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Abstract: In this article, two statistical methods of diffusion of particles are proposed for modeling the transport
of pollutants in Lake Valencia (Venezuela). Both methods use as velocity field on the lake surface solutions of the
Saint-Venant equations. The two procedures are compared through Monte Carlo simulation. Furthermore, as a novelty
an algorithm to randomly generate the initial positions of the particles using information obtained from a satellite
image is designed.

Résumé : Dans cet article deux méthodes de diffusion de particules sont proposés pour modéliser le transport de
polluants à la surface du Lac de Valencia (Venezuela). Les deux méthodes utilisent comme champ de vitesses sur
la surface du lac les solutions de l’équation de Saint-Venant. Ces deux procédures sont comparées à l’aide d’une
simulation de Monte Carlo. De plus, et comme une nouveauté, un algorithme qui utilise l’information obtenue d’une
image satellite est construit pour générer les positions initiales des particules.
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1. Introduction

The increase in environmental awareness and the need to predict and improve water quality in lakes,
estuaries and coastal seas, has led to significant advances in the modeling of contaminant transport.
Hydrodynamic and pollutants transport models in water bodies, require a detailed understanding
of transport processes that exist within it. Essential elements of life and productivity such as
oxygen, heat and nutrients are transported and dispersed through these processes.

Some geometries of enclosed water bodies such as lakes, reveal that scale of the horizontal
length is much greater than the vertical length. This fact justifies a two-dimensional simulation of

* The work of José R. León was partially supported by the Inria International Chairs program.
1 Escuela de Matemáticas. Facultad de Ciencias. Universidad Central de Venezuela.

E-mail: maira.valera@ciens.ucv.ve
E-mail: angie.pineda@ciens.ucv.ve
E-mail: jose.leon@ciens.ucv.ve

Journal de la Société Française de Statistique, Vol. 158 No. 3 35-61
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2017) ISSN: 2102-6238

mailto:maira.valera@ciens.ucv.ve
mailto:angie.pineda@ciens.ucv.ve
mailto:jose.leon@ciens.ucv.ve


36 Maira Valera-López, Angie Pineda and José R. León

the current flow in these waters bodies using shallow water model by Saint-Venant equations. The
current flows can be induced by hydrodynamic circulation (wind-drive circulation), and, in this
case, the vertical current distribution is almost uniform depth with strong gradient existing only in
the bottom.

This current flow calculated, can be implemented by the advection-diffusion equation, random
walk and random flight, which are classical models applied for describing pollutants dispersion in
shallow water. The first has a deterministic implementation that combines the Fick’s law, the law
of conservation of mass and the advection equation to determine the concentration of pollution,
and the last two are stochastic models that determine the trajectories at the fluid of each particle
of pollutant.

On the other hand, random walk model and the scheme by advection-diffusion equation
accurately describe particles dispersion if these have been in the flow over a Lagrangian time
scale and have spread to cover a distance larger than the largest scale of a turbulent fluid flow
(Fisher et al., 1979). The random flight model corrects this defect by modifying the diffusion
terms present in random walk model. This modification allows a more precise description of
the particles deployment and can be shown that, after long periods of simulation, this model is
consistent with the advection-diffusion equation (Heemink, 1990).

The particle tracking method has been studied and applied in many other areas such as kinetic
theory, physical of plasma, oilfields patterns, etc. These models are also popular in some field
of flow dynamics for velocity field visualization and gaining an insight into various phenomena
of flow. In 1985, Van Dop et al. (1985), developed a one-dimensional random flight model
to describe unstable turbulent flows. An application of the model to predict the dispersion in
convective boundaries layers is discussed by De Baas et al. (1980).

This research was inspired by the ideas established by Heemink in Heemink (1990), but in this
time, we applied the numerical scheme described before (random walk and flight models), on Lake
Valencia, Venezuela (10◦11’ 00”N, 167◦44’00”W), which has an area of 350 km2 and mean depth
of 18 m, then being the largest fresh water body of Venezuela with no outlet to the sea. Specifically,
we apply those two stochastic models mentioned, to describe the dispersion of organic wastes in
this lake because its high pollution caused by wasting water from the surrounding urban areas,
makes it an appropriate place to do this study. The two algorithms are constructed to solve each
stochastic differential equation (SDE), which governs the pollutant particles dispersion. The
solution of the first stochastic differential equation is an ordinary diffusion and the second one
is a hypoelliptic diffusion. Another important achievement of our work is the implementation
of reflection algorithm at the border, developed by Bossy et al. (2004). We use this algorithm
for reflecting toward the lake’s interior the pollutant particles arriving at its frontier. Given the
complicate geometry of the Lake Valencia boundary, we also built a slight modification of this
algorithm.

An important and significant novelty of this research is that we build an algorithm that randomly
generates the position of the particles of pollutant using satellite image information. This simulates
the actual contaminant dispersion into the lake, specifically chlorophyll-a, on the time when the
image were captured by the satellite. The importance of this random generation method is that
the initial position of the particles are modeled by random pairs of a probability density of
organic waste into the lake. To carry out this, we construct a density from the vegetation index
corresponding to a satellite image of Lake Valencia. With this density we define and execute the
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Metropolis-adjusted version of the Langevin algorithm developed in Roberts and Tweedie (1996),
from which are obtained the pairs of random numbers (weakly dependent pairs of numbers),
mentioned above that model the chlorophyll-a distribution observed in the satellite image. It is
important to point out that the present work offers a comprehensive and pedagogical development
about how making predictions associated with the dispersion of pollutants. It should be noted that
although the goodness of the estimation is untested at this time, this should be the task of another
research.

In order to summarize the structure of this research, then we present a sketch thereof. We
first describe theoretically the random walk and flight models. Then, we present a short review
about the hydrodynamic model with which we obtained the Lake Valencia’s advective flow rates,
generated in Valera-López et al. (2014, 2016). Additionally, to explain the process involving a
digital processing of the satellite image to obtain the vegetation index, we expose the satellite
image section. Thereupon, we describe the applied Monte Carlo method. Then, the results section
is developed. In such a section we discuss the implementation of these stochastic methods with
two types of initial distributions: initial distribution concentrated at a fixed point and initial
distribution that simulate the proportions of chlorophyll-a on Lake Valencia. Finally, conclusion
section is presented. Moreover, the Langevin equation is described in an appendix. This appendix
is dedicated to establishing elements to simulate efficiently probability densities on relatively
compacts subsets of Rd , for any positive integer d. This justifies the generation of pairs of random
numbers, using the Langevin equation constrained by boundary conditions in a domain that is
determined by the presence of chlorophyll-a on Lake Valencia.

2. Stochastic model: random walk

To model the dispersion of pollutants in shallow water media, we develop a random walk model
consistent with the advection-diffusion equation with integrated depth. In the model that will be
described below, the pollutant is conceived as a particles collection on the surface of a medium
shallow water with depth H(x,y) and mean flow velocities u(x,y) and v(x,y) in x and y directions
respectively; accordingly, the path of the contaminant will be molded by the corresponding
particles path on the water surface.

