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1. Introduction

The detection of outliers in univariate and multivariate data is particularly tricky when the data
are generated from skewed and/or heavy-tailed distributions. Indeed, most of the available outlier
identification tools, such as the standard boxplot in the univariate case or, in the multivariate case,
the robust Mahalanobis distances (based, for example, on the Minimum Covariance Determinant
estimator of location and scatter), rely on the elliptical symmetry assumption.

In a recent paper, Hubert and Vandervieren (2008) propose a new outlier identification rule
for skewed univariate data based on a so-called adjusted boxplot. Their idea is to modify the
whiskers of the standard boxplot according to the degree of asymmetry in the data distribution,
which can be robustly estimated by the medcouple. The expressions of the whiskers extremities
of this adjusted boxplot were found from extensive simulations of a wide range of (moderately)
skewed distributions and such that, in absence of contamination by outliers, approximately 0.7%
of the observations lie outside the interval delimited by both whiskers (as it is the case for the
standard boxplot and Gaussian data). By using this new univariate tool, Hubert and Van der
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Outlier identification for multivariate distributions 91

Veeken (2008) propose a projection-based multivariate outlier detection method which does not
rely on the elliptical symmetry assumption anymore. Their idea is based on the fact that, as stated
previously by Stahel (1981) and Donoho (1982), a multivariate outlier is a univariate outlier
in some direction of the space. As Stahel and Donoho, Hubert and Van der Veeken define the
(global) outlyingness of a point xi of the dataset X (n) = {x1, . . . ,xn} as the maximum of the
outlyingness measures of this point along a large number of possible directions a of the space
containing the data cloud. The outlyingness measure of xi along a specific direction a is a robust
measure of the distance of the projection of xi on a with respect to the center of the projected data
cloud. Hubert and Van der Veeken suggest to modify the measure originally proposed by Stahel
and Donoho, in order to adjust for the skewness of the underlying distribution of the data; they
propose a definition based on the bounds of the lower and upper whiskers of the adjusted boxplot
of Hubert and Vandervieren (2008) associated to the projected cloud. A point xi of the dataset
X (n) will finally be identified as an outlier if its global outlyingness is greater than the extremity
of the upper whisker of the adjusted boxplot built from the global outlyingness measures of the
n points of X (n). One of the biggest drawbacks of this method is its computational complexity.
With large datasets and high dimensions, numerous projections are needed and the computational
time can become prohibitive. Additionally, as highlighted by Bruffaerts et al. (2014), the adjusted
boxplot does not perform well in case of heavy-tailed and/or skewed distributions with bounded
support. This pitfall naturally remains in the multivariate setup which limits substantially the class
of distributions for which the method is attractive.

In this paper, we propose a new multivariate projection-based outlier identification tool that
is more computationally efficient than the one proposed by Hubert and Van der Veeken (2008).
Furthermore the proposed method is more general as in addition to skewness it also deals with
heaviness of tails and bounded-support skewed-distributions.

Like Hubert and Van der Veeken (2008), we identify a point xi of the dataset X (n) as an outlier
if its global outlyingness exceeds a certain cut-off value. But our method differs from the one of
the previous authors in the way we define the outlyingness of a point xi along a specific direction
a of the space as well as in the manner of determining the bound to which we compare the global
outlyingness measure of each point of X (n). More precisely, for each considered direction of
the space, we define an outlyingness measure along this direction that takes into account the
skewness of the distribution of the distances between the projected points and their median but is
much faster to compute than the adjusted outlyingness measure considered by Hubert and Van der
Veeken (2008). Moreover, the bound allowing to identify outliers among the dataset X (n) actually
consists of an estimation of a specific upper quantile of the distribution of the global outlyingness
measures of the observations xi. This distribution is unknown but, when it is unimodal, can be
well adjusted — for the skewness as well as for the tails heaviness — by a specific distribution
whose quantiles may be computed in an easy way. The underlying key idea of the procedure
consists of the fact that a certain simple rank preserving monotonic transformation of the global
outlyingness measures of the points xi provides transformed measures whose distribution is very
well approximated by a so-called Tukey g-and-h distribution.

The structure of the paper is as follows: In Section 2, we present the adjusted outlier identifi-
cation method of Hubert and Van der Veeken (2008) and, in Section 3, we introduce the Tukey
g-and-h distribution. In Section 4, we detail the proposed outlier identification procedure.

Section 5 is devoted to empirical results. Firstly, we present a generated example that illustrates
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92 V. Verardi and C. Vermandele

the methodology in absence as well as in presence of contamination of the data by outliers.
Secondly, we consider bivariate samples generated from six unimodal distributions that strongly
differ in terms of skewness and tails heaviness, and we study the quality of the adjustment of the
(transformed) global outlyingness measures distribution from a Tukey g-and-h distribution.

In Section 6, we give some simulations results about the general performances of the new
outlier identification method. Three different sets of simulations are presented: The first two sets
allow us to study the sensitivity and specificity of the method for various sample sizes and data
dimensions, and for a wide variety of distributions of the data. With the third set of simulations,
we compare the new outlier identification method with its closest competitor — the method of
Hubert and Van der Veeken (2008) — in terms of sensitivity as well as in terms of computational
complexity and time.

We present an empirical application in Section 7 and conclude in Section 8.

2. Projection-based multivariate outlier detection methods

2.1. The Stahel-Donoho outlyingness measure

Consider a p-dimensional sample X (n) = {x1, . . . ,xn}with xi = (xi1, . . . ,xip)
t . In this multivariate

setup, an outlier is a point xi that lies far away from the bulk of the data in any direction. It can
therefore be seen as an outlier among the projections of the data points on a particular direction of
the space Rp.

