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Abstract: A few properties of minimax and maximin optimal designs in a compact subset ofRd are presented, and
connections with other space-filling constructions are indicated. Several methods are given for the evaluation of the
minimax-distance (or dispersion) criterion for a given n-point design. Various optimisation methods are proposed and
their limitations, in particular in terms of dimension d, are indicated. A large majority of the results presented are not
new, but their collection in a single document containing a respectable bibliography will hopefully be useful to the
reader.

Résumé : Cet article présente quelques propriétés de plans d’expériences minimax et maximin optimaux dans un
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1. Introduction

In the common parametric framework with independent additive errors, optimal designs for linear
or nonlinear models tend to concentrate observation sites at a few locations only. In particular,
optimal design theory indicates that, for a model depending on p parameters, design measures
maximising an information criterion based on the Fisher information matrix need no more than
p(p+ 1)/2+ 1 support points, see, e.g., Fedorov (1972), Silvey (1980), Pukelsheim (1993),
Atkinson et al. (2007), Pronzato and Pázman (2013), Fedorov and Leonov (2014). The situation
is much different for nonparametric regression with correlated errors, where the absence of
prior knowledge on the mean and variance functions yields optimal designs that are uniformly
distributed, see Biedermann and Dette (2001). Also, the growing tendency in industry to replace
physical experiments by simulations based on sophisticated mathematical models has generated
a strong demand for designs dedicated to the specific situation where repeated observations at
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8 Pronzato

the same site (i.e., of several simulations with the same inputs) give the same response. This
corresponds to the type of problems considered here: we want to predict the behavior of an
unknown function f : x ∈X 7→ f (x) ∈R, with X a compact subset of Rd , d ≥ 2 but reasonably
small (d . 10, say); observations correspond to evaluations of f at a collection of sites xi,
i = 1, . . . ,n, which form the n-point design Xn = {x1, . . . ,xn}; they may possibly be corrupted
by random errors, correlated or not. The absence of knowledge on f is an incitement to observe
everywhere in X , that is, to spread Xn over X . The objective of the paper is to present techniques
for the construction of designs having this property.

After observations f (x1), . . . , f (xn) have been collected, various methods can be used to predict
the value f (x) at any given x ∈X , see for instance Sacks et al. (1989), Stein (1999), Santner et al.
(2003) for kriging and computer experiments, and one may think of defining a design criterion
especially adapted to the particular prediction method that will be used. For instance, it might be
based on Maximum-Entropy Sampling (MES), see Shewry and Wynn (1987), or on the Maximum
(respectively, Integrated) Mean-Squared prediction Error (MMSE, respectively IMSE) over X ,
see (Santner et al., 2003, Chap. 6), Gauthier and Pronzato (2014, 2016). Here we shall focus our
attention on “universal” (model-free) design criteria, not depending on the prediction method to be
used and only based on geometrical properties of X and Xn. The relationship with model-based
design constructions will be briefly considered in Section 2.5.2.

In all the paper ‖.‖ denotes the l2-norm, and for any set A ⊆X and any point x∈X we write
d(x,A ) = minz∈A ‖x− z‖; vol(A ) =

∫
A dx denotes the volume of A and |A | its cardinality

when A is finite. The letter X will always denote a compact subset ofRd with strictly positive d-
dimensional Lebesgue measure and equal to the closure of its interior. The set X will generally be
convex. Typical examples correspond to the d-dimensional unit (hyper-)cube [0,1]d or the closed
unit ball B(0,1), with 0 denoting the (here d-dimensional) null vector; 1 will denote a vector
with all components equal to 1 and e j will denote the j-th basis vector; Ip is the p-dimensional
identity matrix.

The paper is organised around two different notions of dispersion that are fundamental in most
space-filling strategies. The first one is based on distances between design points and corresponds
to the maximin-distance criterion of Johnson et al. (1990),

ΦMm(Xn) = min
i6= j
‖xi−x j‖ .

We shall denote Φ∗Mm,n =Φ∗Mm,n(X ) =maxXn∈X n ΦMm(Xn) and X∗Mm,n a maximin-optimal design
such that ΦMm(X∗Mm,n) = Φ∗Mm,n. The index of X∗Mm,n is defined as the number of pairs of points
being at distance Φ∗Mm,n, maximin-optimal designs of lowest index being preferable, see Johnson
et al. (1990). See Figure 1-left for an example.

The second notion relies on the Hausdorff distance between Xn and X ,

ΦmM(Xn) = dH(Xn,X ) = max
{

max
i=1,...,n

d(xi,X ),max
x∈X

d(x,Xn)

}
= max

x∈X
d(x,Xn)

= max
x∈X

min
i=1,...,n

‖x−xi‖ , (1)

since d(xi,X ) = 0 when xi ∈X . ΦmM corresponds to the minimax-distance criterion of Johnson
et al. (1990) and ΦmM(Xn) is also called the dispersion of Xn, see (Niederreiter, 1992, Chap. 6).
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Minimax and maximin space-filling designs 9

We shall denote Φ∗mM,n = Φ∗mM,n(X ) = minXn∈X n ΦmM(Xn) and X∗mM,n a minimax-optimal design
such that ΦmM(X∗mM,n) = Φ∗mM,n. Let X ∗(Xn) denote the set of most distant points x ∈X , i.e.,
such that d(x,Xn) = Φ∗mM,n. The index of X∗mM,n is defined as minx∈X ∗(Xn) N(x), with N(x) =∣∣{xi ∈ Xn : ‖x−xi‖= Φ∗mM,n}

∣∣, and minimax-optimal designs of highest index are preferable. An
example is given in Figure 1-right.

FIGURE 1. Maximin (left) and minimax (right) optimal designs in a square for n = 7. The circles have radius Φ∗Mm,7/2
on the left and Φ∗mM,7 on the right; the maximin design on the left has index 8; the minimax optimal design X∗mM,7 on
the right has index 1, with |X ∗(X∗mM,7)|= 16.

Clearly, maximin-optimal design will tend to push design points to the boundary of X whereas
minimax-optimal design will do that to a much lesser extent, see Section 4.3.1 for an exploitation
of this property. For a given n, these different behaviours become more striking as the dimension
d increases. We shall only consider designs of given size n and not sequences of nested designs
(one may refer to Niederreiter, 1992, Chap. 6, for the construction of low-dispersion sequences;
see also Section 2.5.1 for discrepancy and its link with dispersion). One exception is the algorithm
of Section 4.1 that generates design sequences with 50% minimax and maximin efficiency.

2. Justification and properties

2.1. Motivation for minimising ΦmM

In the absence of precise knowledge on f , choosing a collection Xn of sites xi ∈X that minimise
ΦmM(Xn) is intuitively appealing for the prediction of the value of f at unsampled locations x∈X
based on error-free evaluations f (xi). Indeed, for any z ∈X and Xn ∈X n, denote by xi∗(z) (any
of) the nearest neighbour(s) of z in Xn; that is, xi∗(z) ∈ Argmini=1,...,n ‖z−xi‖. If f is Lipschitz
continuous, with | f (z)− f (x)| ≤ L0‖z−x‖ for all x and z∈X , then maxz∈X | f (z)− f (xi∗(z))| ≤
L0ΦmM(Xn). If f is Lipschitz differentiable, with ‖∇ f (z)−∇ f (x)‖ ≤ L1‖z− x‖ for all x and
z ∈X , then maxz∈X | f (z)− f (xi∗(z))−∇>f (xi∗(z))(z−xi∗(z))| ≤ L1[ΦmM(Xn)]

2. These obvious
constructions are rather naive; they indicate, however, that the major difficulty for approximating
an unknown f , including the famous curse of dimensionality, can in fact be formulated as a design
problem: good designs with small ΦmM value yield good approximations, even with constructions
as simple as above. One may refer to Sukharev (1992, Chap. 3) for more precise developments.
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10 Pronzato

Suppose now that f belong to a RKHS H with kernel K(·, ·), see, e.g., Berlinet and Thomas-
Agnan (2004). Let η̂n denote the linear predictor of f based on the f (xi), i = 1, . . . ,n, such that
η̂n(xi) = f (xi) for all i (η̂n interpolates f on Xn) and having minimum norm ‖η̂n‖H . This best-
linear interpolator is the orthogonal projection of f on span{Kx1 , . . . ,Kxn}, where Kx : z ∈X 7→
K(z,x). It satisfies, for all x ∈X , | f (x)− η̂n(x)| ≤ ‖ f‖H ρn(x), where the first term ‖ f‖H
does not depend on Xn and the second one ρn(x) does not depend on f , see, e.g., Auffray et al.
(2012). In the framework of random-field modeling and kriging, ρ2

n (x) corresponds to the kriging
variance at x. There, the unknown function is considered as the realisation of a random field Zx on
X , with zero mean and covariance E{ZxZx′}= σ2K(x,x′). The best linear unbiased predictor of
Zx based on the observations zn = (Zx1 , . . . ,Zxn)

> is given by η̂n(x) = k>n (x)K−1
n zn and satisfies

E{[Zx− η̂n(x)]2}= σ2ρ2
n (x) = σ2 [K(x,x)−k>n K−1

n kn(x)], with kn(x) = (Kx1(x), . . . ,Kxn(x))>
and {Kn}i j =K(xi,x j), i, j = 1, . . . ,n. (The fact that ρ2

n (x) does not depend on zn has the important
consequence that MES, or the optimisation of any design criterion based on ρn, see Section 2.5.2,
cannot be improved if performed sequentially, by adapting the choice of the k-th design point to
all current observations; see Vazquez and Bect (2011) for a thorough discussion.) Schaback (1995)
shows that for many isotropic kernels (such that K(x,z) depends on ‖x− z‖), ρ2

n (x) satisfies
supx∈X ρn(x) ≤ S[ΦmM(Xn)], with S an increasing function depending on K, hence, again, the
interest of using designs with a small ΦmM value.

