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Evaluation of the most influent input variables on
quantities of interest in a fire simulation
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Abstract: This paper is concerned with a fire simulation model which aims at evaluating the effects from a fire source
in a building on people evacuation. Three parameters are investigated to assess the safety of the building : the maximal
upper layer temperature, the maximal lower layer temperature and the minimal layer height. The combination of these
three parameters is supposed to let the evacuation paths practicable in case of a fire. The parameters are computed
through a computational code in a measurement context. Consequently their knowledge is supposed to be based on a
measurement uncertainty evaluation and this paper aims at evaluating the contribution of a set of input parameters to the
variance of these three parameters. In measurement science, the use of Monte Carlo methods to evaluate measurement
uncertainty is quite new and therefore, tools for sensitivity analysis associated to Monte Carlo methods are not well
known. In this framework, we will briefly introduce the main stochastic techniques to cope with this problem and show
some practical results concerning fire risk assessment of a tertiary building.

Résumé : Ce papier traite d’un modèle de simulation incendie dont le but est d’évaluer les effets sur l’évacuation du
public d’un incendie dans un bâtiment. Trois paramètres caractérisent la sécurité dans le bâtiment : la température
maximale en couche chaude, la température maximale en couche froide et la hauteur minimale de fumées. La
combinaison des ces trois paramètres doit assurer que les chemins d’évacuation restent praticables en cas d’incendie. Les
paramètres sont calculés à partir d’un code de calcul dans le contexte de la mesure. Par conséquent, leur connaissance
s’accompagne d’une évaluation de l’incertitude de mesure et ce papier a pour but d’évaluer la contribution d’un
ensemble de grandeurs influentes à la variance de ces trois paramètres. Dans la science de la mesure, l’utilisation des
méthodes de Monte Carlo pour évaluer l’incertitude de mesure est assez récente et, par conséquent, les outils pour
l’analyse de sensibilité associés aux méthodes de Monte Carlo sont peu connus. Dans ce cadre, nous introduisons
brièvement les principales techniques stochastiques pour traiter ce problème et montrons quelques résultats pratiques
concernant la détermination du risque incendie dans un bâtiment public.
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1. Introduction

In measurement science, the accuracy of the results is very important, even more when safety of
people is concerned. As a consequence, the evaluation of measurement uncertainty is an important
tool for many reasons. In such a science, it is essential to estimate the reliability of a measurement
because the true value of the measurand (the quantity to be measured) cannot be exactly known.
Moreover, when a measurement process leads to a conformity assessment, the uncertainty has
also to be taken into account. The evaluation of measurement uncertainty enables to avoid as
much as possible bad decisions that may have a large impact in a field such as safety for example.
Also, the metrologist aims perpetually at improving the measurement process, and reducing the
measurement uncertainty. That’s why a suitable sensitivity analysis, which must be able to point
out the most influent input quantities, is required.

In this study, we are interested by a fire simulation model which aims at evaluating the effects
from a fire source in a building on people evacuation. In the presence of a fire source in a public
building, it is important that people have enough time to evacuate. The evaluation of the possibility
to escape, as well as the Available Safe Egress Time (ASET) is linked to tenability criteria
(temperature, free of smoke height, heat fluxes, toxicity, etc.) and therefore to the effect of fire
on people [7]. In case the fire is strong enough relatively to the volume it occurs in, smoke and
gases emitted by the fire goes up by buoyancy and accumulate under the ceiling. Stratification is
observed and two zones may be ideally defined : the upper layer containing hot gases and smoke,
and the lower layer, containing colder air, separated by an interface known as the neutral plane.
In this case, the evaluation of the effects of fire on people may be done using simplified zone
models, that strongly relies on this stratification hypothesis. Using Ordinary Differential Equations
systems, such models allow to calculate output quantities related to the tenability criteria, such
as the lower and upper layer temperatures and the height of the neutral plane, also know as the
"layer height".

The software CFAST (v6.1) [17] allows to compute those parameters. This code needs, among
others, input data characterizing the dimensions of the studied volume (area, height), its openings
(height and width), inside and outside temperatures and properties of the fire source (Heat release
rate, through heat release rate per unit area and surface area). Associated with a pre and post-
treatment EXCEL workbook developed by LNE, this code may be used to evaluate thousands of
fire scenarios, then allowing a statistical post analysis.

