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Abstract: A Bayesian approach is proposed for combining dates from different dating methods used in archeology. This
modeling provides an automatic way to penalize outlying data. Examples are provided from different archeological contexts
and involving radiocarbon, luminescence and archaeomagnetic results. This new combination procedure is also applied to the
wiggle-matching process in dendrochronological dating. Calculations are based on MCMC numerical techniques and can be
performed using the cross-platform ChronoModel application which is free, open source software (FOSS).

Résumé : Nous proposons un modèle Bayésien pour combiner des dates provenant de différentes méthodes de datation
utilisées en archéologie. Cette modélisation fournit un moyen automatique de pénaliser les données aberrantes. Nous
illustrons ses propriétés sur des données issues de différents sites archéologiques où des échantillons ont été datés par
radiocarbone, archéomagnétisme ou luminescence. Nous montrons que ce modèle peut facilement s’étendre au contexte de la
dendrochronologie. Des algorithmes MCMC sont mis en oeuvre pour approcher les lois a posteriori. Ils sont disponibles dans
le logiciel libre ChronoModel dont le code source est ouvert.
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1. Introduction

Many dating methods are available to learn about the age of archeological artifacts. The choice of
the method generally depends on the nature of the object and its age (see Aitken, 2013 for a detailed
review). Radiocarbon, luminescence, and archaeomagnetic dating are probably the most commonly
used methods.

Radiocarbon dating (or 14C dating) is used to evaluate the ages of biological specimens (e.g.
charcoals, wood artifacts, bone remains, etc.). It is possible to date objects as old as around 50 000
years. Many statistical papers are devoted to this method and software applications are available to
analyze and model the radiocarbon data (see Buck et al., 1999; Ramsey and Lee, 2013; Ramsey, 2009a).

Luminescence dating (TL/OSL) is based on the radiation absorbed and stored in the crystal lattice
of minerals such as quartz. The calculated age is the elapsed time since the last exposure to sunlight or
intense heat.

Archaeomagnetic dating (AM) relies on the past variations of the Earth’s magnetic field. The
ferromagnetic minerals, heated to high temperatures, acquire a remnant magnetization with a direction
parallel to, and an intensity proportional to, the local Earth’s magnetic field at the time of cooling. The

1 CNRS IRAMAT-CRPAA, Université Bordeaux-Montaigne and Géosciences-Rennes, Université Rennes 1.
E-mail: philippe.lanos@univ-rennes1.fr

2 Laboratoire de Mathématiques Jean Leray and ANJA-Inria Rennes, 2 Rue de la Houssinière – BP 92208, 44322 Nantes
Cedex 3, France
E-mail: anne.philippe@univ-nantes.fr [corresponding author]

Journal de la Société Française de Statistique, Vol. 158 No. 2 72-88
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2017) ISSN: 2102-6238

mailto:philippe.lanos@univ-rennes1.fr
mailto:anne.philippe@univ-nantes.fr


Hierarchical Bayesian modeling for combining dates in archeological context 73

method is implemented for some geographical area where variations of the Earth’s magnetic field are
known. It allows the last heating of baked clays to be dated.

One important question in archeology is the estimation of the date of an archeological event
that is associated with a set of contemporaneous artifacts. This problem comes up frequently when
constructing chronologies in archeology. Each artifact of the event is dated, and so we collect a sample
of observations provided by one or several dating methods. This leads to the issue of combining
measurements in order to define the event date.

The simplest statistical model is defined as n independent measurements M1, . . . ,Mn assumed to
have the same unknown mean µ . The parameter µ is in turn related to calendar time via so-called
calibration curve. We denote as s2

i the experimental variance on each measurement Mi, that is supposed
known and evaluated by the laboratory during the measurement process. To summarize, we write

Mi = µ + siεi, ∀ i = 1, ...,n (1)

where ε1, ...,εn are n independent identically distributed Gaussian random variables with zero mean
and variance 1. The maximum likelihood estimate of µ (Ward and Wilson, 1978) is given by

µ̂n =

n

∑
i=1

Mi

s2
i

n

∑
i=1

1
s2

i

. (2)

The measurements Mi with high variance s2
i are penalized, and thus they contribute less to the estimation

of the mean µ . In Galbraith et al. (1999), this model is named the "common age model" and is applied
for combining paleodoses in the luminescence dating method. This method is also implemented for
combining 14C ages (see Ramsey, 2009a).