Following this idea, Stahel (1981) and Donoho (1982) proposed to measure the outlyingness
of an observation by considering the projection of this observation on the direction of the space
along which the observation is most outlying. More precisely, given a direction a ∈ Rp with
‖a‖= 1, denote by X

(n)
a = {xt

1a, . . . ,xt
na} the projection of the dataset X (n) upon a. Let µ̂ and

σ̂ be robust univariate location and dispersion statistics, e.g., the median and MAD, respectively.
The outlyingness with respect to X (n) of a point x ∈ Rp along a is defined as

SDOa

(
x;X (n)

)
=

∣∣∣xta−µ̂(X
(n)

a )
∣∣∣

σ̂(X
(n)

a )
. (1)

The (global) Stahel-Donoho outlyingness of x with respect to X (n) is then given by

SDO
(

x;X (n)
)
= sup

a∈Sp

SDOa

(
x;X (n)

)
, (2)

with Sp = {a ∈ Rp : ‖a‖= 1} 1. From now on, we will denote SDO
(
xi;X (n)

)
= SDOi (i =

1, . . . ,n) for xi ∈X (n).
Note that, in practice, the global outlyingness measure SDOi (i = 1, . . . ,n) cannot be computed

exactly since it is impossible to project the observation xi on all vectors a ∈Sp. Hence, we must
settle for an approximate value of SDOi by restricting ourselves to a finite set Ŝp of randomly

1 Note that, if µ̂ and σ̂ are the mean and the standard deviation, then SDO
(

x;X (n)
)

= d (x,x;S) =√
(x−x)t S−1 (x−x), where x and S are the mean and covariance matrix of the sample X (n).
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Outlier identification for multivariate distributions 93

selected directions. Many simulations have shown that considering m = 250p directions yields a
good balance between the computational feasibility and the quality of the obtained approximate
solution (see Maronna and Yohai, 1995 for an extensive discussion).

If the data xi (i = 1, . . . ,n) are normally distributed, the global outlyingness measures SDOi

(i = 1, . . . ,n) are asymptotically χ2
p distributed (Maronna and Yohai, 1995). Hence, it is usual to

identify a multivariate observation xi as an outlier if its outlyingness measure SDOi exceeds the
(1−α)-quantile of the χ2

p distribution, for an arbitrary, small probability level α .
This outlier identification procedure based on the Stahel-Donoho outlyingness measures suffers

from two major problems. Firstly, when the data xi (i = 1, . . . ,n) are not Gaussian, the distribution
of the outlyingness measures SDOi is in general unknown (but typically right-skewed as they are
bounded by zero). In that case, the outlier detection rule based on the (1−α)-quantile of the χ2

p
distribution risks to be unvalid.

Secondly, as stated by Hubert and Van der Veeken, the Stahel-Donoho outlyingness (1) does
not account for any possible skewness of the distribution of the projected dataset X

(n)
a , since it

assumes that the scale on the lower side of the median µ̂(X
(n)

a ) is the same as the scale on the
upper side. Hence, the outlyingness measure of Stahel and Donoho is only suited for elliptical
symmetric data.

In order to deal with these two problems, Hubert and Van der Veeken (2008) have proposed the
adjusted outlier detection method described hereafter.

2.2. The adjusted outlier detection method of Hubert and Van der Veeken (2008)

First of all, Hubert and Van der Veeken (2008) propose to modify the Stahel-Donoho outlyingness
measures SDOa

(
x;X (n)

)
to make them suitable for skewed data. Their definition involves the

extremities of the whiskers of the adjusted boxplot introduced by Hubert and Vandervieren (2008).
The latter authors suggest to modify the whiskers of the classical boxplot according to the degree
of asymmetry of the data. More precisely, they propose to define, for the univariate statistical
series {y1, . . . ,yn}, an adjusted boxplot for which the extremities of the whiskers correspond to
the bounds of the following interval:{ [

Q0.25−1.5e−4MCIQR;Q0.75 +1.5e3MCIQR
]

if MC≥ 0[
Q0.25−1.5e−3MCIQR;Q0.75 +1.5e4MCIQR

]
if MC < 0,

(3)

where Q0.25 and Q0.75 are the first and third quartiles of the series {y1, . . . ,yn}, IQR=Q0.75−Q0.25
is its interquartile range, and MC stands for the medcouple 2 of the yi’s, which is a robust measure
of skewness. This measure is bounded between −1 and 1; the medcouple is equal to zero when
the observed distribution of the yi’s is symmetric, whereas a positive (resp. negative) value of
MC corresponds to a right (resp. left) tailed distribution. These expressions for the extremities
of the whiskers of the adjusted boxplot have been found by simulating a wide range of skewed
distributions and looking for the interval which leaves 0.7% 3 of the observations outside its
bounds when no outlier contamination is present.
2 See Brys et al. (2004).
3 This percentage corresponds to the theoretical proportion of observations that, in a Gaussian dataset, will lie outside

the interval [Q0.25−1.5 IQR;Q0.75 +1.5 IQR] whose bounds define the extremities of the lower and upper whiskers
of the classical boxplot.
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94 V. Verardi and C. Vermandele

Hubert and Van der Veeken (2008) define the adjusted outlyingness of a point x ∈ Rp with
respect to X (n) along a as

AOa

(
x;X (n)

)
=


xt a−Q0.5(X

(n)
a )

u2(X
(n)

a )−Q0.5(X
(n)

a )
if xta≥ Q0.5(X

(n)
a )

Q0.5(X
(n)

a )−xt a
Q0.5(X

(n)
a )−u1(X

(n)
a )

if xta < Q0.5(X
(n)

a )
,

where Q0.5(X
(n)

a ) is the median of the projected dataset X
(n)

a , and u1(X
(n)

a ) and u2(X
(n)

a ) are
respectively the lower and upper whiskers extremities of the adjusted boxplot associated with
X

(n)
a , that is, the lower and upper bounds of the interval (3) computed for X

(n)
a . This definition

takes into account the fact that the distribution of the projected points xt
ia may be skewed and that

this skewness will induce a difference between the scale of the part of the distribution on the left
of the median and the scale of the part of the distribution on the right of the median.