The speed u and v are obtained from a hydrodynamic model to be developed in section 4.
As we know, the advection-diffusion equation with integrated depth is,

∂ (HC)

∂ t
+

∂ (CuH)

∂x
+

∂ (CvH)

∂y
=

∂

∂x

(
HD

∂C
∂x

)
+

∂

∂y

(
HD

∂C
∂y

)
, (1)

where t is the time variable, D(x,y) denotes the dispersion coefficient and C(x,y, t) the particle
concentration; it is a deterministic model that describes with precision particle dispersion because
it responds to fundamental laws of natural science. The C concentration satisfying this differential
equation is associated with the density p(x,y, t) corresponding to the distribution of particles in
water by the identity

C(x,y, t) =
p(x,y, t)
H(x,y)

. (2)

Substituting (2) in the advection-diffusion equation (1), the Fokker-Planck equation is obtained,
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The differential equation (3) with initial condition p(x,y, t0) = δ (x− x0)δ (y− y0) coincides
with the forward Kolmogorov equation. The solution of this Kolmogorov equation is the transition
probability density of the Markov process {(Xt ,Yt)}t≥t0 which represents particles position on
the surface water body under study and satisfies the following stochastic differential equations
(SDEs):
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1
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+
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]
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2DdW 1
t , (4)
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t , (5)

where t ≥ t0, Xt0 = x0, Yt0 = y0, (x0,y0)∈R2 and Wt = (W 1
t ,W

2
t )

T is a two-dimensional Brownian
motion which verifies,

E(dWt ,dWT
t ) = I2dt, (6)

where Id is the d×d identity matrix . These results and others similar can be consulted in Karatzas
and Shreve (1991). The consequence of the description above is that the distribution of (Xt ,Yt)
coincides with the particles distribution whose concentration C(x,y, t) satisfies the advection-
diffusion equation; this proves the consistency between the two models and justifies the use of the
paths of the diffusion {(Xt ,Yt)}t≥t0 to simulate the trajectories of each particle of the pollutant.

Formally, random walk model associates to each particle of pollutant injected at time t = t0,
at the point (x0,y0) of the surface water study, a path of the diffusion {(Xt ,Yt)}t≥t0 , with initial
condition (Xt0 ,Yt0) = (x0,y0) to describe their movement.

When the water body surface considered, denoted by D , has a closed border ∂D , the Neumann
boundary condition of the advection-diffusion equation ∇C ·n = ∂C/∂n = 0, is used to simulate
the fact that there is no particles transfer across the boundary, i.e. any solid particle crosses the
border to be reflected back into the flow domain thus keeping the conservation of mass.

For the random walk model, the corresponding Neumann condition is incorporated to its SDEs
(4)-(5) in the form of reflection term as follows:

dXt =

[
u+
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D
∂H
∂x

)
1
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+
∂D
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]
dt +
√

2DdW 1
t + γ1dkt , (7)
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)
1
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√

2DdW 2
t + γ2dkt , (8)

where t ≥ t0, Xt0 = x0, Yt0 = y0 and γ = (γ1,γ2) is a vector field with norm one, that defines the
direction of reflection and {kt}t is a process increasing only when (Xt ,Yt) is on ∂D such that
kt =

∫ t
0 1{(Xs,Ys)∈∂D}dks. The process {kt}t determines the size of the reflection (see Bossy et al.,

2004).
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3. Stochastic model: random flight

According to Fisher et al. (1979), in reality, for short periods of time after particles injection in a
turbulent water medium, their speeds are very close to a constant, and for long periods of time
after, their movements become less and least correlated at longer and longer times. The random
walk model (and consequently advection-diffusion equation), models this behavior only for long
periods of simulation because, in this model, random particles displacement are simulated by
increments of a Brownian motion which are uncorrelated due to its independence. The random
flight model corrects this defect by replacing the diffusion terms of the SDEs in (4) - (5) by
an Ornstein-Uhlenbeck processes, which accurately describe the actual behavior of the particle
velocities at times t less than TL, where TL denotes a Lagrangian time scale. This scale, which
models the time from which the particles movements are increasingly uncorrelated, it is interpreted
as a measure of how long the particle takes to lose memory of its initial turbulent velocity (Griffa,
1996; Heemink, 1990). This last article is our main reference for the equation and their parameters.
The equations that describe the random flight model are as follow:

dXt =

[
u+Ut +

(
D

∂H
∂x

)
1
H

+
∂D
∂x

]
dt, t ≥ t0, (9)

dYt =
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)
1
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+
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dt, t ≥ t0, (10)

dUt = −
(

1
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)
Utdt +(K̂)1/2dW 1

t , t ≥ t0, (11)

dVt = −
(

1
TL

)
Vtdt +(K̂)1/2dW 2

t , t ≥ t0, (12)

with K̂ = 2D/T 2
L where D is again the dispersion coefficient, Xt0 = x0, Yt0 = y0 and, Ut0 and Vt0

are independent random variables both with Gaussian distribution of zero mean and variance K̂TL
2 .

In the above system (Xt ,Yt) represents the particle position on the surface of the water body under
study, and (Ut ,Vt) represents the stochastic particle velocities induced by the turbulent fluid flow
and the two process are independent.

Diffusion processes (Ut)t≥t0 and (Vt)t≥t0 , are Gaussian processes centered and stationary with
autocovariance function given by:

E(Ut+τUt) = E(Vt+τVt) =
K̂TL

2
e−|τ|/TL . (13)

The identity in (13) shows that the autocorrelations of Uτ and Vτ are close to one for 0< τ� TL,
for instance if for some δ > 0 small enough, we have τ

TL
< δ then Corr(Uτ ,U0)≥ e−δ . However,

if τ � TL the autocorrelations tend to zero. This simulates very well the behavior of the random
velocities of the particles in the flow.

For times t such that t � TL, this model is consistent with the advection-diffusion equation
(1), since for (t− t0)/TL → ∞ or TL → 0, equations (9) - (12) reduce to stochastic differential
equations:
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where t ≥ t0, Xt0 = x0 and Yt0 = y0.
We can sketch the procedure for obtaining the above limit. Let us consider for simplicity that

D is a constant and we will work with only one coordinate. Hence the random fly model writes

dXt =
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it can be shown that for all compact A⊂ R it holds that supt∈A |X
TL
t −Yt | → 0 when TL→ 0, see

Nelson (1967) pages 71−76 for a similar result.
The equations (14) - (15) have to be interpreted, by definition, in the Stratonovich’s sense

(Arnold, 1974), but this fact occurs only when D depends on (x,y). The Itô equations correspond-
ing to the above equations are (4) - (5), which define the random walk model. Consequently, the
asymptotic model (14) - (15) is consistent with advection-diffusion equation (1).

The diffusion process {(Xt ,Yt ,Ut ,Vt)}t≥t0 is a Markov process whose transition probability
density satisfies the hypoelliptic Fokker-Planck equation:

∂ p
∂ t

= − ∂

∂x

([
u+u1 +

(
∂H
∂x

D
)

1
H

+
∂D
∂x

]
p
)

− ∂

∂y

([
v+ v1 +

(
∂H
∂y

D
)

1
H

+
∂D
∂y

]
p
)

+
1
2

∂ 2

∂u2
1
(K̂ p)+

1
2

∂ 2

∂v2
1
(K̂ p)+

∂

∂u1

(
pu1

TL

)
+

∂

∂v1

(
pv1

TL

)
, (17)
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with initial condition

p(x,y,u1,v1, t0) = δ (x− x0)δ (y− y0)
1

πK̂TL
e
− u2

1+v2
1

K̂TL . (18)

The reader is referred to the book of Soize (1994) and the references therein for more about
Fokker-Planck equations.

