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Type I error rate control for testing many
hypotheses: a survey with proofs

Titre: Une revue du contrôle de l’erreur de type I en test multiple

Etienne Roquain1

Abstract: This paper presents a survey on some recent advances for the type I error rate control in multiple testing
methodology. We consider the problem of controlling the k-family-wise error rate (kFWER, probability to make k false
discoveries or more) and the false discovery proportion (FDP, proportion of false discoveries among the discoveries).
The FDP is controlled either via its expectation, which is the so-called false discovery rate (FDR), or via its upper-tail
distribution function. We aim at deriving general and unified results together with concise and simple mathematical
proofs. Furthermore, while this paper is mainly meant to be a survey paper, some new contributions for controlling the
kFWER and the upper-tail distribution function of the FDP are provided. In particular, we derive a new procedure
based on the quantiles of the binomial distribution that controls the FDP under independence.

Résumé : Ce travail présente une revue des récents travaux du contrôle de l’erreur de type I en test multiple. On
considère le problème du contrôle du “k-family-wise error rate" (kFWER, probabilité d’effectuer au moins k fausses
découvertes) et du “false discovery proportion" (FDP, proportion de fausses découvertes parmi les découvertes). Le FDP
est contrôlé soit via son espérance (correspondant au fameux “false discovery rate") soit via sa queue de distribution.
Nous recherchons à obtenir à la fois des résultats unifiés et des preuves mathématiques simples et concises. De plus,
nous proposons de nouvelles contributions méthodologiques pour contrôler le kFWER et la queue de distribution du
FDP. En particulier, nous introduisons une nouvelle procédure qui contrôle le FDP sous indépendance et qui est basée
sur les quantiles de la loi binomiale.
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4 Etienne Roquain

1. Introduction

The problem of testing several null hypotheses has a long history in the statistics literature. With
the high-resolution techniques introduced in the recent years, it has known a renewed attention
in many application fields where one aims to find significant features among several thousands
(or millions) of candidates. Classical examples are microarray analysis [58, 17, 19, 20], neuro-
imaging analysis [4, 42] and source detection [38]. For illustration, we detail below the case of
microarray data analysis.

1.1. Multiple testing in microarray data

In a typical microarray experiment, the level expressions of a set of genes are measured under
two different experimental conditions and we aim at finding the genes that are differentially
expressed between the two conditions. For instance, when the genes come from tumor cells in the
first experimental condition, while they come from healthy cells in the second, the differentially
expressed genes may be involved in the development of this tumor and thus are genes of special
interest. Several techniques exist to perform a statistical test for a single gene, e.g. based on a
distributional assumption or on permutations between the two group labels. However, the number
of genes m can be large (for instance several thousands), so that non-differentially expressed genes
can have a high score of significance by chance. In that context, applying the naive, non-corrected
procedure (level α for each gene) is unsuitable because it is likely to select (or “discover") a
lot of non-differentially expressed genes (usually called “false discoveries”). For instance, if the
m = 10,000 genes are not differentially expressed (no signal) and α = 0.1, the non-corrected
procedure makes on average mα = 1,000 discoveries which are all false discoveries. In a more
favorable situation where there are only m0 = 5,000 non-differentially expressed genes among
the m = 10,000 initial genes (50% of signal), the non-corrected procedure selects some genes, say
r genes, for which the expected number of errors is m0α = 500. Since the number of discoveries
r is not designed to be much larger than the number of false discoveries m0α , the final list of
discovered genes is likely to contain an unacceptable part of errors. A multiple testing procedure
aims at correcting a priori the level of the single tests in order to obtain a list of selected genes
for which the “quantity" of false discoveries is below a nominal level α . The “quantity" of false
discoveries is measured by using global type I error rates, as for instance the probability to
make at least k errors among the discoveries (k-family-wise error rate, k-FWER) or the expected
proportion of errors among the discoveries (false discovery rate, FDR). Finding procedures that
control type I error rates is challenging and is what we called here the “multiple testing issue".
Furthermore, a feature that increases the complexity of this issue is the presence of dependencies
between the single tests.

Note that the multiple testing issue can be met in microarray analysis under other forms, as
for instance when we search co-expressed genes or genes associated with clinical covariates or
outcomes, see Section 1.2 of [17].

1.2. Examples of multiple testing settings

Example 1.1 (Two-sample multiple t-tests). The problem of finding differentially expressed genes
in the above microarray example can be formalized as a particular case of a general two-sample
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Type I error rate control in multiple testing 5

multiple testing problem. Let us observe a couple of two independent samples

X = (X1, ...,Xn) =
(
Y 1, ...,Y n1 ,Z1, ...,Zn2

)
∈ Rm×n,

where (Y 1, ...,Y n1) is a family of n1 i.i.d. copies of a random vector Y in Rm and (Z1, ...,Zn2)
is a family of n2 i.i.d. copies of a random vector Z in Rm (with n1 + n2 = n). In the context of
microarray data, Y j

i (resp. Z j
i ), 1 ≤ i ≤ m, corresponds to the expression level measure of the

i-th gene for the j-th individual of the first (resp. second) experimental condition. Typically, the
sample size is much smaller than the number of tests, that is, n� m. Let the distribution P of the
observation X belong to a statistical model given by a distribution set P . Assume that P is such
that X is an integrable random vector and let µi,1(P)=EYi and µi,2(P)=EZi, for any i∈{1, ...,m}.
The aim is to decide for all i whether P belongs to the set Θ0,i = {P ∈P : µi,1(P) = µi,2(P)} or
not, that is, we aim at testing the hypothesis

H0,i : “µi,1(P) = µi,2(P)" against H1,i : “µi,1(P) 6= µi,2(P)”,

simultaneously for all i∈ {1, ...,m}. Given P, the null hypothesis H0,i (sometimes called the “null"
for short) is said to be true (for P) if P ∈ Θ0,i, that is, if P satisfies H0,i. It is said false (for P)
otherwise. The index set corresponding to true nulls is denoted by H0(P) = {1≤ i≤m : µi,1(P) =
µi,2(P)}. Its complement in H = {1, ...,m} is denoted by H1(P). In the microarray context,
H1(P) = {1 ≤ i ≤ m : µi,1(P) 6= µi,2(P)} is thus the index set corresponding to differentially
expressed genes. The aim of a multiple testing procedure is thus to recover the (unobservable) set
H1(P) given the observation X . A multiple testing procedure is commonly based on individual
test statistics, by rejecting the null hypotheses with a “large" test statistic. Here, the individual test
statistic can be the (two-sided) two-sample t-statistic Si(X) ∝ |Y i−Zi|, rescaled by the so-called
“pooled" standard deviation. To provide a uniform normalization for all tests, it is convenient to
transform the Si(X) into the p-value

pi(X) = sup
P∈Θ0,i

TP,i(Si(X)), (1)

where TP,i(s) = PX∼P(Si(X)≥ s) is the upper-tail distribution function of Si(X) for X ∼ P ∈Θ0,i.
Classically, assuming that Yi and Zi are Gaussian variables with the same variance, we have for
any P ∈ Θ0,i, TP,i(s) = 2P(Z ≥ s), where Z follows a Student distribution with n−2 degrees of
freedom. In that case, each p-value pi(X) has the property to be uniformly distributed on (0,1)
when the corresponding null hypothesis H0,i is true. Without making this Gaussian assumption,
p-values can still be built, as we discuss in Remark 1.3 below. Let us finally note that since the
TP,i are decreasing, a multiple testing procedure should reject nulls with a “small" p-value.

Example 1.2 (One-sided testing on the mean of a Gaussian vector). To give a further illustrating
example, we consider the very convenient mathematical framework for multiple testing where we
observe a Gaussian vector X = (Xi)1≤i≤m ∼ P, having an unknown mean µ(P) = (µi(P))1≤i≤m ∈
Rm and a m×m covariance matrix Σ(P) with diagonal entries equal to 1. Let us consider the
problem of testing

H0,i : “µi(P)≤ 0" against H1,i : “µi(P)> 0”,

simultaneously for all i ∈ {1, ...,m}. We can define the p-values pi = Φ(Xi), where Φ(x) = P(Z ≥
x) for Z ∼N (0,1). Any p-value satisfies the following stochastic domination under the null: if
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6 Etienne Roquain

µi(P)≤ 0, we have for all u ∈ [0,1],

P(pi(X)≤ u)≤ P(Φ(Xi−µi(P))≤ u) = u.

Additionally, more or less restrictive assumptions on Σ(P) can be considered to model different
types of dependency of the corresponding p-values. For instance, we can assume that Σ(P) has
only non-negative entries, that the non-diagonal entries of Σ(P) are equal (equi-correlation) or
that Σ(P) is diagonal. Finally, the value of the alternative means can be used for modeling the
“strength of the signal". For instance, to model that the sample size available for each test is n, we
can set µi(P) = τ

√
n for each µi(P)> 0, where τ > 0 is some additional parameter.

Remark 1.3 (General construction of p-values). In broad generality, when testing the nulls Θ0,i by
rejecting for “large" values of a test statistic Si(X), we can always define the associated p-values
by using (1). It is well known that these p-values are always stochastically lower-bounded by a
uniform variable under the null, that is, ∀i ∈H0(P), ∀u ∈ [0,1], P(pi(X)≤ u)≤ u. This property
always holds, even when Si(X) has a discrete distribution. For completeness, we provide this result
with a proof in Appendix A. However, the calculation of the p-values (1) is not always possible,
because it requires the knowledge of the distribution of the test statistics under the null, which
often relies on strong distributional assumptions on the data. Fortunately, in some situations, the
p-values (1) can be approximated by using a randomization technique. The resulting p-values can
be shown to enjoy the same stochastic dominance as above (see, e.g., [44] for a recent reference).
For instance, in the two-sample testing problem, permutations of the group labels can be used,
which corresponds to use permutation tests (the latter can be traced back to Fisher [25]).

1.3. General multiple testing setting

In this section, we provide the abstract framework in which multiple testing theory can be
investigated in broad generality.

Let us consider a statistical model, defined by a measurable space (X ,X) endowed with a
subset P of distributions on (X ,X). Let X denote the observation of the model, with distribution
P ∈P . Consider a family (Θ0,i)1≤i≤m of m≥ 2 subsets of P . Based on X , we aim at testing the
null hypotheses H0,i : “P ∈ Θ0,i” against the alternative H1,i : “P ∈ Θc

0,i” simultaneously for all
i ∈ {1, ...,m}. For any P ∈P , let H0(P) = {1≤ i≤ m : P ∈Θ0,i} be the set of the indexes i for
which P satisfies H0,i, that is, the indexes corresponding to true null hypotheses. Its cardinality
|H0(P)| is denoted by m0(P). Similarly, the set {1, ...,m} is sometimes denoted by H . The set
of the false null hypotheses is denoted by H1(P) = H \H0(P). The goal is to recover the set
H1(P) based on X , that is, to find the null hypotheses that are true/false based on the knowledge
of X . Obviously, the distribution P of X is unknown, and thus so is H1(P).

The standard multiple testing setting includes the knowledge of p-values (pi(X))1≤i≤m satisfy-
ing

∀P ∈P,∀i ∈H0(P), ∀u ∈ [0,1], P(pi(X)≤ u)≤ u. (2)

As a consequence, for each i ∈ {1, ...,m}, rejecting H0,i whenever pi(X) ≤ α defines a test of
level α . As we have discussed in the previous section, property (2) can be fulfilled in many
situations. Also, in some cases, (2) holds with equality, that is, the pi(X) are exactly distributed
like a uniform variable in (0,1) when H0,i is true.

Journal de la Société Française de Statistique, Vol. 152 No. 2 3-38
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2011) ISSN: 2102-6238



Type I error rate control in multiple testing 7

1.4. Multiple testing procedures

In the remainder of the paper, we use the observation X only through the p-value family p(X) =
{pi(X),1≤ i≤ m}. Therefore, for short, we often drop the dependence in X in the notation and
define all quantities as functions of p = {pi,1 ≤ i ≤ m} ∈ [0,1]m. However, one should keep
in mind that the underlying distribution P (the distribution of interest on which the tests are
performed) is the distribution of X and not the one of p.