The adjusted (global) outlyingness of x with respect to X (n) is given by

AO
(

x;X (n)
)
= sup

a∈Ŝp

AOa

(
x;X (n)

)
. (4)

Hubert and Van der Veeken (2008) suggest then to identify a multivariate observation xi as an
outlier if its adjusted outlyingness AOi = AO

(
xi;X (n)

)
exceeds the upper whisker of the adjusted

boxplot associated with {AO1, . . . ,AOn}.
This approach has the advantage to be distribution-free since it does not assume any particular

underlying skewed distribution of the data (only unimodality).
However, the computational complexity of this procedure is substantial since for each of

the m = 250p considered directions a ∈ Rp, a medcouple (that has a computational complexity
of O(n logn)) has to be estimated. The computational complexity of the method is therefore
O(np logn). With large datasets and high dimensions, computing time can become prohibitive 4.

Moreover, the outlier identification method of Hubert and Van der Veeken (2008) presents
some limitations related to the use of the adjusted boxplot of Hubert and Vandervieren (2008). As
already mentioned, the expressions of the adjusted whiskers have been determined by simulating
a wide range of skewed distributions and looking for the interval which leaves 0.7% of the
observations outside its bounds when no outlier contamination is present. More precisely, in their
simulations, Hubert and Vandervieren only considered distributions with a medcouple smaller
than 0.6 and, consequently, the theoretical detection rate of atypical observations associated with
the adjusted boxplot risks to be quite different from 0.7% when the underlying distribution is
severely skewed. Moreover, if one is interested in fixing a theoretical detection rate of atypical
observations different than the standard rate of 0.7%, it is necessary to re-run all the extensive
simulations in order to find the tuning factors pre-multiplying IQR in the expressions (3) of the
whiskers extremities. Finally, the adjusted boxplot does not take into account the tail heaviness
of the distribution of the yi’s, and, in particular, does not provide an adequate detection rate of
atypical observations if the distribution of the AOi’s is heavy-tailed (see Bruffaerts et al., 2014).

To overcome these problems, we propose:
4 In Section 6.3, we present a comparison, in terms of computational time, between the adjusted outlier detection

method of Hubert and Van der Veeken and the new method proposed in this paper.
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Outlier identification for multivariate distributions 95

1. a modified definition of the outlyingness of a point x ∈ Rp with respect to X (n) along a
direction a that takes into account the skewness of the distribution of the projected points
xt

ia but does not require to determine the medcouple of this distribution and is very fast to
compute;

2. a new outlier identification rule based on the global outlyingness measures of the observa-
tions xi (i = 1, . . . ,n) that (i) has a low computational cost, (ii) allows the user to choose the
detection rate of atypical observations theoretically reached in absence of contamination
of the sample X (n) by outliers, and (iii) respects this theoretical detection rate whatever
the skewness level and the right tail heaviness of the distribution of the global outlyingness
measures may be. The key idea consists of applying a very simple rank preserving transfor-
mation on the global outlyingness measures of the xi’s and of adjusting the distribution of
these transformed measures by a so-called Tukey g-and-h distribution.

3. The Tukey g-and-h distribution

In the late 70’s, Tukey (1977) introduced a new family of distributions, called Tukey g-and-h
distributions, based on elementary transformations of the standard normal.

For g and h ∈ R, consider the one-to-one monotone function τg,h(·) defined on R as follows:
For g 6= 0,

τg,h(z) =
1
g
[exp(gz)−1]exp

(
hz2/2

)
and, for g = 0,

τ0,h(z) = lim
g→0

τg,h(z) = zexp
(
hz2/2

)
.

Let Z be a random variable with standard normal distribution N(0,1). Then, for A∈R and B∈R+
0 ,

the random variable Y defined through the transformation

Y = A+Bτg,h(Z)

is said to have a Tukey g-and-h distribution with location parameter A and scale parameter B:

Y ∼ Tg,h(A,B).

The parameter g controls the direction and the degree of skewness 5, while h controls the tail
thickness (or elongation) of the distribution (see Hoaglin et al., 1985). The family of Tg,h(A,B)
distributions is very flexible and approximates well many commonly used distributions (Martinez
and Iglewicz, 1984; MacGillivray, 1992; Jiménez and Arunachalam, 2011).

Different procedures for the estimation of the parameters of the Tg,h(A,B) distribution have been
proposed in the literature (see Hoaglin et al., 1985; Jiménez and Arunachalam, 2011; Mahbubul
et al., 2008; Xu et al., 2014; Xu and Genton, 2015). Relying on Hoaglin et al. (1985) and Jiménez
and Arunachalam (2011), we propose here to use the simplified and robust estimators defined
hereafter (the justification of the use of these estimators is detailed in Appendix 1).

5 g= 0 corresponds to a symmetric distribution; g> 0 yields a right-skewed distribution while g< 0 gives a left-skewed
distribution.
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96 V. Verardi and C. Vermandele

Let Z ∼ N(0,1), Y = A+Bτg,h(Z)∼ Tg,h(A,B) and Y (n) = {y1, . . . ,yn} be a series of n inde-
pendent realizations of Y . For ν ∈ (0,1), let us denote by zν , yν and Qν

(
Y (n)

)
the quantile of

order ν of the N(0,1) distribution, of the Tg,h(A,B) distribution and of the series Y (n), respectively.
Then:

(i) The location parameter A is simply estimated by the empirical median Q0.5
(
Y (n)

)
of the

data.