Models valid for more general assumptions are available: a generalization of random flight
model to inhomogeneous and non stationary turbulence can be reviewed in subsection 4.2 of
Griffa (1996) and the autocovariance functions of the speed processes in (13) can be modeled
more accurately by entering equations for acceleration and higher order derivatives of the position
(see Griffa, 1996).

Analogous to the case of random walk model, the Neumann boundary condition for the random
flight model is incorporated as reflection terms of the particle position in its displacement equations
(9) and (10).

4. Hydrodynamic Model

Hydrodynamic modeling in closed water bodies requires a detailed knowledge of the transport
process within the body.

The Saint-Venant equation, simulates the propagation of disturbances in water and other
incompressible flows. The underlying assumption is that the depth of the medium is small
compared to the wavelength of the disturbance. Lake Valencia retains this condition, so that the
use of the Saint-Venant equation provides a reasonable model for this implementation.

We developed a two dimensional hydrodynamic model that solves the Saint-Venant equations:

∂

∂ t

 H
uH
vH

 +
∂

∂x

 uH
u2H +gH2/2

uvH

+
∂

∂y

 vH
uvH

v2H +gH2/2



=



0

−gH
∂b
∂x

+ ε∆(Hu)+ρ
−1

τx

−gH
∂b
∂y

+ ε∆(Hv)+ρ
−1

τy


, (19)

where H = H(x,y, t) is the depth and b = b(x,y) is the bathymetry that is positive measured
downward from the geoid. Usually, depth H is define as H = b+η , where η = η(x,y, t) represent
the free surface elevation relative to the geoid, but in this research we consider η = 0 because
it is observed that waves on the lake have very small height, thus H does not depend on t, i.e.,
H = H(x,y).

The source term contains the following expressions: g is gravity, τx = τwx−τsx and τy = τwy−τsy

determine shear, with τwx , τwy shear stream at the bottom of the lake and τsx , τsy wind shear over
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the lake surface in x and y directions, respectively, ρ is the density, ε is viscosity parameter or
regularization and ∆ is the Laplacian (García and Kahawita, 1986; Tsanis and Saied, 2007).

These differential equations must be solved with an appropriate set of initial and boundary
conditions. Initial conditions on the velocities field (u,v) in (t = 0) are introduced: u(x,y,0) = 0
and v(x,y,0) = 0. The boundary conditions are closed and defined the calculation field to where
the water surface is in contact with the ground. This type of boundary condition is sometimes
called waterproof condition, and is interpreted as a null normal speed in respect to the normal
edge defining the integration region. However, in this study the viscosity parameter is not null,
which makes this formulation of the Saint-Venant equations (19), slightly parabolic. Consequently,
it becomes necessary to change or supplement the impermeability boundary condition with the
zero speed, sometimes referred to as non-slip condition (García and Kahawita, 1986).

The explicit finite-difference method used in this work is based on the MacCormack time-
splitting scheme, see MacCormack (1971). The MacCormack scheme is a fractional-step method
where a complicated finite difference operator is "split" into a sequence of simpler ones. The
splitting process reduces the number of calculations during each time’s step and achieves second-
order accuracy in space and time when a symmetric sequence of operators is used.

In order to incorporate numerically the Saint-Venant equations on the physical continuous
region are overlapped with a computational grid where all dependent variables are defined at the
cell centers (fully dense grid). These values are taken to represent average cell properties. The use
of fully dense grids are conceptually more consistent than staggered grids which usually generate
excessive numerical diffusion, owing to the need to take averages across cell faces.

This adaptation of MacCormack numerical scheme (predictor / corrector) is developed in
Valera-López et al. (2014, 2016).

Scheme stability is normally determined by the Courant-Friederichs-Lewy (Courant et al., 1967)
condition. However, the particular character of the discretized equation results in a somewhat
relaxed criterion, i.e.:

∆t ≤min

[(
1

∆x2 +
1

∆y2

)−1/2

(gH)−1/2

]
, (20)

where ∆x, ∆y and ∆t are the dimensions of the blocks of the mesh and the simulation time’s step,
respectively.

The results obtained after implementation on Lake Valencia, which are used for the development
of this work can be seen in the Figures 1(a) and 1(b).

5. Satellite image

Since the organic wastes in water are mainly housed in elements containing chlorophyll (such as
algae), our main interest is to model the transport of organic wastes on the lake, determined by the
presence of chlorophyll therein, which is obtained from satellite image. This image is obtained
from a satellite that shows the geography of a specific territory, in our case Lake Valencia. The
photograph taken by a satellite is supplied along with the images of each spectral band. The image
of each band is represented by a matrix whose inputs are associated with values on a discretization
of the captured surface. An image can be analyzed and interpreted by comparing images from
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(a) Magnitude of the current velocity in the static circu-
lation of Lake Valencia.

(b) Magnitude and velocity in the static circulation of
Lake Valencia

FIGURE 1. Graphical representation of the result obtained by Hydrodynamic model

different spectral combinations. Satellites have different sensors to capture images which bands
are located in a visible region (blue, green or red) and an infrared region (near, medium or far).

To carefully measure the wavelength and intensity of visible and near-infrared light that reflects
the Earth’s surface into space, a "vegetation index" is used to quantify the concentrations of leafy
green vegetation on the planet. To determine the density of green in a region, you must observe the
different colors (wavelengths), of visible and near-infrared light reflected by plants. The pigment
of the leaves of plants, chlorophyll, strongly absorbs visible light for use in photosynthesis. We
use the presence of chlorophyll in Lake Valencia to model the dispersion of organic waste in the
lake because these contain nutrients that are housed in some bioindicators such as algae, see Arcos
et al. (2005); Lanza et al. (2000); Fan et al. (2014); Fei et al. (2012); Li et al. (2010); Ostapczuk
et al. (1997); Peña et al. (2005) and Zhuowei et al. (2010). On the other hand, the cellular structure
of the leaves reflects a light near enough infrared light. If there is much more reflected radiation
in the near infrared than in the visible wavelengths, it is likely that pixel vegetation is dense. If
there is little difference in intensity of the reflected wavelengths of visible and near-infrared light,
the vegetation is probably low. When sunlight collides with the object, certain wavelengths of
this spectrum are absorbed and others are reflected. All the algae contain chlorophyll-a, therefore,
the detection of these bioindicators over the lake is done by considering the absorption of visual
radiation of this type of chlorophyll-a through a satellite image (Awad, 2014).

Almost all vegetation indices from satellite employ this difference formula to quantify the
density of plant growth on Earth. The result of this formula is called normalized difference
vegetation index (NDV I), and is the result of the following operation between red and infrared
bands, B3 and B4, respectively:

NDV I =
B4−B3
B4+B3

. (21)

The array NDV I of the processed image, measures the vegetation index in a rectangular
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(a) Band 6 image of the satellite images down-
loaded.

(b) Processed image where the NDV I is evidenced.

FIGURE 2. Data obtained from the satellite images of the Lake Valencia captures by the satellite Landsat 8 at
17 : 15 : 59, April 07, 2014.

discretization of the region R, captured by the satellite images, that contains the lake surface D ,
(see Figure 2(a)). This matrix determines a coordinate system over R considering to each pairs of
indices (i, j) of NDV I as the coordinates of the point (x,y) ∈R where NDV I(i, j) was computed.