Today, there is no direct statement in fire regulation on how to deal with uncertainties using
computational codes, nor formal requirement to do so. However, because computational codes are
used in Fire Safety Engineering to determine whether people may survive or not, it is of much
importance to assess the quality of their outputs. They therefore should be investigated against
sensitivity and variance, in the same manner as measurements during real tests are, in order to
have a better knowledge on how the output quantities are distributed.

Consequently, the ISO Technical committee ISO/TC 92, Fire safety, Subcommittee SC 4,
Fire safety engineering [9], has issued in 2008 the ISO16730 standard. This standard addresses
the assessment, verification and validation of calculation methods for fire safety engineering in
general, and its Annex A summarizes notions about measurement uncertainties. An example of
such an assessment is currently under publication concerning CFAST [16] [10].

In the present study, the variables of interest are three parameters that may be lethal beyond a
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given threshold, therefore subject to a strong regulation: the maximal upper layer temperature,
through the radiating effect of smoke on people situated below, lower layer temperature and its
direct effect on body temperature, and the minimal layer height indicating whether evacuees are
under or in the smoke. All of them are represented in figure 1. These three parameters allow to
evaluate if the evacuation paths remain practicable in case of a fire. The statistical analysis of these
three output quantities deals with the standard deviation (which is also called standard uncertainty).
It is determined using a Monte Carlo method and some sensitivity indices are investigated to point
out the input quantities that are the most important to characterize these three safety criteria.

In this study, the computational time and the total number of input quantities, characterizing
the dimensions of the room and openings and the properties of the fire determine what kind of
sensitivity index is the most adapted. The Standardized Rank Regression Coefficients (SRRC) [1]
and the variance-based sensitivity indices (estimated via Sobol’s method [8], FAST technique [1]
and local polynomial smoothers (LPS) [15]) are investigated.

In the following section, the different quantities involved in the fire simulation are detailed.
Then, different kinds of sensitivity indices are presented and discussed in the contexte of measure-
ment uncertainty. Finally, the practical case results are discussed.

2. Input data of the simulation model

FIGURE 1. Illustration of the fire simulation

CFAST allows to take into consideration many input parameters. The set of parameters has
been reduced to only eight parameters (see figure 1) that are suspected to be the most important
regarding the output quantities.

Temperatures both inside and outside the building have been chosen to be representative of what
is often found in France. Outside temperature (denoted as Text) could vary between −20 °C and
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+40 °C which are mean extreme values found in France according to meteorological survey. The
chosen distribution law is normal with a standard deviation equal to the third of the semi-length
of the interval of variation. Inside temperature (denoted as Tint) could vary between +15 °C and
+27 °C according to extrema found in ISO7730 standard "Ergonomics of the thermal environment
- Analytical determination and interpretation of thermal confort using calculation of the PMV and
PPD indices and local thermal comfort criteria". The chosen distribution law is normal with a
standard deviation equal to the third of the semi-length of the interval of variation.

The studied volumes have a floor surface area (S) from 300 m2 to 1000 m2, representative of
many single volumes found in public buildings. The chosen distribution law is uniform. As covered
area of a building (rectangular vs square) was found of negligible influence in a preliminary study,
all buildings have been modeled as squares.

The ceiling height (H) for these volumes has been chosen between 6 m and 15 m with a
uniform distribution. For this application case, going under this 6 m limit would have required
extra care and validation on a physics point of view, which was not in the scope of this statistical
study. However, this will be considered in further studies, as there are of course volumes where
ceiling height is under that limit.

Passive smoke control by roof vents was considered in this study, as the French regulation
stipulates it: the surface area of the vents was equal to 0.5 % of the total floor surface.

For simplicity purposes, the openings of the building have been considered as a single opening,
with height (Hair) varying between 2 m and 6 m (assuming a uniform distribution), and a width
(Wair) dependent of the dimensions of the building, from 20 % to 80 % of its width (a triangular
distribution has been chosen). According to the regulation, the surface of this opening has to be
high enough (more than 1.5 times the smoke vents surface) to ensure a proper ventilation and the
efficiency of the smoke control system. Considering the chosen ranges, this is always the case in
the present study.

The fire has also been considered according to the French regulation. In the smoke control
chapter of this regulation, the fire to be taken into account to assess smoke control systems is
conventionally considered as a surface, noted A f [6], associated with a heat release rate per unit
area, noted Q f . This surface may be 9 m2, 18 m2 or 36 m2, depending on the main purpose of the
building. In the present study, surfaces (A f ) from 1 m2 to 36 m2 have been considered, using an
uniform law. For smoke control engineering studies, usage is to consider a heat release rate per
unit area (Q f ) that lies between 300 kW/m2 and 500 kW/m2 . These bounds have been kept for
this study. The chosen associated law is an uniform one.