(ii) A natural estimate of the parameter g is given by

ĝν =
1
zν

ln

(
UHSν(Y (n))

LHSν(Y (n))

)

for any fixed order ν ∈ (0.5,1), where UHSν(Y (n)) and LHSν(Y (n)) are the ν-th upper
and lower half spread of the series Y (n):

UHSν(Y (n)) = Qν(Y (n))−Q0.5(Y
(n)),

LHSν(Y (n)) = Q0.5(Y
(n))−Q1−ν(Y (n)).

We propose to choose ν = 0.9, so that the estimator ĝν of g has a breakdown point 6 of
10%.

(iii) Let us consider the empirical interquartile range IQR(Y (n)), together with the skewness
measure SK(Y (n)) and the kurtosis (elongation) measure T(Y (n)) of Y (n) defined as
follows:

IQR(Y (n)) = Q0.75(Y
(n))−Q0.25(Y

(n)),

SK(Y (n)) =
Q0.9(Y (n))+Q0.1(Y (n))−2Q0.5(Y

(n))

Q0.9(Y (n))−Q0.1(Y (n))
,

T(Y (n)) =
Q0.9(Y (n))−Q0.1(Y (n))

Q0.75(Y (n))−Q0.25(Y (n))
.

Let us also define the function

ϕ(s, t) = 0.6817766+0.0534282 s+0.1794771 t−0.0059595 t2

for s, t ∈ R. Then, as explained in Appendix 1, the scale parameter B can be estimated by

B̂ =
0.7413 IQR(Y (n))

ϕ(SK(Y (n)),T(Y (n)))
·

Since B̂ is defined on the basis of the empirical quantiles of order 0.10, 0.25, 0.5, 0.75 and
0.90, it has a breakdown point of 10%.

6 Intuitively, the breakdown point of an estimator is the maximal proportion of outlying observations (e.g. arbitrarily
large observations) the estimator can handle before breaking down (e.g. giving an arbitrary value). The higher the
breakdown point of an estimator, the more robust it is.
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Outlier identification for multivariate distributions 97

(iv) Finally, a natural estimate of h is, for any fixed ν ∈ (0.5,1),

ĥν =
2
z2

ν

ln

(
−ĝν

Qν(Y ∗(n))Q1−ν(Y ∗(n))

Qν(Y ∗(n))+Q1−ν(Y ∗(n))

)

where Y ∗(n) = {y∗1, . . . ,y∗n} with

y∗i =
yi− Â

B̂
, i = 1, . . . ,n.

Once again, we take ν = 0.9 in order to ensure a breakdown point of 10% for the estimator
of h.

4. The proposed outlier detection method

4.1. The asymmetrical outlyingness measures

As Hubert and Van der Veeken (2008), we propose to modify the Stahel-Donoho outlyingness
measure SDOa

(
x;X (n)

)
to take into account the asymmetry of the distribution of the projected

points xt
ia. We define the asymmetrical outlyingness with respect to X (n) of a point x ∈Rp along

a as follows:

ASOa

(
x;X (n)

)
=


xt a−Q0.5(X

(n)
a )

2c
[
Q0.75(X

(n)
a )−Q0.5(X

(n)
a )

] if xta≥Q0.5(X
(n)

a )

Q0.5(X
(n)

a )−xt a
2c
[
Q0.5(X

(n)
a )−Q0.25(X

(n)
a )

] if xta <Q0.5(X
(n)

a )
, (5)

where Q0.5(X
(n)

a ), Q0.25(X
(n)

a ) and Q0.75(X
(n)

a ) are respectively the median, the first quartile and
the third quartile of the projected dataset X

(n)
a , and c = 1/(z0.75− z0.25) = 1/1.34898 = 0.7413

is a constant factor ensuring, in the Gaussian case, the consistency of the modified scale estimator
c IQR for the scale parameter σ (the standard deviation). The asymmetrical (global) outlyingness
of x with respect to X (n) is then given by

ASO
(

x;X (n)
)
= sup

a∈Ŝp

ASOa

(
x;X (n)

)
. (6)

In the standardization of ASOa
(
x;X (n)

)
, we consider scale measures of the distribution of

X
(n)

a relying on the length of the right or left part of the interquartile interval 7. These scale
measures both have a breakdown point of 25%. Note that a more robust alternative to define
the asymmetrical outlyingness measures would be to standardize the deviation between xta and
Q0.5(X

(n)
a ) by considering, for instance, the Qn coefficient of dispersion of Rousseeuw and Croux

(1993). This coefficient does not assume the symmetry of the distribution of X
(n)

a and has a
breakdown point of 50%. However, since the next steps of the outlier detection procedure will not
guarantee such a high breakdown point for the complete methodology, we prefer to use the half
interquartile range that is very fast to compute.

7 Note that Q0.75(X
(n)

a )−Q0.5(X
(n)

a ) = UHS0.75(X
(n)

a ) and Q0.5(X
(n)

a )−Q0.25(X
(n)

a ) = LHS0.75(X
(n)

a ).
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98 V. Verardi and C. Vermandele

4.2. The outlier identification rule

Let us now consider the asymmetrical outlyingness measures ASOi = ASO
(
xi;X (n)

)
for i =

1, . . . ,n. The guidelines of the new outlier identification rule are the following:

1. Standardize these outlyingness measures in order to obtain new values belonging to the
open interval (0,1): for i = 1, . . . ,n, compute

ÃSOi =
ASOi

min1≤ j≤n (ASO j)+max1≤ j≤n (ASO j)
.