A multiple testing procedure is defined as a set-valued function

R : q = (qi)1≤i≤m ∈ [0,1]m 7−→ R(q)⊂ {1, ...,m},

taking as input an element of [0,1]m and returning a subset of {1, ...,m}. For such a general
procedure R, we add the technical assumption that for each i ∈ {1, ...,m}, the mapping x ∈
X 7→ 1{i ∈ R(p(x))} is measurable. The indexes selected by R(p) correspond to the rejected null
hypotheses, that is, i ∈ R(p)⇔ “H0,i is rejected by the procedure R(p)". Thus, for each p-value
family p, there are 2m possible outcomes for R(p). Nevertheless, according to the stochastic
dominance property (2) of the p-values, a natural rejection region for each H0,i is of the form
pi ≤ ti, for some ti ∈ [0,1]. In this paper, we mainly focus on the case where the threshold is the
same for all p-values. The corresponding procedures, called thresholding based procedures, are of
the form R(p) = {1≤ i≤ m : pi ≤ t(p)}, where the threshold t(·) ∈ [0,1] can depend on the data.

Example 1.4 (Bonferroni procedure). The Bonferroni procedure (of level α ∈ (0,1)) rejects the
hypotheses with a p-value smaller than α/m. Hence, with our notation, it corresponds to the
procedure R(p) = {1≤ i≤ m : pi ≤ α/m}.

1.5. Type I error rates

To evaluate the quality of a multiple testing procedure, various error rates have been proposed
in the literature. According to the Neyman-Pearson approach, type I error rates are of primary
interest. These rates evaluate the importance of the null hypotheses wrongly rejected, that is, of
the elements of the set R(p)∩H0(P). Nowadays, the most widely used type I error rates are the
following. For a given procedure R,

– the k-family-wise error rate (k-FWER) (see e.g. [32, 44, 36]) is defined as the probability
that the procedure R makes at least k false rejections: for all P ∈P,

k-FWER(R,P) = P(|R(p)∩H0(P)| ≥ k), (3)

where k ∈ {1, ...,m} is a pre-specified parameter. In the particular case where k = 1, this rate
is simply called the family-wise error rate and is denoted by FWER(R,P).

– the false discovery proportion (FDP) (see e.g. [53, 5, 36]) is defined as the proportion of
errors in the set of the rejected hypotheses: for all P ∈P,

FDP(R(p),P) =
|R(p)∩H0(P)|
|R(p)|∨1

, (4)

where |R(p)| ∨ 1 denotes the maximum of |R(p)| and 1. The role of the term “∨1" in the
denominator is to prevent from dividing by zero when R makes no rejection. Since the FDP
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8 Etienne Roquain

is a random variable, it does not define an error rate. However, the following error rates
can be derived from the FDP. First, the γ-upper-tail distribution of the FDP, defined as the
probability that the FDP exceeds a given γ , that is, for all P ∈P,

P(FDP(R(p),P)> γ), (5)

where γ ∈ (0,1) is a pre-specified parameter. Second, the false discovery rate (FDR) [5],
defined as the expectation of the FDP: for all P ∈P,

FDR(R,P) = E[FDP(R(p),P)] = E
[
|R(p)∩H0(P)|
|R(p)|∨1

]
. (6)

Note that the probability in (5) is upper-bounded by a nominal level α ∈ (0,1) if and only if the
(1−α)-quantile of the FDP distribution is upper-bounded by γ . For instance, if the probability in
(5) is upper-bounded by α = 1/2, this means that the median of the FDP is upper-bounded by γ .
With some abuse, bounding the probability in (5) is called “controlling the FDP" from now on.

The choice of the type I error rate depends on the context. When controlling the k-FWER,
we tolerate a fixed number (k−1) of erroneous rejections. By contrast, a procedure controlling
(5) tolerates a small proportion γ of errors among the final rejections (from an intuitive point
of view, it chooses k ' γ|R|). This allows to increase the number of erroneous rejections as the
number of rejections becomes large. Next, controlling the FDR has become popular because it is
a simple error rate based on the FDP and because it came together with the simple Benjamini-
Hochberg FDR controlling procedure [5] (some dependency structure assumptions are required,
see Section 3). As a counterpart, controlling the FDR does not prevent the FDP from having large
variations, so that any FDR control does not necessarily have a clear interpretation in terms of the
FDP (see the related discussion in Section 6.2).

Example 1.4 (Continued). The Bonferroni procedure R(p) = {1≤ i≤ m : pi ≤ α/m} satisfies
the following:

E|R(p)∩H0(P)|= ∑
i∈H0(P)

P(pi ≤ α/m)≤ αm0(P)/m≤ α,

which means that its expected number of false discoveries is below α . Using Markov’s inequality,
this implies that R(p) makes no false discovery with probability at least 1−α , that is, for any
P ∈P , FWER(R,P)≤ α . This is the most classical example of type I error rate control.

Remark 1.5 (Case where H0(P) = H ). For a distribution P satisfying H0(P) = H , that is
when all null hypotheses are true, the FDP reduces to FDP(R(p),P) = 1{|R(p)|> 0} and we have
FWER(R,P) = FDR(R,P) = P(FDP(R(p),P)> γ) = P(|R(p)|> 0). Controlling the FWER (or
equivalently the FDR) in this situation is sometimes called a “weak" FWER control.

Remark 1.6 (Case where all null hypotheses are equal: p-value aggregation). The general
framework described in Section 1.3 includes the case where all null hypotheses are identical, that
is, Θ0,i = Θ0 for all i ∈ {1, ...,m}. In this situation, all p-values test the same null H0 : “P ∈Θ0"
against some alternatives contained in Θc

0. For instance, in the model selection framework of
[3, 18, 60], each p-value is built with respect to a specific model contained in the alternative Θc

0.
Since we have in that case H0(P) = H if P ∈Θ0 and H0(P) = /0 otherwise, the three quantities
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Type I error rate control in multiple testing 9

FWER(R,P), FDR(R,P) and P(FDP(R(p),P) > γ) are equal and take the value P(|R(p)| > 0)
when P ∈Θ0 and 0 otherwise. As a consequence, in the case where all null hypotheses are equal,
controlling the FWER, the FDR or the FDP at level α is equivalent to the problem of combining
p-values to build a single testing for H0 which is of level α . In particular, from a procedure R that
controls the FWER at level α we can derive a single testing procedure of level α by rejecting H0
whenever R(p) is not empty (that is, whenever R(p) rejects at least one hypothesis). This provides
a way to aggregate p-values into one (single) test for H0 which is ensured to be of level α . As an
illustration, the FWER controlling Bonferroni procedure R = {1≤ i≤m : pi ≤ α/m} corresponds
to the single test rejecting H0 whenever min1≤i≤m{pi} ≤ α/m. The Bonferroni combination of
individual tests is well known and extensively used for adaptive testing (see, e.g., [54, 3, 60]).
Some other examples of p-value aggregations will be presented further on, see Remark 3.9.

1.6. Goal

Let α ∈ (0,1) be a pre-specified nominal level (to be fixed once and for all throughout the
paper). The goal is to control the type I error rates defined above at level α , for a large subset of
distributions P ′ ⊂P . That is, by taking one of the above error rate E (R,P), we aim at finding a
procedure R such that

∀P ∈P ′, E (R,P)≤ α, (7)

for P ′ ⊂P as large as possible. Obviously, R should depend on α but we omit this in the notation
for short. Similarly to the single testing case, taking R = /0 will always ensure (7) with P ′ = P .
This means that the type I error rate control is inseparable from the problem of maximizing the
power. The probably most natural way to extend the notion of power from the single testing
to the multiple testing setting is to consider the expected number of correct rejections, that is,
E|H1(P)∩R|. Throughout the paper, we often encounter the case where two procedures R and R′

satisfy R′ ⊂ R (almost surely) while they both ensure the control (7). Then, the procedure R is said
less conservative than R′. Obviously, this implies that R is more powerful than R′. This can be the
case when, e.g., R and R′ are thresholding-based procedures using respective thresholds t and t ′

satisfying t ≥ t ′ (almost surely). As a consequence, our goal is to find a procedure R satisfying (7)
with a rejection set as large as possible.

Finally, let us emphasize that, in this paper, we aim at controlling (7) for any fixed m≥ 2 and
not only when m tends to infinity. That is, the setting is non-asymptotic in the parameter m.

1.7. Overview of the paper

The remainder of the paper is organized as follows: in Section 2, we present some general tools
and concepts that are useful throughout the paper. Section 3, 4 and 5 present FDR, k-FWER and
FDP controlling methodology, respectively, where we try to give a large overview of classical
methods in the literature. Besides, the paper is meant to have a scholarly form, accessible to a
possibly non-specialist reader. In particular, all results are given together with a proof, which we
aim to be as short and meaningful as possible.

Furthermore, while this paper is mostly intended to be a review paper, some new contributions
with respect to the existing multiple testing literature are given in Section 4 and 5, by extending
the results of [30] for the k-FWER control and the results of [45] for the FDP control, respectively.
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10 Etienne Roquain

1.8. Quantile-binomial procedure

In section 5, we introduce a novel procedure, called the quantile-binomial procedure that controls
the FDP under independence of the p-values. This procedure can be defined as follows;

Algorithm 1.7 (Quantile-binomial procedure). Let for any t ∈ [0,1] and for any ` ∈ {1, ...,m},

q`(t) = the (1−α)-quantile of B(m− `+ bγ(`−1)c+1, t), (8)

where B(·, ·) denotes the binomial distribution and bγ(`−1)c denotes the largest integer n such
that n ≤ γ(`− 1). Let p(1) ≤ ... ≤ p(m) be the order statistics of the p-values. Then apply the
following recursion:

• Step 1: if q1(p(1))> γ , stop and reject no hypothesis. Otherwise, go to step 2;
• Step ` ∈ {2, ...,m}: if q`(p(`)) > γ`, stop and reject the hypotheses corresponding to p(1),
. . . , p(`−1). Otherwise, go to step `+1;

• Step `= m+1, stop and reject all hypotheses.

Equivalently, the above procedure can be defined as rejecting H0,i whenever

max
p(`)≤pi

{q`(p(`))/`} ≤ γ.

The rationale behind this algorithm is that at step `, when rejecting the ` null hypotheses corre-
sponding to the p-values smaller than p(`), the number of false discoveries behaves as if it was
stochastically dominated by a binomial variable of parameter (m−`+bγ(`−1)c+1, p(`)). Hence,
by controlling the (1−α)-quantile of the latter binomial variable at level γ`, the (1−α)-quantile
of the FDP should be controlled by γ . The rigorous proof of the corresponding FDP control
is given in Section 5, see Corollary 5.4. Finally, when controlling the median of the FDP, this
procedure is related to the recent adaptive procedure of [26], as discussed in Section 6.3.

2. Key concepts and tools

2.1. Model assumptions

Throughout this paper, we will consider several models. Each model corresponds to a specific
assumption on the p-value family p = {pi,1 ≤ i ≤ m} distribution. The first model, called the
“independent model" is defined as follows:

P I =
{

P ∈P : (pi(X))i∈H0(P) is a family of mutually independent

variables and (pi(X))i∈H0(P) is independent of (pi(X))i∈H1(P)
}
. (9)

The second model uses a particular notion of positive dependence between the p-values, called
“weak positive regression dependency" (in short, “weak PRDS"), which is a slightly weaker
version of the PRDS assumption of [8]. To introduce the weak PRDS property, let us define a
subset D⊂ [0,1]m as nondecreasing if for all q,q′ ∈ [0,1]m such that ∀i ∈ {1, ...,m}, qi ≤ q′i, we
have q′ ∈ D when q ∈ D.
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Type I error rate control in multiple testing 11

Definition 2.1 (Weak PRDS p-value family). The family p is said to be weak PRDS on H0(P)
if for any i0 ∈ H0(P) and for any measurable nondecreasing set D ⊂ [0,1]m , the function
u 7→ P(p ∈ D | pi0 ≤ u) is nondecreasing on the set {u ∈ [0,1] : P(pi0 ≤ u)> 0}.