Values of NDV I in the interval (0,1) represent the presence of chlorophyll in the lake (see
Figure 3(b)), and determine a domain C ⊂ D formed by a collection of relatively compact
subsets (see Figure 3(a)). This domain contains all the possible initial positions for the chlorophyll
particles whose trajectories can be simulated to describe the dispersion of this substance from the
time in that the images were captured by the satellite. To approximate these trajectories, their initial
positions and the mean flow velocity of the lake would be defined on the same cartesian coordinate
system. For this reason, the coordinates of the initial positions described above, are transformed
to their corresponding coordinates on a coordinate system set to the approximate dimensions of
the lake. This coordinate system corresponds to the mesh where the static circulation on the lake
is calculated (see Figure 3(a) and 3(b)).
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(a) All possible initial positions for the particles of chloro-
phyll.

Ptos. en la superficie del Lago de Valencia con indice de vegetación entre 0.01 y 1 
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(b) Cartesian coordinate system adjusted.

FIGURE 3. Data obtained from the satellite images downloaded.

Note that for best results, chlorophyll particles were discarded on the border. Thus, particles
that are modeled strictly falls within the domain of the lake (see Figure 3(a)).
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6. Monte Carlo method

To describe the pollutants transport over Lake Valencia, consider N particles to which are associ-
ated N paths of the diffusion processes that satisfy the stochastic differential equations (4) - (5)
and (9) - (12). In general, these stochastic differential equations have no analytical solution since
the existence thereof, depends on its coefficients, therefore, the numerical approximation of the
solution is used. Hereinafter, the numerical approximation scheme employed for each stochastic
model and the contaminant distribution on the lake surface are described for each time instant t.

6.1. Numerical approximation of particle transport

To perform the numerical approximation of pollutant transport over Lake Valencia, two types of
initial particles distribution are considered: an initial distribution concentrated at a fixed point and
an initial distribution generated from a satellite image.

6.1.1. Initial distribution concentrated at a fixed point

In this part, we consider an initial distribution with density p(x,y) = δ (x− x0)δ (y− y0). The
implementation consists of: fix a point (x0,y0) on the surface of the lake were N particles are
injected, whose displacements from this point will be described by Euler schemes corresponding
to the random walk and flight models.

The Euler schemes corresponding to the equations (4) - (5) are:

X̂tk+1 = X̂tk +

[
u+

∂H
∂x

D
H

+
∂D
∂x

]
(X̂tk ,Ŷtk)∆t +

√
2D(X̂tk ,Ŷtk)ε

1
tk+1

, (22)

Ŷtk+1 = Ŷtk +

[
v+

∂H
∂y

D
H

+
∂D
∂y

]
(X̂tk ,Ŷtk)∆t +

√
2D(X̂tk ,Ŷtk)ε

2
tk+1

, (23)

In both equalities, X̂tk and Ŷtk denote the numerical approximation of Xt and Yt , respectively,
where X̂t0 = x0, Ŷt0 = y0 and tk = k∆t for integers k ≥ 0 and ∆t representing the time step. In
addition, u and v are the approximations of the mean flow velocities of the lake in x and y
directions, respectively, H and D are the approximation of its depth and dispersion coefficient,
respectively. The above approximations are available in a rectangular grid adjusted to the exact
dimensions of the lake surface D .

The increments of Brownian motion ε i
tk+1

=W i
tk+1
−W i

tk , i = 1,2, necessary for the construction
of the numerical scheme, are constructed by an array of N vectors (one per particle), whose entries
are independent random numbers with the normal distribution of parameters (0,∆t).

In the developed numerical scheme, it is always necessary to determine the relative position of
the particle in the x and y direction respect to the cell that is located this particle. This calculation
is necessary to perform two-dimensional linear interpolation of u, v and H, in the point from
which will determine the following coordinates of the discretization of the particle trajectory. With
this information the code determines the new position of the particle by the approaches defined in
equations (22) and (23).
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However, it is important to check if the position obtained is outside or within the domain where
is going to calculate the trajectory because if the particle falls outside the domain it should be
immediately reflected back into the flow domain. To do this, a subroutine that executes a border
control was built based in the reflection procedure corresponding to the symmetrized Euler scheme
developed in Bossy et al. (2004), but adjusted to the characteristics of the boundary of the lake
surface ∂D .

Specifically, we start with (X̂t0 ,Ŷt0) = (x0,y0) and assume that we have obtained (X̂tk ,Ŷtk) ∈D ;
afterward, we compute the next possible position (X p,Y p) of the particle, executing the above
Euler scheme for tk+1 as follows

X p = X̂tk +

[
u+

∂H
∂x

D
H

+
∂D
∂x

]
(X̂tk ,Ŷtk)∆t +

√
2D(X̂tk ,Ŷtk)ε

1
tk+1

, (24)

Y p = Ŷtk +

[
v+

∂H
∂y

D
H

+
∂D
∂y

]
(X̂tk ,Ŷtk)∆t +

√
2D(X̂tk ,Ŷtk)ε

2
tk+1

. (25)

Then, if (X p,Y p) ∈ D we define (X̂tk+1 ,Ŷtk+1) = (X p,Y p) and follow the calculation of the
next point of the discretization of the particle trajectory, but;

— If (X p,Y p) ∈Dc∩V∂D(r) with V∂D(r) =
{

z ∈ R2 : d(z,∂D)≤ r
}

for any r > 0, defined
from the characteristics of ∂D and the size of the grid with respect to which the discretiza-
tion of the particle trajectory is being computed, then

X̂tk+1 = X p−2Fγ (X p,Y p)γ1 (X p,Y p) , (26)

Ŷtk+1 = Y p−2Fγ (X p,Y p)γ2 (X p,Y p) , (27)

where Γ = (γ1(z),γ2(z)) denotes the unit inward normal vector to ∂D corresponding to
the normal projection of z onto ∂D for z ∈Dc∩V∂D(r), and Fγ(z) denotes the algebraic
distance of z to ∂D parallel to γ.

— If (X p,Y p) ∈Dc∩V c
∂D(r) the simulation of (X p,Y p) is restarted.

In accord with Bossy et al. (2004), for domains with boundary bounded and class C5 there
exists r > 0 such that, for any point outside the domain the normal projection from the point at the
border is unique. The boundary of Lake Valencia is bounded but is not class C5, for this reason,
there exist points z ∈V∂D(r) to which the normal projection from the point to ∂D is not unique.
For z ∈V∂D(r) with this condition, we select the normal reflection corresponding to the smaller
of the distances of z to ∂D .