By multiplying the surface by the heat release rate per unit area, this leads to fires with heat
release rates from 300 kW to 18 MW. As the extent of the ranges that are used for surface and
heat release rate per unit area are greatly different, one should expect the surface of the fire to be
much more influent: in this model, effects from the fire are linked to its global heat release rate.
Thus, as the surface is the most influent parameter in the calculation of the global heat release rate
by the fire, it may be the most influent parameter on the output data.

3. Measurement uncertainty and sensitivity coefficients

In metrology, the expression "standard uncertainty" is defined as the standard deviation of the
measurand. Two reference guides are available to evaluate measurement uncertainty: the Guide to
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the evaluation of Uncertainty of Measurement [4], which deals with a Taylor quadratic approxi-
mation, and its supplement 1 [5], which deals with Monte Carlo Methods. Both methods rely on
the same modeling of the measurement process. The measurement uncertainty framework (see
figure 2) is derived from the common framework developed by the European Safety, Reliability
and Data Association (ESReDA) [12, 13, 14].

uncertainty.jpg

FIGURE 2. Evaluation of measurement uncertainty framework

The variable of interest, called measurand and denoted as Z ∈ R, is obtained as the output of a
computational code, interpreted as a function f of the set of input quantities (X1, ...,Xn) ∈ Rn :

Z = f (X1, ...,Xn). (1)

3.1. The Taylor quadratic approximation

The reference method that is being used for nearly twenty years relies on a Taylor series approx-
imation of the measurement function f . First order Taylor approximation is used most of the
time but second order ones may be used when the non linearity of the measurement function is
significant. In metrology, the uncertainties associated to the measurements are often quite low. In
such a case, the first order Taylor approximation is a satisfying approximation of the measurement
function and the variance of the measurand is taken as the variance of the Taylor approximation.

V (Z) =
n

∑
i=1

(
∂ f
∂Xi

)2

V (Xi)+2
n−1

∑
i=1

n

∑
j=i+1

(
∂ f
∂Xi

)(
∂ f
∂X j

)
Cov(Xi;X j) (2)
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where V (·) and Cov(·) denote the variance and covariance operators, and
(

∂ f
∂Xi

)
is evaluated

for X = E (X).
The partial derivatives, computed at the best estimate E (X) of the input vector (X1, ...,Xn) are

taken as the sensitivity coefficients for each input quantity, but they evaluate the sensitivity only
around the best estimate point. Therefore, these indices are called local sensitivity indices. In
opposite, global sensitivity indices [3] can be estimated by Monte Carlo methods. These indices
allow to quantify the contribution of each input quantity to the overall variability of the measurand.

3.2. Monte Carlo Methods

Whereas a first order Taylor approximation may be inaccurate in the presence of non linearity
or interactions in the measurement function, such an hypothesis is not required for the valid
application of Monte Carlo methods. They have recently been introduced in the metrological
community, in order to deal more easily with non linearizable or complex measurement models
such as computational codes. A probability distribution is assigned to each input quantity, regard-
ing the available information about the quantity. This leads to an empirical distribution for the
measurand from which many statistical parameters may be estimated such as the mean, which is
considered as the best estimate of the measurand, the standard deviation, which is taken as the
standard uncertainty and the empirical percentiles that define an interval of possible values for the
measurand.

Regarding sensitivity analysis, the supplement 1 to the GUM [5], which provides guidance to
use Monte Carlo Methods to evaluate measurement uncertainty, proposes only one method to
evaluate the sensitivity : the One-At-a-Time indices. It consists in analyzing the effect of varying
one model input quantity at a time while keeping all the others fixed. It’s a suitable sensitivity
index in cases where no interactions are involved, but the computational time of these indices,
which is equal to n.M where n is the total number of input quantities and M is the total number of
Monte Carlo simulations, may be very high. Thus, another sensitivity index is required to deal
with more complicated measurement models.