The only difference between the weak PRDS assumption and the “regular" PRDS assumption
defined in [8] is that the latter assumes “u 7→ P(p ∈ D | pi0 = u) nondecreasing", instead of
“u 7→ P(p ∈ D | pi0 ≤ u) nondecreasing". Weak PRDS is a weaker assumption, as shown for
instance in the proof of Proposition 3.6 in [12]. We can now define the second model, where the
p-values have weak PRDS dependency:

P pos =
{

P ∈P : p(X) is weak PRDS on H0(P)
}
. (10)

It is not difficult to see that P I ⊂P pos because when P ∈P I , pi0 is independent of (pi)i 6=i0
for any i0 ∈H0(P). Furthermore, we refer to the general case of P ∈P (without any additional
restriction) as the “arbitrary dependence case".

As an illustration, in the one-sided Gaussian testing framework of Example 1.2, the PRDS
assumption (regular and thus also weak) is satisfied as soon as the covariance matrix Σ(P) has
nonnegative entries, as shown in [8] (note that this is not true anymore for two-sided tests, as
proved in the latter reference).

2.2. Dirac configurations

If we want to check whether a procedure satisfies a type I error rate control (7), particularly simple
p-value distributions (or “configurations") are as follows:

- “Dirac configurations": the p-values of H1(P) are equal to zero (without any assumption on
the p-values of H0(P));

- “Dirac-uniform configuration" (see [24]): the Dirac configuration for which the variables
(pi)i∈H0(P) are i.i.d. uniform.

These configurations can be seen as the asymptotic p-value family distribution where the sample
size available to perform each test tends to infinity, while the number m of tests is kept fixed
(see the examples of Section 1.2). This situation does not fall into the classical multiple testing
framework where the number of tests is much larger than the sample size. Besides, there is no
multiple testing problem in these configurations because the true nulls are perfectly separated
from the false null (almost surely). However, these special configurations are still interesting,
because they sometimes have the property to be the distributions for which the type I error rate
is the largest. In that case, they are called the “least favorable configurations" (see [24]). This
generally requires that the multiple testing procedure and the error rate under consideration have
special monotonic properties (see [23, 48]). In this case, proving the type I error rate control for
the Dirac configurations is sufficient to state (7) and thus appears to be very useful.

2.3. Algorithms

To derive (7), a generic method that emerged from the multiple testing literature is as follows:

1. start with a family (Rκ)κ of procedures depending on an external parameter κ;

Journal de la Société Française de Statistique, Vol. 152 No. 2 3-38
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2011) ISSN: 2102-6238



12 Etienne Roquain

2. find a set of values of κ for which Rκ satisfies (7);

3. take among these values the κ that makes Rκ the “largest".

The latter is designed to maintain the control of the type I error rate while maximizing the rejection
set. As we will see in Section 3 (κ is a threshold t), Section 4 (κ is a subset C of H ) and Section 5
(κ is a rejection number `), this gives rise to the so-called “step-up" and “step-down" algorithms,
which are very classical instances of type I error rate controlling procedures.

2.4. Adaptive control

A way to increase the power of type I error rate controlling procedures is to learn (from the data)
part of the unknown distribution P in order to make more rejections. This approach is called
“adaptive type I error rate control". Since the resulting procedure uses the data twice, the main
challenge is often to show that it maintains the type I error control (7). In this paper, we will
discuss adaptivity with respect to the parameter m0(P) = |H0(P)| for the FDR in Section 3.3. The
procedures presented in Section 4 (resp. Section 5) for controlling the k-FWER (resp. FDP) will
be also adaptive to m0(P), but in a maybe more implicit way. Some of them will be additionally
adaptive with respect to the dependency structure between the p-values. Let us finally note
that some other work studied the adaptivity to the alternative distributions of the p-values (see
[62, 49, 47]).

3. FDR control

After the seminal work of Benjamini and Hochberg [5], many studies have investigated the FDR
controlling issue. We provide in this section a survey of some of these approaches.

3.1. Thresholding based procedures

Let us start from thresholding type multiple-testing procedures

Rt = {1≤ i≤ m : pi ≤ t(p)},

with a threshold t(·) ∈ [0,1] possibly depending on the p-values. We want to find t such that the
corresponding multiple testing procedure Rt controls the FDR at level α under the model P pos,
by following the general method explained in Section 2.3. We start with the following simple
decomposition of the false discovery rate of Rt :

FDR(Rt ,P) = αm−1
∑

i∈H0(P)
E
[

1{pi ≤ t(p)}
α Ĝ(p, t(p))∨ (α/m)

]
, (11)

where Ĝ(p,u) = m−1
∑

m
i=1 1{pi ≤ u} denotes the empirical c.d.f. of the p-value family p =

{pi,1≤ i≤ m} taken at a threshold u ∈ [0,1].
In order to upper-bound the expectation in the RHS of (11), let us consider the following infor-

mal reasoning: if t and Ĝ were deterministic, this expectation would be smaller than t/(α Ĝ(p, t))
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Type I error rate control in multiple testing 13

and thus smaller than 1 by taking a threshold t such that t ≤ α Ĝ(p, t). This motivates the
introduction of the following set of thresholds:

T (p) = {u ∈ [0,1] : Ĝ(p,u)≥ u/α}. (12)

With different notation, the latter was introduced in [12, 23]. Here, any threshold t ∈ T (p) is
said “self-consistent" because it corresponds to a procedure Rt = {1≤ i≤ m : pi ≤ t} which is
“self-consistent" according to the definition given in [12], that is, Rt ⊂ {1≤ i≤m : pi ≤ α|Rt |/m}.
It is important to note that the set T (p) only depends on the p-value family (and on α) so that
self-consistent thresholds can be easily chosen in practice. As an illustration, we depict the set
T (p) in Figure 1 for a particular realization of the p-value family.
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FIGURE 1. The p-value e.c.d.f Ĝ(p,u) and u/α are plotted as functions of u ∈ [0,1]. The points u belonging to the set
T (p) lie on the X-axis of the gray area. m = 10; α = 0.5.

Now, let us choose a self-consistent threshold t(p) ∈T (p). By using the decomposition (11),
we obtain the following upper-bound:

FDR(Rt ,P)≤ αm−1
∑

i∈H0(P)
E
[

1{pi ≤ t(p)}
t(p)∨ (α/m)

]
≤ αm−1

∑
i∈H0(P)

E
[

1{pi ≤ t(p)}
t(p)

]
, (13)

with the convention 0
0 = 0. Since by (2),ă we have pi(x)> 0 for P-almost every x when i∈H0(P),

the denominator inside the expectation of the RHS of (13)ă can only be zero when the numerator
is also zero and therefore when the ratio is zero. Next, the following purely probabilistic lemma
holds (see a proof in Appendix A of [12] for instance):

Lemma 3.1. Let U be a nonnegative random variable which is stochastically lower bounded by
a uniform distribution, i.e., P(U ≤ u)≤ u for any u ∈ [0,1]. Then the following inequality holds:

E
[

1{U ≤V}
V

]
≤ 1 , (14)

for any nonnegative random variable V satisfying either of the two following conditions:
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14 Etienne Roquain

(i) V = g(U) where g : R+→ R+ is non-increasing,
(ii) the conditional distribution of V conditionally on U ≤ u is stochastically decreasing in u,

that is, ∀v≥ 0, u 7→ P(V < v |U ≤ u) is nondecreasing on {u ∈ [0,1] : P(U ≤ u)> 0}.

A consequence of the previous lemma in combination with (13) is that the FDR is controlled at
level αm0(P)/m as soon as V = t(p) satisfies (ii) with U = pi. For the latter to be true, we should
make the distributional assumption P ∈P pos and add the assumption that the threshold t(·) is
non-increasing with respect to each p-value, that is, for all q,q′ ∈ [0,1]m, we have t(q)≤ t(q′) as
soon as for all 1≤ i≤ m, q′i ≤ qi. By using the latter, we easily check that the set

D = {q ∈ [0,1]m : t(q)< v}

is a nondecreasing measurable set of [0,1]m, for any v ≥ 0. Thus, the weak PRDS condition
defined in Section 2.1 provides (ii) with U = pi and V = t(p) and thus also (14). Summing up,
we obtained the following result, which appeared in [12]:

Theorem 3.2. Consider a thresholding type multiple testing procedure Rt based on a threshold
t(·) satisfying the two following conditions:

- t(·) is self-consistent, i.e., such that for all q ∈ [0,1]m, t(q) ∈T (q) (where T (·) is defined
by (12))

- t(·) is coordinate-wise non-increasing, i.e., satisfying that for all q,q′ ∈ [0,1]m with q′i ≤ qi

for all 1≤ i≤ m, we have t(q)≤ t(q′).
Then, for any P ∈P pos, FDR(Rt ,P)≤ αm0(P)/m≤ α .

Remark 3.3. If we want to state the FDR control of Theorem 3.2 only for P ∈P I without using
the PRDS property, we can use Lemma 3.1 (i) conditionally on p−i = (p j, j 6= i) ∈ [0,1]m−1, by
taking V = t(U,p−i) and U = pi, because pi is independent of p−i when P ∈P I .

3.2. Linear step-up procedures

From Theorem 3.2, under the weak PRDS assumption on the p-value dependence structure, any
algorithm giving as output a self-consistent and non-increasing threshold t(·) leads to a correct
FDR control. As explained in Section 1.6 and Section 2.3, for the same FDR control we want
to get a procedure with a rejection set as large as possible. Hence, it is natural to choose the
following threshold:

tsu(p) = max{T (p)} (15)

= max{u ∈ {αk/m,0≤ k ≤ m} : Ĝ(p,u)≥ u/α}
= α/m ×max{0≤ k ≤ m : p(k) ≤ αk/m}, (16)

where p(1) ≤ ...≤ p(m) (p(0) = 0) denote the order statistics of the p-value family. This choice
was made in [5] and is usually called linear step-up or “Benjamini-Hochberg" thresholding. One
should notice that the maximum in (15) exists because the set T (p) contains 0, is upper-bounded
by 1 and because the e.c.d.f. is a non-decreasing function (the right-continuity is not needed). It
is also easy to check that the maximum u = tsu(p) satisfies the equality Ĝ(p,u) = u/α , so that
tsu(p) can be seen as the largest crossing point between between u 7→ Ĝ(p,u) and u 7→ u/α , see
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Type I error rate control in multiple testing 15

the left-side of Figure 2. The latter equality also implies that tsu(p) ∈ {αk/m,0≤ k ≤ m}, which,
combined with the so-called switching relation

m Ĝ(p,αk/m)≥ k⇐⇒ p(k) ≤ αk/m,

gives rise to the second formulation (16). The latter is illustrated in the right-side of Figure 2.
The formulation (16) corresponds to the original expression of [5] while (15) is to be found for
instance in [27]. Moreover, it is worth noticing that the procedure Rtsu using the thresholding tsu(p)
is also equal to {1≤ i≤ m : pi ≤ tsu(p)∨α/m}, so that it can be interpreted as an intermediate
thresholding between the non-corrected procedure using t = α and the Bonferroni procedure
using t = α/m.
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FIGURE 2. The two dual pictorial representations of the Benjamini-Hochberg linear step-up procedure. Left: c.d.f.
of the p-values, the solid line has for slope α−1. Right: ordered p-values, the solid line has for slope α/m. In both
pictures, the filled points represent p-values that corresponds to the rejected hypotheses. m = 10; α = 0.5.

Clearly, tsu(·) is coordinate-wise non-increasing and self-consistent. Therefore, Theorem 3.2
shows that for any P ∈P pos, FDR(Rtsu ,P)≤ αm0(P)/m. As a matter of fact, as soon as (2) holds
with an equality, we can prove that for any P ∈P I , the equality FDR(Rtsu ,P) = αm0(P)/m holds,
by using a surprisingly direct argument. Let p0,−i denote the p-value family where pi has been
replaced by 0, and observe that the following statements are equivalent, for any realization of the
p-values:

(i) pi ≤ tsu(p0,−i)

(ii) Ĝ
(
p0,−i, tsu(p0,−i)

)
≤ Ĝ

(
p, tsu(p0,−i)

)
(iii) tsu(p0,−i)/α ≤ Ĝ

(
p, tsu(p0,−i)

)
(iv) tsu(p0,−i)≤ tsu(p).