2. Consider the inverse normal (also called probit) transformation: for i = 1, . . . ,n,

wi = Φ
−1
(

ÃSOi

)
where Φ(·) denotes the cumulative distribution function of the standard normal. Note that
this is a monotonic transformation which preserves the ranks.

3. Adjust the distribution of the values wi (i = 1, . . . ,n) by the Tukey Tĝ,ĥ(Â, B̂) distribution,

where Â, B̂, ĝ and ĥ are the estimates of the location, scale, skewness and tails heaviness
parameters defined in Section 3, with the series Y (n) corresponding here to the series
W (n) = {w1, . . . ,wn}.

4. Determine the quantile ξ1−α of order 1−α (α ∈ (0,0.5)) of the Tĝ,ĥ(Â, B̂) distribution
specified in the previous step, where α corresponds to the desired detection rate of atypical
values in absence of contamination by outliers:

ξ1−α = Â+ B̂τĝ,ĥ(z1−α).

Let I = {i = 1, . . . ,n|wi > ξ1−α} be the set of indices of the values wi that are detected as
atypically large in the set W (n) = {wi, . . . ,wn}; then the outlyingness measures ASOi with
i ∈I are considered as atypical measures 8 among ASO1, . . . ,ASOn, and the observations
xi with i ∈I are identified as outliers in the initial dataset X (n).

Two remarks may complete the description of the outlier identification procedure:

(i) By inverting the transformations described in the first two steps, it is possible to come
up with a cut-off point which is explicitly associated with the asymmetrical outlyingness
measures ASOi (i = 1, . . . ,n). More precisely, the detection bound ξ1−α computed in Step
4 leads to the following detection bound B+(α) for the original ASO1, . . . ,ASOn:

B+(α) = Φ(ξ1−α)

[
min

1≤ j≤n
(ASO j)+ max

1≤ j≤n
(ASO j)

]
. (7)

(ii) Using the same logic as in the previous remark, we can easily obtain an estimation of
the entire density function of the original asymmetrical outlyingness measures ASOi

(i = 1, . . . ,n). In practice, we may proceed as follows. For k = 1, . . . ,n, we determine the

8 Only observations xi providing large outlyingness measures ASOi, and hence large values wi, are candidates to be
outliers. It is then sufficient to consider the upper quantile ξ1−α to define the outlier identification rule.
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Outlier identification for multivariate distributions 99

quantiles ξνk of orders νk = k/(n+1) of the Tĝ,ĥ(Â, B̂) distribution specified in Step 3. We
then apply the inverse transformation (7) in which we replace ξ1−α by the quantiles ξνk in
order to get the quantiles dνk of orders νk on the scale of the asymmetrical outlyingness
measures ASOi. The kernel estimated density of the quantiles dνk provides an estimation of
the density of the ASOi. We call it the Tukey-based density estimation.

The rationale for the transformations applied on the outlyingness measures in the first two
steps of the procedure is the following. In Step 1, we bound these measures between 0 and 1: Our
approach is comparable to the logic of dividing the ranks of some observations by the minimal rank
(equal to 1) plus the maximal rank (equal to n) when we want to work with rank-based scores. The
main difference is that our transformed asymmetrical outlyingness measures ÃSOi (i = 1, . . . ,n)
are in general not uniformly distributed on the interval (0,1). Indeed, our transformation actually
preserves both the skewness and the tails heaviness of the distribution of the initial ASOi’s. In Step
2, we consider the inverse normal transformation. If the ÃSOi’s would be uniformly distributed
on (0,1), the wi’s would be normallly distributed. Since the ÃSOi’s are not uniformly distributed
on (0,1), the distribution of the wi’s is not the standard normal distribution but a transformation
of the normal distribution which allows for skewness and tails heaviness. Since the Tukey g-and-h
distribution also appears as a transformation of the normal distribution allowing for a very large
flexibility in skewness and tails heaviness, it appears as an appropriate distribution to adjust
properly the observed distribution of the wi’s, whatever is the underlying unimodal distribution of
the original data xi (i = 1, . . . ,n).

Note that, for a large variety of (unimodal and smooth) distributions of the data xi, the resulting
distribution of the asymmetrical outlyingness measures ASOi should be directly — without the
preliminary transformations of Step 1 and Step 2 — adequately adjusted by a Tukey g-and-h
distribution. But if the distribution of the ASOi’s is not smooth everywhere — if, for instance, the
distribution of the ASOi’s looks like a triangular distribution — the quality of its adjustment by a
Tukey distribution risks to be poor. In such a case, to transform the ASOi’s as indicated in Step 1
and Step 2 has the real advantage to provide transformed outlyingness measures wi that have a
smoother distribution, more properly adjusted by a Tukey g-and-h distribution.

Of course, it would have been possible to consider other distributions than the Tukey g-and-h
distributions to adjust the distribution of the (transformed) asymmetrical outlyingness measures:
we could use, fo example, the quite popular SAS-normal distributions of Jones and Pewsey (2009)
or, more generally, any other transformation of the normal distribution that has been proposed
in the literature (see Ley, 2015). Our choice of the Tg,h(A,B) distribution is motivated by: (i) the
great flexibility of this type of distribution, in terms of skewness and tails weight; (ii) the fact
that we can estimate its parameters in a simple and robust way. Recall here that the estimation
procedure we propose relies exclusively on percentiles 10, 25, 50, 75 and 90, which means that the
breakdown point of the estimators of A, B, g and h is equal to 10%. In other terms, the distribution
of the wi’s can be properly adjusted even in presence of (at most) 10% of outliers among the
transformed outlyingness measures. This property of robustness is, of course, crucial to ensure
the validity of our outlier detection procedure.