Many goals may lead to conduct a sensitivity analysis [1]. As far as measurement uncertainty
is concerned, the main objective is to prioritize the input quantities according to their respective
contribution to the variance of the output quantity. The input quantities, for which a decrease
of the variance implies the strongest decrease of the variance of the output quantity, have to be
determined. This study leads to a general discussion about sensitivity analysis associated with
the evaluation of measurement uncertainty. A simple sensitivity index can be performed if the
relationships are monotonic: the Standardized Rank Regression Coefficient (SRRC) [1]. Sobol’
sensitivity indices [8] estimate higher order terms, but with the crude Monte Carlo estimation
technique, many evaluations of the model are needed in order to get good confidence, which is
very important in measurement science. FAST (Fourier Amplitude Sensitivity Test) [1] method
may be then used to compute Sobol’ indices with a smaller simulation number. If total sensitivity
indices are greater than first order indices, then second order indices may be computed using local
polynomial smoothers [15].

In the following sections, the basis of the sensitivity methods are exposed as well as the
sensitivity results of a practical case about the assesment of the propagation of energy and
effluents from a fire source in a room.
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4. Sensitivity analysis

4.1. Standardized Rank Regression Coefficient

A simple idea to estimate the sensitivity of a measurement model may be to estimate the regression
model of the output quantity over the input quantities. Indeed, the regression coefficients can
be used to provide a suitable measure of sensitivity if the measurement model is linear. The
corresponding sensitivity index is called Standardized Regression Coefficient (SRC) [3] and is
obtained as :

SRC(Xi;Z) = βi.

√
V (Xi)

V (Z)
(3)

where βi denotes the regression coefficient associated to the input quantity Xi in the regression
model.

If the relationship is monotonic but non linear, the linear regression has no longer meaning.
Nevertheless, in this case, the regression model that can be estimated over the rank values of the
quantities involved is linear. Consequently the Standardized Rank Regression Coefficient (SRRC)
can be obtained as :

SRRC(Xi;Z) = β
R
i .

√
V (RXi)

V (RZ)
(4)

where RXi and RZ are respectively the ranks of the input quantity Xi and the output quantity
Z and β R

i denotes the regression coefficient associated to the rank vector RXi in the regression
model.

Nevertheless, SRRC has to be considered with care. Indeed, such a transformation of the
original data implies that the sensitivity which is evaluated in this case is the sensitivity about
the model implying the ranked vectors, which is more linear than the original model. As a
consequence, first-order effects may be overestimated and the interactions wrongly ignored.

4.2. Sobol’ indices

In order to estimate the sensitivity of an input quantity without any assumption about the measure-
ment function f , the decomposition of the variance can be considered:

V (Z) =V [E (Z|Xi)]+E [V (Z|Xi)] . (5)

The importance of Xi on the variance of Z lies in the variance of the conditional expectation
(VCE) so that it can be measured by the first-order sensitivity index:

Si =
V [E (Z|Xi)]

V (Z)
. (6)

The second-order sensitivity index can be defined to take into account interactions between
two input quantities:

Si j =
V [E (Z|Xi,X j)]−V [E (Z|Xi)]−V [E (Z|X j)]

V (Z)
. (7)
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Many methods are available to estimate those sensitivity indices, specially the method of
Sobol’. Sobol’ proposed to estimate the first-order sensitivity indices by the quantity [8]:

V̂ [E (Z|Xi)] =
1

M−1

M

∑
j=1

f
(

x( j)
1 ,x( j)

2 , ...,x( j)
n

)
. f
(

x̃( j)
1 , x̃( j)

2 , ..., x̃( j)
(i−1),x

( j)
i , x̃( j)

(i+1), ..., x̃
( j)
n

)
− f̂ 2

0

(8)

where (x( j)
i ) j=1..M,i=1..n and (x̃( j)

i ) j=1..M,i=1..n are two independent samples of the input quantities,

and f̂0 =
1
M ∑

M
j=1 f

(
x( j)

1 ,x( j)
2 , ...,x( j)

n

)
is the estimate of the mean of the output quantity. The total

number of evaluations of the measurement function to estimate all the first and second-order
sensitivity indices is of the order of Mn2. Moreover, in measurements science, the regulation
authorities state that the results should be presented with one or two significant decimal digits. In
order to obtain such a numerical precision, it is highly recommended to use M = 106 Monte Carlo
simulations. Considering the computational time cost of one run with CFAST (several seconds),
the total required computational time for the estimation of the Sobol’s indices would be too high.
Two other methods, both based on a decomposition of the variance, are investigated: the FAST
method and the local polynomial smoothers.