2.2. Relations between ΦmM and ΦMm, and bounds on their optimum values

Relations between ΦmM and ΦMm. As noticed in (Gonzalez, 1985), any (n+1)-point design
in X (n≥ 1) satisfies

1
2

ΦMm(Xn+1)≤Φ
∗
mM,n . (2)

Indeed, from the pigeonhole principle, one of the n balls B(zi,Φ
∗
mM,n), with zi ∈ X∗mM,n, must

contain two points xi,x j of Xn+1, implying that ΦMm(Xn+1)≤ ‖xi−x j‖ ≤ 2Φ∗mM,n.
Consider now a design Xn with n distinct points xi. Any pair of (closed) balls B(xi,ΦMm(Xn)/2)

and B(x j,ΦMm(Xn)/2), i 6= j, do not intersect, and since a convex set X cannot be covered by
two or more non-overlapping balls all having their centres in X , we obtain that any design Xn in
a convex set X , with n≥ 2, satisfies ΦmM(Xn)> ΦMm(Xn)/2. On the other hand,

Φ
∗
mM,n ≤Φ

∗
Mm,n (3)

for any X and any n. The proof is by contradiction, see Auffray et al. (2012), and is reproduced
hereafter. Suppose that Φ∗mM,n > Φ∗Mm,n and consider a maximin-optimal design X∗Mm,n with lowest
index. The property ΦmM(X∗Mm,n) ≥ Φ∗mM,n > Φ∗Mm,n implies the existence of a x∗ in X such
that d(x∗,X∗Mm,n) > Φ∗Mm,n, and by substituting x∗ for any point of X∗Mm,n in a pair of points at
respective distance Φ∗Mm,n, we would obtain a design X ′n with lower index than X∗Mm,n or such that
ΦMm(X ′n)> Φ∗Mm,n. One may notice that we have in fact proved that ΦmM(X∗Mm,n)≤ΦMm(X∗Mm,n)
when X∗Mm,n is a maximin-optimal design with lowest index. Minimising ΦmM is more difficult
than maximising ΦMm, see Sections 2.4, 3.2 and 4, and this inequality explains why one is often
satisfied with a maximin-optimal design.
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Minimax and maximin space-filling designs 11

Lower bound. For any n and any Xn ∈X n, the n balls B(xi,ΦmM(Xn)) cover X , and the
determination of a minimax-optimal design X∗mM,n corresponds to a sphere covering problem. As
a consequence, denoting Vd = vol[B(0,1)] = πd/2/Γ(d/2+1) the volume of the d-dimensional
unit ball B(0,1), we get nVd (Φ

∗
mM)d ≥ vol(X ), which yields the lower bound

Φ
∗
Mm,n ≥Φ

∗
mM,n ≥ R∗n =

(
vol(X )

nVd

)1/d

. (4)

Upper bound. By construction, the n balls B(xi,Φ
∗
Mm,n/2), n≥ 2, do not overlap (more pre-

cisely, their intersection has zero volume) and have their centres in X , so that

∪n
i=1 B(xi,Φ

∗
Mm,n/2)⊂ {X ⊕B(0,Φ∗Mm,n/2)} ⊂ {X ⊕ [−Φ

∗
Mm,n/2,Φ∗Mm,n/2]d)} , (5)

where ⊕ denotes Minkowski sum (here, a dilation of X ). When X is convex and has a simple
enough shape, this induces a close relationship between maximin-optimal design and sphere
packing. To investigate this relationship we shall need to expand and renormalise X , and it
is simpler for that purpose to assume, without any loss of generality, that X has been first
normalised, so that the largest ball included in X is the unit ball B(0,1).

For any r≥ 0, denote X −
r = [1/(1+ r)] [X ⊕B(0,r)] = {(x+z)/(1+ r) : x ∈X , ‖z‖ ≤ r}.

Any y ∈X −
r can be written as αx+(1−α)z, with α = 1/(1+ r), x ∈X and z ∈B(0,1)⊂X .

Therefore, X −
r ⊂X when X is convex. Consider an n-point maximin-optimal design X∗Mm,n,

with maximin value Φ∗Mm,n; take r = Φ∗Mm,n/2. The n balls B(xi,r) do not overlap and are
contained in X ⊕B(0,r), the non-overlapping balls B(xi/(1+ r),r/(1+ r)) are thus contained
in X , which implies that

r/(1+ r) = Φ
∗
Mm,n/(2+Φ

∗
Mm,n)≤ r∗SP,n , (6)

with r∗SP,n the maximum radius of n identical non-overlapping spheres packed in X .
Consider now the set X +

r = {x : ∀z ∈B(0,r), (1− r)x+z ∈X }, r ∈ [0,1). Since B(0,1)⊂
X and X is assumed to be convex, X ⊂X +

r . On the other hand, when the erosion of X by
B(0,r) satisfies

X 	B(0,r) = {x : ∀z ∈B(0,r), x+ z ∈X } is homothetic to X , (7)

with balls and regular polytopes ofRd as typical examples, then X +
r =X . In that case, any n non-

overlapping spheres packed in X with radius r∗SP,n, n≥ 2, are such that their centres ci belong to
X 	B(0,r∗SP,n), and therefore ci/(1− r∗SP,n) ∈X for all i. This implies that 2r∗SP,n/(1− r∗SP,n)≤
mini6= j ‖ci− c j‖/(1− r∗SP,n) ≤ Φ∗Mm,n. Together with (6), this gives Φ∗Mm,n/(2+Φ∗Mm,n) = r∗SP,n
and shows the equivalence between maximin-optimal design and sphere packing when X is a
convex set satisfying (7); see Figure 2 for an illustration.

When the shape of X is simple enough, (5) and the equivalence with sphere packing yield
upper bounds on vol

[
∪n

i=1B(xi,Φ
∗
Mm,n/2)

]
= nVd(Φ

∗
Mm,n/2)d , i.e., upper bounds on Φ∗Mm,n. In

particular, two special cases provide a simple bound. When X is the unit ball B(0,1), we obtain
Φ∗Mm,n ≤ 2/(n1/d−1). When X is the hypercube [0,1]d and n≤ n∗ =

⌈
[2(1+

√
d)]d/(Vddd/2)

⌉
,
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12 Pronzato

we have the trivial bound Φ∗Mm,n ≤ R∗n =
√

d (consider X∗Mm,2 formed by two opposite vertices of
X ). For n > n∗ (and therefore (nVd)

1/d > 2), we get

Φ
∗
mM,n ≤Φ

∗
Mm,n ≤ R∗n =

2
(nVd)1/d−2

. (8)

(When n ≤
⌈
[2(2+

√
d)]d/(Vddd/2)

⌉
, we also have the trivial bound Φ∗mM,n ≤

√
d/2, obtained

from X∗mM,1 = {(1/2, . . . ,1/2)>}.)

FIGURE 2. Equivalence between maximin-optimal design and sphere packing when X is the square [0,1]2, with n = 7
(left, the same design is presented in Figure 1-left) and n = 10 (right); (4) gives R∗7 ' 0.21324 and R∗10 ' 0.17841;
n∗ = 4 for d = 2 and (8) gives R∗7 ' 0.74364 and R∗10 ' 0.55479.

Packing density, covering, and lattices. Any given design Xn provides an upper bound ΦmM(Xn)
on Φ∗mM,n and a lower bound ΦMm(Xn) on Φ∗Mm,n. In particular, regular arrangements called lattices,
form good candidates for obtaining accurate bounds.

When X can tile Rd , the hypercube being a typical example, results on packing density can
be used to improve (8): n non-overlapping balls with radius r contained in X cannot occupy a
volume larger than δd V , with V = vol(X ) and δd the optimum (i.e., greatest) sphere-packing
density inRd . Therefore, r < [δd V/(nVd)]

1/d . When X is the hypercube [−1,1]d , so that B(0,1)
is the largest ball included in X , then V = 2d and Φ∗Mm,n < 2r/(1− r), see (6), which gives

Φ∗Mm,n < 2δ
1/d
d /[(nVd)

1/d−2δ
1/d
d ] for the hypercube [0,1]d .

The determination of packings with greatest density is a subject that has a rich history. When
d = 2, the fact that the hexagonal packing arrangement has highest density δ2 = π

√
3/6 among

lattice packings was known to Lagrange (1773), but the first proof of its optimality among all
possible arrangements is due to L. Fejes Tóth (1943). This gives Φ∗Mm,n < 1/(31/4

√
n/2− 1)

for the unit square. A further slight improvement is given by Oler (1961), with Φ∗Mm,n < [1+√
1+2(n−1)/

√
3]/(n−1). For d = 3, Kepler conjectured in 1611 that the face-centred cubic

lattice (commonly exhibited on fruit stands), with δ3 = π
√

2/6, has highest density among all
possible arrangements. Gauss proved in 1831 that this was indeed the case among lattice packings,
and the Kepler conjecture was finally proved by Hales and Ferguson in 2006; see Lagarias (2011)
for details, including corrections that followed the original proof of the conjecture. This gives
Φ∗Mm,n < 1/[(n/

√
2)1/3−1] for the unit cube.
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Minimax and maximin space-filling designs 13

Little is known about optimal packings in dimension d larger than 3, except for lattices, see the
major reference (Conway and Sloane, 1999). The densest lattice packings are known up to d = 8,
the optimality of the E8-lattice among all possible arrangements (including non-lattice ones) has
only been proved recently (Viazovska, 2016).

Optimal arrangements in terms of covering minimise the average number of spheres containing
a point of the space, which Conway and Sloane (1999, Chap. 2) call thickness. When X can
tile Rd , thinnest arrangements provide lower bounds on Φ∗mM,n, but are only known for d = 1
and 2. Thinnest lattices are known up to d = 5 (they differ from packing-optimal lattices, and are
related with them through a duality property for d = 2 and 3); Conway and Sloane (1999, Chap. 3)
give the best covering lattices known up to d = 24. Further results are provided for instance in
(Vallentin, 2003).

Design constructions based on lattices are considered in (Niederreiter, 1992, Chap. 5) in
connection with the numerical integration of periodic functions, see also Bates et al. (1996) and
Riccomagno et al. (1997) for the relation with optimal experimental design for Fourier regression.
The performance of lattices in terms of discrepancy measures is considered in (Niederreiter, 1992,
Chap. 5) and (Hickernell, 1998b). One may refer, e.g., to Korobov (1960), Sloan and Walsh
(1990), Sloan and Reztsov (2002) and Nuyens (2007) for the construction of good lattice rules.

Performance of random designs. Wahl et al. (2014) give the distribution of ΦMm(Xn) when the
n points xi in Xn are independently uniformly distributed in [0,1]d , together with approximations
of this distribution for large n. As suggested in their paper, this result can be used to evaluate the
maximin performance of a given design, through the calculation of the probability that a random
design will have a higher ΦMm value. Otherwise, one may refer to Janson (1986, 1987) for results
on the asymptotic distribution of ΦmM for random designs uniformly distributed in the hypercube,
and to Aaron et al. (2014) for an extension to distributions with Lipschitz continuous density and
bounded support.

2.3. The issue of dimension

Making simplifying assumptions on f . From the inequality (4), ΦmM(Xn) < ε requires n >
vol(X )/(Vd εd). Difficulties can thus be expected in high dimension with moderate n when
the accuracy of the prediction of f (·) at a point x depends on the isotropic distance between x
and the design Xn, as described in Section 2.1. Kernel-based prediction methods adapted to the
assumption that f (·) only depends on a few factors and their low-level interactions may then
allow one to get around the curse of dimensionality, see, e.g., Durrande et al. (2012) for additive
models and Ginsbourger et al. (2014) for the Sobol’-Hoeffding decomposition used in sensitivity
analysis. See also Rasmussen and Williams (2006, Chap. 4). Along the same vein, discrepancy
(see Section 2.5.1) relies on volumes rather than distances and corresponds to kernels that favour
functions that can be modelled well by sums of few factors interactions, see Hickernell (1998a,b).
Low-discrepancy designs which are known to perform well for integration (see, e.g., Niederreiter,
1992) may thus also be good for function approximation in high dimension.

