Indices de Sobol généralisés aux variables dépendantes : tests de performance de l’algorithme HOGS couplé à plusieurs estimateurs paramétriques
Résumé
L’algorithme “Hierarchically Orthogonal Gram–Schmidt” (HOGS) (Chastaing et al., 2015) estime des indices de Sobol généralisés aux modèles à entrées dépendantes, quantifiant explicitement la sensibilité du modèle due aux corrélations. HOGS construit un méta-modèle pour chaque variable d’intérêt par projection sur une base fonctionnelle bien choisie pour le calcul des indices. Les coefficients de projection sont obtenus par l’estimateur des moindres carrés (OLS) ou les régressions pénalisées lasso, ridge et Elastic Net (EN). Quatre cas d’étude sont proposés : trois modèles simples permettent d’appréhender le fonctionnement de HOGS, et le modèle LNAS (Log-Normal Allocation and Senescence) dédié à la dynamique complexe de la croissance des plantes. Plusieurs configurations de HOGS et la pertinence du méta-modèle sont étudiées grâce à un indice de consistance. L’interprétation des indices de Sobol est illustrée grâce à LNAS. En conclusion, HOGS-OLS est la méthode la plus performante lorsque les ressources informatiques ne sont pas limitantes. Dans le cas contraire, la question de l’estimation paramétrique avec hypothèse de sparsité met en évidence que : i) EN est plus robuste mais plus coûteux numériquement que le Lasso, ii) HOGS génère une base trop grande, créant de la sparsité artificielle. Un amendement de HOGS a été proposé pour réduire la dimension de la base.Téléchargements
Publié-e
2017-03-24
Numéro
Rubrique
Article