The procedure is similar, in terms of numerical approximation of the diffusion corresponding
to stochastic differential equations that define the random flight pattern. To estimate (Xt ,Yt), the
Euler scheme is implemented as follows:

X̂tk+1 = X̂tk +

[
u+

∂H
∂x

D
H

+
∂D
∂x

](
X̂tk ,Ŷtk

)
∆t +Ûtk ∆t, (28)

Ŷtk+1 = Ŷtk +

[
v+

∂H
∂y

D
H

+
∂D
∂y

](
X̂tk ,Ŷtk

)
∆t +V̂tk ∆t, (29)
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where u, v, H and D are as before and, in view that (11) and (12) are analytically solved for
(Ut)t≥t0 and (Vt)t≥0, defined by:

Ut = U0e−
1

TL
t
+ K̂1/2

∫ t

0
e−

1
TL
(t−s)dW 1

s , (30)

Vt = V0e−
1

TL
t
+ K̂1/2

∫ t

0
e−

1
TL
(t−s)dW 2

s , (31)

we obtain the estimations Ûtk and V̂tk of Utk and Vtk , respectively, using the Monte Carlo integration
method.

The initial random velocities Ut0 and Vt0 are random numbers with normal distribution with
parameters (0, K̂TL

2 ).
For random flight scheme, the procedure is analogous to the one described above for random

walk model.

6.1.2. Initial distribution generated from a satellite image

As was explained before, we are interested in simulating the chlorophyll dispersion in Lake
Valencia during a specific time interval [t0, tk], using stochastic models. To do this, we need pairs
of random numbers from a probability distribution that models the chlorophyll distribution in the
lake at t0, to use them as initial condition in the Euler schemes implementation of the stochastic
models. These schemes are defined by the equations (22)-(23) and (28)-(31), respectively. The
result of this implementation after k time steps, will be the estimations of the chlorophyll dispersion
in the lake at tk = k∆t.

To construct the above random sample, we consider three steps.
First, we download satellite images of Lake Valencia surface D and use the values between

0 and 1 of their vegetation index (NDV I), to determine the subset C of D\∂D characterized
by the presence of chlorophyll because these NDV I values indicate the presence of chlorophyll
in the positions where they were computed. Actually, the information of the NDV I array only
allows us to identify the nodes (i, j) of the mesh corresponding to the satellite images such that
NDV I(i, j) ∈ (0,1), then it assumes that C is formed by cells whose nodes that identifies them,
are located in the lower left corner of each grid square where NDV I is between 0 and 1. Based in
the last assumptions, C is a collection of connected subsets of D (see Figure 3(a)).

Second, we define the function π : C → R by

π(i, j) =
NDV I(i, j)

∑
A

NDV I(i, j)
, (32)

with A = {(i, j) : NDV I(i, j) ∈ (0,1)}, for the nodes (i, j) of the mesh corresponding to the
satellite images that are contained in C , and by bilinear interpolation for the rest of the points in
C . We interpret π as the density of the probability distribution that measures the proportions of
chlorophyll in the lake, for the instant that the satellite images were captured.

Third, we solve the two-dimensional Langevin stochastic differential equation (SDE) numeri-
cally:
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dLt = dWt +
1
2

∇log(π(Lt))dt, t ≥ t0, (33)

where Wt is a standard two-dimensional Brownian motion, and select, of this discretized trajectory,
the pairs of random numbers with density π that will be assigned to (x0,y0) in the implementation
of the stochastic models. We approximate this SDE using the Metropolis- adjusted version of its
Euler scheme, with symmetric and normal reflection on the border ∂C (see Bossy et al., 2004 and
Roberts and Tweedie, 1996).

Specifically, for all connected subset of C , is chosen a point from which the approximation of
a path of the diffusion process Lt that solves the equation in (33) is generated; then a collection of
trajectory points are selected, spaced by a fixed number of time steps to ensure their approximate
independence. All the points so built, form the random sample of points in R2 with density π that
we need to use as initial condition in the implementation of the stochastic models. The points of
the random sample constructed have density π because this density is invariant for the diffusion
Lt (see Appendix for the theoretical justification).
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FIGURE 4. Random pairs of the initial distribution generated from satellite image.

Figure 4 shows a random sample over Lake Valencia surface constructed by the procedure
described before, from images of Lake Valencia captures by the satellite Landsat 8 particularly at
17 : 15 : 59, April 07, 2014.

6.2. Numerical approximation of the particles distribution in an instant t

In accordance with the previously developed, the position of N particles injected into the
flow at time t = j∆ where j is non-negative integer, is approximated by the random sample
(X1

j ,Y
1
j ), · · · ,(XN

j ,Y
N
j ), obtained from the implementation of Euler scheme (22) - (23) in the

random walk model, or Euler scheme (28) - (29) corresponding to the random flight model.
From this sample, the probability density p(x,y, t), corresponding to the particles dispersion at

time t is estimated using a Gaussian kernel estimator defined as follows:

p̂N(x,y, j∆) =
1

h2N

N

∑
i=1

K

(
x−X i

j∆

h
,
y−Y i

j∆

h

)
, (34)
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where K is a two-dimensional Gaussian kernel and h = h(N)→ 0 when N → ∞. We use the
optimal window that is h = N−1/3 in dimension two, one can also consider the use of the
automatically chosen window, but this may slow the running of the algorithms. This estimator
(34) is asymptotically unbiased and for sufficiently large samples is distributed as a normal
distribution. The reader can consult the monograph (Silverman, 1986) for more about Kernel
density estimation.

The estimation of this density allows us to determine an approximation of the distribution of
particles on the fluid at any time t.

7. Results

In this section, we show the empirical behavior of the stochastic models that we have introduced.
In order to present the results of the implementation, this section is divided in three parts. First,
an analysis of both models, random and flight, are presented. Second, a presentation by the data
used for implementation is exposed. Third and final, a comparison between these numerical
schemes is done through Lake Valencia implementation with two types of initial distributions:
initial distribution concentrated at a fixed point and initial distribution generated from a satellite
image. These distributions are described in section 6.

7.1. Analysis of the models

As it was presented in section 2 and 3, random walk model, simulates the behavior of the particles
in a domain considered only for long periods of simulation. This is because the random particles
displacements are simulated by Brownian motions that have independent increments. However,
the random flight model corrects this shortcoming through replacement of the dispersion terms in
(4) and (5) by Ornstein-Uhlenbeck processes that describe the behavior of the particles velocities
at time t less than TL.

Is important to recall that TL can be interpreted as a measure of how long the particle takes to
lose memory of its initial turbulent velocity. Also, it is relevant to analyze the simulation behavior
respect different values of TL. The random flight model is consistent with the advection-diffusion
equations (1) for times t such that t� TL, since for t−t0

Tl
→∞ or TL→ 0, the stochastic differential

equations that define the random flight model, (9)-(12), are reduced to the Itô equations established
for the random walk model. As discussed in sections 2 and 3 both models are consistent with
advection-diffusion equation (1).

7.2. Data used in the implementation

In testing is considered static circulation obtained with wind speed and direction is 3 m/s from
south-south-west to the north-north-east. The current velocity over the lake used for the calculation
corresponds to that obtained by the hydrodynamic model presented in section 4 (Valera-López
et al., 2014, 2016).

To make the simulations we consider that the dispersion coefficient is a constant and then we
use the following value for this coefficient in Lake Valencia: D = 5×10−5km2/h. This value has
the same order of magnitude of one experimental value found for the dispersion coefficient in
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Lake Huron that is 4×10−2m2/s (Fisher et al., 1979, chapter 6). In effect D = 5×10−5km2/h =
1.39×10−2m2/s. This data is used because there is no experimental data of this kind over Lake
Valencia and was not found on similar lakes. The references consulted only contain experimental
values about ocean, rivers, large lakes (such as the case of Lake Huron in USA), and reservoirs.
Several tests before to choose the value of D were performed. The value D = 5×10−5km2/h gave
a better adjustment regarding the expected diffusive behavior of the particles. All that in function
of the characteristics of the mean flow velocity and the vortices in Lake Valencia that are observed
in Figure 1.