To take into account individual effects, we can add a random effect on the parameter µ as follows:

Mi = µi + siεi (3)

µi = µ +σλi,

where λ1, ...,λn,ε1, ...,εn are 2n independent and identically distributed Gaussian random variables
with zero mean and variance 1. Error σλi represents the uncertainty between the measurements and the
event µ due to sampling (representativeness) problems of unknown origin which are not related to the
measurement process in the laboratory. This model is named the "central Age model" in Galbraith et al.
(1999). An explicit form of the likelihood estimate is not available. Alternatively, a Bayesian approach
can be adopted to estimate the parameters µ and σ2 of this hierarchical model. It is thus necessary
to choose a prior distribution on (µ,σ2). This choice is discussed for instance in Congdon (2010) or
Spiegelhalter et al. (2004) in the particular case of meta-analysis.

In archeology, dating laboratories might provide measurements for
— a 14C age,
— a paleodose measurement (TL/OSL),
— an inclination, a declination or an intensity of the geomagnetic field (AM).
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The laboratory measurements are then converted into calendar dates using a calibration curve (see
Section 2). This step must be added to the combination model. We thus propose to extend the model
with the random effect defined in (3) by adding a calibration step, and including individual effects on
the variance by replacing σ by σi.

The inclusion of individual effects is motivated by the fact that each measurement can be affected by
irreducible errors (Christen, 1994) which can come from different sources such as:

1. The way of ensuring that the samples studied can realistically provide results for the events that
we wish to characterize (measurement or date)

2. The care taken in sampling in the field,

3. The care taken in sample handling and preparation in the laboratory,

4. Other non-controllable random factors that can appear during the process.

The rest of the paper is organized in three sections. Section 2 is devoted to the Bayesian calibration
of measurements and the combination of dates. In Section 3, we describe our hierarchical Bayesian
model for combining measurements in the context of dating problems and define an "event model” to
estimate a date for contemporary artifacts. Section 4 provides an application to wiggle-match dating of
tree-ring sequences.

Remark 1. We define each Bayesian model using a directed acyclic graph (DAG). This graph describes
the dependencies in the joint distribution of the probabilistic model. Each random variable of the model
(that is an observation or a parameter) appears as a node in the graph. Any node is conditionally
independent of its non-descendents given its parents. Nodes represented by circles correspond to the
random variables of the model. With the color of the circles, we distinguish between observations (red)
and parameters (blue). The green squares indicate exogenous variables.

2. Calibration and linked models

In this section we describe two standard Bayesian models:
— the individual calibration of a measurement provided by a dating laboratory,
— the combination of measurements performed on the same artifact using the same dating method.

2.1. Calibration

The simplest problem is the calibration of an individual measurement M in calendar time t. The measure
M has a Gaussian distribution with mean µ and known variance s2. Following a hierarchical model,
the variable µ has a Gaussian distribution with mean g(t) and variance σ2

g (t), where g is a function
called "calibration curve" linking the measurement to calendar time t. Every dating method has its own
calibration curve. For instance, the curve IntCal13 (Reimer et al., 2013) converts a radiocarbon Age
in calendar date for the Northern Hemisphere atmospheric samples. The calibration of 14C ages is
detailed by Ramsey (2009a); Buck et al. (1996); Litton and Buck (1995). In archaeomagnetism the
secular variation curves of the Earth’s magnetic field are used to convert an inclination, declination
or intensity measurement to a calendar date (see Lanos, 2004). In the case of an age M provided by
luminescence (TL or OSL), the calibration function is merely a linear function g(t) = (t0− t) where t0
is the determination year of the age measurement M in the laboratory.

The construction of the calibration curve depends on the dating method. In the context of OSL dating
the calibration curve comes from a physical equation, and so σg is assumed to be null. In radiocarbon or
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Hierarchical Bayesian modeling for combining dates in archeological context 75

archaeomagnetic dating methods, the curve comes from an estimation step (e.g. a non linear regression
on a set of dated reference measurements). In this case σg corresponds to the errors due to the estimation
method. Note that these curves are regularly updated according to the improvement of the reference
data.

