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Abstract: Land Use and Transportation Integrated (LUTI) models have become a norm for representing the interactions
between land use and the transportation of goods and people in a territory. Through the use of these models, urban
planning policies and development scenarios can be evaluated. The calibration of LUTI models is a heavy task,
involving gathering of massive amounts of data and the estimation of an important number of parameters. In this paper,
the calibration of the open-source LUTI model Tranus is considered. Classical calibrations of Tranus rely on ad hoc
econometric techniques and time-consuming trial and error procedures.Here, a two-step calibration that comprises
global sensitivity analysis and optimisation is proposed. The sensitivity analysis presented herein is based on the
replication method for the estimation of Sobol’ indices and generalised to take into account multivariate outputs. The
optimisation step is an iterative process combining stochastic and deterministic procedures. The proposed calibration
procedure is applied to a study area in the State of Mississippi. Compared to a previous ad hoc procedure, this new
approach results in a significant improvement of the adjustment factors of Tranus while reducing drastically the
calibration time.

Résumé : Les modèles « transport-urbanisme » sont devenus une norme pour représenter les interactions entre l’usage
des sols et le transport de marchandises et d’individus. Ces modèles sont principalement utilisés dans le cadre
d’évaluations de politiques d’urbanisme et de scénarios de développement urbain. Le calage des modèles « transport-
urbanisme » est une tâche difficile qui nécessite l’estimation d’un nombre important de paramètres. Dans ce papier,
nous considérons le calage du modèle en libre accès Tranus. Une estimation classique des paramètres de Tranus repose
à la fois sur des techniques ad hoc d’économétrie et sur des procédures de type essais-erreurs coûteuses en temps. Dans
ce papier, nous proposons un calage en deux étapes comprenant une phase d’analyse de sensibilité globale et une phase
d’optimisation itérative. La méthode d’analyse de sensibilité présentée ici est basée sur la méthode répliquée, estimant
des indices de Sobol’, et généralisée au cas de sorties multidimensionnelles. La phase d’optimisation est une procédure
itérative combinant deux approches : une stochastique et une analytique. La méthode de calage est appliquée à la zone
d’étude dans l’Etat du Mississippi. Par comparaison avec une précédente méthode de calage ad hoc, notre approche
aboutit à une amélioration significative des facteurs d’ajustement de Tranus avec un temps de calage considérablement
réduit.
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Sensitivity Analysis and Optimisation of a Land Use and Transport Integrated Model 91

1. Introduction

Land use and transport integrated (LUTI) models have received a regain of interest from re-
searchers and urban planners during the last decade. Among the large number of available LUTI
models, this paper focus on the model Tranus developed by de la Barra (1999). Tranus and other
LUTI models aim to represent the deep interactions between travel behaviours and land use. Their
scope of use ranges from urban metropolitan areas to regional level. LUTI modelling is mainly
used to evaluate alternative planning scenarios, simulating their impact on land cover and travel
demand. Instantiating a LUTI model requires the gathering of huge amounts of data and the
estimation of several parameters to reproduce, as closely as possible, base-year observations (such
as socio-economic surveys, transport data, etc . . . ) on the studied area. These models include
systems of complex nonlinear equations. Analysing these systems is typically a hard task, particu-
larly in the presence of parameters whose effects may be difficult to assess. Interactions between
parameters of the model make that a small change in a parameter may result in large changes in
the model outputs. In such cases, calibration plays a central role, as it helps estimating optimal
values of these parameters, creating a robust model. The classical calibration approach of these
models relies on econometric ad hoc procedures and trial and errors techniques. An exception
can be found in Abraham and Hunt (2000), where an automatic calibration of the LUTI model
MEPLAN is proposed.

Assessing sensitivity of the input parameters on the outputs during the calibration process is
essential to reach a proper calibration of the model and ensure better predicting capabilities. As
a matter of fact, in the context of traffic simulation Daamen et al. (2014) put forward the need
to carry out a sensitivity analysis as a first step preceding the calibration of the model. Global
sensitivity analysis methods are useful tools to quantify the influence of the model inputs on the
outputs and detect potential interactions between them. Among the large number of available
approaches, the variance based method introduced by Sobol’ (1993) allows to calculate sensitivity
indices called Sobol’ indices. These indices are scalars between 0 and 1 that summarise the
influence of each input or set of inputs: the higher is the index, the more influential is the input.
First-order indices estimate the main effect from each input whereas higher-order indices estimate
the corresponding importance of interactions between inputs. Various estimation procedures
of these indices have been proposed in the literature (cf. Saltelli, 2002 for a survey). A first
implementation of a sensitivity analysis on Tranus was performed in Dutta et al. (2012) using
the “pick-freeze” estimation procedure introduced in Sobol’ (1993). Unfortunately, this procedure
requires a significant number of model evaluations that increases dramatically with the dimension
of the input space. A solution to break this dependency lies in the use of replicated designs. Based
on such designs, an estimation procedure for Sobol’ indices was proposed in Mara and Joseph
(2008) and further studied in Tissot and Prieur (2015). In this paper, an extension of the replication
procedure to deal with multidimensional output is proposed. This generalisation is then applied to
the land use and activity module of Tranus to select the most influential parameters based on main
effects and second-order interactions.

Following the outcome of the sensitivity analysis, a two-stage iterative estimation of the
influential parameters of the land use and activity module is proposed. First, a stochastic algorithm
is applied to find optimal values of the influential parameters selected by the sensitivity analysis.
Then, an analytical optimisation of an internal dispersion parameter is performed taking as inputs
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the previously optimised parameters. This second step is based on a careful investigation of the
system of equations detailed in Capelle et al. (2015). This two-stage optimisation is iterated until
an equilibrium is reached on the internal dispersion parameter.