Bathymetry (function H) was obtained from existing geographical information in a report
by the Ministry of Environment of Venezuela (Ministerio del ambiente, 1995) and it was then
digitized using an automatic software.

Along the simulations we use the time’s step ∆t = 0.3573h.
To implement the numerical schemes of the stochastic models using an initial distribution gen-

erated from satellite images, we download these images from satellite Landsat 8 for free through
the website of the US Geological Survey - EarthExplorer. This image has 12-bit radiometric
resolution (240 m spatial resolution), eight bands of 30 meters and the panchromatic band of 15
meters. The downloaded images were captured by the sensor Enhanced Thematic Mapper (ETM),
which has six bands in the electromagnetic spectrum from the visible to middle infrared.

7.3. Models implementation

Hereinafter, the empirical behavior of both stochastic models through implementation on Lake
Valencia are introduced. Here, we present two examples. Each of them corresponds to a type of
an initial condition: one concentrated at a fixed point and other generated from a satellite image.

7.3.1. Example 1: Initial distribution concentrated at a fixed point

In what follows we present the obtained results when the particles depart at a fixed point. Thus,
some graphical representations of the particles behavior before and after of certain Lagrangian
time TL are shown. The dispersion coefficient is as we have said D = 5×10−5km2/h.

Figures 5 and 6 show the results obtained by injecting 2500 particles at point (30.2,13.1).
For this purpose, the position of each particle after 20000 time’s steps corresponding to their
trajectories is determined. To implement the random flight model is considered TL = 500h. The
value chosen for TL is approximately Tf

14 , where Tf = 7146h represents the total propagation
time of the particles on the lake. Figures 5(a) and 5(b) show the position of the particles at time
t = 357.3h lower than TL = 500h. In both figures, a less dispersive behavior of random flight
model versus random walk model is noticeable. However, in Figures 6(a) and 6(b), we see that
in t = 2858.4h, which is much greater than TL = 500h, the behavior of both models is similar,
showing the trend towards behavior described theoretically. Under conditions as above, but with
TL = 20h, Figures 8(a) and 8(b) show that with the same value of t, the similarity between
models becomes much more evident. This is because the autocorrelations of the particle stochastic
speed, at the random flight model equation (13) tend faster to zero when TL = 20h compared to
TL = 500h, and this fact ensures the fastest convergence of random flight to random walk, (see
section 3).
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(a) Random walk.

(b) Random flight with TL = 500h.

FIGURE 5. Particles position at t = 357.3h generated from the implementation with D = 5×10−5km2/h, after being
injected into the coordinate (30.2,13.1) represented in the figure by a square.
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Figures 7 and 9 show the kernel density corresponding to time t defined above for TL = 500h
and TL = 20h of random walk and flight models, respectively. These figures also show that random
flight model approximates better random walk model, when the first is executed with TL = 20h.
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(a) Random walk.

5 10 15 20 25 30

2

4

6

8

10

12

14

16

18

20

22

VA con: NT= 2500, L= 20000, t= 2858.4, T= 7146, TL= 500, x
0
= 30.2, y

0
= 13.1

(b) Random flight with TL = 500h.

FIGURE 6. Particles position at t = 2858.4h generated from the implementation with D = 5×10−5km2/h, after being
injected into the coordinate (30.2,13.1) represented in the figure by a square.

(a) Kernel density of random walk. (b) Kernel density of random flight with TL = 500h.

FIGURE 7. Kernel density of particles distribution at t = 2858.4h generated from the implementation with D =
5×10−5km2/h, after being injected into the coordinate (30.2,13.1).

7.3.2. Example 2: Initial distribution generated from a satellite image

This example is devoted to describe the estimations given by the stochastic models of the real
chlorophyll dispersion in Lake Valencia during 1200.2h, this is approximately fifty days, from
t0 = 17 : 15 : 59, April 7, 2014.

To make these estimations, we follow the general procedure described in section 6.1.2.
As a first step, we download images of the lake surface captured by the satellite Landsat 8 at

time t0 and, using the information of the bands 3 and 4 of these images, we calculate the vegetation
index NDV I, of the lake.

Second, with this NDV I we identify the areas with presence of chlorophyll in Lake Valencia
(see Figure 3(b)), and define upon them, a probability density π that approximates the chlorophyll
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(a) Random walk.
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(b) Random flight with TL = 20h.

FIGURE 8. Particles position at t = 2858.4h generated from the implementation with D = 5×10−5km2/h, after being
injected into the coordinate (30.2,13.1) represented in the figure by a square.

(a) Kernel density of random walk. (b) Kernel density of random flight with TL = 20h.

FIGURE 9. Kernel density of particles distribution at t = 2858.4h generated from the implementation with D =
5×10−5km2/h, after being injected into the coordinate (30.2,13.1).

density and, as consequence, defines a probability distribution that simulates the chlorophyll
distribution at t0.

Third, for all connected spot of chlorophyll shown in Figure 3(a), we select a point from which
the approximation of a path of the Langevin process Lt , defined by the equation (33) from the
density π , is generated; then a collection of 15000 trajectory points are selected, spaced by 100
time steps to ensure their approximate independence. All the points so built, form the random
sample of points in R2 with density π that we need to implement the stochastic models.

Finally, we transform the coordinates of each element of the random sample constructed
before to their corresponding coordinates in the mesh where the static circulation on the lake
was approximated, and use, this new coordinates, as initial condition of the Euler schemes
corresponding to the random walk and flight models. After 3359 time steps for numerical schemes,
the simulation of the chlorophyll dispersion is obtained for 1200.2h.

Figure 4 shows a random sample constructed by the procedure described before, from images
of Lake Valencia captured on the date and time stated above. Figures 10(a) and 10(b) show
the positions of the particles 1200.2h after, determined by the random walk and flight models,
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(a) Random walk. (b) Random flight with TL = 500h.

FIGURE 10. Particles position at t = 1200.2h generated from the implementation with D = 5× 10−5km2/h, with
initial distribution generated from satellite image.

(a) Kernel density of random walk. (b) Kernel density of random flight with TL = 500h.

FIGURE 11. Kernel density of particles distribution at t = 1200.2h generated from the implementation with D =
5×10−5km2/h, with initial distribution generated from satellite image.
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respectively. The implementation of random flight model was made by using TL = 500h. In the
last two figures cited, we observe that, as in the case of the initial distribution concentrated at a
fixed point, when D = 5×10−5km2/h the approximations given by the models are similar, despite
the fact that, the random flight model is less dispersive that random walk model. Figures 11(a)
and 11(b) show that the kernel densities corresponding to the stochastic models also exhibit the
behavior described above.

8. Conclusions

In this work is carried out for the first time, a study on the transport of pollutants in Lake Valencia
(Venezuela) through the implementation of two stochastic models: random walk and flight.

This study was started by us with the determination of circulation flow on the surface of the
lake (Valera-López et al., 2014, 2016), and continued with the model that describes the movement
of pollutants, the main product of this research.