The equivalence between (i) and (ii) is straightforward from the defintion of Ĝ(·, ·). The equiva-
lence between (ii) and (iii) follows from Ĝ

(
p0,−i, tsu(p0,−i)

)
= tsu(p0,−i)/α , because t = tsu(p0,−i)

is a crossing point between Ĝ(p0,−i, t) and t/α . The equivalence between (iii) and (iv) comes
from the definition of tsu(p) together with tsu(p0,−i)≤ tsu(p)⇐⇒ tsu(p0,−i) = tsu(p), the latter
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16 Etienne Roquain

coming from the non-increasing property of tsu(·). As a consequence,

{pi ≤ tsu(p0,−i)}= {pi ≤ tsu(p)}, (17)

with tsu(p0,−i) = tsu(p) on these events. Therefore, using (17) and the first decomposition (11) of
the FDR, we derive the following equalities:

FDR(Rtsu ,P) = αm−1
∑

i∈H0(P)
E
[

1{pi ≤ tsu(p)}
α Ĝ(p, tsu(p))∨ (α/m)

]
= αm−1

∑
i∈H0(P)

E
[

1{pi ≤ tsu(p)}
tsu(p)

]
= αm−1

∑
i∈H0(P)

E
[

1{pi ≤ tsu(p0,−i)}
tsu(p0,−i)

]
= αm−1

∑
i∈H0(P)

E
[

tsu(p0,−i)
−1E

(
1{pi ≤ tsu(p0,−i)}

∣∣p0,−i
)]

= αm0(P)/m,

where we assumed in the last equality both that P ∈P I and condition (2) holds with equality. To
sum up, we have proved in this section the following result.

Theorem 3.4. Consider the linear step-up procedure Rtsu using the threshold defined in (15).
Then, for any P ∈P pos, FDR(Rtsu ,P)≤ αm0(P)/m. Moreover, the latter is an equality if P ∈P I

and (2) holds with equality.

This theorem is due to [5, 8]. The short proof mentioned above has been independently given
in [22, 47, 23]. Theorem 3.4 proves that the inequality “∀P ∈P pos, FDR(Rtsu ,P)≤ α" is sharp
as soon as (2) holds with equality and there exists P ∈P I such that H0(P) = H , that is,
∩i∈H Θ0,i∩P I 6= /0.

Other instances of self-consistent procedures include linear “step-up-down" procedures as
defined in [50]. Theorem 3.2 establishes that the FDR control also holds for these procedures, as
proved in [12, 23].

3.3. Adaptive linear step-up procedures

In this section we denote by π0(P) the proportion m0(P)/m of hypotheses that are true for P.
Since we aim at controlling the FDR at level α and not at level απ0(P), Theorem 3.4 shows that
there is a potential power loss when using tsu when the proportion π0(P) is small. A first idea is
to use the linear step-up procedure at level α? = min(α/π0(P),1), that is, corresponding to the
threshold

t∗(p) = max
{

u ∈ [0,1] : Ĝ(p,u)≥ u/α
?
}

(18)

= max
{

u ∈ [0,1] : Ĝ(p,u)≥ u π0(P)/α
}
. (19)

Note that (18) and (19) are equal because when α ≥ π0(P), the maximum is 1 in the two formulas.
From Theorem 3.4, threshold (19) provides a FDR smaller than α?π0(P)≤ α for P ∈P pos and
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Type I error rate control in multiple testing 17

a FDR equal to α when P ∈P I , (2) holds with equality and α ≤ π0(P). Unfortunately, since P is
unknown, so is π0(P) and thus the threshold (19) is an unobservable “oracle" threshold.

An interesting challenge is to estimate π0(P) within (19) while still rigorously controlling the
FDR at level α , despite the additional fluctuations added by the π0(P)-estimation. This problem,
called π0(P)-adaptive FDR control, has received a growing attention in the last decade, see e.g.
[6, 56, 9, 28, 7, 41, 51, 13]. To investigate this issue, a natural idea is to consider a modified linear
step-procedure using the threshold

tsu
f (p) = max

{
u ∈ [0,1] : Ĝ(p,u)≥ u/

(
α f (p)

)}
. (20)

where f (p) > 0 is an estimator of (π0(P))−1 to be chosen. The latter is called adaptive linear
step-up procedure. It is sometimes additionally said “plug in", because (20) corresponds to (19)
in which we have “plugged" an estimator of (π0(P))−1. Other types of adaptive procedures can
be defined, see Remark 3.6 below.

We describe now a way to choose f so that the control FDR(Rtsu
f
,P)≤ α still holds. However,

we only focus on the case where the p-values are independent, that is, P ∈P I . This restriction is
usual in studies providing an adaptive FDR control. First, to keep the non-increasing property
of the threshold tsu

f (·), we assume that f (·) is coordinate-wise non-increasing. Second, using
techniques similar to those of Section 3.2, we can write for any P ∈P I ,

FDR(Rtsu
f
,P)≤ αm−1

∑
i∈H0(P)

E
[1{pi ≤ tsu

f (p)}
tsu

f (p)
f (p)

]

≤ αm−1
∑

i∈H0(P)
E
[1{pi ≤ tsu

f (p)}
tsu

f (p)
f (p0,−i)

]

= αm−1
∑

i∈H0(P)
E
[

f (p0,−i)E
[1{pi ≤ tsu

f (p)}
tsu

f (p)

∣∣∣∣p0,−i

]]
≤ αm−1

∑
i∈H0(P)

E
[

f (p0,−i)
]
, (21)

where we used Lemma 14 (i) in the last inequality (conditionally on the p-values of (p j, j 6= i),
because f is coordinate-wise non-increasing). Additionally assuming that f (·) is permutation
invariant, we can upper-bound the RHS of (21) by using the Dirac-uniform configuration because
f (·) is non-increasing. This gives rise to the following result.

Theorem 3.5. Consider the adaptive linear step-up procedure Rtsu
f

with a threshold defined in
(20) using a (π0(P))−1-estimator f satisfying the following properties:

– f (·) is coordinate-wise non-increasing, that is, for all q,q′ ∈ [0,1]m with for all 1≤ i≤ m,
q′i ≤ qi, we have f (q)≤ f (q′);

– f (·) is permutation invariant, that is, for any permutation σ of {1, ...,m}, ∀q ∈ [0,1]m,
f (q1, ...,qm) = f (qσ(1), ...,qσ(m));

– f satisfies
∀m0 ∈ {1, ...,m}, Ep∼DU(m0−1,m)( f (p))≤ m/m0, (22)

where DU(k,m) denotes the Dirac-uniform distribution on [0,1]m for which the k first
coordinates are i.i.d. uniform on (0,1) and the remaining coordinates are equal to 0.
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18 Etienne Roquain

Then, for any P ∈P I , FDR(Rtsu
f
,P)≤ α .

The method leading to the upper-bound (21) was investigated in [7] and described latter in
detail in [13]. The simpler result presented in Theorem 3.5 appeared in [13]. It uses the Dirac-
uniform configuration as a least favorable configuration for the FDR. This kind of reasoning has
been also used in [23].

Let us now consider the problem of finding a “correct" estimator f of (π0(P))−1. This issue
has an interest in its own right and many studies investigated it since the first attempt in [52] (see
for instance the references in [14]). Here, we only deal with this problem from the FDR control
point of view, by providing two families of estimators that satisfy the assumptions of Theorem 3.5.
First, define the “Storey-type" estimators, which are of the form

f1(p) =
m(1−λ )

∑
m
i=1 1{pi > λ}+1

,

for λ ∈ (0,1) (λ not depending on p). It is clearly non-increasing and permutation invariant.
Moreover, we can check that f1 satisfies (22): for any m0 ∈ {1, ...,m}, considering (Ui)1≤i≤m0−1
i.i.d. uniform on (0,1),

Ep∼DU(m0−1,m)( f1(p)) =
m
m0

E
[

m0(1−λ )

∑
m0−1
i=1 1{Ui > λ}+1

]
≤ m

m0
,

because for any k ≥ 2, q ∈ (0,1) and for Y having a binomial distribution with parameters
(k−1,q), we have E((1+Y )−1)≤ (qk)−1, as stated e.g. in [7]. This type of estimator has been
introduced in [55] and proved to lead to a correct FDR control in [56, 7].

The second family of estimators satisfying the assumptions of Theorem 3.5 is the “quantile-
type" family, defined by

f2(p) =
m(1− p(k0))

m− k0 +1
,

for k0 ∈ {1, ...,m} (k0 not depending on p). The latter may be seen as Storey-type estimators
using a data-dependent λ = p(k0). Clearly, f2(·) is non-increasing and permutation-invariant.
Additionally, f2(·) enjoys (22) because for any m0 ∈ {1, ...,m}, considering (Ui)1≤i≤m0−1 i.i.d.
uniform on (0,1) ordered as U(1) ≤ ...≤U(m0−1),

Ep∼DU(m0−1,m)( f2(p)) = E
[

m(1−U(k0−m+m0−1))

m− k0 +1

]
=

m(1−E[U(k0−m+m0−1)])

m− k0 +1

=
m(1− (k0−m+m0−1)+/m0)

m− k0 +1
≤ m

m0
,

by using the convention U( j) = 0 when j ≤ 0. These quantile type estimators have been proved to
lead to a correct FDR control in [7]. The simple proof above was given in [13].

Which choice should we make for λ or k0? Using extensive simulations (including other type
of adaptive procedures), it was recommended in [13] to choose as estimator f1 with λ close to
α , because the corresponding procedure shows a “good" power under independence while it
maintains a correct FDR control under positive dependencies (in the equi-correlated Gaussian
one-sided model described in Example 1.2). Obviously, a “dynamic" choice of λ (i.e., using
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Type I error rate control in multiple testing 19

the data) can increase the accuracy of the (π0(P))−1 estimation and thus should lead to a better
procedure. However, proving that the corresponding FDR control remains valid in this case is an
open issue to our knowledge. Also, outside the case of the particular equi-correlated Gaussian
dependence structure, very little is known about adaptive FDR control.

Remark 3.6. Some authors have proposed adaptive procedures that are not of the “plug-in"
form (20). For instance, we can define the class of “one-stage step-up adaptive procedures", for
which the threshold takes the form tos(p) = max

{
u ∈ [0,1] : Ĝ(p,u) ≥ rα(u)

}
, where rα(·) is

a non-decreasing function that depends neither on p nor on π0(P), see, e.g., [41, 23, 13]. As
an illustration, Blanchard and Roquain (2009) have introduced the curve defined by rα(t) =
(1+m−1) t/(t +α(1−α)) if t ≤ α and rα(t) = +∞ otherwise, see [13]. They have proved that
the corresponding step-up procedure Rtos controls the FDR at level α in the independent model
(by using the property of Lemma 14 (i)). Furthermore, Finner et al. (2009) have introduced the
“asymptotically optimal rejection curve" (AORC) defined by rα(t) = t/(α + t(1−α)), see [23].
By contrast with the framework of the present paper, they considered the FDR control only in an
asymptotic manner where the number m of hypotheses tends to infinity. They have proved that the
AORC enjoys the following (asymptotic) optimality property: while several adaptive procedures
based on the AORC provide a valid asymptotic FDR control (under independence), the AORC
maximizes the asymptotic power among broad classes of adaptive procedures that asymptotically
control the FDR, see Theorem 5.1, 5.3 and 5.5 in [23].