The remainder of the paper is organised as follows. In Section 2, a detailed description of
Tranus is provided, focusing on the land use and activity module and its principal variables
relevant to this paper. Section 3 details the two main ingredients of the proposed calibration
procedure from a methodological point of view: sensitivity analysis and the stochastic algorithm
used in the two-stage iterative optimisation. In Section 4, the whole calibration procedure is
detailed in the form of an algorithm. The proposed methodology is then applied to the study area
of Mississippi. Finally, results are compared to those obtained with a classical ad hoc procedure.

2. Description of Tranus and problem statement

2.1. General structure of the model

This paper focus on the LUTI model Tranus. This type of software provides a framework for
modelling land use and transportations in an integrated manner. It offers a flexible package to be
used from urban and regional up to national scale. Tranus is based on the classical input-output
model (cf. Leontief and Strout, 1963) and generalises it, adding the transportation layer on top of
it.

The area of study is divided in spatial zones and economical sectors. The concept of sectors is
more general than in the traditional definition. It may include the classical sectors in which the
economy is divided (agriculture, manufacturing, mining, etc.), factors of production (capital, land
and labour), population groups, employment, floorspace, land, energy, or any other that is relevant
to the spatial system being represented.

Tranus combines a land use and activity module with a transportation module. Both of these
modules are linked together and serve as input to each other, as illustrated in Figure 1. The spatial
economic system is simulated by the activity model, representing the interactions of the various
economical sectors in a specific time period. These interactions result in transportation demand
that is afterwards affected to the network by the transportation module. In this way the movements
of people or freight are explained as the results of the economic and spatial interaction between
activities, the transport system and the real estate market. In return, the transport demand and
the flux of goods influences the activities in the territory, affecting the access to transportation,
the price of goods and ultimately the land rents. Both of these modules are based on classical
discrete choice theory (cf. McFadden, 1973; McFadden and Train, 2000), input-output analysis
(cf. Leontief, 1941), land choice (cf. Wilson, 1981), multi-modal path choice and trip assignment.
A comprehensive review of transport modelling can be found in Ortúzar and Willumsen (2011).

The convergence is attained when both modules are in equilibrium. The land use and activity
module iteratively equilibrates offer and demand, also computing the consumption costs and
prices. This is done at current transportation costs. In the other hand, the transportation module
assigns the transport demand to the network and computes the new transportation costs. This back
and forth procedure iterates until a general equilibrium conditions is found. This condition is
basically that neither land use, nor transport evolve anymore. Figure 1 illustrates this mechanism.
As it is already well calibrated, no further details on the transportation module of Tranus are
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FIGURE 1. Schematic overview of Tranus.

provided. The procedure proposed in this paper focuses exclusively on the land use and activity
module.

2.2. The land use and activity module

The land use and activity module’s objective is to find an equilibrium between the production
and demand of all economic sectors and zones of the modeled region. To attain the equilibrium,
various parameters and functions are used to represent the behaviour of the different economic
agents. Among these parameters are demand elasticities, attractiveness of geographical zones,
technical coefficients, etc.

In the context of the present study, it is important to make the difference between two types of
economic sectors; transportable and non-transportable sectors. The main difference between these
two types of sectors is that transportable sectors can be consumed in a different place from where
they were produced. As an example, the demand for coal from a metal industry can be satisfied by
a mining industry located in another region. On the other hand, a typical non-transportable sector
is floorspace: land is consumed where it is “produced”. Transportable sectors induces transport
demand, which ultimately influences transportation costs. Non-transportable sectors, on the other
hand, do not require transportation. In Capelle et al. (2015) a detached calibration of Tranus was
proposed, first calibrating non-transportable sectors, and building up the rest of the calibration
over them. This upgraded version of Tranus will be considered in the remainder of the paper.

In the following, the main terminologies used in Tranus are introduced. The set of equations
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FIGURE 2. Sketch of computations in the land use and activity module. t is the iteration index of the convergence.

relevant to this paper can be found in the Appendix. For a complete description of Tranus, the
reader may consult de la Barra (1999). The study area is divided in a set Z of spatial zones,
and the economy is represented by a set N of economical sectors. Base-year data is denoted as
Y0 = {Y0

n
i }n∈N , i∈Z and corresponds to the observed production for the base-year in each zone

and for each economical sector. Sub-index 0 denotes the year of reference for the calibration.
The basis of the land use and activity model relies in four principal quantities:
— Productions: Y = {Y n

i }n∈N , i∈Z expresses how many “items” of an economic sector n are
produced in a zone i.

— Demands: D = {Dmn
i }(m,n)∈N ×N , i∈Z expresses how many items of a sector n are de-

manded by the part of sector m located in zone i.
— Prices: p = {pn

i }n∈N , i∈Z defines the price of (one item of) sector n located in zone i.
— Costs: c̃ = {c̃n

i }n∈N , i∈Z is the cost of consumption of sector n in zone i

Productions, demands, prices and costs are defined for each sector and each zone. To fix ideas,
productions of a household sector represent the total households of a certain income level (rich
for instance) in the corresponding zone. For housing type, production represents the available
surface (square meters) in the zone of interest. Demands are tied to productions and represent how
many units of the desired economic sector are consumed in a zone by another economic sector.
The canonical example is demand for housing by households. Prices are very straightforward,
representing the price of consuming one unit of the given economical sector in that zone. When
considering e.g. households, prices represent salaries/incomes. Finally, costs are results of the
model after the consumption chain has taken place, the equilibrium state is attained when costs
are in perfect equilibrium with prices, and demand are in equilibrium with productions.

Productions, demands and prices form part of a dynamic system of equations. These equations
depend on one another, and are linked by a list of equations that need to be computed one after
another. This is detailed in de la Barra (1999). A graphical representation of this feedback is
represented in Figure 2. For instance, demand induces production and vice-versa. The iteration
scheme is as follows: prices of a current iteration (t) translate into intermediate variables (that will
not be detailed here) which enables the computation of demand and consumption costs (noted
as c in Figure 2). This is done based on the current transportation costs and disutilities. Once
demand and costs are known, the current production is evaluated and fed back to compute a new
set of prices, for a next iteration (t +1). The process is bottom-up, starting with land use prices
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and exogenous production and demand up to the production (destined for exportation outside
the study area) and prices of transportable sectors. All the above computations are repeated until
convergence is attained in productions X and prices p at the same time (convergence in these two
sets of variables implies convergence in all others).