Without suitable assumptions of f (·), for large d we shall necessarily encounter the intrinsic
difficulties of high dimension, as beautifully explained in (Blum et al., 2016, Chap. 2). We only
mention two of them, considering situations where X is a ball or a cube.
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Towards non-uniform space-filling design. The first difficulty is common to the ball and the
cube: the volumes of the unit ball and unit cube are concentrated along their borders. For ε ∈ [0,1),
denoting by Kε the hypercube [−(1− ε)/2,(1− ε)/2]d , we have

vol(K0)−vol(Kε)

vol(K1)
=

vol(B(0,1))−vol(B(0,1− ε))

vol(B(0,1))
= 1− (1− ε)d > 1− exp(−dε) ,

which quickly tends to one for any ε > 0 as d increases. When trying to spread n design points
uniformly in a high dimensional X , we can thus expect that a large majority of them will be
close to the border of X . To circumvent that difficulty, we may consider that prediction accuracy
deep inside X is more important than along its border, and use a non-stationary kernel in a
kernel-based method, or modify the metric used. For instance, when X is centered at 0, one may
replace a stationary kernel K(x,z) = k(‖x− z‖) by K′(x,z) = k(‖x− z‖)/[s(‖x‖)s(‖z‖)], with
s(·) a positive and increasing function on R+, see, e.g., Rasmussen and Williams (2006, Chap. 4).
The change of metric can rely on a nonlinear mapping (warping) of x: one may consider for
instance the transformed space X ′ = {x′ = x/s(‖x‖) : x ∈X }, where X is centered at 0, s(·) is
positive and increasing and such that t 7→ t/s(t) is strictly increasing for t ∈ [0,maxx∈X ‖x‖] (so
that the mapping x ∈X 7→ x′ = x/s(‖x‖) is one-to-one).

Rounding the cube. The second noticeable difficulty concerns the striking difference between
the geometrical shapes of a ball and a cube in high dimension. As d increases, the volume of the
unit cube is one but the maximum distance possible between two points is

√
d. In contrast, the

volume Vd of the unit ball tends to zero but the maximum distance possible between two points
equals two. A first consequence is that the squared distance between pairs of points uniformly
distributed in the unit cube is concentrated around its mean value d/6: a direct application
of Hoeffding’s concentration inequality gives Prob

{∣∣‖x− z‖2−d/6
∣∣> β

√
d
}
< 2 exp(−2β 2)

when x and z are independently uniformly distributed in the unit cube. A second consequence
is that whereas the unit cube centered at the origin is contained in the unit ball for d ≤ 4, its 2d

vertices are at distance
√

d/2 from the origin and lie outside the ball for d ≥ 5, and the volume
of the complement of the ball with respect to the cube tends to one as d increases to infinity. On
the other hand, the ball is never contained in the cube: the centre of each (d−1)-dimensional
face of the cube is at distance 1/2 from the origin, well inside the ball. This indicates that when
d is large, inferring the behaviour of an unknown f (·) seems much more difficult when X is
a cube than when it is a ball. The usual motivation for assuming that x = (x1, . . . ,xd) lies in a
cube is that it accounts for the situation where all input factors xi take their extreme values at
the same time. As an attempt to struggle with the curse of dimensionality, one may suppose that
only q factors out of d can be extreme simultaneously. After suitable renormalisation, this can be
achieved by taking X as the intersection between the unit cube centered at the origin and the ball
B(0,α

√
d/2): when

√
q/d ≤ α <

√
(q+1)/d, X intersects all (d−q)-faces of the cube but

none of its (d−q−1)-faces (a 0-face being a vertex, a 1-face an edge, and so on, a (d−1)-face
is a face).

To summarize, the difficulties mentioned in this section point out that minimax and maximin
optimal designs based on an isotropic notion of distance do not seem relevant for large d. A
few suggestions on how to possibly circumvent some of those difficulties have been indicated,
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Minimax and maximin space-filling designs 15

but deeper investigations are clearly required. This explains why we shall restrict our attention
to situations where d . 10; when we mention large d in the rest of the paper, this should be
interpreted as d around 10, or slightly larger than 10.

2.4. Evaluation of ΦmM

Whereas the evaluation of ΦMm(Xn) is straightforward, that of ΦmM(Xn) requires the maximisation
of d(x,Xn) with respect to x ∈X , see (1). The evaluation is of course much simpler when x is
restricted to belong to a finite set, and a common approach is to (under-)estimate ΦmM(Xn) by
Φ̃mM(Xn) = maxx∈XQ d(x,Xn), with XQ a finite set {x(1), . . . ,x(Q)} ∈X Q, typically a regular
grid, or the first Q points of a low-discrepancy sequence. A large value of Q is required to obtain
a precise approximation of ΦMm(Xn), and for a given level of accuracy Q should increase quickly
with d. Indeed, the triangle inequality for Hausdorff distance gives

max
x∈XQ

d(x,Xn)≤ΦmM(Xn) = dH(Xn,X ) ≤ dH(Xn,XQ)+dH(XQ,X )

= dH(Xn,XQ)+ΦmM(XQ)

≤max
{

max
x∈XQ

d(x,Xn),ΦmM(XQ)

}
+ΦmM(XQ) ,

and therefore 0≤ ΦmM(Xn)−maxx∈XQ d(x,Xn)≤ ΦmM(XQ) for any reasonable XQ such that
ΦmM(XQ)≤maxx∈XQ d(x,Xn). On the other hand, one can easily construct examples with XQ

a regular grid such that ΦmM(Xn) = maxx∈XQ d(x,Xn)+ΦmM(XQ). The lower bound (4) then
indicates that Q must grow as O(1/εd) to ensure that ΦmM(Xn)< maxx∈XQ d(x,Xn)+ ε .

When X is a d-dimensional hypercube, or a convex bounded polyhedron (a polytope) of Rd

with d small enough (say, d . 5), tools from algorithmic geometry provide the exact evaluation
of ΦMm(Xn) (note that in most applications n is growing moderately with d, often linearly). The
third method presented uses a Markov Chain Monte Carlo (MCMC) algorithm to construct an
estimate of ΦMm(Xn) and can also be used with larger d.

Delaunay triangulation (Pronzato and Müller, 2012). Suppose that Xn is an n-point design
in X = [0,1]d . Consider the set X ′m, with m = (2d +1)n points, formed by Xn and its 2d reflec-
tions through the (d− 1)-dimensional faces of X . The Delaunay triangulation of X ′m yields a
collection of d-dimensional simplices (each one having d +1 vertices), with the property that
their circumscribed spheres S j do not contain any point of X ′m in their interior, see Okabe et al.
(1992), Boissonnat and Yvinec (1998). The value maxx∈X d(x,Xn) is then attained when x is the
centre of one of those spheres, and therefore, maxx∈XQ d(x,Xn) gives the exact value of ΦmM(Xn)
when XQ is the finite set given by the centres of circumscribed spheres that belong to X . One
should notice, however, that the complexity of the construction grows exponentially fast with d,
since Q = |XQ|= O(mdd/2e), which gives a computational time growing like O(m1+dd/2e), see
Cignoni et al. (1998). The approach is therefore restricted to small values of d (even if removing
points not necessary for the construction from X ′m). An example is shown in Figure 3-left.

The method requires the computation of the circumscribed sphere S enclosing d +1 points
ui in Rd , which can be easily performed as follows. Let U denote the d× (d + 1) matrix with
columns given by the ui, and let c and r denote the centre and radius of S , respectively. By
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16 Pronzato

definition, c and r satisfy ‖c−ui‖2 = r2, that is 2u>i c+(r2− c>c) = ‖ui‖2, for all i. Denoting
w = r2− c>c and d = diag(U>U), the vector with i-th component ‖ui‖2, we can rewrite this in
matrix form as

[2U>1]
(

c
w

)
= d ,

and obtain the values of c and r =
√

w+ c>c from the solution of this linear system. Note
that |det[U>1]|/d! = vol[u1, . . . ,ud+1], the volume of the simplex formed by the ui. Therefore,
det[2U>1] 6= 0 when the points are in general position, and there is no circumscribed sphere (or
one may consider that its centre is at infinity) when the system is inconsistent.

Voronoï tessellation (Cortés and Bullo, 2005, 2009). A collection of n sets Ci forms a tessel-
lation of the set A if Ci∩C j = /0 for i 6= j and ∪n

i=1Ci =A . The Voronoï tessellation based on the
sites, or generators, in Xn ∈X n, partitionsRd into n cells Ci, with Ci consisting of points closer to
xi than to any other site in Xn. Each cell thus corresponds to a convex polyhedron inRd , some cells
being open (and infinite). When X is a polytope ofRd , the intersections of the Ci with X provide
a tessellation of X into n bounded convex polyhedra. The value maxx∈X d(x,Xn) is then attained
when x is a vertex of one of these polyhedra, and one only need to compute maxx∈XQ d(x,Xn)
with XQ the collection of these vertices. Again, the construction is computationally expensive for
large d, with Q growing like O(ndd/2e), see Klee (1980). Dealing with infinite cells can be easily
avoided by adding a few generators x′j out of X (at least d +1), far enough from X to ensure
that the corresponding cells do not intersect X . For instance, when X = [0,1]d , we can add
to Xn the 2d generators given by (1/2)1±ae j, j = 1, . . . ,d; taking a > 1/2+

√
d then implies

maxx∈X ,xi∈Xn ‖x−xi‖ ≤
√

d < minx∈X ‖x−x′j‖= a−1/2. The n Voronoï cells corresponding
to generators in Xn are then finite and their intersections with X are not perturbed by the presence
of the extra generators x′j. These polyhedral intersections can be computed using for example
the method in (Walter and Piet-Lahanier, 1989) — with a non-negligible contribution to the total
computational cost of the method. An illustration is given in Figure 3-right.