Let us finally note that the method proposed here works well in high dimensions as well. It
is even possible to use it when p > n if the type of projection used is some projection pursuit
algorithm. We however did not consider high dimensions here.
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5. Empirical results

5.1. Illustrative example

To illustrate the methodology, we generate 1000 bivariate observations from two independent
chi-squared distributions with ten degrees of freedom (χ2

10). We first generate a clean sam-
ple and then contaminate it by replacing 5% of the observations with the value (x1,x2) =
(F−1

χ2
10
(Φ(4)) ,F−1

χ2
10
(Φ(4))), where F−1

χ2
10
(·) is the quantile function of a χ2

10 distribution and Φ

is the standard normal cumulative distribution function. The outliers generated in this way for the
χ2

10 distribution are equivalent to outliers located at 4 on the scale of the normal distribution. In
Figure 1, we present the scatter plot and the estimated density of the global outlyingness measures
ASOi for the clean setup as well as for the contaminated setup. For the estimated densities, we
superimpose the density estimated using the transformation related to the Tukey g-and-h distri-
bution — the so-called Tukey-based density — and a standard kernel density. A vertical line is
drawn at the cut-off point (i.e., B+(0.01) in this example). The points identified as outliers by the
proposed methodology are represented by hollow symbols. The cluster of generated outliers is
represented by a large square in the scatter plot and is easily identifiable in the kernel density as a
bump in the right side of the distribution.
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FIGURE 1. (Right side) Scatter plots of the clean and of the contaminated bivariate samples (the points identified
as outliers are represented by hollow symbols; the cluster of generated outliers is represented by a large square)
– (Left side) Kernel and Tukey-based estimations of the density of the asymmetrical outlyingness measures ASOi
(i = 1, . . . ,1000) in the clean and in the contaminated bivariate sample

For the clean data, the density of the global outlyingness measures is well approximated by
our methodology as can be seen when comparing the kernel density and the density estimated
relying on the Tukey g-and-h transformation. As expected when using the 99th percentile cut-off,
approximately 1% of the individuals are identified as outliers.
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When we concentrate on the contaminated case, the methodology correctly identifies all the
generated outliers. Some standard individuals are identified as outliers as well. This was also to
be expected. Indeed, since we use robust estimators for the parameters of the Tukey distribution —
estimators that have a breakdown point equal to 10% — the Tukey-based estimated density of
the asymmetrical outlyingness measures in the contaminated case is quite similar as in the non
contaminated case. It is only slightly more skewed and heavy-tailed than when no outlier is present,
which implies than the cut-off line moves very slightly to the right. Hence, the percentage of
standard observations spotted as atypical is only slightly lower in the contaminated case compared
to the clean case. Due to the robustness properties of the estimators for the parameters of the
Tukey distribution, this latter feature is not related to the degree of outlyingness of the outliers
that contaminate the data set.

A more detailed analysis of the sensitivity — the percentage of outliers correctly identified
as atypical observations — and the specificity — one minus the percentage of non outlying
observations erroneously identified as outliers — of the method will take place in the simulations
section (see Section 6).

5.2. Quality of the adjustment of the distribution of the wi’s (i = 1, . . . ,n) by a Tukey
distribution

In Section 4, we argue that the Tukey g-and-h distribution allows to adjust adequately the
distribution of the transformed asymmetrical outlyingness measures wi (i = 1, . . . ,n) regardless of
the skewness and the tails heaviness of the multivariate distribution of the data xi (i= 1, . . . ,n). The
only restriction that we have to impose to the underlying multivariate distribution of the original
data is unimodality in order to ensure the unimodality of the distribution of the outlyingness
measures.

To illustrate the quality of the adjustment of the distribution of the wi’s by a Tukey distribution,
we have generated six bivariate samples {(xi1,xi2); i = 1, . . . ,n} of size n = 1000 using six very
different distributions 9: the standard normal distribution, the Student distribution with 2 degrees
of freedom (that is symmetrical with very heavy tails), the Exponential distribution with rate
parameter equal to one (that is skewed with a moderate tail heaviness), the Fréchet distribution with
shape parameter equal to 2 (that is skewed with severe tail heaviness), the Triangular distribution
with support [0,1] and mode at 0.1 (that is skewed with bounded support and with a corner point
at 0.1), and the Beta distribution with shape parameters equal to 2 and 5 (that is skewed, defined
on the interval [0,1] and smooth everywhere) 10.

Figure 2 presents, for each of the six cases, the histogram of the transformed asymmetrical
outlyingness measures wi (i = 1, . . . ,1000) on which is superposed the density of the estimated
Tukey distribution used to adjust the observed distribution of the wi’s; it also indicates the p-value
associated with the Kolmogorov-Smirnov goodness-of-fit test. All the p-values are greater or
equal to 0.28 and lead us to not reject the null hypothesis according to which the wi’s follow a
Tukey distribution.

9 As in the previous illustrative example (see Section 5.1), the values xi1 (i = 1, . . . ,1000) have been generated
independently of the values xi2 (i = 1, . . . ,1000).

10 The graphs of the univariate and bivariate densities considered here are available in Appendix 2.
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FIGURE 2. Histogram of the transformed asymmetrical outlyingness measures wi (i = 1, . . . ,1000), density of the
estimated Tukey distribution adjusting the observed distribution of the wi’s, and p-value of the Kolmogorov-Smirnov
goodness-of-fit test for a bivariate data set {(xi1,xi2); i = 1, . . . ,1000} generated from a (i) standard normal, (ii)
Student(2), (iii) Exponential(1), (iv) Fréchet(2), (v) Triangular(0,0.1,1), (vi) Beta(2,5)

Other multivariate distributions of the data have been tested. See, for instance, the simulations
discussed in Section 6.2.