To achieve the goal of describing the distribution patterns of sediment in Lake Valencia by
these two models, the velocities of static circulation were obtained from a hydrodynamic model,
which is simulated by using Saint-Venant equations. Interpreting the advection-diffusion equation
as a Fokker-Planck equation, it is possible to describe the particle trajectory of contaminant with
both stochastic models. The random flight model is introduced to improve the behavior of random
walk model, shortly after deployment of the particles. In the result obtained by the random flight
model can be observed least dispersion of particles in comparison with the result of random walk
before the Lagrangian time, demonstrating consistency with the behavior described in sections
2 and 3. In addition, after a long time to run and considering a smaller Lagrangian time, one
observes greater similarity between the two models. Ensuring, faster convergence of the random
flight model towards the random walk.

An important novelty of this research is that we build an algorithm that randomly generates the
position of the particles from the contaminant using satellite image information. This simulates
contaminant dispersion from a true initial distribution into the lake since the time when the
images were captured by the satellite. The importance of this method of random generation is
that the initial positions of the particles are modeled by random pairs of a probability density that
accurately approximates the actual density of organic waste into the lake. In addition, this method
ensures that the simulation of contaminant transport is not only determined by the initial position
of the particles but also by the density of pollution in the area determined by these positions. The
initial condition constructed by the random sample, allows models to better approximate the real
pollutants transport on the lake. In implementing this initial condition in the stochastic schemes,
we observed that the behavior of the results obtained when considering the punctual concentration
is maintained, i.e. random flight is still less dispersive than random walk. Although using the
shallow water model (from the Saint-Venant equation), the random walk model and random flight
model are standard in the study of the circulation of lakes and the distribution of pollutants by
sediments, its application is new to Lake Valencia, as well as the use of stochastic and statistical
methods using satellite images to model the contaminant distribution (actually the chlorophyll-a
dispersion).

We think that this study may lead to an automatic procedure for the determination of areas with
the highest pollution and therefore ensure monitoring of areas closed or coastal water. This can be
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done considering, on these models, dynamic speeds (which vary according to changes in wind
speed or direction) or obtaining satellite images capture time nearest each other.

Even though our application has been made in the Lake of Valencia, developed method can be
applied to any surface water closed.

Appendix

Simulation of a density defined on a set Ω⊂ Rd with boundary in C2

The text that follows is an adaptation of the methods presented in Fattler and Grothaus (2007), to
the conditions that satisfies our problem. We include it for sake of completeness and for giving to
the non specialist reader some elementary insight over a so abstract matter. Thus, let us consider a
relatively compact connected set Ω⊂ Rd . Let us also assume that its boundary ∂Ω is a rectifiable
set and that its parametrization has two continuous derivatives and also the set has Lebesgue
measure zero. Let ϕ2 be a density on Ω that is differentiable satisfying ε ≤ ϕ2(x)≤ ||ϕ2||∞ in
Ω (it can be assumed that this function only vanishes in the boundary but, in such a case, our
diffusion can not start in a point of this set). It can be defined the symmetric Dirichlet form (for
an introduction to such a notion the reader can consult the reference Fukushima et al., 2010), that
is the closure in L2(Ω,µ), where dµ(x) = ϕ2(x)dx, of the following symmetric bilinear form

E ( f ,g) =
1
2

∫
Ω

< ∇ f (x),∇g(x)> ϕ
2(x)dx, (35)

that is defined for f , g ∈W with W = { f ∈C(Ω)| f ∈W 1,1
loc (Ω), E ( f ,g)< ∞}, where W 1,1

loc (Ω)
denotes the Sobolev space of functions having a locally integrable weakly derivative on Ω.
Given that the function ϕ2 does not vanish in no point of Ω then the bilinear form (35) with
domain D is closable in L2(Ω,µ) and its closure (E ϕ2

,D(E ϕ2
)) is a Dirichlet form conservative,

regular and symmetric. Moreover there exists a self adjoint operator L ϕ2
with dense domain

D(L ϕ2
) ⊂ L2(Ω,µ) that generates the Dirichlet form (E ϕ2

,D(E ϕ2
)) acting in the following

form:

L ϕ2
f =

1
2

∆ f+< ∇(logϕ),∇ f >, (36)

for functions belonging to { f ∈W 2,∞(Ω)|∂ν f (x)= 0 for all x∈ ∂Ω}⊂D(E ϕ2
), where ∂ν denotes

the derivative with respect to the outward normal of ∂Ω. Also, W 2,∞(Ω) denotes the Sobolev
space of functions two times weakly differentiable and essentially bounded in Ω.

In fact the Dirichlet forms defined in (35) have different closures, depending on the core of the
initial forms. Two of such closures are important, the minimal associated to Dirichlet boundary
condition and the maximal linked to the Neumann boundary condition. We only refer here to the
second one.

Now it can be defined the isometry L2(Ω,µ)→ L2(Ω,dx) by using the properties of ϕ , such
that for f ∈ L2(Ω,µ)→ g = ϕ f ∈ L2(Ω,dx). In this manner, denoting T ϕ2

t the semigroup of
self adjoint and bounded operators generated by−L ϕ2

, one can show, using the isometry, that the
transformed semigroup denoted by Tt acting on L2(Ω,dx) satisfies Ttg = ϕT ϕ2

t (ϕ−1g), for all
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g ∈ L2(Ω,dx). Furthermore, if 1 denotes the constant function equal to 1, it holds that T ϕ2

t 1 = 1.
By using the relationship between the two semigroups, it has Ttϕ = ϕ . This implies that function
ϕ is an eigenfunction for the infinitesimal generator A of Tt associated to the 0 eigenvalue. Besides,
it can be proved that

Ag = L ϕ2
(ϕ−1g) =

1
2

∆(ϕ−1g)+< ∇ logϕ,∇(ϕ−1g)> .

The domain of A results the set D(A) = ϕD(L ϕ2
).

Then for all continuous and bounded h defined on Ω and defining dµ(x) = ϕ2(x)dx it holds

< T ϕ2

t (µ),h >=< µ,T ϕ2

t (h)>=
∫

Ω

T ϕ2

t (h)(x)ϕ2(x)dx.

Moreover, one needs to consider the boundary conditions. Hence, by using the Green formula
one has

∫
Ω

(gL ϕ2
f − f L ϕ2

g)ϕ2dx = −
∫

∂Ω

(ϕ2(x)g∂ν f − f ∂ν(ϕ
2(x)g)+∂ν(logϕ

2)ϕ2 f g)dx

= −
∫

∂Ω

(g∂ν f − f ∂νg)ϕ2dx = 0.

The last equality is a consequence of the boundary condition. This property is transferred onto
the semigroup yielding

< T ϕ2

t (µ),h > =
∫

Ω

ϕ(x)T ϕ2

t (ϕ−1g)(x)ϕ(x)dx

=
∫

Ω

Tt(g)ϕ(x)dx =
∫

Ω

g(x)Tt(ϕ)(x)dx

=
∫

Ω

g(x)ϕ(x)dx =
∫

Ω

h(x)ϕ2(x)dx =< µ,h > .

Getting T ϕ2

t (µ) = µ, assuring that µ is the invariant measure. Further the operator L ϕ2
is

self-adjoint and, under the hypothesis of our problem, it has a discrete spectra.
Let α > 0 and let define the resolvent

(α−L ϕ2
)−1 f (x) =

∫
∞

0
e−αtT ϕ2

t f (x)dt.