The Bayesian model for ’calibration’ or conversion of a measurement M to calendar date t is the
following. The model on the measurement M is given by

M = µ + sε,

where µ is the true value of the measurement and s2 is the known variance. The distribution of ε is the
standard Gaussian distribution.

The calibration step converts µ to calendar date t, using the relation

µ = g(t)+σg(t)ρ,

where both functions g and σg are assumed known, and where ρ is a standard Gaussian random
variable.

Let T be the time range of interest. This interval is fixed from prior information on the historical
period to which the event belongs.

We choose the uniform distribution on T as prior distribution on the parameter t,

p(t) ∝ 1T (t). (4)

If we integrate the posterior distribution of (t,µ) with respect to latent variable µ , we get the
posterior distribution of t (up to a multiplicative constant):

p(t|M) ∝
1

S(t)
exp

(
−1

2S2(t)
(M−g(t))2

)
1T (t), (5)

where
S(t)2 = s2 +σ

2
g (t). (6)

Figures 1, 2 and 3 illustrate the calibration process for different calibration curves. In many cases,
the individual calibration provides an estimation of the date with a high uncertainty. The posterior
distribution is often multi-modal or unimodal with large variance. This motivates the archeologist to
repeat measurements on different contemporaneous artifacts using one or several dating methods.

2.2. Calibration from multiple measurements

We observe m independent measurements Mk performed on the same object. We assume that all the
measurements can be calibrated with the same curve (g,σ2

g ). This appears, for example, in the case
of radiocarbon dating when the same object is analyzed by different laboratories. In this case, the
measurements have to be combined before calibration (see Ward and Wilson, 1978 and Ramsey,
2009a).

The Bayesian model (Fig. 4) is defined by the following distributions:

Mi|µ ∼N (µ , s2
i ) ∀ i = 1, ...,m

µ|t ∼N (g(t) , σ
2
g (t))

t ∼ Unif(T ),
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76 P. Lanos and A. Philippe

FIGURE 1. Conversion of a 14C age (A = 1000±30 BP) to a calendar date via the calibration curve IntCal13.

FIGURE 2. Conversion of a TL age (A = 900±50 ) to a calendar date through the linear transformation g(t) = (2000− t).

FIGURE 3. Conversion of an inclination measurement (I = 59±1) to a calendar date via the calibration curve of archaeo-
magnetic field in France (Paris) over the last two millennia.
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Hierarchical Bayesian modeling for combining dates in archeological context 77

where T is the time range of interest. This model is called R-Combine in Ramsey (2009a). One can
easily get the marginal posterior density of t, which is given by

p(t|M1, ...,Mm) ∝
1

S̃m(t)
exp

(
−1

2S̃m(t)2
(Mm−g(t))2

)
1T (t),

where

S̃m(t)2 = s2
m +σ

2
g (t) with

1
s2

m
=

m

∑
k=1

1
s2

k
,

and where

Mm =
m

∑
k=1

Mk

s2
k
/

m

∑
k=1

1
s2

k
.

The R-combine model is equivalent to the individual calibration of the observation (Mm,s2
m) using the

process described in Section 2.1.

t

µ

i = 1 to m

s2
i

Mi

FIGURE 4. DAG of the R-Combine model.

3. Event model

In the general case we observe n measurements Mi such that each measurement provides a dating
through a calibration step defined by a calibration function gi and its error σgi . The R-combine model is
no longer valid in this case because it requires a common calibration curve (i.e. gi = g for all i = 1, ...,n).
Our idea is to adapt the Bayesian combination of measurements to estimate the date of an archeological
event from the individual dating of contemporaneous artifacts.

