variation in posterior predictions is naturally less strong
owing to the Bayesian approach.

4.3. Other candidate models

In Section 4.2, we have used our knowledge about the simulated data model to construct the
Bayesian model that should be the most appropriate. For comparison and to illustrate R-INLA’s
functionality for other types of models, we here propose to fit some alternative candidate models.

For Model 2, we drop the temporal autoregression and consider the spatial blocks of SPDE
variables as independent in the prior. This necessitates some (slight) adaptations in the code since
there is no more group model with dependence between blocks, but we now have replicates, i.e.,
independent blocks.

idx.spatial=inla.spde.make.index("spatial",n.spde=spde$n.spde,n.repl=n.repl)
A.obs=inla.spde.make.A(mesh,loc=sites,index=rep(1:nrow(sites),n.repl),

repl=rep(1:n.repl,each=nrow(sites)))
stack.obs=inla.stack(data=list(y=y),A=list(A.obs,1),effects=list(idx.spatial,

data.frame(intercept=1,covar1=rep(covar1,each=n.sites),
covar2=rep(covar2,each=n.sites))),tag="obs")

A.pred=inla.spde.make.A(mesh,loc=grid.pred,index=1:nrow(grid.pred),
repl=rep(t.pred,nrow(grid.pred)),n.spde=spde$n.spde,n.repl=n.repl)

stack.pred=inla.stack(data=list(y=NA),A=list(A.pred,1),effects=
list(idx.spatial,data.frame(intercept=1,covar1=rep(covar1[t.pred],n.gridˆ2),

covar2=rep(covar2[t.pred],n.gridˆ2))),tag="pred")
stack=inla.stack(stack.obs,stack.pred)
data=inla.stack.data(stack,spde=spde)
form=y˜-1+intercept+covar1+covar2+f(spatial,model=spde,replicate=spatial.repl)
cp=list(A=inla.stack.A(stack),compute=T)
fit=inla(form,family="poisson",data=data,control.compute=mod1$cc,

control.predictor=cp,control.inla=mod1$ci)

Model 3 focuses on the temporal trend, neglects spatial variation and supposes that covariates
are not known. Here we use a temporal first-order random walk as prior model. We set a rather high
initial prior value for the precision of the random walk innovations (corresponding to a standard
deviation of 0.01). A sum-to-zero constraint is added (constr=T) for better identifiability (notice
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that in the case of the rw1 model it is already added by default).

data3=data.frame(y=y,covar1=rep(covar1,each=n.sites))
form=y˜f(covar1,model="rw1",hyper=list(prec=list(initial=log(1/.01ˆ2),

fixed=F)),constr=T)
cp=list(compute=T)

Once the model is fitted, it would be relatively easy to extract information about the poste-
rior distribution of the random trend from the lists fit$summary.linear.predictor or
fit$summary.fitted.values, which contain 51 copies of the same posterior information
for each time step due to the 51 sites with data. As an alternative, we here illustrate the powerful
lincomb-tool to directly calculate posterior distributions for certain linear combinations of
the latent effects, which is very useful whenever we need precise information on the posterior
distribution of some linear combinations of certain latent variables. In our case, the 60 values
of the random trend are represented as the sum of the intercept (fixed effect) and each of the
n.repl = 60 latent rw1 variables (random effect). The command

lc=inla.make.lincombs("(Intercept)"=rep(1,n.repl),covar1=diag(n.repl))

defines 60 linear combinations with structure ”intercept value plus ith component of the random
walk”, i = 1, . . . ,60, where "(Intercept)" refers to the intercept if it has been defined
implicitly in the formula without a variable name assigned to it. We now fit the model:

fit=inla(form,family="poisson",data=data3,lincomb=lc,control.predictor=cp)

The fit object will contain a list summary.lincomb.derived providing the requested
posterior summaries for the explicitly defined linear combinations of the latent variables. Another
interesting model could be obtained from combining Models 2 and 3, i.e., using a random walk in
time and a spatial SPDE model. Such a model is relatively complex if not overly complicated and
its estimation is computationally demanding, so we do not consider it here. In Models 4 and 5, we
specify a shape parameter of the Gauss–Markov Matérn model in the prior that is different from
the simulated model, using either ν = 0.5 (exponential model) or ν = 0 (not a proper Matérn
model, but still a valid covariance model).

nu=0.5 #model 4
nu=0 #model 5
alpha=nu+1
spde=inla.spde2.matern(mesh=mesh,alpha=alpha,B.tau=matrix(c(0,1,0),nrow=1),

B.kappa=matrix(c(0,0,1),nrow=1))
form=y˜-1+intercept+covar1+covar2+f(spatial,model=spde,group=spatial.group,

control.group=list(model="ar1"))
fit=inla(form,family="poisson",data=mod1$data,control.compute=mod1$cc,

control.predictor=mod1$cp,control.inla=mod1$ci)

Finally, Model 6 uses not the Poisson likelihood but the negative binomial one that has an
additional overdispersion parameter θdisp, where the variance of the negative binomial distribution
is µ + µ2/θdisp and µ is its mean. Notice that the Poisson distribution arises in the limit for
θdisp = ∞. The internal parametrization of θdisp considers logθdisp as a hyperparameter. We here
fix a relatively high initial value log(10) and use an informative log-gamma prior with shape 10
and rate 1, such that the prior expectation of θ is 10 (with prior variance 10); this yields a prior
likelihood model relatively close to the Poisson one:
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FIGURE 5. Purely temporal random walk model 3. Posterior mean curve (black) and simulated curve (blue).

cf=list(hyper=list(list(theta=list(initial=log(10),prior="loggamma",
param=c(10,1)))))

fit=inla(mod1$form,
family="nbinomial",data=mod1$data,control.compute=mod1$cc,

control.family=cf,control.predictor=mod1$cp, control.inla=mod1$ci)

More generally, the use of relatively narrow informative priors may improve the stability of
computations in complex models. Recent modifications of R-INLA go towards a more systematic
use of the so-called penalized complexity priors (Simpson et al., 2014), designed to shrink the
model towards a relatively simple reference model in a natural way and independently of any
reparametrization of prior parameters, where shrinkage towards the reference happens when data
do not provide clear evidence of the contrary.