Let us quote the following theorem shown in Reed and Simon (1978) Theorem XIII. 64. Only
the assertions that are interesting for this work will be written.

Theorem. Let A be a self-adjoint operator that is bounded from below. The following are
equivalent:

i) (A−α)−1 is compact for at least a

α ∈ ρ(A) = {α ∈ C : (A−α)−1is bounded and injective}.
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ii) There exists an complete orthonormal system {ϕi}∞
i=0 in D(A) such that Aϕn = λnϕn with

λ0 ≤ λ1 ≤ . . .≤ λn . . . and λn→ ∞.
To apply this result to our problem we only need to prove that (α −L ϕ2

)−1 is a compact
operator defined L2(Ω,µ)→ L2(Ω,µ). But we know by the general theory of semigroups that
(α−L ϕ2

)−1(L2(Ω,µ)) = D(L ϕ2
). Let un be a sequence of bounded vectors in L2(Ω,µ). Let

define gn = (α−L ϕ2
)−1un, then denoting as || · ||op the operator norm it holds

||gn|| ≤ ||(α−L ϕ2
)−1||op||un||< K,

and moreover, L ϕ2
gn = αgn−un, then

||L ϕ2
gn|| ≤ α||gn||+ ||un|| ≤ (||(α−L ϕ2

)−1||op +1)||un||< 2K.

Let us introduce also the norm generated by the operator L ϕ2
as

|| f ||
L ϕ2 = || f ||L2(Ω,µ)+ ||L

ϕ2
f ||L2(Ω,µ)∀ f ∈ D(L ϕ2

).

Given that the function ϕ2 is bounded by below and above, this norm is equivalent to the norm
of the Sobolev space W 1,2(Ω) with respect to the Lebesgue measure:

|| f ||W 1,2 = || f ||L2(Ω,dx)+

(∫
Ω

||∇ f ||2dx
)1/2

.

This entails that ||gn||W 1,2 ≤C for some constant C. The compact embedding W 1,2→L2(Ω,dx)
implies that there exists a subsequence gnk that converges in L2(Ω,dx) and also in L2(Ω,µ), so
the compactness of the resolvent hold.

Let us consider {λi}∞
i=0 the eigenvalues for L ϕ2

, with λ0 = 0 and eigenfunctions {ϕi}∞
i=0. In

this manner all function f ∈ L2(Ω,µ) can written as

f =
∞

∑
i=0

< f ,ϕi >µ ϕi.

Recall that ϕ0 = 1, in this form c0 :=< f ,1 >µ=
∫

Ω
f (x)ϕ2(x)dx. One has by using the spectral

theorem,

T ϕ2

t ( f )(x) =
∞

∑
i=0

e−λit < f ,ϕi >µ ϕi.

This equality implies the following inequality

∥∥∥T ϕ2

t ( f )− c0

∥∥∥
L2(µ)

≤ e−2λ1t || f ||L2(µ). (37)

For justifying this inequality, first we know that zero is an eigenvalue and has multiplicity one
because the invariant measure is unique. Moreover, this implies that λ1 > 0.

Also, the theory of Dirichlet forms allows obtaining a Markov process {Xt}t≥0 taking values
on Ω such that it satisfies the SDE:
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dX(t) = dB(t)+2∇(logϕ)(X(t))dt. (38)

with reflecting boundary condition and X0 = x ∈Ω.
The expression “with reflecting condition in the boundary” must be understood according

Lions and Sznitman (1984) as the SDE whose solution is the process X t and has the form

dX(t) = dB(t)+2∇(logϕ)(X(t))dt +ν(X(t))dk(t), (39)

where k(t) is the local time that increasing only whenever X t is in ∂Ω. In fact, the definition of
this last process is

k(t) =
∫ t

0
1∂Ω(X(s))d|k|(s).

The transition density of such a process starting at y ∈Ω satisfies the following Fokker-Planck
equation

∂t p(t,x) = L ϕ2
p(t,x),

∂ν p(t,x) = 0,

for all x ∈ ∂Ω and p(0,x) = δy(x) for y ∈Ω. The result obtained in (37) implies that the process
X is ergodic and β -mixing (see Doukhan, 1994 for the definition and properties) with exponential
rate and, furthermore,

1
t

∫ t

0
f (X(u))du c.s.→ E[ f (X0)] =

∫
Ω

f (x)ϕ2(x)dx.

Simulation Algorithm

We can try now to implement a simulation process that permits the generation of a sample
X1,X2, . . . ,XN with density ϕ2. We consider first the case where ϕ2 is a density in Rd . In Roberts
and Tweedie (1996) it was established that the diffusion solution of the following SDE

dX(t) = dB(t)+∇ logϕ(X(t))dt (40)

has as invariant measure dµ(x) = ϕ2(x)dx. In this form to generate an approximated sample it
is enough to approximate the solution of the SDE with some numerical scheme. If one uses the
Euler’s scheme the equation (40) can be approximated by

X (k+1)h = Xkh +h(∇(log(Xkh)))+
√

hεk.

The constant h is the discretization step and the εk are a sequence of independent standard
Gaussians r.v. If one can ensure that for a sufficiently small h the Markov chain X (k+1)h has an
invariant measure µh and moreover µh and µ are near in a certain metrics, then we only need to
run the scheme for generating the sample. However, Roberts and Tweedie in Roberts and Tweedie
(1996) pointed out that such a procedure does not give always good results, proposing then a
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modification that we sketch in that follows. In the Euler’s scheme given the value Uk = Xkh, we
must generate a Gaussian random variable Uk+1

d
= N(Uk +h∇ logϕ(Uk),hId). This fact implies

that the transition density of the chain is

q(u1,u0) =
1

(2πh)
d
2

e−
1
2h ||u1−(u0+h logϕ(u0))||2 .

As is remarked in the article, citing Julien Besag, this chain could be non ergodic and also the
convergence towards the invariant density could be pretty slow. As a consequence of this last
situation the algorithm must be modified by using a procedure of acceptance or reject the same
type of the one of the Hasting-Metropolis algorithm. This procedure is used for building a chain
Mk. In first place given the value of Mk, a variable Uk+1 is generated with Gaussian distribution
N(Mk +h∇ logϕ(Mk),hId). The value Uk+1 is accepted with probability equal to

α(Mk,Uk+1) = 1∧ ϕ2(Uk+1)q(Uk+1,Mk)

ϕ2(Mk)q(Mk,Uk+1)
,

where q is the transition density of the discrete chain. If Uk+1 is accepted we set Mk+1 =Uk+1,
otherwise we set Mk+1 = Mk. The properties of the Hasting-Metropolis algorithm imply that this
algorithm converges towards the invariant measure.

Turning to the problem of simulate a density defined on Ω. We approximate the solution of the
SDE (39) by using the Euler scheme of Bossy et al. (2004). However, one must admit that this
discrete solution approaches the invariant measure ϕ2(x)dx, when the step of discretization tends
towards zero. Therefore, two questions remain open and require further study.

— For simulation of a density defined on Ω the Euler scheme of Bossy et al. (2004), can be
modified to approach the invariant measure?

— Can we work with a simulation scheme similar to the one of Roberts and Tweedie (1996)
to have a convergent algorithm?
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