Estimation via MCMC. Suppose that we have a sample of Q points x( j) i.i.d. in X . We can
then compute the Q distances d j = d(x( j),Xn), with associated order statistics d1:Q ≥ d2:Q ≥ ·· · ≥
dQ:Q. Let k be a fixed integer between 1 and Q (assuming that Q� d, we suggest k = max{10,d}).
Using results in (Zhigljavsky and Žilinskas, 2007, Chap. 2) and (Zhigljavsky and Hamilton, 2010)
based on extreme-value theory, we can then estimate ΦmM(Xn) by

Φ̂mM(Xn) = d1:Q +Ck(d1:Q−dk:Q)

where Ck = b1/(bk−b1) with bi = Γ(i+1/d)/Γ(i). Moreover, the asymptotic confidence level
of the interval

Ik,δ =

[
d1:Q,d1:Q +

d1:Q−dk:Q

(1−δ 1/k)−1/d−1

]
tends to 1− δ for Q→ ∞. When the points x( j) are fixed, the precision of the estimation of
ΦmM(Xn) by Φ̂mM(Xn) is poor and the interval Ik,δ is large, unless Q is very large. However, the
order statistics d j:Q for large j carry little information about the value of ΦmM(Xn). This suggests
using a multilevel splitting algorithm, for which all x( j) at distance d j from Xn less than some
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FIGURE 3. Evaluation of ΦmM(Xn) for Xn a 6-point design (squares) in X = [0,1]2. Delaunay triangulation (left):
there are 45 triangles, 12 centres of circumscribed circles (dots), the circle with largest radius is plotted. Voronoï
tessellation (right): the 2d = 4 additional generators are indicated by stars, the six (finite) cells intersected with X
have 14 distinct vertices (28 in total), the most distant from Xn corresponds to the upper right corner of X .

L` are replaced by points sampled independently (and uniformly) in the set X (L`) = {x ∈X :
d(x,Xn)> L`}, for an increasing sequence of levels L`. The method of Guyader et al. (2011) is
particularly attractive in this context for generating uniform samples in a sequence of sets X (L`),
due to its efficiency and the straightforward level sequence that it proposes: at step `, the next level
is set at L`+1 = min j=1,...,Q d j, and the point x j∗ (unique with probability one) such that d j∗ = L`+1
is replaced by a new point sampled in X (L`+1). These splitting iterations are stopped when the
width of the confidence interval Ik,δ , with δ = 0.05, say, is less than some prescribed precision ε .

One may use rejection sampling (the acceptance-rejection method) to sample uniformly in
X (L) when L is small enough. However, sampling uniformly in X (L) is not straightforward
when L approaches ΦmM(Xn), and when the number of rejections becomes larger than some given
threshold (say, 100) one may switch to the MCMC method with Metropolis-Hastings transitions
proposed in (Guyader et al., 2011). Denote by ProjX (x) the projection of x onto X (a truncation
when X is an hypercube). At step `, first replace x j∗ by a x j∗∗ chosen at random among the other x j,
second perform K successive steps of a random walk, where a movement from x to ProjX (x+z),
with z normally distributed N (0,σId), is accepted if and only if d(x+ z,Xn)> L`+1 = d j∗ . Our
numerical experiments indicate that choosing Q = max{nd,100}, K between 10 and 20 and σ

equal to the lower bound R∗n given by (4) gives satisfactory results. An illustration is given in
Figure 4.

Figure 5 presents boxplots of (the logarithms of) computing times for the three methods above
(K = 10, δ = 0.05, ε = 10−3 for MCMC), for n = 50 and d varying from 2 to 5 (we performed
100 evaluations of ΦmM for random Latin-hypercube designs Xn in [0,1]d). Voronoi tessellation
appears to be the fastest when d = 2 and 3, Delaunay triangulation is the fastest for d = 4 and
MCMC is preferable for d ≥ 5. The computational time grows roughly exponentially with d for
the first two methods, but is only linear in d for MCMC.
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18 Pronzato

FIGURE 4. Evaluation of ΦmM(Xn) via MCMC for a 7-point design (squares) in X = [0,1]2. The initial x( j),
j = 1, . . . ,Q = 104, correspond to 100 random points in X (uniformly distributed) and the 4 vertices. The figure
on the left (resp. on the right) shows the situation after 30 (resp. 400) splitting iterations: the 7 balls centered at
the design points have radius min j=1,...,Q d(x( j),X7) for the current set of points x( j); the point x j∗ (star) that lies
exactly on a circle is replaced by x j∗∗ (triangle) which is then updated into the point indicated by a cross after 10
Metropolis-Hastings transitions.
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FIGURE 5. Boxplot of log(computing times) (in seconds) for the evaluation of ΦmM(Xn) with Delaunay triangulation
(De), Voronoi tessellation (Vo) and a MCMC algorithm (MCMC). 100 repetitions with Xn a random Latin-hypercube
design in [0,1]d , n = 50 and d = 2,3,4,5; the median, 25% and 75% percentiles are indicated, together with most
extreme values.

2.5. Relation with other criteria for optimal design

2.5.1. Model-free design criteria

Discrepancy. A rather intuitive approach to achieve the objective of observing “everywhere” in
X , as formulated in Section 1, is to minimise a “distance” between the distribution of observations
sites xi and the uniform distribution. The notion of discrepancy captures this intuition well, see
(Niederreiter, 1992, Chap. 2), and different versions can be considered which receive an analytical
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expression, see Hickernell (1998a,b), Fang and Ma (2001), and can therefore be minimised,
see Fang et al. (2003), Fang et al. (2005) and (Fang et al., 2006, Chaps. 3&4). The use of
low-discrepancy sequences forms a cheap alternative to algorithmic discrepancy minimisation
(Niederreiter, 1992, Chaps. 3&4). Assume that X = [0,1]d . Interestingly enough, a bound on the
dispersion ΦmM(Xn) of an n-point design can be derived from its (extreme) discrepancy Dn(Xn),

ΦmM(Xn)≤
√

d D1/d
n (Xn) ,

see (Niederreiter, 1992, Th. 6.6) (this formalises the common sense that a sequence distributed
uniformly in X is dense in X ). We therefore have bounds on ΦmM for designs Xn formed by
the first n points of a low-discrepancy sequence (for which Dn = O[(logn)d/n]), see for instance
Mitchell (1990) for the Halton sequence. However, numerical evaluations indicate that these
bounds are rather pessimistic.

Divergence measures and entropy. An alternative approach is to consider that the xi are i.i.d.
with a density ϕ in X , and to minimise an estimate D̂n of a divergence measure D between ϕ

and the uniform density υ on X , or to maximise an estimate Ĥn of the entropy H of ϕ , D̂n and
Ĥn being estimated from Xn considered as a sample of size n. Different divergences or entropies
can be considered, see, e.g., Basseville (2013), minimising a divergence D(ϕ,υ) between ϕ and
υ being generally equivalent to maximising a suitable entropy H(ϕ). Jourdan and Franco (2009b,
2010) maximise a plug-in estimator of the Shannon entropy H1(ϕ) =−

∫
ϕ(x) logϕ(x)dx and

estimate ϕ with (Gaussian) kernel smoothing; i.e., their density estimator is

ϕ̂n(x) =
1
n

n

∑
i=1

ϕ̃σ2
n
(x−xi) , (9)

where σn is a bandwidth parameter and ϕ̃s2 is the density of the d-dimensional normal distribution
N (0,s2Id). To avoid computationally demanding numerical integrations, they substitute the
empirical estimator Ĥ1,n =−(1/n) ∑

n
i=1 log ϕ̂n(xi) for H1(ϕ̂n). In (Jourdan and Franco, 2009a),

the authors maximise the Nearest-Neighbour (NN) estimator of Shannon entropy derived by
Kozachenko and Leonenko (1987), which amounts at maximising the product of the distances
between each design point and its NN in Xn (see also the next paragraph on the maximisation of
Euclidean functionals on graphs).

Other entropies can be considered too, such as Tsallis entropy of order α , defined by Hα(ϕ) =
[1/(α − 1)] [1−

∫
ϕα(x)dx] for α 6= 1, with Hα(ϕ)→ H1(ϕ) as α → 1. When α > 0 and ϕ

is constrained to be supported on X , Hα(ϕ) is maximum for the uniform distribution. Notice
that the second-order Tsallis entropy (α = 2) yields a particularly simple construction, since∫
Rd ϕ̂2

n (x)dx = (1/n2) ∑
n
i, j=1 ϕ̃2σ2

n
(xi−x j) gives

H2(ϕ̂n) = 1− 1
n2

n

∑
i, j=1

ϕ̃2σ2
n
(xi−x j) . (10)

Also note that Ĥ1,n and H2(ϕ̂n) only depend on distances between pairs of points in Xn, as it will
also be the case for the design criteria in the next two paragraphs.
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Euclidean functionals on graphs. In a seminal paper, Beardwood et al. (1959) have shown
that when n points xi are i.i.d. with the density ϕ in X = [0,1]d , the lengths |ei| of the edges ei of
the Traveling-Salesman (TS) graph GT S(Xn) having the xi as vertices satisfy

∑ei∈GT S(Xn) |ei|
n(d−1)/d

a.s.→C(d)
∫

ϕ
(d−1)/d(x)dx as n→ ∞ ,

where C(d) only depends on d. This result has then been extended by Steele (1981) to other
Euclidean functionals, see also Redmond and Yukich (1994) for references and a unifying
framework based on the notion of quasiadditivity, and has generated an abundant literature. One
may refer for instance to Redmond and Yukich (1996), Yukich (1998), Penrose and Yukich
(2003), Wade (2007), Penrose and Yukich (2011) for extensions to power-weighted edge lengths,
considering various types of convergence and different conditions on ϕ . Basically, when ϕ is
uniform on X , for β in a suitable range we have

ΦG ,β (Xn) =
∑ei∈G (Xn) |ei|β

n(d−β )/d
→C(β ,d)

∫
ϕ
(d−β )/d(x)dx as n→ ∞ , (11)

with C(β ,d) a constant depending only on β and d (and on the type of graph considered). Here
G (Xn) may denote the Minimum Spanning Tree (MST), or the (k-th) Nearest-Neighbour (NN),
TS, Voronoï, Delaunay, Gabriel or sphere of influence graph. . . and the type of convergence
(Lq or a.s.) depends on the range of admissible β and on properties of the graph considered.
For instance, Penrose and Yukich (2011) show that for the k-th NN graph, we have a.s. and L2

convergence for β > 0 and Lq convergence (q = 1,2) for β ∈ (−d/q,0); see also Leonenko et al.
(2008). An informal justification for the growth rate n(d−β )/d for Sn = ∑ei∈G (Xn) |ei|β is as follows:
consider X ′n formed by 2d identical copies of Xn ∈ [0,1]d×n, X ′n having n′ = 2dn points in [0,2]d .
For a suitable graph G , the effect of edges connecting points lying in two adjacent hypercubes
can be neglected, and ∑e′i∈G (X ′n′ )

|e′i|β ≈ 2dSn. Here X ′n′ ∈ [0,2]d×n′ , but renormalisation to [0,1]d

yields a design Xn′ ∈ [0,1]d×n′ . The edges in G (Xn′) are twice shorter than in G (X ′n′), therefore
Sn′ = ∑ei∈G (Xn′ )

|ei|β ≈ 2d−β Sn, and Sn = O(nt) gives 2d−β = 2dt , i.e., t = 1−β/d.
When α > 1, Hα(ϕ) is maximum for the uniform distribution, and maximising Hα(ϕ) is equiv-

alent to minimising
∫

ϕα(x)dx. Considering property (11), this can be achieved by minimising
ΦG ,β (Xn) with β < 0. A classification of designs based on the values of the empirical mean and
standard deviation of the edge lengths of the MST graph built from Xn is proposed in (Franco et al.,
2009), but to the best of our knowledge the sum of power-weighted edge lengths ΦG ,β (Xn), for the
MST or any other graph among those mentioned above, has scarcely been used as a criterion for
space-filling design (NN, and to a lesser extent MST, being the most promising due to their easy
construction; see, e.g., Jourdan and Franco (2009a) for the maximisation of the sum of logarithms
of edge lengths in the NN graph).