2.3. Problem statement

The calibration procedure proposed herein consists in adjusting the model parameters to be able to
reproduce a base-year data in the study area. It is important to note that this calibration procedure is
applied independently for each transportable sector n. This type of sectors are considered because
it is where a sensitivity analysis is relevant, as the many interactions with the transportation costs
and different parameters make calibration very complex. Also, for this particular sectors, modellers
would like to identify the relevant parameters to improve their calibration. In Capelle et al. (2015),
a decomposed calibration of Tranus is proposed, calibrating first the non-transportable sectors and
later the transportable sectors. Starting from the results of Capelle et al. (2015), it appears that
the calibration of the transportable sectors and the numerous parameters that are often ignored
as their interactions are not fully understood, could take benefit from a sensitivity analysis. The
calibration is made as following: once a sector is selected, the model parameters relative to this
sector are adjusted through the proposed calibration procedure. The process is repeated for each
transportable sector. The justification of this approach relies on a sector-wise decomposition of
the system of equations of the land use and activity module.

Given initial values of the parameters for a transportable sector n ∈ N , the land use and
activity module estimates the adjustment parameters hn = (hn

i )i∈Z of the utilities (cf. Appendix
A, Equation (13)), known as shadow prices. In economics, the utility is defined as a measure of
preference over sets of goods and services. For example, in the land use module, utility is used to
measure the willingness of a household to relocate from a geographic zone to another. Still in
economics, the shadow price is formally defined as the value of the Lagrange multiplier at the
optimal solution of a constrained optimisation problem. However, in the present problem, the
definition of the shadow price differs as it only represents an adjustment factor added to the price
to ease the convergence of the land use module. Thus here, the shadow prices are price correcting
additive factors that compensate the utilities to replicate the base-year production Y0.

The following optimisation problem is solved to compute the shadow prices:

ĥn = argmin
hn
‖Y (hn)−Y0‖2, (1)

where ‖ . ‖ denotes the euclidean norm. In the remainder of the paper, the optimisation of the
shadow prices is viewed as an internal process of the land use and activity model. Figure 3 gives a
scheme of the inputs and outputs considered for each transportable sector n. The inputs parameters
fall into three different categories:

— the parameter λ n is involved in Equation (13) of Appendix A,
— the parameter β n is involved in Equation (14) of Appendix A,
— parameters bn

l , for l 6= n, l ∈N , are involved in Equation (15) of Appendix A.
The parameter λ n represents the marginal utility of income; in common terms, it is the weight
of prices in the utility function. β n is the logit dispersion parameter of the location probabilities.
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FIGURE 3. Inputs and outputs of the land use and activity module for the sector n.

Finally, the parameter bn
l is the weight of sector l in the attractor for sector n (which are very

important for transportable sectors).
The outputs considered are built upon a new quantity called normalised shadow prices. The

normalised shadow price h̃n
i corresponds to the percentage of the price pn

i corrected by the shadow
price hn

i , that is:

h̃n
i = 100×

∣∣∣∣hn,i

pn,i

∣∣∣∣, i ∈Z (2)

where | . | denotes the absolute value function. Set h̃n = (h̃n
i )i∈Z to be the vector of normalised

shadow prices relative to the sector n. The two outputs considered are the following:

i) the variance of the normalised shadow prices: Var[h̃n]

ii) the maximum of the normalised shadow prices: max
i∈Z

h̃n
i

For each sector n, a good calibration would be one that results in small values of the normalised
shadow prices particularly in term of variance. Indeed, minimising the variance of the normalised
shadow prices is a general consensus reached by both modellers and users of Tranus.

3. Calibration procedure’s main tools

In this section, the two main methodological ingredients used in the calibration procedure are
presented: the replication procedure for the sensitivity analysis and the EGO algorithm for the
stochastic optimisation. Each tool is presented in a general framework nonspecific to Tranus. The
algorithm summarising the proposed calibration procedure is presented in Section 4.1.

3.1. Global sensitivity analysis: replication procedure for multivariate outputs

For the sensitivity analysis, a generalisation of the replication procedure is proposed. This
generalisation is based on the work of Gamboa et al. (2014) reviewed hereafter. Consider the
following model:

f :
{

Rd → Rm

x = (x1, . . . ,xd) 7→ z = f (x)

where f is the model, z the output vector, x the input vector, d the dimension of the input space
and m the dimension of the output space.
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Sensitivity Analysis and Optimisation of a Land Use and Transport Integrated Model 97

Let (Ω,A ,P) be a probability space. The uncertainty on the inputs is modeled by a random
vector X = (X1, . . . ,Xd) whose components are independent. Denote Z the vector of random
variables modelling the output vector:

Z = (Z1, . . . ,Zm) = f (X1, . . . ,Xd).

Let PX = PX1⊗ . . .⊗PXd denote the probability distribution of X . Assume that f ∈ L2(PX) and that
the covariance matrix of Z, denoted by Σ, is positive definite. Let u be a subset of {1, . . . ,d} and
denote ∼ u its complementary. Set Xu = (Xi)i∈u and X∼u = (Xi)i∈{1,...,d}\u. Recall the following
Hoeffding (1948) decomposition of f :

f (X) = f0 + fu(Xu)+ f∼u(X∼u)+ fu,∼u(Xu,X∼u), (3)

where f0 = E[Z], fu = E[Z|Xu]− f0, f∼u = E[Z|X∼u]− f0 and fu,∼u =Y − fu− f∼u− f0. By taking
the covariance matrix of each side of (3), due to orthogonality:

Σ =Cu +C∼u +Cu,∼u (4)

Let Idm be the m×m identity matrix. Equation (4) can be projected on a scalar as follows:

Tr(IdmΣ) = Tr(IdmCu)+Tr(IdmC∼u)+Tr(IdmCu,∼u) (5)

where Tr denotes the trace operator. Following (5) and under the condition Tr(Σ) 6= 0, the
generalised Sobol’ index is defined as follows:

Su( f ) =
Tr(Cu)

Tr(Σ)
. (6)

The generalised Sobol’ index Su( f ) is a scalar between 0 and 1 that summarises the influence of
inputs in u on the output Z. An index close to 1 means that the set u is influential. At the opposite,
an index equal to 0 means that the set u is not correlated to the output Z. First-order indices
estimate the main effect of each input whereas higher-order indices estimate the corresponding
importance of interactions between inputs.