3.4. Case of arbitrary dependencies

Many corrections of the linear step-up procedure are available to maintain the FDR control when
the p-value family has arbitrary and unknown dependencies. We describe here the so-called
“Occam’s hammer" approach presented in [11]. Surprisingly, it allows to recover and extend the
well-known “Benjamini-Yekutieli" correction [8] by only using Fubini’s theorem. Let us consider

tβ su(p) = max{u ∈ [0,1] : Ĝ(p,β (u))≥ u/α} (23)

= max{u ∈ {αk/m,1≤ k ≤ m} : Ĝ(p,β (u))≥ u/α}
= α/m ×max{0≤ k ≤ m : p(k) ≤ β (αk/m)}, (24)

for a non-decreasing function β : R+→ R+. Then the FDR of R
β (tβ su) can be written as follows:

for any P ∈P ,

FDR(R
β (tβ su),P) = αm−1

∑
i∈H0(P)

E
[

1{pi ≤ β (tβ su(p))}
tβ su(p)

]
= αm−1

∑
i∈H0(P)

E
[

1{pi ≤ β (tβ su(p))}
∫ +∞

0
u−21{tβ su(p)≤ u}du

]
.
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Next, using Fubini’s theorem, we obtain

FDR(R
β (tβ su),P) = αm−1

∑
i∈H0(P)

∫ +∞

0
u−2E

[
1{tβ su(p)≤ u}1{pi ≤ β (tβ su(p))}

]
du

≤ αm−1
∑

i∈H0(P)

∫ +∞

0
u−2P(pi ≤ β (u))du

= α
m0(P)

m

∫ +∞

0
u−2

β (u)du. (25)

Therefore, choosing any non-decreasing function β such that
∫ +∞

0 u−2β (u)du = 1 provides a
valid FDR control. This leads to the following result:

Theorem 3.7. Consider a function β : R+→ R+ of the following form: for all u≥ 0,

β (u) = ∑
i:1≤i≤m,αi/m≤u

(αi/m)νi, (26)

where the νis are nonnegative with ν1 + · · ·+νm = 1. Consider the step-up procedure R
β (tβ su)

using tβ su defined by (23). Then for any P ∈P , FDR(R
β (tβ su),P)≤ αm0(P)/m.

Note that the function β defined by (26) takes the value (α/m)ν1 + · · ·+(αi/m)νi in each
u = αi/m and is constant on each interval (αi/m,α(i+ 1)/m) and on (α,∞). Thus, it always
satisfies that β (u)≤ u, for any u≥ 0. This means that the procedure R

β (tβ su) rejects always less
hypotheses than the linear step-up procedure Rtsu . Therefore, while R

β (tβ su) provides a FDR control
under no assumption about the p-value dependency structure, it is substantially more conservative
than Rtsu under weak PRDS dependencies between the p-values.

As an illustration, taking νi = i−1δ−1 for δ = 1+ 1/2+ ...+ 1/m, we obtain β (αi/m) =
δ−1αi/m, which corresponds to the linear step-up procedure, except that the level α has been
divided by δ ' log(m). This is the so-called Benjamini-Yekutieli procedure proposed in [8].
Theorem 3.7 thus recovers Theorem 1.3 of [8]. We mention another example, maybe less classical,
to illustrate the flexibility of the choice of β in Theorem 3.7. By taking νm/2 = 1 and νi = 0 for
i 6= m/2 (assuming that m/2 is an integer), we obtain β (αi/m) = (α/2)1{i≥ m/2}. In that case,
the final procedure R

β (tβ su) rejects the hypotheses corresponding to p-values smaller than α/2 if
2p(m/2) ≤ α and rejects no hypothesis otherwise. Theorem 3.7 ensures that this procedure also
controls the FDR, under no assumption on the model dependency. Many other choices of β are
given in Section 4.2.1 of [12].

Finally, let us underline that any FDR control valid under arbitrary dependency suffers from a
lack of interpretability for the underlying FDP, as discussed in Section 6.2.

Remark 3.8 (Sharpness of the bound in Theorem 3.7). In Lemma 3.1 (ii) of [36] (see also [31]), a
specifically crafted p-value distribution was built on [0,1]m (depending on β ) for which the FDR of
R

β (tβ su) is equal to α (and m0(P) = m). If the underlying model P is such that (pi(X))1≤i≤m can
have this very specific distribution for some P∈P , the inequality “P∈P , FDR(R

β (tβ su),P)≤α"
in Theorem 3.7 is sharp. However, for a “realistic" model P , this p-value distribution is rarely
attained because it assumes quite unrealistic dependencies between the p-values. Related to that,
several simulation experiments showed that the standard LSU procedure still provides a good FDR
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Type I error rate control in multiple testing 21

control under “realistic" dependencies, see e.g. [21, 35]. This means that the corrections defined in
this section are generally very conservative for real-life data, because their actually achieved FDR
is much smaller than αm0(P)/m. Finally, another drawback of the bound of Theorem 3.7 is that
it is much smaller than α when π0(P) = m0(P)/m is small. To investigate this problem, we can
think to apply techniques similar to those of Section 3.3. However, the problem of adaptive FDR
control is much more challenging under arbitrary dependency. The few results that are available
in this framework are very conservative, see [13].

Remark 3.9 (Aggregation of dependent p-values). Consider Theorem 3.7 in the particular
case where all p-values test the same null hypothesis, that is Θ0,i = Θ0 for any i. According
to Remark 1.6, we obtain a new test of level α , by rejecting H0: “P ∈ Θ0" if the procedure
R

β (tβ su) defined in Theorem 3.7 rejects at least one null hypothesis, that is, if there exists k ≥ 1
such that p(k) ≤ β (αk/m). As an illustration, taking νγm = 1 and νi = 0 for i 6= γm, for a given
γ ∈ [0,1] such that γm ∈ {1, ...,m}, we obtain β (αi/m) = (αγ)1{i≥ γm}, which gives rise to a
test rejecting H0 whenever p(γm)γ

−1 ≤ α . This defines a new global p-value

p̃ = min(p(γm)γ
−1,1)

for testing H0 that can be seen as an aggregate of the original p-values. Thus, Theorem 3.7 shows
that P(p̃ ≤ α) ≤ α under the null, for arbitrary dependencies between the original p-values.
Interestingly, this aggregation procedure was independently discovered in [40] in a context where
one aims at combining p-values that were obtained by different splits of the original sample. Also
note that γ = 1/m corresponds to the Bonferroni aggregation procedure. Let us finally discuss
the choice γ = 1/2 (assuming that m/2 is an integer). In that case, the aggregated p-value is
p̃ = min(2 p(m/2),1). According to Remark 3.8, the factor “2" in the latter is needed in theory but
may be over-estimated for a “realistic" distribution of the p-value family. As a matter of fact, van
de Wiel et al. (2009) have (theoretically) proved that this factor can be dropped as soon as the
p-value family has some underlying multivariate Gaussian dependency structure, see [57].

4. k-FWER control

The methodology presented in this section for controlling the k-FWER under arbitrary dependen-
cies can probably be attributed to many authors, e.g. [33, 63, 44, 45]. Here, we opted for a general
presentation which emphasizes the rationale of the mathematical argument. This approach has
been sketched in the talk [10] and investigated more deeply in [30] where it is referred to as the
“sequential rejection principle". While the latter point of view allows to obtain elegant proofs, it is
also useful for developing new FWER controlling procedures (e.g., hierarchical testing, Schaffer
improvement), see [30, 29, 34]. This methodology has been initially developed for the FWER.
We propose in Section 4.4 a new extension to the k-FWER.

In this section, for simplicity, we drop the explicit dependence of the multiple testing procedure
R w.r.t. p in the notation. The parameter k is fixed in {1, ...,m}.

4.1. Subset-indexed family

As a starting point, we assume that there exists a subset-indexed family {RC }C⊂H of multiple
testing procedures satisfying the two following assumptions:
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• C 7→ RC is non-increasing, that is,

∀C ,C ′ ⊂H such that C ⊂ C ′, we have RC ′ ⊂ RC ; (NI)

• RC controls the k-FWER when C is equal to the subset of true null hypotheses, that is,

∀P ∈P , k-FWER(RH0(P),P)≤ α. (FWC0)

A natural way of deriving such a family is to take a thresholding-based family of the form

RC = {1≤ i≤ m : pi ≤ tC }, (27)

where tC ∈ [0,1] is a threshold which possibly depends on the data p = (pi)1≤i≤m. Assumption
(NI) then holds as soon as we take tC non-increasing in C (if C ⊂ C ′ then tC ′ ≤ tC ). However, tC
should be carefully chosen in order to ensure (FWC0), as we discuss below.

A first instance of a thresholding-based family satisfying (NI)-(FWC0) is the “Bonferroni
family" that chooses tC = min(αk/|C |,1). Condition (FWC0) results from Markov’s inequality:

P(|H0(P)∩RH0(P)| ≥ k)≤ k−1
∑

i∈H0(P)
P(pi ≤ tH0(P))≤ |H0(P)|tH0(P)/k ≤ α.

This family is not adaptive w.r.t. the dependence structure of the p-values. As an illustration, when
the true p-values are all equal, say, to pi0 , i0 ∈H0(P), we have

P(|H0(P)∩RH0(P)| ≥ k) = P(|H0(P)|1{pi0 ≤ tH0(P)} ≥ k)≤ tH0(P).

Thus, under this extreme dependency structure, the Bonferroni threshold min(αk/|C |,1) can be
replaced by α (the only case which matters is |C | ≥ k, see Remark 4.2 below). Hence, there is a
potential loss when using the Bonferroni family. In practice, the Bonferroni family is often used
as a “benchmark family" for evaluating the performance of other families.

In order to improve on the Bonferroni family, one can try to choose a threshold tC that captures
the dependencies between the p-values while still satisfying (NI)-(FWC0). For this, first note that
for RC defined by (27),

k-FWER(RC ,P) = P(∃i1, ..., ik ∈H0(P) : ∀i ∈ {i1, ..., ik}, pi ≤ tC )

= P(k-min{pi, i ∈H0(P)} ≤ tC ),

where k-min{pi, i ∈H0(P)} denotes the k-th smallest element of {pi, i ∈H0(P)}. Therefore,
a natural choice for tC is the α-quantile of the distribution of k-min{pi, i ∈ C }. However, the
latter is generally unknown because the underlying distribution P is unknown. An idea is to
approximate it by using a randomized thresholding procedure. This method can be applied when
the null hypothesis is invariant under the action of a finite group of transformations of the original
observation set X onto itself (such a transformation can be for instance a permutation or a
sign-flipping, see [44, 45, 1, 2]). For a recent and general description of this method, we refer
the reader to Theorem 2 of [30] (while [30] have developed this method only for k = 1, it can be
directly generalized to the case of k ≥ 1). The resulting family satisfies (NI)-(FWC0) while it is
“adaptive" with respect to the p-value dependence structure, in the sense that tC = tC (p) implicitly
takes into account the potential relations existing between the p-values.
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Remark 4.1. The monotonicity condition introduced in [30] can be rewritten with our notation
as follows:

∀C ,C ′ ⊂H such that C ⊂ C ′, we have RC ′ ∩C ′ ⊂ RC . (wNI)

Condition (wNI) is weaker than condition (NI). Thus, at first sight, the setting of [30] is more
general than ours. The next reasoning shows that the two settings are in fact equivalent. Since
the condition (FWC0) only depends on the set of RC ∩C (for C = H0), we can add the elements
of C c in the rejection set RC while still maintaining (FWC0) true. Therefore, starting from a
subset-indexed family {RC }C⊂H satisfying the weaker assumptions (wNI)-(FWC0), we may
define a new subset-indexed family {R′C }C⊂H satisfying our assumptions (NI)-(FWC0), by
letting R′C = RC ∪C c, and then apply to this family the methodology described in the next
sections. Moreover, by anticipating the definition of the FWER-controlling algorithm that will
be presented in Section 4.4, we can easily check that the output of this algorithm applied to the
family {R′C }C⊂H is the same than the algorithm of [30] applied to the family {RC }C⊂H . As a
consequence, our framework covers the original setting of [30].

Remark 4.2. Any subset-indexed family {RC }C⊂H satisfying (NI)-(FWC0) can be modified in
the following way: take R̃C = H (reject all hypotheses) when |C |< k and R̃C = RC otherwise.
This maintains the conditions (NI)-(FWC0), because the k-FWER is always zero when |H0(P)|<
k.

In what follows, we investigate the problem of the k-FWER control once we have fixed a
subset-indexed family {RC }C⊂H satisfying (NI)-(FWC0).

4.2. Single-step method

From assumption (FWC0), the procedure RH0(P) using C =H0(P) controls the k-FWER. Clearly,
this procedure cannot be used because H0(P) depends on the unknown underlying distribution
P of the data. We can use instead RC with C = H because, from the two assumptions (NI)-
(FWC0) above, we have k-FWER(RH ,P) ≤ k-FWER(RH0(P),P) ≤ α . This implies that RH

always controls the k-FWER at level α . The latter is generally called the single-step procedure
(associated to the family {RC }C⊂H ). However, we argue that RH could be often too conservative
w.r.t. RH0(P), for the two following reasons:

– H0(P) can be much smaller than H ;
– the way the procedures {RC } have been built implicitly assumed that C = H0(P) and can

be very conservative when C is much larger than H0.
For instance, these behaviors have been extensively discussed in [2] for particular Rademacher-
resampled thresholding procedures. Therefore, we seek for a procedure controlling the k-FWER
which is “close" to RH0(P) and which can be derived from the family {RC }C⊂H via a simple
algorithm.