Lq relaxation and energy. Denote by d∗(xi) = min j=1,...,n, j 6=i ‖xi−x j‖ the NN distance to xi

in the design Xn. We can write ΦMm(Xn) = mini=1,...,n d∗(xi), so that, for any q > 0,

1
n

n

∑
i=1

d−q
∗ (xi)≤ max

i=1,...,n
d−q
∗ (xi) = Φ

−q
Mm(Xn)≤

n

∑
i=1

d−q
∗ (xi)
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and [
n

∑
i=1

d−q
∗ (xi)

]−1/q

≤ΦMm(Xn)≤

[
1
n

n

∑
i=1

d−q
∗ (xi)

]−1/q

. (12)

This indicates that a design X∗n,NN,q maximising [∑n
i=1 d−q

∗ (xi)]
−1/q is nearly optimal for ΦMm

when q is large enough. Indeed, (12) implies that ΦMm(X∗n,NN,q)/Φ∗Mm,n ≥ n−1/q, which tends to 1
as q→ ∞. Note that d∗(xi) is equal to the length |ei| of the edge with source at xi in the NN graph
GNN(Xn) built on Xn, so that X∗n,NN,q minimises ΦGNN ,β (Xn) defined by (11) with β =−q < 0.

A similar relaxation can be applied directly to distances between all pairs of points, with[
n

∑
i, j=1, i 6= j

‖xi−x j‖−q

]−1/q

≤ΦMm(Xn)≤

[
2

n(n−1)

n

∑
i, j=1, i6= j

‖xi−x j‖−q

]−1/q

.

Maximising [∑n
i, j=1, i6= j ‖xi−x j‖−q]−1/q for q > 0 is equivalent to minimising the energy criterion

Eq(Xn) =
2

n(n−1)

n

∑
i, j=1, i6= j

‖xi−x j‖−q , (13)

and a design X∗n,Eq
minimising Eq(Xn) satisfies ΦMm(X∗n,Eq

)/Φ∗Mm,n ≥
(n

2

)−1/q→ 1 as q→ ∞. The
continuous extension of the criterion Eq is the q-energy Eq(µ) =

∫ ∫
‖x− x′‖−q dµ(x)dµ(x′),

with µ a probability measure on X . The determination of measures with minimum q-energy is
one of the main subjects in potential theory, see, e.g., Landkof (1972), Saff (2010). A design X∗n,Eq

minimising Eq(Xn) is called a set of n Fekete points. When q≥ d, a sequence of Fekete points
in X is asymptotically uniformly distributed, with ∑

n
i, j=1, i 6= j ‖xi−x j‖−q growing as n1+q/d for

q > d and as n2 logn when q = d. When 0 < q < d, a minimum energy measure exists, it is called
the q-equilibrium energy measure and is the weak limit of a sequence of empirical measures
associated with Fekete points, see Hardin and Saff (2004). Minimum-energy measures in a design
context are considered for instance in (Zhigljavsky et al., 2010). Optimal design based on the
minimisation of Eq(Xn) has been proposed by Audze and Eglais (1977) for q = 2. From the results
just mentioned, values of q larger than d are preferable in a space-filling perspective, see (Pronzato
et al., 2016b). Numerical experiments indicate that in general the minimisations of E10d(Xn) and
ΦGNN ,−d(Xn) yield designs resembling X∗Mm,n.

2.5.2. Model-based optimal design

Consider the random-field modeling framework of Section 2.1. Suppose that the covariance
E{ZxZx′}= σ2K(x,x′) is isotropic, with K(x,x′) = K(s)(x,x′) =Cs(‖x−x′‖) for all x,x′, where
s > 0, C(0) = 1 and C(t) is a decreasing function of t. Johnson et al. (1990) show that a minimax-
optimal design X∗mM,n with highest index minimises the maximum over X of the kriging variance
ρ2

n (x), asymptotically, as s→ ∞.
Maximum Entropy Sampling (MES) supposes that Zx is Gaussian and selects a design Xn

such that the entropy of the distribution of zn = (Zx1 , . . . ,Zxn)
> is maximum, and this amounts to
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maximising detKn, see Shewry and Wynn (1987). For K(x,x′) = K(s)(x,x′) =Cs(‖x−x′‖), John-
son et al. (1990) show that a maximin-optimal design X∗Mm,n with lowest index is asymptotically
optimum in the sense of MES when s→ ∞.

Inspired from results in (Joseph et al., 2015), we can also make a connection between MES and
the maximisation of (an estimator of) the entropy of the distribution of design points. Consider the
Gaussian process model with K(x,x′) = Kθ (x,x′) = exp(−θ‖x−x′‖2), θ > 0. For any design
Xn ∈X n, detKn < 1 from Hadamard’s inequality. On the other hand, for θ large enough Kn is
strictly diagonally dominant, and Gershgorin’s theorem implies that each interval [1−∆ j,1+∆ j],
with ∆ j = ∑

n
i=1, i6= j{Kn}i j < 1, j = 1, . . . ,n, contains exactly one eigenvalue of Kn. Therefore, for

large θ ,

0 > logdetKn >
n

∑
i=1

log(1−∆i)'−∑
i6= j

Kθ (xi−x j) = n+n2(π/θ)d/2[H2(ϕ̂n)−1] ,

where H2(ϕ̂n) is the second-order Tsallis entropy (10) and ϕ̂n is given by (9) with σ2
n = 1/(4θ).

When the random-field model actually represents some prior knowledge on the function f (·) to
be approximated/interpolated, a large θ urges that we take the trend behaviour of the model into
account. However, when it is only used as a convenient tool to design a space-filling experiment,
we may maximise H2(ϕ̂n), or logdetKn, to obtain designs with good maximin performance.

3. General global and local methods for maximin and minimax optimal design

The criterion ΦMm and its extensions ΦGNN ,−q(Xn) and Eq, respectively given by (11) and (13)
with q > 0, are generally multimodal, and their global optimisation forms a difficult task. In fact,
there is little hope to construct a certified maximin-optimal design already for d = 2 and n larger
than a few dozen, and the situation gets worse for larger d. The determination of minimax-optimal
designs is even more difficult. For suitable convex sets, maximin-optimal design is equivalent to
sphere-packing, see Section 2.2, and the case d = 2 has attracted substantial attention, in geometry
first (see for instance Croft et al., 1991, Chap. D, and the references therein), and then in the
optimisation community for the challenges it raises. It is worthwhile to mention a few results
that give an idea of the difficulty of the problem. When X is a square, exact solutions were
known for some time for n = 1, . . . ,9,10 and then n = p2 with p = 4,5,6, see Maranas et al.
(1995). Solutions are provided in the same paper for all n≤ 30, using nonlinear programming
with multistart (repetitions of runs with different initial designs). Graham and Lubachevsky (1996)
investigate disk packings that exhibit repeated patterns as n increases. For p ≤ 6, the optimal
packing with p2 points is made of p rows of p disks, but this is no longer true for p ≥ 7 as
shown by Nurmela and Östergård (1997) who provide packings up to n = 50. Their optimisation
method relies on the minimisation of an energy criterion Eq with large q (up to 1050), using a
continuous steepest-descent algorithm with multistart; the design variables xi, which lie in the
square [−1,1]2, are first reparameterised as (sin(θ1,i),sin(θ2,i))

> where θ1,i,θ2,i are unconstrained.
Proving optimality of a given packing is also a difficult task, and Nurmela and Östergård (1999)
extend the range of known certified optimal packings to n≤ 27. Extension to n = 28 and 29 is
provided in (Markót and Csendes, 2005) using branch and bound and interval analysis (with a
computational time exceeding 50h for one optimality certification). Results for disk packing in
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a circle are provided for n ≤ 65 by Graham et al. (1998), who minimise Eq with large q, as in
(Nurmela and Östergård, 1997), and also use a billiard algorithm, see Section 4.2.1. Best known
packings (d = 2 and 3) are collected at the web site http://www.packomania.com/, see also
https://spacefillingdesigns.nl/ for other metrics than Euclidean and results in higher
dimension for Latin hypercube designs.

The objective of this section is to present rather simple algorithms that can be used to generate
acceptable solutions in reasonable computational time. Global optimisation is considered first; the
solution that it provides can then be used to initialise one of the local-search algorithms presented
in Section 3.2.

3.1. Global optimisation via simulated annealing

Global optimisation methods based on simulated annealing are easy to implement and provide
reasonably good solutions provided that enough iterations are performed. Although convergence
to a global optimum is guaranteed for some suitable versions of the algorithm, it is recommended
to repeat several optimisations initialised at different designs (e.g., randomly generated). One
may refer to Bertsimas and Tsitsiklis (1993) for a short illuminating exposition of simulated
annealing applied to optimisation over a finite set, and to Auffray et al. (2012) for a detailed
presentation in the case of maximin-optimal design over a compact set X . See also Fang et al.
(2006, Chap. 4) for a description of design optimisation algorithms in the finite setting (the
construction of optimal Latin-hypercube designs for instance). Below we give the principles of a
simple simulated-annealing algorithm which can be straightforwardly applied to maximin and
minimax optimal design.