3.1. The model.

We describe the so-called Event model to estimate a date θ from n measurements Mi provided by
different dating methods. We assume that each measurement Mi is related to an individual date ti
through a calibration curve gi. Here this curve is assumed known with some known uncertainty. The
main assumption in our Event model is the contemporaneity of the dates ti, i = 1...,n with the event
date θ . We assume that θ ∈ T where T is the bounded interval corresponding to the range of study.
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78 P. Lanos and A. Philippe

In this context the model with random effect given by (3) can be rewritten as follows

Mi = µi + siεi,

µi = gi(ti)+σgi(ti)ρi,

ti = θ +σiλi, (7)

where (ε1, ...εn,ρ1, ...,ρn,λ1, ...,λn) are independent and identically distributed Gaussian random vari-
ables with zero mean and variance 1.
The random variables (λi)i and (εi)i are interpreted as follows :

— σiλi represents the irreducible error between ti and θ due to sampling problems external to the
laboratory ( Section 1),

— siεi +σgi(ti)ρi represents the experimental error provided by the laboratory and the calibration
step.

θ

i = 1 to n

σ2
i

ti

µi
s2

i

Mi

FIGURE 5. DAG for the hierarchical Event model applied to dating combination with calibration.

According to the DAG defining the event model (Fig. 5), the joint distribution of the probabilistic
model can be written in the form

p(M1, ...,Mn,µ1, ...,µn, t1, ..., tn,σ2
1 , ...,σ

2
n ,θ) = p(θ)

n

∏
i=1

p(Mi|µi)p(µi|ti)p(ti|σ2
i ,θ)p(σ2

i ), (8)

where the conditional distributions that appear in the decomposition are given by

Mi|µi ∼N (µi , s2
i )

µi|ti ∼N (gi(ti) , σ
2
gi
(ti))

ti|σ2
i ,θ ∼N (θ , σ

2
i ) (9)

σ
2
i ∼ Shrink(s2

0) (10)

θ ∼ Unif(T ). (11)
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The density of the uniform shrinkage distribution with parameter s2
0 (denoted Shrink(s2

0)), that appears
in (10), is given by

p(σ2
i ) =

s2
0

(s2
0 +σ2

i )
2 . (12)

Note that this form of density implies that the random variable s2
0/(σ

2 + s2
0) is uniformly distributed on

[0,1]. This distribution is rather diffuse in the sense that the variance and mean are infinite. So it can be
considered weakly informative. The properties of the uniform shrinkage prior and the choice of s2

0 are
discussed in Daniels (1999). In the particular case of the central age model defined in (3), Spiegelhalter
et al. (2004) suggests the following choice of parameter:

1
s2

0
=

1
n

n

∑
i=1

1
s2

i
.

Parameter s2
0 quantifies the magnitude of error on the measurements. As s2

0 is the median of the uniform
shrinkage prior, this choice ensures that the parameter σ2

i has the same prior probability to be smaller
or larger than s2

0. Therefore we do not favor the measurement errors with respect to the error between ti
and θ due to sampling problems.

With calibrated measurements, the parameter s2
0 cannot be calculated directly from the variances s2

i .
Indeed the measurement errors si are not necessarily homogeneous units (see for instance the case of
archaeomagnetism combined with 14C). Moreover they do not contain the information on the variance
of the combined variables. To adapt this strategy we have to estimate the variance of the dates ti. We
propose to estimate these variances after the step of individual calibration.
We proceed in the following way, for each i = 1, ...,n:

1. An individual calibration step is performed for each measurement Mi

(a) compute the posterior distribution of ti (using (5))

(b) approximate the posterior variance w2
i = var(ti|Mi)

2. Take as shrinkage parameter s0:
1
s2

0
=

1
n

n

∑
i=1

1
w2

i
.

Remark 2. For the hyperparameters σ2
i in the third stage of the hierarchical model, the choice of a

diffuse noninformative prior may be problematic as improper priors may induce improper posteriors.
This problem appears in our model, for instance by taking p(σi) ∝ 1/σ2

i , that is the classical non
informative prior (called the Jeffreys prior) for Gaussian observations. The choice of diffuse priors in
such models raises particular issues, discussed for instance in Congdon (2010). It is always possible to
choose a proper probability distribution which approximates the diffuse prior, for instance

— a density proportional to the Jeffreys prior truncated on an closed interval [a,b]⊂]0,∞[,
— an inverse Gamma distribution with small scale and shape parameters.

However, such priors may cause identifiability problems as the posteriors are close to being empirically
improper. Moreover the inference of the parameter of interest is sensitive to the choice of parameters in
the proper prior distribution. This is a major drawback for small samples.