4.3. Step-down method for FWER

We present in this section the special case of k = 1, following the approach of [44] with the
presentation proposed in [10, 30]. Let us denote by AC the sets (RC )

c of non-rejected hypotheses
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for the subset-indexed family. Consider the event

Ω0 = {RH0(P)∩H0(P) = /0}= {H0(P)⊂ AH0(P)}.

By assumption (FWC0), we have P(Ω0)≥ 1−α . Since from (NI), AC is non-decreasing in C ,
the following holds on Ω0: for any C ⊂H ,

H0(P)⊂ C =⇒ AH0(P) ⊂ AC =⇒H0(P)⊂ AC . (28)

Thus, on the event Ω0, taking C =C0 =H in (28) gives that H0(P)⊂ AC0 , which in turn implies
H0(P)⊂ AC1 by taking C = C1 = AC0 in (28), and so on. By recursion, this proves the following
result:

Theorem 4.3. Assume that a family {RC }C⊂H of multiple testing procedures satisfies conditions
(NI) and (FWC0) and consider the corresponding family of non-rejected hypotheses {AC }C⊂H .
Define Ĉ by the following “step-down" recursion:

• Initialization: C0 = H ;
• Step j ≥ 1: let C j = AC j−1 . If C j = C j−1, let Ĉ = C j and stop. Otherwise go to step j+1;

Then the procedure R = (Ĉ )c, which also equals RĈ , controls the FWER at level α for any P∈P .

Note that for all j ≥ 0, we have C j+1 ⊂ C j, because C1 ⊂ C0 and AC is non-decreasing in
C . Thus, the set of rejected hypotheses can only increase during the step-down algorithm. In
particular, the final procedure Ĉ c = RĈ is always less conservative than the single-step procedure
RH , for the same FWER control. Thus, using a step-down algorithm is always more powerful
than the single-step method.

Example 4.4 (Bonferroni step-down procedure for FWER control). Theorem 4.3 can be used
with the Bonferroni family RC = {1 ≤ i ≤ m : pi ≤ α/|C |}. In that case, by reordering the
p-values p(1) ≤ ... ≤ p(m) (with p(0) = 0), the corresponding step-down procedure defined in
Theorem 4.3 can be reformulated as rejecting the nulls with pi ≤ α/(m− ˆ̀+ 1), where ˆ̀ =
max{` ∈ {0,1, ...,m} : ∀`′ ≤ `, p(`′) ≤ α/(m− `′+1)}. This is the well known step-down Holm
procedure which was introduced and proved to control the FWER in [33]. By contrast with step-up
procedures, the step-down Holm procedure starts from the most significant p-value and stops the
first time that a (ordered) p-value exceeds the critical curve. This is illustrated in Figure 3.

4.4. Step-down method for k-FWER

We would like to generalize Theorem 4.3 to the case of the k-FWER. This time, we should
consider the event

Ω0 = {|RH0(P)∩H0(P)| ≤ k−1}= {∃I0 ⊂H , |I0|= k−1 : H0(P)⊂ AH0(P)∪ I0},

which satisfies by assumption P(Ω0)≥ 1−α . For any subset C ⊂H , let

φ(C ) =
⋃

I⊂H ,|I|=k−1

AC∪I =
⋃

I⊂C c,|I|≤k−1

AC∪I. (29)
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FIGURE 3. Illustration of the two equivalent definitions of Holm’s procedure. The left picture is the classical step-down
representation: ordered p-values together with the solid curve ` 7→ α/(m− `+1). The filled points represent p-values
that corresponds to the rejected hypotheses. The right picture illustrates the algorithm of Theorem 4.3: ordered p-values
with the three thresholds α/10 (step 1), α/7 (step 2) and α/5 (step 3). For i ∈ {1,2}, the points filled with “i" are
rejected in the ith step of the algorithm. Both pictures use the same p-values and m = 10; α = 0.5.

Then we may prove that the following holds: on the event Ω0, for any C ⊂H ,

∃I ⊂H , |I|= k−1 : H0(P)⊂ C ∪ I =⇒ ∃I ⊂H , |I|= k−1 : AH0(P) ⊂ AC∪I ⊂ φ(C )

=⇒ ∃I′ ⊂H , |I′|= k−1 : H0(P)⊂ φ(C )∪ I′.

The first implication holds because AC is non-decreasing in C and the second implication holds
by considering I′ = I0. Thus, on the event Ω0, for any C ⊂H ,

|C c∩H0(P)| ≤ k−1 =⇒ |(φ(C ))c∩H0(P)| ≤ k−1.

This leads to the following result.

Theorem 4.5. Assume that a family {RC }C⊂H of multiple testing procedures satisfies conditions
(NI) and (FWC0) and consider the corresponding family of non-rejected hypotheses {AC }C⊂H

and let φ be defined by (29). Define Ĉ by the following “step-down" recursion:
• Initialization: C0 = H ;
• Step j ≥ 1: let C j = φ(C j−1). If C j = C j−1, let Ĉ = C j and stop. Otherwise go to step j+1;

Then the procedure R = (Ĉ )c, which also equals (φ(Ĉ ))c =
⋂
|I|=k−1 RĈ∪I , controls the k-FWER

at level α for any P ∈P .

From (29), φ(·) is non-decreasing, that is, ∀C ⊂ C ′, φ(C ) ≤ φ(C ′). As a consequence, we
derive from C1 ⊂ C0 that C j ⊂ C j−1 for all j ≥ 1. Therefore, the rejection set can only increase
at each step of the step-down algorithm. In particular, the final procedure Ĉ c =

⋂
|I|=k−1 RĈ∪I

is always less conservative than the single step method RH , for the same k-FWER control.
Therefore, using the step-down algorithm always leads to a power improvement.
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To illustrate Theorem 4.5, let us consider a thresholding-based family of the form RC = {1≤
i≤ m : pi ≤ tC } with a non-increasing threshold function C 7→ tC (i.e., such that for C ⊂ C ′, we
have tC ′ ≤ tC ) and such that {RC }C satisfies (FWC0). The recursion relation C ′ = φ(C ) can be
rewritten in that case as follows:

(C ′)c =
⋂

I⊂C c,|I|≤k−1

RC∪I

=
⋂

I⊂C c,|I|≤k−1

{1≤ i≤ m : pi ≤ tC∪I}

=
{

1≤ i≤ m : pi ≤ min
I⊂C c,|I|≤k−1

{tC∪I}
}
.

This recovers the generic step-down method described in Algorithm 2.1 of [45], which was
developed in the case where the subset-indexed family is thresholding based.

Example 4.6 (Bonferroni step-down procedure for k-FWER control). When we choose the
Bonferroni family, i.e., the threshold family tC = αk/|C |, we have

min
I⊂C c,|I|≤k−1

{tC∪I}=
αk

m∧ (|C |+ k−1)
.

Therefore, in terms of the ordered p-values 0 = p(0) ≤ p(1) ≤ ... ≤ p(m), the procedure of The-
orem 4.5 can be reformulated as rejecting the null H0,i when pi ≤ αk/(m∧ (m− ˆ̀+ k)) where
ˆ̀= max{` ∈ {0,1, ...,m} : ∀`′ ≤ `, p(`′) ≤ αk/(m∧ (m− `′+ k))}. The latter is the generalized
Holm procedure, which was introduced and proved to control the k-FWER in [36].

5. FDP control

The problem of controlling the FDP has been investigated in many studies, e.g., [36, 59, 43, 15,
45, 17, 46]. We follow here a methodology proposed by Romano and Wolf (2007), see [45]. They
have proposed to use a family {Sk}k of k-FWER controlling procedures and to choose k that
ensures that the corresponding rejection number |Sk| is “sufficiently large". Roughly speaking,
choosing k such that |Sk| is larger than (k−1)/γ implies that, with high probability,

FDP(Sk,P) = |Sk∩H0(P)|/|Sk| ≤ (k−1)/|Sk| ≤ γ.

Obviously, as it is, the above reasoning is not rigorous, because the chosen k depends on the data.
Theorem 4.1 (i) of [45] establishes that the latter approach leads to a correct FDP control in the
asymptotic setting where the sample size available for each test tends to infinity. This can be seen
as a Dirac configuration where each p-value corresponding to false nulls are equal to zero.

In this section, we propose to reformulate this approach by using as index the rejection number
instead of k. Roughly speaking, if we choose {R`}` such that each R` controls the (γ`+1)-FWER
and we choose ` such that |R`| ≥ `, we obtain that, with high probability,

FDP(R`,P) = |R`∩H0(P)|/|R`| ≤ γ`/|R`| ≤ γ.

Similarly to the previous paragraph, this argument is not rigorous because the chosen ` depends of
the data. The main task of this section is to rationalize this approach. This leads to a general result
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(Theorem 5.2 given in Section 5.2), which covers both Theorem 4.1 (i) of [45] in the “Dirac"
setting (see Section 5.4) and the earlier result of [36] (see Section 5.3). As additional corollary,
we derive the FDP control of the quantile-binomial procedure described in Algorithm 8, when the
data are assumed to follow the model P I (see Section 5.3).

In this section, the parameter γ is fixed once and for all in (0,1).

5.1. Family indexed by rejection numbers

Assume that we have at hand a family {R`}1≤`≤m of multiple testing procedures and a class of
distributions P ′ ⊂P satisfying the following properties:

• R` is non-decreasing with respect to `, that is,

∀` ∈ {1, ...,m−1}, R` ⊂ R`+1 ; (ND)

• R` controls the (bγ`c+1)-FWER at level α for any P ∈P ′ such that less than m− `+
bγ(`−1)c+1 null hypotheses are true, that is,

∀` ∈ {1, ...,m}, ∀P ∈P ′ s.t. |H0(P)| ≤ m− `+ bγ(`−1)c+1,
P(|R`∩H0(P)| ≥ bγ`c+1)≤ α

; (FWC)

• for any P ∈P ′, for any ` ∈ {1, ...,m}, the false rejection number of R` is independent of the
correct rejection numbers of R`′ , for 1≤ `′ ≤ m, that is,

∀P ∈P ′,∀` ∈ {1, ...,m}, |R`∩H0(P)| is independent of {|R`′ ∩H1(P)|,1≤ `′ ≤ m} .
(DA)

In condition (FWC), for any x≥ 0, bxc denotes the largest integer n such that n≤ x. Condition
(ND) is natural because the index ` can be interpreted as a rejection number. It is easy to check in
the examples below.

For any P ′ ⊂P , condition (FWC) is fulfilled by the (single-step or step-down) k-FWER
controlling procedures of the previous section when k = bγ`c+1. As a first instance, we can use
the (single-step) Bonferroni family R` using the threshold α(bγ`c+1)/m. Moreover, note that
|H0(P)| ≤ m− `+ bγ(`−1)c+1 in (FWC), thus we can consider the improved threshold

tLR
` =

α(bγ`c+1)
m− `+ bγ(`−1)c+1

. (30)

The threshold (30) is slightly larger than the threshold used in Theorem 3.1 of [36] (they used bγ`c
instead of bγ(`−1)c in the denominator). As a second instance, we can substantially improve
on the above threshold family when we additionally assume that the distribution P of the data
lies in the smaller subset P ′ = P I: for this, note that for any P ∈P I and for any t ∈ [0,1], the
variable |{i ∈H0(P) : pi(X)≤ t}| is stochastically upper-bounded by a binomial distribution of
parameters |H0(P)| and t, which in turn is stochastically upper-bounded by a binomial distribution
of parameters m−`+bγ(`−1)c+1 and t. Therefore, choosing the (deterministic) quantile-based
threshold family (tQ

` )1≤`≤m defined by

tQ
` = max{t ∈ [0,1] : P

(
Z > γ`

)
≤ α for Z ∼B(m− `+ bγ(`−1)c+1, t)} (31)

= max{t ∈ [0,1] : q`(t)≤ γ`},

Journal de la Société Française de Statistique, Vol. 152 No. 2 3-38
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2011) ISSN: 2102-6238



28 Etienne Roquain

where q`(·) is defined by (8), we obtain a family of thresholding procedures satisfying (FWC) with
P ′ = P I . Clearly, since tLR

` in (30) is only based upon Markov’s inequality, which is in general
not accurate for binomial variables, the threshold family tQ

` defined by (31) is substantially larger,
as illustrated in Figure 4. Interestingly, we can use more elaborate deviation inequalities to obtain
thresholds that are better than tLR

` while having a form more explicit than tQ
` , see Remark 5.1.