6. Simulations

6.1. First set of simulations

In the first set of simulations, we generate B = 1000 multivariate samples of size n and of
dimension p, from each of the six distributions considered in Section 5.2. Then, we contaminate
the samples by replacing a certain proportion ε of data by outlying values. We consider two
sample sizes (n = 100,1000), three different dimensions (p = 2,5,10) and three contamination
levels (ε = 0%,1%,5%).

The data are actually generated in the following way. For b from 1 to B = 1000:

1. We generate p independent pseudo-random samples {z(b)ik ; i = 1, . . . ,n} (k = 1, . . . , p) from
the N(0,1) distribution.

2. Denoting by Φ the cumulative distribution function (cdf) of the standard normal distribution
and by F the cdf of the target distribution, {Φ(z(b)ik ); i = 1, . . . ,n} (k = 1, . . . , p) are p
independent pseudo-random samples from the uniform U(0,1) distribution and, hence,

{x(b)i =
(

x(b)i1 , . . . ,x(b)ip

)t
; i = 1, . . . ,n} with x(b)ik = F−1

(
Φ(z(b)ik )

)
(k = 1, . . . , p) is a pseudo-

random p-multivariate sample from the target distribution.
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3. We contaminate the obtained sample {x(b)i ; i = 1, . . . ,n} by replacing a proportion ε of ran-
domly selected x(b)i with x(b)i;out =

(
F−1(Φ(4)), . . . ,F−1(Φ(4))

)t . By generating outliers in
this way, the first four cases — standard normal, Student(2), Exponential(1) and Fréchet(2)
— can be compared in terms of average sensitivity and specificity of the outlier detection
method since the degree of outlyingness in the contamination is the same (around the value
4 on the scale of the standard normal). For the Triangular and Beta distributions which
have a compact support on [0,1], outliers are generated slightly differently in such a way
that they lie outside of the support; we simply take x(b)i;out as the vector having each of its
p components equal to µ + 4σ , where the theoretical mean µ and standard deviation σ

are respectively 0.3291 and 0.2248 for the Triangular(0,0.1,1) distribution, and 0.2645 and
0.1597 for the Beta(2,5) distribution.

Table 1 reports the average sensitivity — the average proportion of outliers detected by the
method as atypical points in the data set — and the average specificity — one minus the average
proportion of non outlying points erroneously detected as outliers by the method — over the 1000
replications, for each specification of the sample size n, of the dimension p and of the percentage
of contamination ε .

The results of the simulations clearly point towards the good behavior of the methodology.
Both specificity and sensitivity are very good in small samples. In large samples the performance
of the methodology improves and reaches a sensitivity of almost 100% for all simulations and
contamination setups, and a specificity of approximately 99% (as expected, since we consider a
cut-off value ξ1−α with 1−α = 0.99).

6.2. Second set of simulations

In order to verify if the proposed outlier identification method works well whatever are the
skewness and the tail weight of the data distribution, we run a second set of simulations in which
we consider the family of the SAS-normal 11 distributions defined as follows (see Jones and
Pewsey, 2009): if Z is a random variable with standard normal distribution, and η and δ are two
constants (η ∈ R,δ > 0), then the random variable Y given by

Y = sinh
[

1
δ

(
sinh−1(Z)+η

)]
has a SAS-normal(η ,δ ) distribution 12.

For values of the skewness parameter η and of the shape parameter δ ranging (by step of 0.1)
from −1 to 1 and from 0.2 to 2, respectively, we first generate B = 1000 replications of a series of
n = 1000 observations from a 2-dimensional (independent) SAS-normal(η ,δ ) distribution. In
each of the B series, we then replace 5% of randomly selected observations by outliers located (i)

11 SAS: sinh-arcsinh.
12 To have an idea of how the SAS-normal distribution behaves with respect to changes in its parameters η and δ ,

the reader may refer to Appendix 3: In this appendix, some densities of the SAS-normal corresponding to various
values of η and δ are represented. The bottom right graph presents the most extreme distributions considered in the
simulation setup of Section 6.2.
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TABLE 1. Average sensitivity and average specificity (in percentage) over the 1000 replications related to the detection
of outliers by the new method

p ε Sensitivity Specificity
n = 100 n = 1000 n = 100 n = 1000

2 0% − − 97.1 98.3
5 0% − − 98.0 97.7
10 0% − − 99.3 99.1
2 1% 100 100 97.1 98.6

N(0,1) 5 1% 100 100 97.4 98.8
10 1% 100 100 97.6 98.8
2 5% 98.1 100 97.2 98.6
5 5% 99.6 100 97.5 98.7
10 5% 97.7 100 97.7 98.7
2 0% − − 97.0 98.7
5 0% − − 98.0 98.3
10 0% − − 98.3 99.0
2 1% 100 100 97.5 98.5

t2 5 1% 99.9 100 97.5 98.6
10 1% 100 100 97.9 98.7
2 5% 100 100 97.5 98.6
5 5% 99.9 100 97.5 98.7
10 5% 99.8 100 97.9 98.7
2 0% − − 99.2 98.2
5 0% − − 98.9 99.1
10 0% − − 99.1 99.0
2 1% 100 100 97.8 99.9

Exp(1) 5 1% 100 100 98.0 99.2
10 1% 100 100 97.8 98.5
2 5% 99.3 96.9 98.7 99.9
5 5% 100 100 97.9 98.8
10 5% 99.9 100 97.4 98.1
2 0% − − 96.2 99.3
5 0% − − 97.0 97.9
10 0% − − 98.0 98.3
2 1% 100 100 98.9 99.8