3.2. MCMC algorithm.

The posterior distribution of the parameter of interest θ can not be obtained explicitly. It is necessary to
implement a computational method to approximate the posterior distribution, its quantiles, the Bayes
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estimates and the highest posterior density (HPD) regions. We adopt a MCMC (Markov Chain Monte
Carlo) algorithm known as the Metropolis-within-Gibbs strategy because the full conditionals cannot
be simulated by standard random generators. For each parameter, the full conditional distribution is
proportional to (8).

1. For the parameter of interest θ we identify a truncated Gaussian distribution on the period of
interest T . Such a distribution can be simulated using rejection sampling. Different choices of
proposal distribution are possible, such as the Gaussian distribution or the truncated Laplace (double
exponential) distribution on T . It is also possible to use an adaptive random walk Metropolis-
Hastings (MH) with a Gaussian proposal distribution.

2. The density of the full conditional distribution of σ2
i is explicitly computable up to an unknown

multiplicative constant, but it is not a standard distribution. Therefore it is simulated using an
adaptive random walk MH with a Gaussian proposal distribution on the variable log(σ2

i ).

3. The full conditional distribution of ti, i = 1, ...,n, is proportional to

1
Si(ti)

exp
{
−1

2S2
i (ti)

(Mi−gi(ti)2
}

exp
{
−1
2σ2

i
(ti−θ)2)

}
,

where Si(ti) is defined in (6). We can choose an adaptive random walk MH with a Gaussian proposal.
However, the random walk solution is not necessarily the most efficient choice because the target
distribution can be multimodal. We are frequently confronted with this problem as shown by, for
instance, the results yielded by archaeomagnetic dating in Example 2. In this context, an alternative
is to choose an independent Hasting-Metropolis algorithm with a proposal distribution that mimics
the individual calibration density defined in (5). This ensures that all the possible values of ti can be
visited when the calibrated date distribution is multimodal.

These algorithms are implemented in the cross-platform ChronoModel application (Lanos et al.,
2016; Vibet et al., 2016), which is free and open source software. In the examples discussed below, the
graphics summarizing the numerical results are performed using ChronoModel software. We represent
the marginal densities of

— the parameter of interest θ (on gray background)
— the individual measurements ti (on white background)
— the individual standard deviations σi

For each density, the bar above the density represents the shorter 95% posterior probability interval.
The vertical lines, delimiting the colored area under the density curve, indicate the endpoints of the
95% HPD region. For a unimodal posterior density, the 95% posterior probability regions coincide.

Different graphical tools are implemented to assess the convergence of the MCMC in ChronoModel
software (e.g. the autocorrelation functions, the acceptance rate of Metropolis-Hasting algorithms).
The user can adjust the length of burn-in, the maximum number of iterations for adaptation and for
acquisition, and the thinning rate. Moreover multiple chains can be simulated and exported for further
analysis using, for instance, the R package coda.

In term of computational performance, among the examples given in this paper, the longest com-
puting time is achieved for Ex. 2, Indeed 106 iterations are required to well estimate the multimodal
posterior distribution of the Event. The simulation is performed on a 2 GHz Intel Core i7 by using a
single core. The computational time is less than 1 minute including the post-processing i.e. estimation of
HPD regions, credibility regions, posterior densities, etc from simulated Markov chain, and displaying
results.
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Hierarchical Bayesian modeling for combining dates in archeological context 81

3.3. Examples

Example 1. Mont-Saint-Michel (Normandy, France)

FIGURE 6. Mont-Saint-Michel, Ex. 1. Posterior density of the event date θ (gray background). Posterior densities of ti (blue
line & white background) and individual posterior calibrated densities (gray line & white background) obtained for TL dates
and for 14C dates.

An archeology building study has been conducted at the Mont-Saint-Michel site in Normandy,
France (Blain et al., 2007; Sapin et al., 2008). The aim of this study was to estimate the dates of
different building states of the Carolingian church Notre-Dame-sous-Terre (NDST) located inside the
Mont-Saint-Michel abbey. Therefore it is reasonable to fix the time range T equal to [0 , 2000], which
widely includes the Carolingian period.