Remark 1. When u = (v,w) is a 2-subset of {1, . . . ,d}, the importance of the interaction between
v and w is quantified by the second-order generalised Sobol’ index defined by: S(v,w)( f )−Sv( f )−
Sw( f ).

Classical estimation of Su( f ) The classical estimation procedure for Su( f ) is a generalisation
of the one used in the univariate case (cf. Sobol’, 1993). The procedure consists of a Monte-Carlo
pick-freeze method. In the pick-freeze method, the Sobol index is viewed as the regression
coefficient between the output of the model and its pick-freezed replication. This replication is
obtained by holding the value of the variable of interest Xu (frozen variable) and by resampling
the other variables X∼u (picked variables).

Set Z = f (Xu,X∼u) and Zu = f (Xu,X ′∼u) where X ′∼u is an independent copy of X∼u. Let N > 0
be an integer and Z1, . . . ,ZN (resp. Zu

1 , . . . ,Z
u
N) be N independent copies of Z (resp. Zu) where:

Zi = (Zi,1, . . . ,Zi,m), Zu
i = (Zu

i,1, . . . ,Z
u
i,m), ∀ i ∈ {1, . . . ,N}.
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As in Janon et al. (2014) and Monod et al. (2006), the following estimator of Su( f ) is considered:

Ŝu( f ) =

m
∑

l=1

(
1
N

N
∑

i=1
Zi,lZu

i,l−
(

1
N

N
∑

i=1

Zi,l+Zu
i,l

2

)2
)

m
∑

l=1

(
1
N

N
∑

i=1

Z2
i,l+(Zu

i,l)
2

2 −
(

1
N

N
∑

i=1

Zi,l+Zu
i,l

2

)2
) . (7)

Using this approach, estimating all first-order Sobol’ indices requires N(d + 1) evaluations of
the model by means of d +1 designs of experiments, each of size N. In the univariate case, the
replication procedure introduced in Mara and Joseph (2008) allows to estimate all first-order
indices with only two replicated designs, each of size N, resulting in a total of 2×N evaluations
of the model. Replicated designs are also referred as plans based on permuted columns in McKay
(1995), Morris et al. (2006) and Morris et al. (2008). In these papers, an arbitrary number of r
replications of the initial design is used to define an estimator of first-order indices. This estimator
is of different nature from the one introduced in Mara and Joseph (2008) and further studied
(asymptotic properties for first-order indices) and generalised in Tissot and Prieur (2015) to the
estimation of closed second-order indices. An extension of the latter procedure, called replication
procedure, to the case of multivariate output is proposed in the next paragraph. With this new
approach, the number of model evaluations required to compute all first-order or second-order
generalised Sobol’ indices can be drastically reduced.

Replication procedure for Su( f ) The replication procedure relies on the construction of two
replicated designs of experiments X and X’ defined as follows:

X =


X1,1 . . . X1, j . . . X1,d

...
...

...
Xi,1 . . . Xi, j . . . Xi,d

...
...

...
XN,1 . . . XN, j . . . XN,d

 , X’ =


X ′1,1 . . . X ′1, j . . . X ′1,d

...
...

...
X ′i,1 . . . X ′i, j . . . X ′i,d

...
...

...
X ′N,1 . . . X ′N, j . . . X ′N,d

 ,

where ∀ k ∈ {1, . . . ,d}, X1,k, . . . ,XN,k are N independent copies of Xk. For the estimation of
first-order indices, X and X’ are two replicated Latin Hypercubes. For the estimation of closed
second-order indices, X and X’ are two replicated randomised orthogonal arrays (cf. Tissot and
Prieur, 2015). Denote Z and Z’ the two arrays of model outputs associated to these two designs.
Let Zi and Z′i denote their corresponding rows, ∀ i ∈ {1, . . . ,N}:

Zi = f (Xi,1, . . . ,Xi,d) = (Zi,1, . . . ,Zi,m),

Z′i = f (X ′i,1, . . . ,X ′i,d) = (Z′i,1, . . . ,Z
′
i,m).

The key point of the replication procedure consists in a “smart” rearrangement of the rows of Z’
to mimic the pick-freeze method. The array resulting from this rearrangement corresponds to Zu.
In the pick-freeze method, for each u, the evaluation of Zu requires a new design of experiments.
At the opposite, in the replication method Zu requires no additional evaluations of the model. Let
π denote the permutation used to re-arrange Z’, ∀ i ∈ {1, . . . ,N}:

Zu
i = f (X ′π(i),1, . . . ,X

′
π(i),d) = (Z′π(i),1, . . . ,Z

′
π(i),m).
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Sensitivity Analysis and Optimisation of a Land Use and Transport Integrated Model 99

Let u = {u1, . . . ,us} ⊂ {1, . . . ,d}. From a design point of view, π is chosen to insure that:

X ′π(i),u j = Xi,u j , ∀ j ∈ {1, . . . ,s},∀ i ∈ {1, . . . ,N}.

thus insuring that both Z and Zu are evaluated on the same coordinates indexed by u. Then, Su( f )
is estimated using equation (7) with both Z and Zu. This extends the replication procedure to
the estimation of generalised Sobol’ indices. For the sake of brevity of this paper, the replication
procedure is not further detailed. For a comprehensive description, the reader may consult Tissot
and Prieur (2015).