4.3. Fourier Amplitude Sensitivity Test

The Fourier Amplitude Sensitivity Test (FAST) has been developed by Cukier et al. [11], who
shows that a decomposition of the variance of Y may be obtained using a Fourier transformation of
f . The main idea is to switch from a n-dimensional problem Y = f (X1, ...,Xn) to a one-dimensional
problem Z = h(s) using transformation functions Gi for i = 1, ...,n so that:

xi = Gi (sin(ωis)) (9)

where ωi is supposed to be a set of chosen integer angular frequencies, s is a random variable
uniformly distributed over the interval [−π;π] and Gi the suitable transformation function for the
random variable xi. The transformation function must be chosen in order to assign the suitable
probability distribution to the input quantity Xi.

By using, the properties of Fourier series [11], an approximation of the variance of Z may be
obtained by:

V (Z) = 2
∞

∑
j=1

(
A2

j +B2
j
)

(10)

where A j and B j are the Fourier coefficients and are defined as follows:

A j =
1

2π

∫
π

−π

h(s)cos( js)ds (11)

and
B j =

1
2π

∫
π

−π

h(s)sin( js)ds. (12)

First order sensitivity indices are computed by evaluating the Fourier coefficients A j and B j for
the fundamental frequency ωi, for i = 1, ...,n, and its higher harmonics:
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Dωi = 2
∞

∑
j=1

(
A2

jωi
+B2

jωi

)
. (13)

As the Fourier amplitudes decrease as p increases, this quantity may be estimated by:

D̂ωi = 2
M

∑
j=1

(
A2

jωi
+B2

jωi

)
(14)

where M is the maximum harmonic considered. The first-order sensitivity index is then:

Si =
D̂ωi

D̂
(15)

with D̂ = 2∑ j∈Z−{0}

(
A2

j +B2
j

)
is the estimator of the total variance.

A method to compute total order sensitivity indices has been developed [2]. The idea is to
evaluate the spectrum at the frequencies ω−i:

D̂ω−i = 2
M

∑
j=1

(
A2

jω−i
+B2

jω−i

)
(16)

and the total sensitivity indices are given by:

T Si = 1−
D̂ω−i

D̂
. (17)

If the total order sensitivity indices are close to the first order sensitivity indices, it means that
higher effects are negligible. Otherwise, second order sensitivity indices should be estimated. To
this extend, a method based on local polynomial smoothers, developped by DaVeiga et al. [15]
can be used.

4.4. Local polynomial smoothers

This method considers each single input quantity Xi relatively to the ouptut quantity Z. Assuming
Xi and Z are square integrable, a regression model is used to approximate the measurement
function f and may be written as:

Z j = m(X j)+σ (X j)ε j j = 1, ...,N (18)

where m(x) = E (Z|X = x), σ2 (x) =V (Z|X = x), ε1, ...,εN are independent random variables
such that E (εi|Xi) = 0 and V (εi|Xi) = 1 and N is the size of the data fitted.

Local polynomial fitting consists in approximating locally the regression function m by a p-th
order polynomial

m(z) =
p

∑
k=0

βk (z− x)k (19)
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for z in a neighborhood of x. This polynomial is then fitted to the observations by solving the
least-squares problem

min
β

N

∑
j=1

(
Z j−

p

∑
k=0

βk (X j− x)k

)2

K1

(
X j− x

h1

)
(20)

where K1 is a kernel function and h1 a smoothing parameter. The estimate m̂(x) is then

m̂(x) = β̂0 (x) . (21)

The first-order sensitivity index is then based on the variance of the estimate m̂(x).
Let
(
X̃ j
)

j=1,...,N′ be another sample with the same probability distribution as Xi, the variance of
the conditional expectation can be estimated by

T̂1 =
1

N′−1

N′

∑
j=1

(
m̂
(
X̃ j
)
− m̂

)2 (22)

where m̂ = 1
N′ −∑

N′
j=1 m̂

(
X̃ j
)
.

The estimator of the first-order sensitivity index [15] is then obtained as:

Ŝ1 =
T̂1

σ̂2
Z

(23)

where σ̂2
Z is the estimator of the total variance.

Second-order indices can also be performed when considering a regression model with two
dependent variables Xi and X j. The VCE to Xi and X j can be estimated

T̂i j =
1

N′−1

N′

∑
k=1

(
m̂
(
X̃ki, X̃k j

)
− m̂

)2
. (24)

Such an estimation takes into account the interaction effect between Xi and X j, as well as the
individual effects of the two input quantities. In order to estimate the interaction effect alone, the
individual effects have to be characterized and subtracted to this quantity. Then, the second-order
effect is:

Ŝi j =
T̂i j− T̂i− T̂j

σ̂2
Z

. (25)

5. Results

We apply now the sensitivity analysis methods previously described to the fire simulation model
CFAST.