In what follows, we model building state number 1 which is associated with 14C analysis on 3
charcoals, and luminescence analyses of 8 bricks.

Figures 6 and 7 summarize the estimation results obtained by the event model. The 95% HPD
interval for the date of building state 1 is [892 ; 993]. This result is more precise than the dating
obtained in Blain et al. (2007), which is based solely on luminescence analysis. This result confirms
the value of combining different dating methods.

Figure 6 provides a comparison between the individual calibrations of each measurement and the
posterior densities of the dates ti. Clearly the event model improves the precision of the dating of each
artifact included in the event. The graphical comparison of the posterior densities of ti confirms our
assumption that the bricks and charcoals are contemporary.

Posterior densities for standard deviations σi fall within the small range [0,200] at 95% (Fig. 7).
These results confirm that the dates ti are contemporary.
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FIGURE 7. Mont-Saint-Michel, Ex. 1 (Cont.). Posterior densities obtained for standard deviations σi.

Example 2. Cuers (Provence, France), medieval or modern lime kiln

FIGURE 8. Cuers, Ex. 2. Posterior density of the event date θ (gray background). Posterior densities of ti (red line & white
background) and individual posterior calibrated densities (gray line & white background) obtained for archaeomagnetic and
14C dates.

Archeological excavation was carried out to estimate the last firing date of a lime kiln in Cuers
(Provence, France – Vaschalde et al., 2014). We choose the time range T equal to [0 , 2000]. Indeed no
historical or archeological information is available about this site between the Roman period and the
20th century.

The studied artifacts are pieces of baked clay from the kiln wall submitted for AM analysis and
two charcoals submitted for 14C analysis. The obtained measurements are three archaeomagnetic
parameters (inclination, declination and intensity) and two radiocarbon ages. Figure 8 gives the results
obtained by the event model.

As in the previous example, posterior densities ti (in red) are much more precise than the individual
calibrated densities, in the sense that the number of local modes is reduced. The Event model gives
a 95% HPD region for the last firing date which is the union of two disjoint intervals [1388,1548]
and [1556,1616]. In this case the dating is indeterminate in the sense that two periods remain possible
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Hierarchical Bayesian modeling for combining dates in archeological context 83

FIGURE 9. Cuers, Ex 2 (Cont.) Posterior densities obtained for standard deviations σi.

for the last firing. Consequently, additional measurements or prior information are required to decide
between these two solutions.

Figure 9 gives the posterior densities of standard deviations σi. It clearly shows that this parameter
takes higher values in the case of archaeomagnetic dating. This indicates a lack of consistency between
the dates within the event. The archaeomagnetic dates are penalized in the estimation of the event. This
is explained by the fact that radiocarbon dating provides more accurate dates after the calibration step.

Example 3. Tell Qasile, context X (Israel)

FIGURE 10. Tell Qasile, Ex. 3. [left] Posterior density for Event date θ (gray background). Posterior densities ti for 14C dates
(blue line and white background) The individual posterior calibrated densities are superimposed in gray. [right] Posterior
densities obtained for standard deviations σi.

We consider the example studied in Ramsey (2009b), in order to compare the robustness to outliers
of the event model with the R-combine model with the outlier implemented in OxCal software.
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From eleven radiocarbon dates, the aim is to determine the date of the context X in Tell Qasile, an
archeological site in Tel Aviv. Since the site belongs to the protohistoric period, we fix the time range
T equal to [−2000 , 0].

In OxCal, it is necessary to fix the prior probability that each measurement is an outlier. The
recommended value is 5% when no pertinent information is available. The 95% HPD region for the
date of the context X yielded by OxCal is [−1054;−970]∪ [−962;−934].

The event model gives a uni-modal posterior density and 95% HPD interval equal to [−1050;−951]
(Fig. 10). This is very similar to the two merged OxCal intervals.

Posterior densities for standard deviations σi are very similar (Fig. 10) except for samples QS2 and
QS6 which show higher posterior values, and thus appear to be outliers. The same two outliers are also
detected by OxCal.

In conclusion, the event model is robust to outliers and has the advantage that it does not require
prior information about the outliers. The ability of the individual variance σ2

i to take large values
automatically penalizes an outlier.