Assumption (DA) is a dependence assumption which is typically satisfied in the two following
cases:
− each procedure R` uses a deterministic threshold and the p-values associated to true nulls

are independent of the p-values associated to false nulls, for all distributions of P ′, that is,

∀` ∈ {1, ...,m},R` = {i ∈ {1, ...,m} : pi ≤ t`} for a deterministic t` ∈ [0,1]
and ∀P ∈P ′,(pi(X))i∈H0(P) is independent of (pi(X))i∈H1(P)

; (DA’)

− for all distributions of P ′, the number of correct rejections of each R` is deterministic, that
is,

∀P ∈P ′, {|R`′ ∩H1(P)|,1≤ `′ ≤ m} is deterministic. (DA”)

Condition (DA”) is satisfied for instance when H1(P) ⊂ R`′ , for any `′, which is the case
for procedures of the form R` = {i ∈ {1, ...,m} : pi ≤ t`(p)} using a possibly data-dependent
threshold t`(p) ∈ [0,1], when we assume that the p-values are in the Dirac configuration, that is,
when they are equal to zero under the alternative.

Remark 5.1. Using Hoeffding’s and Bennett’s inequalities (see, e.g., Proposition 2.7 and 2.8 in
[39]), we can derive a family of thresholding procedures satisfying (FWC) with P ′ = P I , by
using the threshold

(tQ)′` = max(tLR
` , tHo

` , tBe
` ), (32)

where we let

tHo
` =

(
bγ`c+1

m− `+ bγ(`−1)c+1
−
(

log(1/α)

2(m− `+ bγ(`−1)c+1)

)1/2)
∨0

tBe
` =

bγ`c+1
m− `+ bγ(`−1)c+1

h−1
(

log(1/α)

bγ`c+1

)
,

with h(u) = u− log(u)−1, u ∈ (0,1].

5.2. Step-down method

The approach described in this section is an adaptation of the proof of Theorem 3.1 in [36] to
our setting. Let us consider a family {R`}1≤`≤m and a class of distributions P ′ ⊂P satisfying
(ND)-(FWC)-(DA). We aim at selecting `= ˆ̀ that provides ∀P ∈P ′, FDP(R ˆ̀,P)≤ α .

First note that, by definition of the FDP, we have for any ` ∈ {1, ...,m} such that |R`|= `:

{FDP(R`,P)> γ}= {|H0(P)∩R`|> γ`}
= {|H0(P)∩R`| ≥ bγ`c+1}
= {` ∈L }, (33)
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FIGURE 4. Threshold tQ
` in (31) for model P I (solid line), threshold (tQ)′` in (32) for model P I (dotted line) and

threshold tLR
` in (30) for model P (dashed line) in function of ` ∈ {1, ...,m}. m = 100; γ = 0.2. Left: α = 0.5; right:

α = 0.05.

where L = {` ∈ {1, ...,m} : `−|H1(P)∩R`| ≥ bγ`c+1} is a set which only depends on the set
{|H1(P)∩R`′ |,1≤ `′ ≤ m}.

Second, note that for any ` ∈ {1, ...,m} such that |R`| ≥ `,

{` ∈L } ⊂ {|H0(P)∩R`| ≥ bγ`c+1}. (34)

Let us consider `? = min{L } (with `? = m+ 1 when L = /0). From (33) and (34), taking
ˆ̀∈ {1, ...,m} such that |R ˆ̀|= ˆ̀ and such that for any `≤ ˆ̀, |R`| ≥ `, we obtain

{FDP(R ˆ̀,P)> γ} ⊂ {`? ≤ ˆ̀}
⊂ {|H0(P)∩R`? | ≥ bγ`?c+1}.

Moreover, if `? ≥ 2, by definition of `?, we have `?− 1 /∈L . Hence, we obtain the following
upper-bound for |H0(P)|:

|H0(P)|= m−|H1(P)| ≤ m−|H1(P)∩R`?−1| ≤ m− `?+ bγ(`?−1)c+1.

Since the above bound is also true when `? = 1, it holds for any possible value of `?.
Finally noting that `? only depends on the variable set {|H1(P)∩R`′ |,1≤ `′ ≤ m} and using

(FWC)-(DA), we have proved that for any ` ∈ {1, ...,m},

P(FDP(R ˆ̀,P)> γ | `? = `)≤ P(|H0(P)∩R`| ≥ bγ`c+1 | `? = `)

= P(|H0(P)∩R`| ≥ bγ`c+1)

≤ α.

Also, the probability P(FDP(R ˆ̀,P) > γ | `? = m+ 1) is zero, because it is smaller than P( ˆ̀∈
L | `? = m+1). This leads to the following result.
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30 Etienne Roquain

Theorem 5.2. Assume that there exists a family {R`}1≤`≤m of multiple testing procedures and a
class of distributions P ′ ⊂P satisfying the conditions (ND)-(FWC)-(DA) defined in Section 5.1.
Consider the procedure R ˆ̀ where

ˆ̀= max
{
` ∈ {0, ...,m} : ∀`′ ∈ {0, ..., `}, |R`′ | ≥ `′

}
, (35)

(with the convention R0 = /0). Then R ˆ̀ controls the FDP in the following sense:

∀P ∈P ′, P(FDP(R ˆ̀,P)> γ)≤ α. (36)

The algorithm performed to find (35) is a step-down algorithm; it starts from small rejection
numbers and stops the first time that |R`| is below `. Note that the maximum in (35) is well
defined because `= 0 satisfies |R`| ≥ `. Furthermore, using (ND), relation (35) implies ˆ̀≤ |R ˆ̀| ≤
|R ˆ̀+1|< ˆ̀+1, so that |R ˆ̀|= |R ˆ̀+1|= ˆ̀ holds. As a consequence, the procedure of Theorem 5.2
can be equivalently defined by R ˜̀ where

˜̀= min{` ∈ {1, ...,m+1} : |R`| ≤ `−1}, (37)

with the convention Rm+1 = Rm (so that the minimum in (37) is well defined).

5.3. Theorem 3.1 of [36] and the quantile-binomial procedure as corollaries

Going back to the specific setting (DA’) described in Section 5.1, we may derive from Theorem 5.2
the following corollary.

Corollary 5.3. Let us consider the deterministic threshold family (tLR
` )1≤`≤m defined by (30) and

consider

ˆ̀= max
{
` ∈ {0, ...,m} : ∀`′ ∈ {0, ..., `}, p(`′) ≤ tLR

`′
}
, (38)

where 0 = p(0) ≤ p(1) ≤ ... ≤ p(m) denote the ordered p-values and by convention tLR
0 = 0.

Then the procedure R ˆ̀ = {i ∈ {1, ...,m} : pi ≤ tLR
ˆ̀ } satisfies the FDP control (36) for the subset

P ′ of distributions P ∈P such that the family (pi(X))i∈H0(P) is independent of the family
(pi(X))i∈H1(P).

By reproducing the end of the proof of Theorem 5.2 in the particular setting of Corollary 5.3,
we may increase a bit the distribution set P ′ in Corollary 5.3 to the set of P ∈P such that for
any i ∈H0(P), ∀u ∈ [0,1], P(pi(X)≤ u | (pi(X))i∈H1(P))≤ u. This is the distributional setting of
Theorem 3.1 of [36]. Hence, we are able to recover the latter result (with a slight improvement in
the threshold family).

Furthermore, if we want to ensure the FDP control (36) only for the smaller distribution set
P ′ = P I , we may consider the larger threshold family (tQ

` )1≤`≤m defined by (31). This gives rise
to the step-down procedure

RQ = {i ∈ {1, ...,m} : pi ≤ tQ
ˆ̀ }, (39)

where ˆ̀=max{`∈{0, ...,m} : ∀`′ ∈{0, ..., `}, p(`′)≤ tQ
`′ } (with tQ

0 = 0). The latter is the procedure
described in Algorithm 1.7, because p(`) ≤ tQ

` if and only if q`(p(`))≤ γ`, with q`(·) defined by
(8). As a consequence, Theorem 5.2 provides the result announced in Section 1.7.
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Corollary 5.4. For any γ,α ∈ (0,1), the quantile-binomial procedure RQ described in Algo-
rithm 1.7, or equivalently in (39), controls the FDP in the following way:

∀P ∈P I, P(FDP(RQ,P)> γ)≤ α.

In particular, the median-binomial procedure RM (using α = 1/2) provides that the median of the
distribution of FDP(RM,P) is controlled at level γ for any P ∈P I .

To our knowledge, the above result is a new finding. It establishes a FDP control which is
substantially more suitable to the case of independent p-values in comparison with the procedure
of [36]. Further comments on this procedure can be found in Section 6.3.

5.4. Theorem 4.1 (i) of [45] as a corollary

In Section 4 of [45], a step-down procedure Sk̂ is defined from a generic family {Sk}1≤k≤m of
thresholding based procedures. The latter family is assumed to be such that each Sk controls the
k-FWER for 1≤ k ≤ m and Sk ⊂ Sk+1 for 1≤ k ≤ m−1. The index k̂ is obtained as follows:

k̂ = min{k ∈ {1, ...,m+1} : γ|Sk|< k− γ}, (40)

where we use here the convention Sm+1 = Sm (so that the above set always contains k = m+1).
Theorem 4.1 (i) of [45] states that Sk̂ controls the FDP in the asymptotic sense, as the sample
size available to perform each test tends to infinity. This can be seen as a (non-asymptotic) FDP
control in a Dirac configuration where the p-values corresponding to false nulls are equal to zero.
Set under this form, Theorem 4.1 (i) of [45] can be derived from Theorem 5.2.

For this, let R` = Sbγ`c+1, for ` ∈ {1, ...,m}, and note that the family {R`}1≤`≤m satisfies (ND)-
(FWC) and (DA”), by taking the distribution set P ′ corresponding to Dirac configurations for
the p-values. Hence, Theorem 5.2 establishes the FDP control for the Dirac configurations of the
procedure R ˜̀ where ˜̀ is defined by (35), or equivalently by (37). Thus, it only remains to show
that the step-down algorithms (40) and (37) lead to the same procedure, that is,

R ˜̀ = Sk̂.

To prove the latter, we establish k̂ = bγ ˜̀c+1. First, using (37), ˜̀ satisfies γ|Sbγ ˜̀c+1| ≤ γ ˜̀−γ . Since
γ` < bγ`c+1, we deduce from the definition of k̂ that bγ ˜̀c+1≥ k̂. Conversely, by considering
the unique integer ` ∈ {1, ...,m} satisfying k̂/γ − 1 ≤ ` < k̂/γ and thus also bγ`c+ 1 = k̂, we
have that for any integer j, γ j < k̂⇒ j ≤ `. Applying the latter for j = |Sk̂|+1, we obtain from
γ(|Sk̂|+1)< k̂ that |Sk̂| ≤ `−1 and thus `≥ ˜̀, by using the definition of ˜̀. This in turn implies
k̂ ≥ bγ ˜̀c+1. We thus have proved the following result, which can be seen as Theorem 4.1 (i) of
[45] in the Dirac setting.

Corollary 5.5. Assume that there exists a family {Sk}1≤k≤m of multiple testing procedures (with
the convention Sm+1 = Sm) satisfying

- for each k ∈ {1, ...,m}, Sk is of the form {i ∈ {1, ...,m} : pi ≤ tk(p)} for a possibly data-
dependent threshold tk(·) ∈ [0,1];

- for each k ∈ {1, ...,m−1}, Sk ⊂ Sk+1;
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- for each k ∈ {1, ...,m}, ∀P ∈P , k-FWER(Sk,P)≤ α .
Consider k̂ defined in (40) and the subset P ′ of distributions P ∈P corresponding to a Dirac
configuration, i.e., such that ∀P ∈P ′, ∀i ∈H1(P), pi(x) = 0 for P-almost every x ∈X . Then
we have ∀P ∈P ′, P(FDP(Sk̂,P)> γ)≤ α.