We consider three output quantities:
- Maximal Upper Layer Temperature (ULTemp), with a criterion at 206 °C. Beyond this point,

the radiant flux from smoke and hot gases exceeds what body temperature regulation system can
cope;
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TABLE 1. Summary statistics for the three output quantities

Effect Mean value Standard error 2.5% percentile 97.5% percentile
ULTemp 156.0 67.4 37.6 288.9
LLTemp 29.5 10.9 16.8 56.1
LHeight 4.1 1.0 2.0 5.92

TABLE 2. First order sensitivity indices for the maximal upper layer temperature

Y1 = Maximal U pper Layer Temperature (ULTemp)
Effect SRRC FAST Local Polynomial
Text 0.02 0.03 0.02
Tint 0.00 0.00 0.00

S 0.10 0.10 0.11
H 0.04 0.04 0.04

Hair 0.01 0.01 0.01
Wair 0.00 0.00 0.00
Af 0.80 0.74 0.75
Qf 0.04 0.04 0.04

- Maximal Lower Layer Temperature (LLTemp), with a criterion at 60 °C. Beyond this point,
evacuation is greatly compromised, due to a failure of thermal regulation of the body;

- Minimal Layer Height (LHeight), with a criterion at 1.80 m, lowest accepted bound for the
smoke in the French regulation.

150000 iterations of a Monte Carlo simulation have been performed to obtain the summary
statistics (Table 1) and an empirical distribution of the three output quantities.

The total number of Monte Carlo simulations for the estimation of the SRRC and the local
polynomial smoother is 150000. The sample size (1025 evaluations for each input quantity, hence
a total of 8200 simulations) and the set of frequencies used for the computation of FAST indices
are given by Saltelli et al. [2] . The local polynomial smoothers have been estimated over 30
samples (each containing 5000 simulation points) of the total set of 150000 values, which enables
us to estimate average sensitivity indices associated to a standard deviation over the 30 samples.
The maximal standard deviation of the local polynomial smoother indices is 0.02. The first order
sensitivity indices are detailed in Table 2, Table 3 and Table 4 and the most important second
order sensitivity indices, computed from the local polynomial smoothers are presented in Table 5.

The area of the fire source is the main input quantity to explain the variance of the maximal
upper layer temperature. The higher the fire source area is, the higher the upper layer temperature
is. The area of the room is the second influent input quantity. The smallest the room is, the higher
the upper layer temperature is. This is in accordance with common sense: for a given size of room
with its smoke vents and openings, raising the fire heat release rate means raising the energy input
in the system. If the fire is big enough, only a part of this rise is dealt by the smoke vents and the
openings: the energy output is also raised, but not as much as the energy input. Consequently
the temperature of the hot layer is raised. Considering a given fire, raising the surface area of the
building means also raising the surface area of the smoke vents. This means more heat is extracted
from the system, therefore a lower temperature for the hot upper layer.

Regarding the lower layer temperature, the main effect comes from the outside temperature,
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TABLE 3. First order sensitivity indices for the maximal lower layer temperature

Y2 = Maximal Lower Layer Temperature (LLTemp)
Effect SRRC FAST Local Polynomial
Text 0.71 0.66 0.61
Tint 0.07 0.02 0.02

S 0.02 0.02 0.02
H 0.01 0.00 0.01

Hair 0.02 0.02 0.03
Wair 0.01 0.01 0.01
Af 0.16 0.11 0.15
Qf 0.01 0.01 0.01

and, to a lower extent, from the area of the fire source. In a well ventilated fire, smoke and hot
gases are extracted from the building in its upper part, and fresh air enters the building feeding the
lower part, with a direct influence on its temperature. Energy exchanges also exist between the
hot upper layer and the cold lower layer, which means the fire size have an indirect influence on
the lower layer temperature. The size of the opening of the building (Hair, Wair) was felt to have a
fair influence on the lower layer temperature, at least on first intuition : a bigger opening could
allow more external air to enter, thus influencing the temperature of the cold layer. However, this
is not the case, and may be explained considering aeraulic fluxes: whatever the dimensions of the
opening are, its area is largely in excess to ensure a proper ventilation. Changing the area of the
opening in the chosen range consequently poorly impacts the quantity of fresh air entering the
building, which, in this study where external wind is not taken into account, is driven by the fire
needs. This can be checked using Pettersson’s relation. It allows to calculate the maximum rate of
heat release that can be obtained at steady state in a single volume (eg a room), considering the
maximum flux of combustive that can enter through an opening to sustain the combustion. This
relation is:

ṁair = 0.5×Sair×
√

Hair (26)

where ṁair(kg/s) is the entering air mass flux, Sair the surface (m2) of the opening and Hair its
height (m). the entering oxygen mass flux can be deduced knowing the mass ratio of oxygen in air
is about 0.23:

ṁO2 = 0.23× ṁair. (27)

Finally, the heat release rate can be deduced using the Thornton factor (13100 kJ.kg−1: 13100 kJ
are released when 1 kg of O2 is consumed). This factor is valid at±5 % for most usual combustible
materials, thus giving a good estimation of heat release rate. The smallest opening is about 7 m
with a height of 2 m, which leads to an oxygen mass flux of about 0.22 kg.s−1 and a heat release
rate of about 17.5 MW. This value is near with the maximum heat release rate considered in
the study (18 MW): the smallest opening is big enough to let air enter from outside as the most
intense fire requires it.

Nevertheless, on a pragmatic point of view, even if the width of the opening does not here
affect the dynamic of the fire nor is an influent parameter on the lower layer temperature, one
should not forget that wide openings globally ensure a better evacuation for people.

Three input quantities have to be carefully considered regarding the minimal layer height: the
area of the room, the height of the air opening and the area of the fire source. For a given fire
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TABLE 4. First order sensitivity indices for the minimal layer height

Y3 = Minimal Layer Height (LHeight)
Effect SRRC FAST Local Polynomial
Text 0.08 0.10 0.07
Tint 0.00 0.00 0.00

S 0.33 0.27 0.28
H 0.09 0.07 0.08

Hair 0.23 0.18 0.19
Wair 0.00 0.01 0.01
Af 0.25 0.19 0.20
Qf 0.01 0.01 0.01

TABLE 5. Most important second order sensitivity indices, based on local polynomial smoothers

Second order sensitivity indices
Interaction ULTemp LLTemp LHeight

S*Af 0.03 0 0
Text*Af 0.01 0.04 0

S*H 0 0 0.02
S*Hair 0.01 0 0.03

source, smoke will be more prone to reach head level in small volumes with small openings than
in bigger ones with larger openings, where more smoke is naturally extracted.

For each quantities of interest, it appears that the total indices and not significantly different to
the first-order indices. Consequently, the second order indices are not significant given the input
parameters of the study.

6. Discussion

In this study, three simple criteria have been considered to assess fire safety and the ability for
people to escape in case of a fire. Four input parameters have been found of major influence on the
output quantities related to these criteria. One is fire related (surface area, on which highly depends
the global heat release rate of the fire), one is meteorologically induced (outside temperature),
while the other ones are building related (size of the studied volume, size of the opening). As no
action can be taken against outside temperature, this study points towards two ways of action to
raise fire safety:

- ensure fire is controlled as much as possible and not allowed to reach an unacceptable level,
through choosing materials with a better reaction to fire, or active suppression means as examples;

- design the building to better evacuate smoke and with volumes high enough to prevent smoke
to come at head level too soon.

However, fire safety issues should be considered at a higher and more global level than this
study case allowed to. Thermal and toxic effects of fire on people are known to interact while they
have been considered separately here, and no consideration about dose effects have been taken
into account. Considering the number of parameters to be taken into account, a holistic approach
is highly recommended, where the tools used in this study are only a part of the global reflection
that considers the problem as a whole.
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Nevertheless, the statistical analysis performed in the present study is an important first step:
it shows that useful help can be obtained through the use of statistical tools, at a reasonable
computational cost, to point out influent parameters. With improvement in the method to take into
account higher complexity, this kind of analysis could answer to legitimate "what if ?" questions.
This might lead to decision making tools helping in the design process of a building or its smoke
control system, and finally raise fire safety at a higher level.

7. Conclusion

The fire simulation exposed in this paper is surrounded by a normative context [9] in the field of
measurement science, accompanied by an investigation of the measurement uncertainty taken
as the variance of the output quantity. Thus, this study leads to the identification of the most
important input quantities regarding the variance of the three quantities of interest that allow to
evaluate if the evacuation paths remain practicable in case of a fire. Particularly, the surface of the
fire appears to be important to explain the variance of the maximal upper layer temperature, the
outside temperature appears to be the most important input quantity to explain the variance of
the minimal lower layer temperature and both the surface of the room, the height of the openings
and the surface of the fire appear to be important to explain the variance of the minimal layer
height. If the sensitivity indices used for the purpose of this study are well known in the scientific
community, they are quite new in the context of measurement uncertainty. In measurement science,
people are used to perform a local sensitivity index based on the partial derivatives, associated to
a propagation of measurement uncertainty using the Taylor quadratic approximation. The first
goal of this study is then to introduce these methods in order to improve the knowledge on the
measurement processes in many other fields than fire engineering [1].