4.4. Analyzing fitted models

We now compare the 6 fitted models. For the purely temporal model 3, the following code plots a
posterior mean estimate of the fitted temporal trend (using the lincomb-feature explained in
Section 4.3) and the simulated data, see Figure 5:

plot(1:n.repl,fit$summary.lincomb.derived$mean,type="l",xlab="t",
ylab="time trend",lwd=2)

lines(1:n.repl,xtrend,col="blue", lwd=2)

We see that neglecting the spatial variation in data and using a relatively simple, purely temporal
model here permits to reconstruct quite accurately the simulated temporal trend. Finally, we can
compare the information criteria DIC and WAIC, marginal likelihoods, estimates of spatial range,
variance and temporal autocorrelation over the candidate models, see Table 1. The marginal
likelihood is relatively close for all space-time models with an explicit spatial structure and
temporal autoregression (Models 1,4,5,6), and has its by far lowest value for the purely temporal
model 3. Model 1 whose prior structure is closest to the simulated model turns out best in terms of
DIC, but has slightly higher WAIC values than models 4 and 5 characterized by a different fixed
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TABLE 1. Comparison of fitted models: DIC, WAIC, marginal likelihood mlik, spatial range, variance of spatial
model, autoregression coefficient a. All values are rounded to three significant digits and to at most two decimals.
Estimates are posterior means and 95% credible intervals are in parentheses.

Model DIC WAIC mlik range variance a

1 8540 8520 −4750 0.29(0.25;0.33) 0.95(0.84;1.08) 0.49(0.43;0.55)
2 8660 8630 −4830 0.30(0.26;0.34) 0.92(0.82;1.03) —
3 9530 9270 −5860 — — —
4 8550 8510 −4750 0.32(0.26;0.38) 1.03(0.91;1.16) 0.49(0.42;0.55)
5 8550 8500 −4760 0.59(0.43;0.79) 0.11(0.09;0.14) 0.48(0.42;0.55)
6 8890 8810 −4750 0.34(0.29;0.40) 0.82(0.70;0.96) 0.53(0.46;0.60)

shape parameter ν in the SPDE solution, leading to less smooth sample paths in the spatial prior
random field. Notice however that differences in the estimated WAIC values between models
1,4 and 5 are relatively small such that they should be interpreted with caution. Model 6 with
the negative binomial likelihood but with the same latent Gaussian prior model as Model 1 has
rather high DIC and WAIC values, maybe due to approximations and computations that are
less accurate for this fitted model. Concerning range and variance parameters of the fitted spatial
models, we find that they are close to simulated values in all cases except Model 5, where the
different prior shape parameter ν = 0 in the SPDE seems having perturbed the calculations of the
dependence structure and the variance. Throughout, the posterior distribution of the autoregression
coefficient a (if estimated) is concentrated around the true value 0.5.

5. Discussion

We have illustrated the theory and practice of Integrated Nested Laplace Approximation, imple-
mented in the powerful R-INLA software library, which enables fast and accurate inference of
complex Bayesian models. The dynamic behavior and dependence structure in the models covered
by R-INLA is primarily governed by a latent Gaussian process for the mean of the univariate data
distribution. In view of the near endless range of models that are available, one should perhaps
also sound a note of caution since users may be misled to construct overly complicated models in
practice.
R-INLA has mechanisms to manage several different likelihoods in the same model, to use

the same latent variables in different parts of the latent model (“copying”) or to deal with non-
informative missing data. A more detailed explanation of recently added features of R-INLA
can be found in Martins et al. (2013) and Ferkingstad et al. (2015), where the latter paper
describes an improvement over the default Laplace approximation strategy for difficult modeling
cases where the number of latent variables is of the order of the number of observations or
where the concavity of the log-likelihood of the data is not strong enough. Although the INLA
approach does not directly provide the posterior dependence structure between predictors ηi

or between the data distributions for different yi, one could assume a Gaussian copula model
with the Gaussian dependence given by the precision matrix QQQ∗ of the Gaussian approximation
(11) to obtain a practically useful approximation of the posterior dependence; this approach is
implemented through the inla.posterior.sample(...) function in R-INLA. New users
should look around at www.r-inla.org, the main hub for staying informed about new INLA-related
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developments, for finding implementation details of R-INLA and for getting advice on specific
problems via its discussion forum.

The SPDE approach, providing flexible spatial Gauss–Markov models, is of interest in its own
far beyond the INLA framework where Markovian structures lead to fast high-dimensional matrix
computations. Multivariate extensions (Hu et al., 2013) and certain nested version of SPDEs
(Bolin and Lindgren, 2011) have already been proposed in the literature, although they are not yet
available in R-INLA. Further modeling extensions in terms of data likelihoods and latent models
can be expected in the near future. At the current stage, certain types of new, user-defined models
may be implemented through the inla.rgeneric.define(...) function. In particular,
the construction of more complex and realistic Gauss–Markov space-time dependence structures
based on the SPDE approach, capable to model effects like the nonseparability of space and time
would be another big step forward.
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