6. Discussion

6.1. Complexity of the k-FWER step-down approach

One major limitation of the k-FWER approach presented in Section 4 is that the computation of
φ(·) in (29) can become cumbersome when k is large because we should consider all subsets I
of C c of cardinality k− 1 (say that |C c| ≥ k− 1). However, we may modify this algorithm by
considering only the set I equals to the k− 1 indexes of C c corresponding to the k− 1 largest
p-values in {pi, i ∈ C c}. As noted in [45], this “streamlined" step-down procedure still controls
the k-FWER in the Dirac model where each false null has a p-value equals to zero. The latter is
true because in this model, as soon as |C c∩H0(P)| ≤ k−1, we know that the set C c∩H0(P) is
included in the set I of indexes corresponding to the k−1 largest p-values in {pi, i∈C c} (because
the p-values of {pi, i ∈ C c∩H1(P)} are zero). Nevertheless, no proof of this k-FWER control
stands without this Dirac assumption.

6.2. FDR control is not FDP control

Since the only interpretable variable is the FDP and not its expectation, controlling the FDR is
meaningful only when the FDP concentrates well around the FDR. As the hypothesis number m
grows, Neuvial (2008) showed that the latter holds for step-up type procedures when a Donsker
type theorem for the e.c.d.f. is valid, so for instance under independence or “weak" dependence, see
[41]. However, under some unspecified dependencies, we do not know how the FDP concentrates.
For instance, even under a very simple ρ-equi-correlated Gaussian model (corresponding to
Example 1.2, where the non-diagonal entries of Σ(P) are all equal to ρ), its was shown in [16] that
the convergence rate of the FDP to the FDR can be arbitrarily slow when ρ = ρm tends to zero as
m tends to infinity. Additionally, it was proved in [24] that no concentration phenomenon occurs
when ρ is kept fixed with m. Also, as shown in [48], the “sparsity" (π0(P) = π0,m(P) tends to 1
as m tends to infinity) is one other feature that can slow down the FDP convergence. Therefore,
in all these cases, the FDP convergence is slow and controlling the FDR does not lead to a clear
interpretation for the underlying FDP. The latter drawback does not arise while controlling the
FDP upper-tail distribution: for instance, the FDP control P(FDP > 0.01) ≤ 0.5 ensures that,
with a probability at least 0.5, the FDP is below 0.01, and this interpretation holds whatever the
FDP distribution is. However, the FDR stays useful, because this is a simpler criterion for which
the controlling methodology is (for now) much more developed in comparison with the FDP
controlling methodology.

6.3. Quantile-binomial procedure and relation to previous work

Let us consider the quantile-binomial procedure defined in algorithm 1.7 and the quantile function
q`(·) defined by (8). In the particular case where we take α = 1/2, the procedure is called the
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median-binomial procedure and Corollary 5.4 shows that it controls the median of the FDP at level
γ under independence of the p-values. Interestingly, in the “Gaussian regime" where the underlying
binomial variable is close to a Gaussian variable (say, γ not too small, many rejections), the median
is close to the expectation and thus q`(t) ' (m− `+ bγ(`− 1)c+ 1)t ' (m− (1− γ)`+ 1)t.
Hence, in this case, the median-binomial procedure is close to the step-down procedure using
the thresholding t` = γ`/(m− (1− γ)`+ 1). As matter of fact, the latter procedure has been
recently introduced by Gavrilov et al. (2009) and it has been proved to control the FDR under
independence, see [26]. Roughly speaking, the latter may be interpreted in our framework as
a “mean-binomial procedure". However, in the Poisson regime (say, γ small, few rejections),
the median-binomial procedure can be substantially different from the procedure of Gavrilov
et al. (2009). Hence, we should keep in mind that the two procedures do not control the same
error rate. These different remarks are illustrated in Figure 5, where we have also reported the
Benjamini-Hochberg threshold.
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FIGURE 5. Comparison between Benjamini-Hochberg thresholding t` = γ`/m (dashed-dotted), the Gavrilov et al.
thresholding t` = γ`/(m− (1− γ)`+1) (dashed) and the quantile thresholding tQ

` defined by (31) with α = 0.5 (solid)
in function of `. m = 100; Top: γ = 0.01; Bottom: γ = 0.1. Each right picture is a zoom of the left picture into the
region ` ∈ {1, ...,80} (top) or ` ∈ {1, ...,50} (bottom).
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6.4. Conclusion

In this paper, we have recovered some of the classical state-of-the-art multiple testing procedures
for controlling the FDR, k-FWER and the FDP. Additionally, some new contributions were
also given for k-FWER and FDP control, by extending and unifying some previous work of
multiple testing literature and by finding a novel procedure, based on the quantiles of the binomial
distribution, which controls the FDP under independence.

The type I error rate control research area still has many unsolved issues. Among the major
concerns, the FDP control in Section 5 needs a very strong distributional assumption on the test
statistics, namely independence or “Dirac" assumption. To our knowledge, no procedure adaptive
to dependencies is proved to control the FDP without assuming such a strong requirement. This is
a room left for future developments, which would have a strong impact on high-dimensional data
analysis.
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Appendix A: Defining a p-value from a test statistic

Let us consider the problem of testing a (single) hypothesis H0 : “P∈Θ0" from a test statistic S(X).
Assume that H0 should be rejected for “large" values of S(X). We let TP(s) = PX∼P(S(X)≥ s),
FP(s) = PX∼P(S(X)≤ s) and F−1

P (v) = min{s ∈ R∪{−∞} : FP(s)≥ v}. The following result is
elementary and can be considered as well known. It is strongly related to Theorem 10.12 in [61],
Lemma 3.3.1 in [37] (see also Problem 3.23 therein) and Proposition 1.2 in [17].

Proposition A.1. The p-value p(X) = supP∈Θ0
TP(S(X)) satisfies the following:

(i) p(X) is stochastically lower-bounded by a uniform variable under the null, that is,

∀P ∈Θ0, ∀u ∈ [0,1], PX∼P(p(X)≤ u)≤ u.

(ii) if for any P ∈Θ0, FP is continuous, we have for any realization x of X,

p(x) = min{α ∈ [0,1] : S(x)≥ sup
P∈Θ0

F−1
P (1−α)}.

If additionally Θ0 is a singleton, p(X)∼U(0,1) whenever P ∈Θ0.
(iii) if for any P ∈ Θ0, the variable S(X) takes its values in a discrete set with probability 1,

we have for any realization x of X,

p(x) = min{α ∈ [0,1] : S(x)> sup
P∈Θ0

F−1
P (1−α)}.
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In particular, if S(X) is an integer random variable, we have for any x such that S(x) ∈ N,

p(x) = min{α ∈ [0,1] : S(x)≥ sup
P∈Θ0

F−1
P (1−α)+1}.

A consequence is that the two classical definitions of a p-value are compatible in the following
way.

Corollary A.2. Assume that there exists Q ∈Θ0 such that for any P ∈Θ0, for all s ∈ R, FP(s)≥
FQ(s). Let p(X) = TQ(S(X)) and consider the families of tests {φα}α∈[0,1] and {φ ′α}α∈[0,1], where
φα(x) = 1{S(x)≥ F−1

Q (1−α)} and φ ′α(x) = 1{S(x)> F−1
Q (1−α)}. Then the following holds.

(i) if FQ is continuous, the tests φα and φ ′α are of level α for all α ∈ [0,1] and we have for any
realization x of X,

[p(x),1] = {α ∈ [0,1] : φα(x) = 1}.

and for Q-almost every x,

(p(x),1] = {α ∈ [0,1] : φ
′
α(x) = 1}.

(ii) if for X ∼ Q the variable S(X) takes its values in a discrete set with probability 1, the test
φ ′α is of level α while the test φα is not of level α , for all α ∈ [0,1], and we have for any
realization x of X,

[p(x),1] = {α ∈ [0,1] : φ
′
α(x) = 1}.

In particular, we have both in the continuous and discrete case that for Q-almost every x,

p(x) = inf{α ∈ [0,1] : φ
′
α(x) = 1}.

Proof. From Proposition A.1 (ii) and (iii), the only assertion to be proved is that for all α ∈ [0,1],
for Q-almost every x, S(x)>F−1

Q (1−α)⇔ p(x)<α . Let us denote Q= {F−1
Q (1−α),α ∈ [0,1]}.

Since FQ is increasing on Q, the desired relation is provided for S(x) ∈Q. We can conclude
because PX∼Q(S(X) ∈Q) = 1.

Example A.3. To illustrate (i) and (iii) of Proposition A.1, let us consider the following simple
discrete testing setting (coming from Example 3.3.2 in [37]). Let H0 : “P = P0" where P0 is
the uniform distribution on {1, ...,10} and consider the test statistic S(X) = X . We easily see
that the p-value TP0(X) is p(X) = (11−X)/10. It satisfies P(p(X) ≤ u) ≤ u, with equality iff
u can be written under the form i/10 for some integer i, 1≤ i≤ 10. Furthermore, rejecting H0
for p(X) ≤ α is equivalent to reject H0 whenever X ≥ k(α) where k(α) is the unique integer
satisfying (11−k(α))/10≤ α < (12−k(α))/10. We merely check that k(α) = F−1

P0
(1−α)+1.

Finally, we provide a proof for Proposition A.1.

Proof. Let F̊P(s) = PX∼P(S(X)< s) and let us first state the following result: for any P, for any
α ∈ [0,1],

{TP(S(X))≤ α}=
{
{S(X)≥ F−1

P (1−α)} if F̊P(F−1
P (1−α)) = 1−α

{S(X)> F−1
P (1−α)} otherwise

. (41)
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To establish (41), first note that {TP(S(X))≤ α}= {F̊P(S(X))≥ 1−α} ⊂ {S(X)≥ F−1
P (1−α)},

by definition of F−1
P (1−α). On the one hand, if F̊P(F−1

P (1−α)) = 1−α , we have {S(X) ≥
F−1

P (1−α)} ⊂ {F̊P(S(X)) ≥ F̊P(F−1
P (1−α))} = {F̊P(S(X)) ≥ 1−α}. On the other hand, if

F̊P(F−1
P (1−α)) < 1−α , we have {F̊P(S(X)) ≥ 1−α} ⊂ {S(X) > F−1

P (1−α)} and {S(X) >
F−1

P (1−α)} ⊂ {F̊P(S(X))≥ FP(F−1
P (1−α))} ⊂ {F̊P(S(X))≥ 1−α}. This proves (41).

Let us now prove (i). We have for any P∈Θ0, PX∼P(p(X)≤ α)≤ PX∼P(TP(S(X))≤ α). Next,
applying (41), we have if F̊P(F−1

P (1−α)) = 1−α ,

PX∼P(p(X)≤ α)≤ PX∼P(S(X)≥ F−1
P (1−α)) = 1− F̊P(F−1

P (1−α)) = α

and if F̊P(F−1
P (1−α))< 1−α ,

PX∼P(p(X)≤ α)≤ PX∼P(S(X)> F−1
P (1−α)) = 1−FP(F−1

P (1−α))≤ α.

Assume now that for any P ∈ Θ0, FP is continuous, and prove (ii). In this case, F̊P(F−1
P (1−

α)) = FP(F−1
P (1−α)) = 1−α for any α ∈ [0,1], so that (41) provides that {TP(S(X))≤ α}=

{S(X)≥ F−1
P (1−α)}. Hence, we obtain for any realization x of X ,

p(x) = min{α ∈ [0,1] : ∀P ∈Θ0,TP(S(x))≤ α}
= min{α ∈ [0,1] : ∀P ∈Θ0,S(x)≥ F−1

P (1−α)},

which leads to the desired result.
For (iii), the proof is similar by noting that F̊P(F−1

P (1−α)) < 1−α in the case where the
distribution of S(X) has a discrete support under the null.
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