Moreover, the regulation authorities state that the evacuation paths have to remain practicable.
For these three quantities, it is then possible to define a threshold that ensures that the requirement
is fulffilled. It seems then interesting to estimate the probability of failure of each paramater,
associated to a sensitivity analysis that would point out the input quantities that are the most
important when the parameters of interest are close to their threshold. For example, FORM-SORM
methods [14] may then be used to this aim, which will be the subject of our future work.

References

[1] A.Saltelli, K.Chan, and E.M.Scott. Sensitivity Analysis. Wiley, 2000.
[2] A.Saltelli, S.Tarantola, and K.Chan. A quantitative, model independant method for global sensitivity analysis of

model output. Technometrics, 41(1):39–56, 1999.
[3] B.Iooss. Revue sur l’analyse de sensibilité globale de modèles numériques. Special Issue on Stochastic methods

for Sensitivity Analysis of the Journal of the French Society of Statistics, submitted.
[4] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP. Evaluation of measurement data - Guide to the expression of Uncertainty

in Measurement, 1995.
[5] BIPM, IEC, IFCC, ISO, IUPAC, IUPAP. Evaluation of measurement data - supplement 1 to the Guide to the

expression of Uncertainty in Measurement - Propagation of distributions using a Monte Carlo method, 2008.
[6] Documentation BATISS, Arrêté du 22 mars 2004. Instruction technique n°246 relative au désenfumage dans les

établissements recevant du public, Annexe pour le calcul du taux alpha, 2004.
[7] E.Guillaume. Effets du feu sur les personnes. Synthèse bibliographique. LNE report, July 2006.

http://www.lne.fr/publications/guides-documents-techniques/rapport-effets-feu-personnes-eric-guillaume.pdf.

Journal de la Société Française de Statistique, Vol. 152 No. 1 103-117
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2011) ISSN: 2102-6238



117

[8] I.M.Sobol’. Sensitivity estimates for nonlinear mathematical models. Mathematical and Computational
Experiments, 1:407–414, 1993.

[9] ISO/TC 92/SC 4, ICS: 13.220.01. Standard ISO 16730:2008. Fire safety engineering : assessment, verification
and validation of calculation methods, first edition, 2008.

[10] ISO/TC 92/SC 4, ISC: 13.220.01 (Internal committee draft). Draft standard ISO/NP TR 10796-1. Fire safety
engineering - Part 1: Example on the application of ISO 16730 to the assessment, verification and validation of a
fire zone model.

[11] R.I.Cukier, C.M.Fortuin, K.E.Schuler, A.G.Petschek, and J.H.Schaibly. Study of the sensitivity of coupled
reaction systems to uncertainties in rate coefficients : Theory. Journal of Chemical Physics, 59:3873–3878, 1973.

[12] E.De Rocquigny. La maîtrise des incertitudes dans un contexte industriel. première partie : une approche
méthodologique globale basée sur des exemples. Journal de la SFdS, 147(3):33–72, 2006.

[13] E.De Rocquigny. La maîtrise des incertitudes dans un contexte industriel. seconde partie : revue des méthodes de
modélisation statistique, physique et numérique. Journal de la SFdS, 147(3):73–106, 2006.

[14] E.De Rocquigny, N.Devictor, and S.Tarantola. Uncertainty in Industrial Practice : A guide to quantitative
uncertainty management. Wiley, 2007.

[15] S.Da Veiga, F.Wahl, and F.Gamboa. Local polynomial estimation for sensitivity analysis on models with
correlated inputs. Technometrics, 51(4):452–463, 2009.

[16] W.W.Jones, R.D.Peacock, and A.Hamins. An assesment of CFAST. ISO/TC92/SC4/WG7 N166 Document
(internal comitee ISO document. technical note.

[17] W.W.Jones, R.D.Peacock, G.P.Forney, and P.A.Renecke. Cfast - consolidated model of growth and smoke
transport (version 6), technical reference guide. Technical report, NIST Special Publication 1026, 2005.

Journal de la Société Française de Statistique, Vol. 152 No. 1 103-117
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2011) ISSN: 2102-6238