To decide whether a parameter is influential or not, a threshold for both first- and second-order
indices is fixed. If one of the estimated indices is higher than the threshold, the corresponding
parameter is selected. In the application presented in Section 4, the threshold has been arbitrarily
fixed at 0.1. This choice is based on the assumption that the “effective dimension” (cf. Caflisch
et al., 1997) of the model is small (≤ 3).

3.2. Stochastic optimisation: EGO algorithm

The stochastic optimisation procedure presented in this section corresponds to the Efficient Global
Optimisation (EGO) algorithm introduced by Mockus et al. (1978). The main idea underlying
the EGO algorithm is to fit a response surface, often called metamodel, to data collected by
evaluating the complex numerical model at a few points. The metamodel is then used in place of
the numerical model to optimise the parameters. The metamodel used in the EGO algorithm is a
Gaussian process defined as follows:

g :
{

Rd → R
x = (x1, . . . ,xd) 7→ z = g(x) = µ(x)+ ε(x)

,

x are the parameters selected by means of the sensitivity analysis, z a scalar output of the
numerical model, d the dimension of the input space, µ the model trend and ε is a centered
stationary Gaussian process ε(x)∼ N(0,Kχ). χ denotes the structure of the covariance matrix Kχ

of ε . Let xi,x j denote two points of Rd , χ = {r,θ ,σ} with (Kχ)i, j = σ2rθ (xi− x j) where:
— rθ (.) is the correlation function chosen here to be the Matèrn 5/2 function,
— σ2 is the variance of g,
— θ are the hyperparameters of r.

The parameters µ , σ and θ are estimated by maximum likelihood. In the following, Z denotes the
random variable modelling the output z.

Expected Improvement Once the metamodel is fitted, it is used by the algorithm to search for a
minimum candidate. The EGO algorithm uses a searching criterion called “expected improvement”
that balances local and global search. Let x be a candidate point, the expected improvement
evaluated at x writes as follows:

EIχ(x) = E[max(zmin−Z,0)],

where zmin is the current minimum of the metamodel. A numerical expression of EIχ(x) can be
derived. Let Ẑ denote the BLUP (Best Linear Unbiased Predictor) estimator (cf. Jones et al., 1998)
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of Z and σẐ its standard deviation, the following expression for EIχ(x) is obtained:

EIχ(x) = (zmin− ẑ(x))φN

(zmin− ẑ(x)
σẑ

)
+σẑ fN

(zmin− ẑ(x)
σẑ

)
,

where φN is the normal cumulative distribution function and fN is the normal probability density
function. The first term of EIχ(x) is a local minimum search term whereas the second term
corresponds to a global search of uncertainty regions. The main steps of the EGO algorithm can
be summarised as follows:

1. generate a design of experiments and evaluate the numerical model at these points,

2. fit the metamodel with both the design of experiments and the associated model outputs,

3. search a new evaluation point using the expected improvement criterion,

4. evaluate the numerical model at this new point and re-estimate the parameters of the
metamodel (θ , σ ),

5. repeat steps 3 to 5 until a stopping criterion is reached.

For the choice of the stopping criterion, one can look at the value of the expected improvement. A
value close to zero indicates that the input space has been sufficiently explored. Hence, a lower
bound on the expected improvement can be selected as the stopping criterion. In the application
presented hereafter, the lower bound is set equal to 10−5. As a result, the stopping criterion writes:

EIχ(x)≤ 10−5 .

To ensure that the EGO algorithm actually stops, the maximum number of iterations is fixed at
200. The two R packages “DiceOptim” and “DiceDesign” developed by Roustant et al. (2012)
are used to implement the EGO algorithm.

4. Application to Tranus

In this section, an innovative calibration procedure for the land use and activity module of Tranus
is detailed, under the form of an algorithm. The procedure includes both methods presented in
Section 3. The methodology is then applied to the Mississippi region including the Chickasaw,
Lee, Pontotoc, and Union (and consequently, the four largest towns of the area: Houston, Tupelo,
Pontotoc, and New Albany).

4.1. Calibration procedure algorithm

Algorithm 1 summarises the proposed calibration procedure for the land use and activity module
of Tranus. It is worth reminding that the calibration procedure is applied independently for each
transportable sector n.

Once a transportable sector n is selected, the sensitivity analysis presented in Section 3.1 is
performed on the parameters β n and bn,l , l 6= n. The outputs considered for the sensitivity analysis
are both the variance and the maximum of the normalised shadow prices h̃n (Equation 2). The set
of influential parameters selected is denoted by ρn.
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Algorithm 1 Calibration procedure for the land use and activity module.

1: for each sector transportable n do
2: Set: λ n(0)← λ n

0
3: Run sensitivity analysis with inputs: β n, {bn

l }n 6=l and outputs: Var[h̃n],max
i∈Z

h̃n
i

4: Instantiate:
— ρn(0)← set of most influential parameters
— k← 1

5: while |λ n(k)−λ n(k−1)| ≥ ε do
6: Given λ n(k−1), estimate ρn(k) with the EGO algorithm
7: Given ρn(k), estimate λ n(k) with the analytical optimisation
8: Return optimal values ρn∗ and λ n∗

Following the sensitivity analysis, an iterative optimisation is conducted. This optimisation
comprises two stages. At iteration k, the EGO algorithm presented in Section 3.2 is applied to
find optimal values of the set ρn(k) given λ n(k−1). Then, an analytical optimisation of λ n(k) is
performed taking as inputs the optimal values found for the set ρn(k). This step is further described
in the next section. The process is iterated until an equilibrium is reached on λ n. Then, the optimal
values ρn∗ and λ n∗ are returned.

Remarks

1. One might wonder why the sensitivity analysis does not include the parameter λ n. The main
reason behind this choice is that the analytical optimisation provides a global optimum
for λ n. Hence, by automatically selecting the parameter λ n, one can reduce the number
of Sobol’ indices to estimate and obtain a finer optimisation of the land use and activity
module.