Let Φ denote the design criterion considered; we suppose that Φ > 0 must be minimised
and denote Φ∗ = minXn∈X n Φ(Xn). The algorithm relies on the construction of a Markov chain
X (k)

n → X (k+1)
n (initialised at some X (1)

n ) with stationary regime such that its invariant measure
is the Gibbs measure with density proportional to exp[−C Φ(Xn)] for some C > 0. Then, when
C =Ck increases slowly enough with k (typically, Ck = c log(k+1) for some sufficiently large
c), one can ensure that limk→∞ Prob[Φ(X (k)

n ) < Φ∗+ ε] = 1 for any ε > 0. A faster increase
of Ck, such as Ck = ck, is often used; it usually yields faster convergence to a local minimiser
of Φ, without the previous convergence guarantee, however. The usual practice is to construct
transitions with a Metropolis-Hastings algorithm, see Tierney (1998), generally incorporating
a Gibbs sampler, see Roberts and Rosenthal (2006). Then, if X (k+)

n denotes the proposal gen-
erated from X (k)

n , with density Q[X (k)
n , ·], X (k+)

n is accepted (i.e., X (k+1)
n = X (k+)

n ) with proba-
bility Pacc(k,X

(k)
n ,X (k+)

n ) = min
{

exp(Ck [Φ(X (k)
n )−Φ(X (k+)

n )])Q[X (k+)
n ,X (k)

n ]/Q[X (k)
n ,X (k+)

n ],1
}

and X (k+1)
n = X (k)

n otherwise. There are two hidden difficulties here: first, the ratio of densities
Q[X (k+)

n ,X (k)
n ]/Q[X (k)

n ,X (k+)
n ] may be difficult to compute, especially when X has a complicated

shape or is not known explicitly, see Auffray et al. (2012) for a thorough discussion; second,
the choice of the constant c in Ck = c log(k+1), or Ck = ck, is often critical. We thus suggest a
simplified kernel, based on the acceptance probability

Pacc(k,X
(k)
n ,X (k+)

n ) = min

{
exp

(
Ck

Φ(X (k)
n )−Φ(X (k+)

n )

Φ(X (k)
n )

)
,1

}
. (14)
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The transition kernel obtained for Ck =C constant does not leave invariant the associated Gibbs
measure, and we cannot guarantee the convergence property above. On the other hand, defining
τk = argmini=1,...,k Φ(X (i)

n ), we have limk→∞ Prob[Φ(X (τk)
n ) < Φ∗+ ε] = 1 for any ε > 0 (note

that this property, although comforting, is rather weak and is also satisfied for a pure random
search, or when Ck =C constant in (14)).

Consider the two criteria Φ1(Xn) = (∑ei∈GNN(Xn) |ei|−q)1/q and Φ2(Xn) = [Eq(Xn)]
1/q, q > 0,

see (11), (13). For q large enough, their minimisation is almost equivalent to the minimisation of
Φ3(Xn)= 1/ΦMm(Xn). These criteria are positively homogeneous of degree−1, that is, Φi(γXn)=
(1/γ)Φi(Xn), i = 1,2,3. One may then choose Ck in (14) in order to set Pacc(1,Xn,γXn) to some
prescribed value when γ is close to 1. For the three Φi above, Pacc(1,Xn,γXn) = 1 for γ ≥ 1
and can be approximated by 1+C1(γ − 1) for γ . 1, which equals 0 for γ = γ0 = 1− 1/C1.
We may then consider that Pacc(1,Xn,γXn) is negligible for γ < γ0, and take C1 = 1/(1− γ0)
obtained for a reasonable value of γ0, for instance γ0 = 0.99 when Ck = c log(k+ 1) with c =
1/[(1−γ0) log2], and γ0 = 0.75 when Ck = ck with c = 1/(1−γ0) (a smaller γ0 is preferable here
since the acceptance probability decreases faster). Similar reasoning with the minimisation of
Φ4(Xn) = ΦmM(Xn) yields the approximation 1+Ck(1− γ) for Pacc(1,Xn,γXn) when γ & 1 (and
Pacc(1,Xn,γXn) = 1 when γ ≤ 1), and then c = 1/[(γ0−1) log2] and c = 1/(γ0−1) for the two
cases Ck = c log(k+1) and Ck = ck, respectively.

To summarize, the proposed algorithm is as follows.
0) Select an initial design X (1)

n , choose some large K, set k = 1.
1) Construct a random permutation Ik of the index set {1, . . . ,n}, set X ′n = X (k)

n .
For i = 1, . . . ,n, do
— compute x′j =ProjX (x j +zi), where j denotes the i-th element of Ik, zi ∼N (0,σ2Id)

and ProjX is the projection on X (a simple truncation when X is an hypercube)
— replace X ′n by X ′′n = X ′n \{x j}∪{x′j} with probability Pacc(k,X ′n,X

′′
n ) given by (14).

2) Set X (k+1)
n = X ′n, k← k+1; if k = K, stop, otherwise return to step 1.

The systematic scan of step 1, where j takes successively all values in Ik, can be replaced by a
random scan where j is sampled from Ik with some distribution. It may be uniform over Ik, or
biased in favour of the x j that influence most the current value of Φ (for instance, considering
pairs of closest points for ΦMm, or points x j such that ΦmM(Xn) = maxx∈X ‖x−x j‖ for ΦmM),
seemingly without crucial influence on performance. The choice σ = R∗n given by (4) gives
satisfactory results, letting σ decrease with k may improve performance close to the optimum.

3.2. Local optimisation via gradient-type algorithms

3.2.1. Maximin optimal design

Energy minimisation. A rather straightforward approach for the local maximisation of ΦMm

consists in using a differentiable surrogate, such as Eq given by (13) for a large q > 0. Indeed,
Eq can be minimised with a standard nonlinear programming method (e.g., steepest descent or
conjugate gradient), without constraints when a suitable reparametrisation adapted to the particular
form of X can be used, such as {xi} j = sin(θi j), i = 1, . . . ,n, j = 1, . . . ,d when X = [−1,1]d ,
see, e.g., Nurmela and Östergård (1997).
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Generalised gradient. The direct maximisation of ΦMm is more difficult, since the criterion
is non-differentiable and not concave. However, ΦMm is globally Lipschitz (with constant

√
2)

and is thus differentiable almost everywhere; see Cortés and Bullo (2005, 2009), who consider
the equivalent disk-packing problem in the case d = 2. Considering Xn as a d×n matrix, for any
pair i 6= j ∈ {1, . . . ,n}2 the gradient at Xn of the function di j : Xn ∈X n 7→ ‖xi−x j‖ is the d×n
matrix ∇di j(Xn) with all columns equal to 0, except the i-th and j-th ones, respectively equal to
(xi−x j)/‖xi−x j‖ and −(xi−x j)/‖xi−x j‖. The generalised gradient of ΦMm at Xn is then the
set ∂ΦMm(Xn) given by the convex hull of the ∇di j(Xn) such that ‖xi−x j‖= ΦMm(Xn), and when
X is convex one may use a subgradient-type algorithm based on iterations

X (k+1)
n = ProjX

[
X (k)

n + γk ∇̃ΦMm(X
(k)
n )
]
, (15)

with ∇̃ΦMm(X
(k)
n ) any element of ∂ΦMm(X

(k)
n ) and (γk) a positive sequence of step-sizes satisfying

limk→∞ γk = 0 and ∑k γk = ∞. An abundant documentation exists on the choice of a suitable
sequence (γk). The choice γk = c/k for some c > 0 is typical (c of the same order of magnitude
as ΦMm(X

(1)
n ) is reasonable). One may take ∇̃ΦMm(X

(k)
n ) = ∇di j(X

(k)
n ) corresponding to a pair of

points (xi,x j) in X (k)
n at minimal distance. The iteration (15) then leaves all points in Xn unchanged

but xi and x j, which are respectively updated into ProjX [xi + γk ui j] and ProjX [x j− γk ui j], with
ui j = (xi− x j)/‖xi− x j‖ having norm 1. One may also individualise the step-sizes and use a
different sequence (γ

(i)
k ) for each xi in Xn. Following the idea of Kesten (1958), the decrease of

step-sizes can be individualised too, with γ
(i)
ki

= c/ki for xi, where ki is updated into ki +1 only
when two successive directions of move for xi make an angle larger than π/2.

The algorithm converges to a local maximum of ΦMm, but convergence is non-monotonic
and rather slow — very slow if c is too small or too large. The extension to sphere packing in a
polytope is straightforward: we maximise ΦSP(Xn) = min{ΦMm(Xn),2mini=1,...,n d(xi,B(X ))},
with B(X ) the border of X (which consists of (d − 1)-dimensional hyperplanes), and the
generalised gradient of ΦSP can be constructed easily, see Cortés and Bullo (2005, 2009). An
advantage of sphere packing (which is equivalent to maximin optimal design for suitable X , see
Section 2.2), is that the generalised gradient directly accounts for the constraints Xn ∈X n.

Steepest ascent. A naive implementation of the (projected) steepest-ascent method, which
consists in determining the direction of fastest increase of ΦMm at X (k)

n , and then maximising
ΦMm in that direction (an unidimensional problem), may not converge to a local maximum, see,
e.g., Example 9.1 in (Bonnans et al., 2006). One may use instead the method of successive
approximations, where at iteration k all pairs of points such that ‖xi−x j‖ ≥ΦMm(Xn)− εk are
taken into account for the construction of a generalised gradient, for a decreasing sequence
of positive constants εk, see Sections III-7 and IV-6 of (Dem’yanov and Malozemov, 1974).
The method ensures monotonic convergence towards a local maximum of ΦMm and is easy
to implement when X has a simple shape. However, its slow convergence confines its use to
problems with small n and d, and the billiard simulations of Section 4.2.1 seem more efficient.
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3.2.2. Minimax optimal design

Similar ideas can be used for the minimisation of ΦmM , which is non-differentiable and non-convex
but is globally Lipschitz with constant 1. When X is convex, one may use a subgradient-type
algorithm based on

X (k+1)
n = X (k)

n − γk ∇̃ΦmM(X
(k)
n ) (16)

(note that no projection on X is required, compare with (15)). One may take ∇̃ΦmM(X
(k)
n ) having

all its columns equal to 0 but the i-th one, which is equal to (xi−x∗)/‖xi−x∗‖, where xi ∈ Xn

and x∗ ∈X are such that ‖xi−x∗‖= ΦmM(Xn). The sequence (γk) is as in Section 3.2.1, xi and
x∗ can be obtained by the methods used in Section 2.4 to evaluate ΦmM. As discussed in that
section, this confines the use of the algorithm to small dimension d.

When a Voronoï tessellation is used, one may apply a subgradient iteration similar to (16) to
each xi individually, considering the furthest point from xi in its own Voronoï cell. This gives

x(k+1)
i = x(k)i − γk,i(x

(k)
i −x∗,i)/‖x(k)i −x∗,i‖ ,

where x∗,i = argmaxx∈C (k)
i
‖x−x(k)i ‖ and C

(k)
i is the Voronoï cell with generator x(k)i , see Cortés

and Bullo (2005, 2009); see also the kmeans method in Section 4.3.3. A discrete version can also
be used, based on a Voronoï tessellation of a discretisation XQ of X .

4. Specific methods for maximin and minimax optimal design

The objective of this section is to present a few optimisation methods that rely upon the particular
form of the design problem. The first one is a simple greedy (one-step-ahead) algorithm, called
"coffee-house design" in (Müller, 2001), (Müller, 2007, Chap. 4). See also Kennard and Stone
(1969). We show that it generates designs Xn having at least 50% minimax and maximin efficiency.