4. Wiggle-matching

The "wiggle-matching" model combines radiocarbon dating and dendrochronology. Radiocarbon
dating is carried out on tree-ring samples separated by a known number of tree-rings. This gives prior
information on the calibrated dates ti. The number of years between these dates is then known (Manning
et al., 2010; Galimberti and Ramsey, 2004; Christen and Litton, 1995).

In this case, the calibrated dates ti should be shifted according to their relationship to the event date
θ . So we adapt our event model to wiggle-matching as follows.

We consider that the event date θ corresponds to the date of a chosen reference tree-ring (for instance
the oldest tree-ring, see Example 4).

We denote by δi the number of years between ti and θ , which is fixed by counting the number of
rings between them and assuming that one ring is equal to one year. By convention, δi is positive (resp.
negative) when ti is older (resp. younger) than θ .

Equation (7) can be rewritten as follows

ti = θ −δi +σiλi. (13)

Remark 3. It is also possible to assume δi unknown in order to model a counting error in the number
of tree-rings. This extension of the model is implemented in chronomodel software.

Example 4. Gordion Juniper dendrochronology (Central Anatolia)
An application of the Event wiggle-matching model is presented here in the case of the Gordion

Juniper dendrochronology (Manning and Kromer, 2011, table 1). Thirty-five samples of this sequence,
from relative tree-rings centered at 776.5-1025.5 have been dated by the Heidelberg radiocarbon
laboratory. The time range T is fixed equal to [−5000 , 0], the lack of prior information leads to the
choice of a very large interval.

The samples are calibrated with IntCal04.14c curve (Reimer et al., 2004) and are separated with
known gaps taking values between 1 and 19 years over a range of 249 years. δi is the gap between the
dated tree-ring and reference. Following Manning and Kromer (2011), we fix as reference, the oldest
tree-ring i.e. δ1 = 0.

The model considered in Manning and Kromer (2011) is implemented in OxCal, by using the
D-Sequence and Gap functions with the outlier model. It gives a 95% HPD interval equal to [-1734,
-1724].
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FIGURE 11. DAG for the wiggle matching model.

The Event model gives a 95% HPD interval for θ equal to [-1744, -1719], which is less precise than
the estimate yielded by OxCal. The difference in the 95% HPD region is due to the event structure,
which increases the variance of the posterior distribution. However our approach brings robustness.
As an illustration, we artificially modify the dataset by adding outliers with the same experimental
variances on the 14C ages (see Table 1). Figure 12 gives the estimation obtained by the event model
for:

— the original Gordion dataset analyzed in Manning and Kromer (2011),
— the same dataset contaminated with 11 outliers.

TABLE 1. Gordion Juniper dendrochronology (Central Anatolia). Contaminated samples in Gordion dataset

sample number modified 14C age (BP)
with Manning and Kromer (2011) notations

20144, 27605 3100
20137, 25792, 20155 3600

20157, 20141, 20147, 25793, 20153, 27612 3700

Figure 12 shows that the posterior distribution of the event date is very weakly sensitive to the
presence of these outliers. Indeed, on the contaminated sample, the event model gives an 95% HPD
interval for θ equal to [-1749 ; -1717]. The two results are quite similar; the event date is not affected
by the presence of the outliers. The event model considered in Manning and Kromer (2011) cannot be
estimated using OxCal software because of poor agreement indices. This alert message indicates in
particular that the convergence of the MCMC is not guaranteed.
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FIGURE 12. Gordion juniper dendrochronology (Central Anatolia). Posterior densities of the dates ti (solid line and white
background), the shifted dates ti +δi (dotted line and white background) and the Event date θ (gray background) obtained on
original Gordion dataset (blue) and on a contaminated version with 11 outliers defined in Table 1 (in red).
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Perspective

A combination procedure to estimate the date of an archeological event from a set of contemporaneous
artifacts using a hierarchical Bayesian approach is proposed. The event model defines a fundamental
chronological entity that can be related to other entities in various ways to produce complex chronolog-
ical models. We can then construct chronologies of events which take into account new archeological
information such as ordering constraints based on stratigraphy, phasing with succession or with a hiatus
between phases, or with a duration constraint on the phase, etc. These features are implemented in the
ChronoModel software.
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