2. For the stochastic optimisation, only one of the two outputs is conserved to perform
the EGO algorithm: the variance of the normalised shadow prices Var[h̃n]. As already
mentioned, minimising the variance of the normalised shadow prices over the maximum is
a general consensus reached by both the modeller and users of Tranus.

4.2. Analytical optimisation procedure (obtaining the λ n parameters)

Once optimal values for the selected parameters β n and bn
k are found, the value of the λ n parameter

is computed analytically. The basic idea is to start from a good guess of the logit dispersion
parameters (β n) and from there, find the optimal values of the marginal utilities (λ n) to minimise
the variance of the shadow prices for the corresponding economic sector. This methodology
explicits the dependency of λ n on β n, showing that the optimal value of λ n is a function of β n.
For the sake of clarity, the notation λ n,λ n(k) and β n,β n(k) are confounded in the remainder of the
section.

The parameter λ n is involved in the location probabilities equation (Equation 13 of Appendix
A):

Un
i j = λ

n(pn
j +hn

j)+ tn
i j , (i, j) ∈Z 2. (8)
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The optimal value of λ n cannot be retrieved directly from Equation 8 as the quantity (pn
j +hn

j)
is estimated as a whole during the internal optimisation of the shadow prices (cf. Capelle et al.,
2015). To overcome this problem, an auxiliary variable is introduced:

φ
n
j = λ

n(pn
j +hn

j), j ∈Z .

With this new variable, Equation 8 can be rewritten as follows:

Un
i j = φ

n
j + tn

i j , (i, j) ∈Z 2. (9)

Recall that the shadow prices are prices correcting additive factors that are calibrated to obtain a
small variance. From Equation (9), one can express the optimal value of λ n that minimises the
variance of the shadow prices. Set φ n = (φ n

j ) j∈Z with all other parameters fixed, in particular the
parameters ρn estimated with the EGO algorithm (cf. Section 3.2). The corresponding calibration
problem writes:

φ
n∗ = argmin

φ n
‖Y (φ n)−Y0‖2 . (10)

It is worth recalling that pn = (pn
j) j∈Z and hn = (hn

j) j∈Z are the vectors of prices and shadow
prices. Once the optimal value φ n∗ is obtained, the equilibrium prices pn∗ can be computed
solving a linear system. Then, the shadow prices are expressed as follows:

hn =
φ n∗

λ n − pn∗ .

From this, the following problem can be posed:

min
λ n

Var
[

φ n∗

λ n − pn∗
]
,

the analytical solution of which is λ n∗ =
Var(φ n∗)

Cov(φ n∗, pn∗)
. Note that this value can be negative. The

details of Problem (10) and how the prices are computed can be found in Capelle et al. (2015).

4.3. Results

This section presents the application of the proposed calibration procedure to a study area in the
State of Mississippi. First, a brief insight of the area of study is given. Then, the results of both the
sensitivity analysis and the iterative optimisation used in the calibration procedure are presented.
These results are compared to those obtained with a former ad hoc procedure.

Area of study: The area of study is divided into 12 economical sectors and 103 spatial zones.
The dataset was provided by Brian Morton 1. In Table 1 are listed the different economical
sectors of Tranus relative to the area of study. The proposed calibration procedure focus only on
transportable sectors.

1 Brian Morton is a senior research associate working at the Center for Urban and Regional Studies of North Carolina,
Hickerson House, 108 Battle Lane, Campus Box 3410. The data were provided to us during an informal workshop
taking place at INRIA on the topic of LUTI model calibration.
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TABLE 1. Economical sectors of Tranus for the study area of Mississippi.

sector n name description type
1 AFFHM(Agriculture,Fishing,. . . ) Business Exogenous
2 Commercial Business Transportable
3 Other industries Business non-Transportable
4 Single person (15-64 years old) Households Transportable
5 Married couple with kids Households Transportable
6 Married couple without kids Households Transportable
7 Other families with kids Households Transportable
8 65 years and older Households Transportable
9 All other households Households Transportable

10 1-unit housing units Floorspace Land
11 Multiunit housing units Floorspace Land
12 Mobile homes Floorspace Land

TABLE 2. Distributions of the 12 parameters, U(a,b) stands for the uniform distribution with support [a,b].

parameters labels distributions

β n 1 U(2,10){
bn

l
}

l=1,...,n, l 6=n 2, . . . ,12 U(0,1)

Results of the sensitivity analysis: A total of 7 sensitivity analyses are performed, one for each
transportable sector. For each sensitivity analysis, the 12 following parameters are considered:

— The logit dispersion parameter β n.
— The 11 parameters bn

l , for all sectors l 6= n.
In Table 2 are listed the distribution of each parameter. These distributions were selected by
expertise, as each model is different, a good range of a priori possible values needs to be explored.
The Sobol’ index Sk will refer to the parameter labeled by k. For instance, S1 will always
correspond to the logit dispersion parameter β n of the sector n under analysis, and S2, . . . ,S12 the
corresponding cross relations bn

l parameters (without including the case l = n).
The outputs considered are the variance and the maximum of the normalised shadow prices, as

introduced in Section 2.3. The approach proposed is to use the replication procedure presented in
Section 3.1 to estimate first-order and second-order generalised Sobol’ indices of these parameters.
Asymptotic confidence intervals can be computed for first-order Sobol’ indices (cf. Tissot and
Prieur, 2015). Using Remark 1 page 97, bootstrap confidence intervals can be derived for second-
order Sobol’ indices.

Before presenting the main results, it seems important to illustrate the selection procedure of the
influential parameters for a sector. Figures 4 and 5 show the results obtained for the estimation of
first-order and second-order indices relative to Sector 4. The dashed line represents the threshold
value used for selecting the influential parameters.

For the estimation of first-order indices, a size N = 5×103 was chosen for the two replicated
Latin Hypercubes required by the replication procedure (Section 3.1). Looking at the results,
the parameters β 4 and b4

10 are the most influential (cf. Figure 4). Since the sum of the first-order
indices is less than 75% it is interesting to study the second-order indices.