4.1. A greedy algorithm with 50% efficiency

The algorithm is as follows:
0) Select x1 ∈X , set X1 = {x1} and k = 1.
1) For k = 1,2 . . . do

find x∗ = argmaxx∈X d(x,Xk), set Xk+1 = Xk∪{x∗}.
The point x∗ can be obtained by a Voronoï tessellation of X (when d is small enough) or a
MCMC method, see Section 2.4. Of course, its determination is much facilitated when a finite set
XQ is substituted for X . An illustration is presented in Figure 6-left. Besides its simplicity, an
important merit of this construction is that it guarantees the following efficiency bounds for Xk
(efficiencies belong to [0,1] by definition):

Φ∗mM,k

ΦmM(Xk)
≥ 1

2
(k ≥ 1) and

ΦMm(Xk)

Φ∗Mm,k
≥ 1

2
(k ≥ 2) . (17)

Indeed, by construction ΦMm(Xk+1) = d(xk+1,Xk) = ΦmM(Xk) for all k ≥ 1. Therefore, (2) im-
plies that Φ∗mM,k ≥ (1/2)ΦmM(Xk) and that Φ∗Mm,k+1 ≤ 2Φ∗mM,k ≤ 2ΦmM(Xk) = 2ΦMm(Xk+1),
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see Gonzalez (1985). The design Xn generated by this algorithm can be used to initialise those
presented in Sections 4.2.2 and 4.3.3 (which preserve the 50% efficiency bound for the criterion
that is optimised).

4.2. Maximin optimal design

4.2.1. Billiards

For small d, following Lubachevsky and Stillinger (1990) and Lubachevsky (1991), one can effi-
ciently generate tight (jammed) packings in X by simulating a billiard with n rigid balls B(xi,r)
in X , having identical radius r and initial velocities vi, i = 1, . . . ,n. In absence of collision, the
balls move along straight lines, and the model assumes that all collisions, against boundaries or
between balls, are elastic. When a ball encounters a boundary, the velocity component parallel to
the boundary is unchanged, but the sign of normal component is reversed. When two balls have a
collision, their normal velocity components are unchanged, but the balls exchange their parallel
velocity components. If r is fixed, the behaviour is typical of a chaotic system, see, e.g., Sinai
and Chernov (1987). To ensure that jamming occurs at a finite time, we let r = r(t) = r(0)+ st
increase with the simulation time t at constant speed s. The normal velocity components of the
balls must then be increased by some factor h≥ 2s after each of their collision, to avoid that they
overlap or stick to each other or to a border (this steady increase of velocities can be compensated
by a periodic renormalisation of the vi to avoid numerical difficulties). In its simplest form,
the billard algorithm advances from collision to collision, the calculation of next collision time
being straightforward (as the minimum solution of a set of quadratic equations). Collision times
ti then correspond to time steps for the algorithm, with i indicating the iteration number. The
implementation is rather straightforward when X is an hypercube, and the extension to general
polytopes of Rd does not raise any particular difficulty. A more advanced and more efficient
version is proposed in (Lubachevsky and Stillinger, 1990; Lubachevsky, 1991). The choice of
r(0) is not critical, one may take r(0) = 0 (there are few collisions when r is small, and therefore
r grows quickly during the initial iterations). The initial velocities can be taken i.i.d. with the
uniform distribution in [0,1]d , the initial design Xn(0) is arbitrary (one must simply ensure that all
initial balls B(xi(0),r(0)) do not overlap and lie in the interior of X ). Large values of s give fast
convergence to a local (jamming) solution, but small s favour convergence to a better solution
(with large final radius r(∞)). Different stopping rules may be used. For instance, one may stop
the algorithm at iteration k such that

k > K and max
k−K≤ j≤k−1

max
i
‖xi(t j+1)−xi(t j)‖< ε , (18)

for some ε > 0 and a large enough window K (K = 10n, say). The method is quite efficient for
generating fairly good designs for small d, also when n is large (several thousands in Lubachevsky
and Stillinger, 1990; Lubachevsky, 1991), and eventually optimal packings when combined with
a multistart procedure.

4.2.2. Computational geometry and exchange algorithm

When d is small (d = 2 or 3, say), design constructions can exploit powerful tools from computa-
tional geometry, such as Delaunay triangulation and Voronoï tessellation (see Section 2.4). For
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instance, Persson and Strang (2004) present a mesh generator based on Delaunay triangulation,
with repulsion forces between mesh points (exercised along the edges of Delaunay simplices) and
repulsion forces acting normally to the boundary of X (just as large to prevent the nodes from
moving outside X ). The simulation of the corresponding dynamical system typically generates
meshes of high quality, with nodes that present the characteristics of a good space-filling design.
The method can be used for sets X or arbitrary shape (not necessarily convex, possibly with
holes).

The arguments used in Section 2.2 to prove (3) motivate the following algorithm, of the
exchange-type (see Fedorov 1972).

0) Select an initial design X (1)
n (e.g., generate X (1)

n with the algorithm of Section 4.1), set
k = 1.

1) Construct a random permutation Ik of the index set {1, . . . ,n}, set X ′n = X (k)
n .

For i = 1, . . . ,n, do
— find a point x∗ ∈ Argmaxx∈X minx`∈X ′n, 6̀= j ‖x−x`‖, with j the i-th element of Ik,
— replace x j by x∗ in X ′n.

2) If ΦMm(X ′n) = ΦMm(X
(k)
n ) stop; otherwise set X (k+1)

n = X ′n, k← k+1, return to step 1.

When d = 2 or 3, the fastest determination of a x∗ at step 1 is via Voronoï tessellation, see
Section 2.4. The MCMC method presented in the same section permits to use the algorithm
for larger d. As usual for such exchange algorithms, convergence to a global optimum is not
guaranteed. An illustration is presented in Figure 6-right. The same algorithm can also be used
when X is replaced by XQ finite, see Marengo and Todeschini (1992). Instead of replacing each
x j at step 1, one may perform the best replacement only among the n considered, which makes
the method more similar to Fedorov’s exchange algorithm (Fedorov, 1972).

1

2

3

4

5

6

7

FIGURE 6. Left: greedy construction of Section 4.1 when X is a square centered at x1: the design points are
arranged regularly, in the order indicated; the design is clearly sub-optimal for ΦmM and ΦMm (the circles have radius
ΦMm(X7)/2) but it nevertheless satisfies (17). Right: illustration of the algorithm of Section 4.2.2 when X is a square:
at iteration k the design point x j (square) is replaced by x∗ (star), equidistant from the three design points on the circle

in dashed line (and maximising d(x,X (k)
n \{x j}), x ∈X ).
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4.3. Minimax optimal design

4.3.1. Initialisation by shrinkage of a maximin-optimal design

The criterion ΦMm is easier to optimise (and to evaluate) than ΦmM . When a maximin-optimal (or
almost optimal) design Xn is available, one may try to improve its minimax performance (while,
on the other hand, suffering a reduction of ΦMm(Xn)) by shrinking Xn towards the centre of X .
For instance, when X = [0,1]d , we can consider the shrunk design Xn(δ ) = {x1(δ ), . . . ,xn(δ )},
with xi(δ ) = c+(xi− c)/(1+ δ ) for all i and c = 1/2 being the centre of X , and choose a
design Xn(δ

∗) by minimising φ(δ ) = ΦmM[Xn(δ )] with respect to δ ≥ 0. Note that the function
δ 7→ φ(δ ) may have local minima. The design Xn(δ

∗) can be used in particular to initialise the
algorithms of Sections 3.2.2 and 4.3.3.

4.3.2. Exchange algorithm for grid-restricted relaxed minimax optimal design

When X is replaced by a finite set XQ = {x(1), . . . ,x(Q)}, a regular grid for instance, for Xn =
{x1, . . . ,xn} one may approximate Φ̃mM(Xn) = maxX ∈XQ d(x,Xn) by

Φp(Xn) =

[
1
Q

Q

∑
k=1

dp(x(k),Xn)

]1/p

or Φp,q(Xn) =

 1
Q

Q

∑
k=1

(
n

∑
i=1
‖x(k)−xi‖−q

)−p/q
1/p

,

with p,q > 0, which satisfy

1
Q1/p Φ̃mM(Xn)≤Φp(Xn)≤ Φ̃mM(Xn) and

1
n1/q Q1/p Φ̃mM(Xn)≤Φp,q(Xn)≤ Φ̃mM(Xn)

and therefore limp→∞ Φp(Xn) = Φ̃mM(Xn) and limp,q→∞ Φp,q(Xn) = Φ̃mM(Xn). One may then
apply an exchange algorithm, similar to that in Section 4.2.2, to the minimisation of Φp(·) or
Φp,q(·), see Royle and Nychka (1998).

4.3.3. kmeans and centroids

Let Tn = {Ci, i = 1, . . . ,n} form a tessellation of X and let Xn be an arbitrary set of n points in
X . The functional (Tn,Xn) 7→ E2(Tn,Xn) = ∑

n
i=1
∫
Ci
‖x−xi‖2 dx is minimised when the Ci are

the Voronoï regions defined by the generators xi, and simultaneously the xi are the centroids of the
corresponding Ci, that is, xi = (

∫
Ci

xdx)/vol(Ci), the condition being necessary but not sufficient,
see Flury (1993); Du et al. (1999). These centroids, called principal points in (Flury, 1993), form
a design Xn that should thus perform reasonably in terms of space-filling, see Lekivetz and Jones
(2015) for another type of clustering-based design that uses Ward’s minimum-variance criterion
(Ward Jr., 1963) for a discretised version of X . The randomised kmeans method presented below
does not require the explicit construction of a Voronoï tessellation, see MacQueen (1967).

0) Select X (1)
n , set k = 1 and ni = 1 for all i = 1, . . . ,n.

1) Select x at random (uniformly) in X .
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2) Find i∗ = argmini=1,...,n ‖xi−x‖, xi ∈ X (k)
n ; substitute (ni∗xi∗ +x)/(ni∗ +1) for xi in X (k)

n ,
ni∗ ← ni∗+1.

3) If some convergence criterion is met, such as (18) for some ε > 0 and K > 1, then stop;
otherwise k← k+1, and return to step 1.

A more popular version is Lloyd’s method (1982), which corresponds to fixed-point iterations
for the mapping T (·) defined by X (k)

n 7→X (k+1)
n = T (X (k)

n ) = {T1(x
(k)
1 ), . . . ,Tn(x

(k)
n )}, with Ti(xi) =

(
∫
Ci(Xn)

xdx)/vol[Ci(Xn)], where the Ci(Xn) form a Voronoï tessellation of X with the xi in Xn as
generators.