For the estimation of second-order indices, a size N = 672 was selected for the two replicated
randomised orthogonal arrays required by the replication procedure. The two black points of
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TABLE 3. Most influential parameters selected by the sensitivity analysis based on main effects and second-order
interactions.

sector first-order second-order selected parameters: ρ variance explained (in percent)

2 β 2 none β 2 33
4 β 4, b4

10 β 4 ∗b4
10, β 4 ∗b4

11 β 4, b4
10, b4

11 95
5 β 5, b5

10 β 5 ∗b5
10, β 5 ∗b5

11 β 5, b5
10, b5

11 89
6 β 6, b6

10, b6
11 β 6 ∗b6

10 β 6, b6
10, b6

11 90
7 β 7, b7

10 none β 7, b7
10 85

8 β 8, b8
10 β 8 ∗b8

10 β 8, b8
10 89

9 β 9, b9
10, β 9 ∗b9

10 β 9, b9
10 93

Figure 5 correspond to the two most influential interactions: β 4 ∗b4
10 and β 4 ∗b4

11. The number of
bootstrap replications used to compute the confidence intervals equals 1000.

In conclusion, only 3 of the 12 parameters of the sector 4 are significantly influential either
directly by their main effects or through their second-order interactions: β 4, b4

10 and b4
11.

The same procedure is performed for the other transportable sectors. For each sector n, the set
ρn that comprises the most influential parameters selected by the sensitivity analysis is listed in
Table 3. The last column of the table gives the proportion of the model’s variance explained by
the selected parameters. This proportion is calculated by multiplying the sum of the generalised
Sobol’ indices of the first two columns by 100. Looking at the results, only 3 parameters appear
to be overall the most influential: β n, bn

10 and bn
11, n ∈ {2,4,5,6,7,8,9}.

These results fall within our range of expectations. The parameter β n is a dispersion parameter
of a multinomial logit function (cf. Equation (14) of Annexe A). A slight variation of this parameter
leads to a significant change in the calculation of the probabilities of localisation. Both parameters
bn

10 and bn
11 act as weights in the attractiveness for sector n. These two parameters are more prone

to be influential than others bn
l as sectors 10 and 11 correspond to the two main floorspace types.
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Looking at the last column of Table 3, for some sectors (in particular for sector 2) the variance
is not fully explained by the parameters selected. A solution for further explaining this variance
would be the use of Saltelli’s procedure to estimate first-order and total-effect Sobol’ indices
(index measuring the contribution of an input through its main effect plus all its interactions).
However, Saltelli’s procedure would requires N×14 evaluations of the model for each sector. In
comparison, the proposed approach require only N×4 evaluations of the model to estimate both
first-order and closed second-order indices (2×N for first-order indices and 2×q2, with q≈

√
N

for closed second-order indices). Since the number of evaluations is a concern in this study, it has
been decided to go for the replication procedure at the price of not using the total effect Sobol’
indices.

A compromise would be to fit a metamodel and evaluate first-order and total effect Sobol’
indices with the metamodel outputs. Such a methodology has been applied by Ge et al. (2014) to
the traffic simulation model Aimsun. In their application, the use of a metamodel is particularly
efficient as microscopic traffic simulators are known to be quite time-consuming. However, one
may argue that the complexity of Tranus makes it hard to perform a metamodel based estimation
of Sobol’ indices.

An alternative to the calculation of Sobol’ indices was proposed by Ge and Menendez (2014),
i.e. to perform a sensitivity analysis prior to the calibration of the traffic model VISSIM. This
approach called quasi-OTEE is a screening method based on the original Elementary Effects
method introduced by Morris (1991). The computational cost of the quasi-OTEE method is
(m− n+ 1) ∗ (m+ n)/2 where m is the number of Morris trajectories and n is the number of
quasi-optimal trajectories selected among the m latter. The authors advise to choose m and n in
the ranges [500,1000] and [10,20] respectively. With the minimal setting m = 500 and n = 10,
the cost of the quasi-OTEE method equals 125 205 which is 6 times higher than the cost of
the procedure proposed here to estimate first- and second-order indices (2× 5000+ 2× 672).
Furthermore, as a screening method, the quasi-OTEE approach should be less precise than the
calculation of Sobol’ indices.

Results of the subsequent iterative optimisation: Following the results of the above sensi-
tivity analysis, for each transportable sector n, the aim is to find the set of parameters (ρn,λ n)
minimising the variance of h̃n. The initial value λ n

0 (Step 3 of Algorithm 1) instantiating the pa-
rameter λ n is obtained by expertise. The results obtained both in terms of variance and maximum
of the normalised shadow prices are compared to those obtained with a former ad hoc procedure.
The number of initial evaluations performed to fit the metamodel for the set of parameters (ρn,λ n)
of each sector n is the following:

— 21 evaluations for sector 2,
— 51 evaluations for sectors 4 to 6.
— 41 evaluations for sectors 7 to 9.

The quality of the fitting is assessed by diagnostic plots (fitted values against response values,
standardised residuals, Q-Q plots of standardised residuals) based on leave-one-out cross valida-
tion results (cf. Roustant et al., 2012). For each sector n, the set of evaluations includes the one
obtained with the ad hoc procedure at the optimal set of parameters.