The Ci(X
(k)
n ) can be computed exactly when d is small enough, see Section 2.4. Constructing

Voronoï tessellations for a discretised version XQ of X can be considered too, and the corre-
sponding kmeans algorithm is available in standard statistical toolboxes. Note that it converges to
what Flury (1993) calls self-consistent points, but not necessarily to a design Xn (and a Voronoï
tessellation Tn) minimising E2. Since minimax-optimal design is related to the construction of a
centroidal tessellation for the energy functional Eq(Tn,Xn) = ∑

n
i=1
∫
Ci
‖x−xi‖q dx when q→ ∞,

we propose the following modified version of Lloyd’s algorithm; see also Cortés and Bullo (2005,
2009, Sect. 5.3).

0) Select X (1)
n , set k = 1.

1) Compute the Voronoï tessellation {Ci, i = 1, . . . ,n} of X (or XQ) corresponding to the
generators in X (k)

n .
2) For i = 1, . . . ,n determine the smallest ball B(ci,ri) enclosing Ci, replace xi by ci in X (k)

n .
3) If some convergence criterion is met, then stop; otherwise k← k+1, return to step 1.

Note that ΦmM(X (k)
n ) (or Φ̃mM(Xn) = maxx∈XQ d(x,Xn)) decreases monotonically along iterations,

so that one can use the stopping rule ΦmM(X (k)
n )−ΦmM(X (k+1)

n )< ε � 1 at step 3.
When the Voronoï tessellation is computed for a finite set XQ, the B(ci,ri) of step 2 are

the smallest balls containing a finite set of points. This is also the case when X is a polytope
of Rd , since the B(ci,ri) should simply contain the vertices of the polytopic cells Ci. The
determination of the smallest ball containing a given set of points of Rd is a classical optimisation
problem (its centre is called the Chebyshev centre of the set), for which many algorithms have
been proposed in the literature, see, e.g., Botkin and Turova-Botkina (1994), Xu et al. (2003),
Yildirim (2008). In fact, exploiting the equivalence with a convex Quadratic-Programming (QP)
problem in Rd+1, any standard QP solver gives the solution (exactly in finite time for some
solvers). Indeed, denote by zi ∈Rd the m points considered, the smallest enclosing ball B∗ =
B(c∗,r∗) is obtained by minimising f (c) = maxi=1,...,m ‖zi− c‖2 with respect to c ∈ Rd . For
any c0 in Rd , we can write ‖zi− c‖2 = ‖zi− c0‖2−2(zi− c0)

>(c− c0)+‖c− c0‖2. Therefore,
f (c) = maxi=1,...,m

{
‖zi− c0‖2−2(zi− c0)

>(c− c0)
}
+‖c− c0‖2 , and the minimisation of f (c)

is equivalent to the minimisation of ‖c− c0‖2 + t, subject to the m linear constraints ‖zi− c0‖2−
2(zi− c0)

>(c− c0)} ≤ t, i = 1, . . . ,m, with respect to (c, t) ∈Rd+1 (when the QP solver requires
a strictly convex problem, one may add a small regularisation term, quadratic in t, to the objective
function, 10−12 t2 say).

When m is large, it is convenient to remove the zi that will lie for sure in the interior of B∗.
From Lagrangian theory, the dual of the smallest-ball problem is the following: maximise φ(w) =

∑
m
i=1 wi‖zi− c(w)‖2, where c(w) = ∑

m
i=1 zi and w = (w1, . . . ,wm) with wi > 0 and ∑

m
i=1 wi = 1.

This dual problem presents some ressemblance with an experimental design problem (approximate
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theory), see Pronzato et al. (2016a). For any weights w, denote ε = ε(w) = maxi=1,...,m ‖zi−
c(w)‖2−φ(w). Following an approach similar to Harman and Pronzato (2007), we can show
that ‖c(w)− c∗‖ ≤

√
ε/2 and that any zi such that ‖zi− c(w)‖2 < φ(w)+ ε−

√
ε(2φ(w)+ ε)

necessarily lie in the interior of B∗, and therefore do not need to be considered further. A
natural choice for filtering the zi before using the QP solver is wi = 1/m for all i, but the
initial w of (Yildirim, 2008), defined by wi1 = wi2 = 1/2 and wi = 0 for all i 6= i1, i2, with
i1 = argmaxi=1,...,m ‖zi− z1‖ and i2 = argmaxi=1,...,m ‖zi− zi1‖, is generally more efficient. Also,
choosing c0 out of the convex hull of the zi generally yields a faster solution (one may take for
instance c0 = 2zia− zib with ia = argmaxi=1,...,m{zi}1 and ib = argmini=1,...,m{zi}1).

Although there is no guaranteed convergence to a minimax-optimal design, for small enough
d this centroid method, possibly combined with a multistart procedure, is rather efficient for
generating designs with good minimax performance at reasonable computational cost.

4.3.4. Bayesian optimal design and Karhunen-Loève decomposition of a random-field model

The construction presented here is based on the developments in (Gauthier and Pronzato, 2014,
2016), following the original ideas of Fedorov (1996), and is motivated by the connection between
minimax-optimal design and minimisation of the maximum kriging variance, see Section 2.5.2.
As in Section 2.1, we consider a kernel K defining a RKHS H , and suppose that f corresponds
to the realisation of a centred random field Zx with covariance E{ZxZx′}= K(x,x′). We suppose
that K is continuous on X ×X . Let µ denote a measure on X , typically a measure of interest
for the definition of an Integrated Mean Squared Error

∫
X ρ2

n (x)dµ(x) on X . The computa-
tions are facilitated when µ is supported on a discretised version XQ of X , see Gauthier and
Pronzato (2014); in particular µ may be uniform on XQ. Consider the linear operator Tµ on
L2(X ,µ) defined by Tµ [ f ](x) =

∫
X f (y)K(x,y)dµ(y), f ∈ L2(X ,µ), x ∈X , and respectively

denote by λ j and ϕ j the eigenvalues and eigenfunctions of its Mercer decomposition. We assume
that the λ j are ordered by decreasing values and that the ϕ j are orthonormal in L2(X ,µ). The
Karhunen-Loève decomposition of Zx corresponds to ∑k:λk>0

√
λkζkϕk(x), where the random

variables ζk are orthogonal, centred, with variance 1. A truncation to the m largest λ j yields a
linear regression model, Zx = ∑

m
j=1 β jϕ j(x)+ ε(x) = φ>(x)β + ε(x), with correlated errors ε

satisfying E{ε(x)}= 0, E{ε(x)ε(x′)}= K(x,x′)−∑
m
j=1 λ jϕ j(x)ϕ j(x′), and parameters β j hav-

ing a prior distribution with zero mean and covariance Λm = diag{λ1, . . . ,λm}. To facilitate
the construction of optimal designs, we shall neglect the effect of correlations, and consider
an approximate model Z′x = ∑

m
j=1 β jϕ j(x) + ε ′(x), where now E{ε ′(x)ε ′(x′)} = 0 for x 6= x′.

An heteroscedastic model with E{ε ′2(x)} = K(x,x)−∑
m
j=1 λ jϕ

2
j (x) is used in (Gauthier and

Pronzato, 2016), but we consider here a model with constant variance E{ε ′2(x)} = σ2 for all
x (for instance σ2 = [1/µ(X )]

∫
X [K(x,x)−∑

m
j=1 λ jϕ

2
j (x)]dµ(x)). We can then easily com-

pute an optimal design for this approximate model. Indeed, the regularised LS estimator β̂

that minimises σ−2(zn−Pmβ )>In(zn−Pmβ )+β>Λ−1
m β , with {Pm}i j = ϕ j(xi), has covariance

Cm = (Mn +Λ−1
m )−1, where Mn = (1/σ2)∑

n
i=1 φ(xi)φ

>(xi), and an IMSE-optimal design min-
imises

∫
X φ>(x)Cmφ(x)dµ(x)= trace[(Mn+Λ−1

m )−1]. One may then use all the machinery of ap-
proximate design theory, i.e., consider information matrices M(ξ ) = (1/σ2)

∫
X φ(x)φ>(x)dξ (x)

defined for probability measures ξ on X (called design measures), and determine an opti-
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mal design measure that minimises the (convex) Bayesian A-optimality criterion ξ 7→ Φ(ξ ) =
trace[(M(ξ )+Λ−1

m /n)−1], see Pilz (1983), Fedorov (1996), Spöck and Pilz (2010), Gauthier and
Pronzato (2016). Similarly, a Bayesian D-optimal design measure ξ ∗ maximises the concave func-
tion ξ 7→ det(M(ξ )+Λ−1

m /n), an optimisation problem for which many algorithms are available,
see, e.g., (Pronzato and Pázman, 2013, Chap. 9). Concavity implies that the directional derivative
at ξ ∗ in the direction of any other probability measure ν on X is non-positive, from which we
obtain

max
x∈X

φ
>(x)(M(ξ ∗)+Λ

−1
m /n)−1

φ
>(x)≤ σ

2 {m− trace[Λ−1
m (nM(ξ ∗)+Λ

−1
m )−1]

}
,

which sets an upper bound on the maximum mean-squared prediction error for the optimal design
ξ ∗. Numerical experiments show that optimal design measures with m≈ n often concentrate their
mass around n′ ≈ n points, and that the designs Xn′ corresponding to those n′ support points are
well spread over X , with good minimax performance when K(x,x′) = C(‖x− x′‖) with C(t)
decreasing fast enough with t. Further investigations are required to quantify this performance
more precisely. The procedure described in (Gauthier and Pronzato, 2016) can be used to construct
a design of given size n.

5. Conclusions and perspectives

We have listed a few properties of minimax and maximin optimal designs, including connections
with other space-filling approaches, and indicated several methods which, in principle, can be
used for the construction of optimal designs. The high complexity of the optimisation problems
involved means that, in general, one should be satisfied with a suboptimal design, or even with a
design that simply performs “not too badly” in terms of ΦMm or ΦmM. In this respect, simulated
annealing (Section 3.1) or the specific methods of Section 4.2 perform reasonably well. However,
the dimension of the optimisation problem is n×d, which may quickly become prohibitive. A
reasonable solution can usually be reached when n is large with d small, but the case when d is
large (say, d ≈ 10) is much more problematic, especially for minimax-optimal design. Indeed,
methods based on computational geometry are then inefficient, and kmeans and centroids suppose
a discretisation of X which may provide inaccurate results for large d. Combining the MCMC
method proposed in Section 2.4 for the evaluation of ΦmM with an optimisation algorithm is a
challenging and motivating issue. Finally, as explained in Section 2.3, minimax and maximin
optimal designs are not adapted to problems with very large d, and a few suggestions have been
made in the same section on possible extensions and topics for further investigation.
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