Table 4 summarises the results obtained with both the ad hoc procedure and the innovative
iterative optimisation. For each sector n, ρn∗ and λ n∗ denote the optimal values of the parameters
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TABLE 4. Variance and maximum of the normalised shadow prices h̃n obtained with both ad hoc procedures and the
iterative optimisation.

sector n procedure ρn∗ λ n∗ variance h̃n max h̃n gain

2
ad hoc 2 0.005 0.32 2.95

98 %
iterative 4.03 0.43 7×10−3 0.11

4
ad hoc (2,0,0) 0.001 13.66 24.95

83 %
iterative (6.49,0.38,0) 0.001 2.26 7.63

5
ad hoc (2,0,0) 0.001 5.35 14.83

47 %
iterative (2.50,0.02,0.79) −0.013 2.85 8.88

6
ad hoc (2,0,0) 0.001 5.90 16.65

63 %
iterative (6.64,0.05,0.79) −0.003 2.18 7.72

7
ad hoc (2,0) 0.001 8.73 19.67

61 %
iterative (9.17,1) 0.001 3.40 8.23

8
ad hoc (2,0) 0.001 9.50 20.58

15 %
iterative (5.72,0.97) 0.001 8.08 15.03

9
ad hoc (2,0) 0.001 7.36 17.6

64 %
iterative (9.29,0.95) 0.001 2.66 6.82

obtained at the end of both approaches. The column “gain” represents the improvement (in
percent) of the variance obtained with the proposed iterative estimation relatively to the one
obtained with the ad hoc procedure conducted by experts.

One can observe that the values of the variance and maximum of the normalised shadow prices
obtained with the ad hoc procedure are heterogeneous. Furthermore, the value of the maximum
is quite high for some sectors (up to 20% of the price). The results obtained with the proposed
iterative optimisation are relatively homogeneous except for sectors 2 and 8. The discrepancy
observed for these two sectors comes from the quality of their respective datasets. Indeed, the
data relative to commercial business (sector 2) are easy to collect and thus of high quality and
quantity. At the opposite, data relative to the 65 years and older households (sector 8) are quite
complex to collect and often lack precision.

The main observation is that an improvement in terms of both variance and maximum of the
normalised shadow prices is observed for all sectors when using the iterative approach. Figure 6
gives an illustration of this improvement. The black bars represent the values obtained with the ad
hoc procedure, the grey bars those obtained with the proposed iterative approach. A significant
diminution for both the variance and maximum criteria is observed. Furthermore and most impor-
tantly, the proposed iterative approach is drastically faster than the ad hoc procedure conducted by
experts: the calibration procedure requires a few hours compared to several days (up to weeks) for
the ad hoc procedure.

In the proposed calibration procedure, only the best set of parameters (ρn∗,λ n∗) is conserved.
Ciuffo and Azevedo (2014) have presented an alternative setting in which a metamodel is fitted
and several best sets of parameters are selected. It is true that for complex systems such as
LUTI models, the best solution of the EGO optimisation probably corresponds to only one
of many combinations of the inputs that provide the model with a sufficient robustness. The
method of Ciuffo and Azevedo (2014) allows to investigate the behavior of the model for various
combinations and to derive uncertainty margins of the outputs. Adapting this methodology to the
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FIGURE 6. Variance (left figure) and maximum (right figure) of the normalised shadow prices obtained with both the
ad hoc procedure (referred to as ad hoc) and the proposed iterative optimisation (referred to as iterative).

calibration procedure of Tranus proposed in this paper would be an interesting complementary
work.

Conclusion

In this paper a calibration procedure combining a global sensitivity analysis and an iterative
optimisation to calibrate the land use and activity module of the LUTI model Tranus has been
proposed. The sensitivity analysis presented herein is a generalisation of the replication procedure
to select the most influential parameters of the model when the output is multidimensional. The
optimisation phase was carried on using a two-stage process combining stochastic (algorithm
EGO) and deterministic procedures. The deterministic procedure exploited the system of equations
of Tranus to derive an analytical solution for the marginal utilities and consequently obtain a finer
optimisation of the land use and activity module.

An application to the study area of Mississippi was presented. The proposed methodology was
compared to a former ad hoc calibration procedure in terms of variance and maximum of the
normalised adjustment parameters (shadow prices). The results showed a significant improvement
on both criteria reducing the value of the variance by a large margin with a drastic gain of time:
that suggests that the proposed methodology is useful to improve the calibration of such models.
The next step would consist in verifying if the optimal values found for the parameters ensure
better predicting capabilities when evaluating alternative planning scenarios.
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Appendix A: Tranus system of equations

Only a subset of model equations relevant to this paper is presented. The demand is computed for
all combinations of zone i, demanding (consuming) sector m and demanded sector n:

Dmn
i = (Y ∗mi +Y m

i )amn
i Smn

i (11)

Dn
i = D∗ni +∑

m
Dmn

i (12)

where Y ∗mi is the given exogenous production (for exports), Y m
i the induced endogenous production

obtained in the previous iteration (or initial values), and D∗ni exogenous demand. Dn
i in (12) then

gives the total demand for sector n in zone i. amn
i is a technical demand coefficient and Smn

i is the
substitution proportion of sector n when consumed by sector m on zone i.

In parallel to demand, one computes the utility of all pairs of production and consumption
zones, i and j:

Un
i j = λ

n(pn
j +hn

j)+ tn
i j . (13)

Here, λ n is the marginal utility of income for sector n and tn
i j represents transport disutility. Since

utilities and disutilities are difficult to model mathematically (they include subjective factors
such as the value of time spent in transportation), Tranus incorporates adjustment parameters hn

j ,
so-called shadow prices, amongst the model parameters to be estimated.

From utility, one computes the probability that the production of sector n demanded in zone i,
is located in zone j. Every combination of n, i and j is computed:

Prn
i j =

An
jexp

(
−β nUn

i j

)
∑k An

kexp
(
−β nUn

ik

) . (14)

Here, k ranges over all zones. β n is the dispersion parameter for the multinomial logit model
expressed by the above equation. An

j represents attractiveness of zone j for sector n and is
expressed as follows:

An
j = ∑

l
bn,lZl

j (15)

where the bn,l are the relative weights of sector l in the attractive function of sector n and the Zl
j

are variables depending on prices and productions.
From these probabilities, new productions are then computed for every combination of sector

n, production zone j and consumption zone i:

Y n
i j = Dn

i Prn
i j . (16)

Total production of sector n in zone j, is then:

Y n
j = ∑

i
Y n

i j (17)

= ∑
i

Dn
i Prn

i j . (18)

The set of prices are also governed by a set on non-linear equations, and are computed simultane-
ously to attain equilibrium.
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