Fréchet(2) 5 1% 100 100 97.4 97.9
10 1% 100 100 97.5 98.3
2 5% 100 98 98.9 99.8
5 5% 100 100 97.4 97.8
10 5% 99.6 100 97.5 98.6
2 0% − − 99.0 98.8
5 0% − − 99.0 99.3
10 0% − − 99.1 99.1
2 1% 100 100 97.1 98.7

Triangular(0,0.1,1) 5 1% 100 100 97.5 99.3
10 1% 100 100 97.7 99.2
2 5% 99.1 100 98.6 99.9
5 5% 100 100 98.7 99.9
10 5% 100 100 98.9 99.9
2 0% − − 99.0 98.9
5 0% − − 98.2 99.3
10 0% − − 98.3 99.0
2 1% 100 100 97.0 98.7

Beta(2,5) 5 1% 100 100 97.7 99.3
10 1% 100 100 97.8 99.2
2 5% 92.2 99.7 98.6 99.6
5 5% 97.4 100 98.7 99.9
10 5% 94.5 100 98.8 99.9
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at the value of 4 and (ii) at the value of 5 on the scale of the standard normal 13. For each value of
η and δ and for each of both values of contamination, the average sensitivity over the B = 1000
replications is determined. The results are synthesized in Figure 3 using contour maps.

FIGURE 3. Average sensitivity of the outlier identification method in case of bivariate samples of size n = 1000 from
2-dimensional (independent) SAS-normal(η ,δ ) where η ∈ [−1,1] and δ ∈ [0.2,2], with 5% of outliers at the value of
4 (left figure) or at the value of 5 (right figure) on the scale of the standard normal

As can be seen, the sensitivity of the method is very high even for very extreme distributions of
the data.

6.3. Third set of simulations

The third set of simulations has for objective to compare our outlier detection method with its
closest competitor — the method of Hubert and Van der Veeken (2008) — in terms of sensitivity
as well as in terms of computational complexity and time.

We actually repeat a simulation setup similar as the one presented in Section 6.1 with n = 1000
and a percentage ε of contamination equal to 5%, but we consider here outliers at values ranging
(by step of 0.5) from 0 to 5.5 on the scale of the standard normal.

As mentioned in Section 2.2, the outlier detection method of Hubert and Van der Veeken is once
for all calibrated in such a way that, in absence of contamination, about 0.35% (= 0.7%/2) of the
observations will be identified as atypical. In the method proposed here, we have the freedom to
fix ourselves the expected percentage of observations in a clean data set that will be considered
as outliers: This expected percentage is equal to α if we decide to use the (1−α)-quantile ξ1−α

of the Tĝ,ĥ(Â, B̂) distribution in Step 4 of the procedure (see Section 4.2). This freedom is very
interesting, especially when we suspect that the data set is contaminated by mild outliers 14.

13 For b = 1, . . . ,B, we replace 5% of randomly selected observations x(b)i by x(b)i;out =
(
F−1(Φ(4)),F−1(Φ(4))

)t
in the first setup and by x(b)i;out =

(
F−1(Φ(5)),F−1(Φ(5))

)t in the second setup, where F is the cdf of the SAS-
normal(η ,δ ).

14 Mild outliers, inspite of their low degree of outlyingness, are often dangerous since they can inter alia strongly
distort the estimation of the covariance matrix of the multivariate distribution of the data. It is then crucial to be able
to identify correctly these mild outliers before to work with the data.
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The results of the third set of simulations clearly illustrate this fact. As shown by the sensitivity
curves in Figure 4, large outliers (i.e., at a value of 5 on the scale of the standard normal) are
properly identified by both methods. There is however a big difference between the new method
and the method of Hubert and Van der Veeken in terms of sensitivity with respect to mild outliers.
Whatever is the value of p and the underlying distribution of the data, the proportion of mild
outliers — consider, for example, outliers ranging from 2 to 3 on the scale of the standard normal
— correctly identified as atypical is quite low with the method of Hubert and Van der Veeken, and
appears much higher with the new method when we take α = 1%. If we consider α = 5%, the
sensitivity curves are translated to the left with respect to the case of α = 1%, leading to a very
high sensitivity even when the outliers are located between 2 and 2.5 on the scale of the standard
normal.

The new outlier detection method proposed in this paper presents another advantage with
respect to the method of Hubert and Van der Veeken: It has a lower computational complexity,
equal to O(np), while the method of Hubert and Van der Veeken possesses a computational
complexity of O(np logn). This difference in computational complexity induces a significant
difference in terms of computing time.

To illustrate the difference of time performances of both methods, we have decided to compare
the average time — over 1000 replications — required to run both of outlier identification methods.
The method of Hubert and Van der Veeken, based on the computation of the adjusted global
outlyingness measures AOi (i= 1, . . . ,n), has been implemented with the open and very efficient R
code "adjOutlyingness". For the new method, based on the computation of the asymmetrical global
outlyingness measures ASOi (i = 1, . . . ,n), we have used our own R code. In both cases, we have
determined the global outlyingness measures on the basis of the projection of the observations
on 250p directions of the space. All simulations have been performed using R 3.2.3 called from
Stata 13.1 on a PC Intel(R) Core(TM) i7-4770 CPU@3.40Ghz, 8Gb of RAM.

Table 2 presents the average computing times in seconds — for the AO-method of Hubert and
Van der Veeken in the upper half of each cell and for the new ASO-method in the lower half of
each cell — obtained for various sample sizes n and various dimensions p. When np increases,
the difference in speed between the two methods becomes very clear.

TABLE 2. Average (over 1000 replications) computing times in seconds for the AO-method of Hubert and Van der
Veeken (in the upper half of each cell) and for the ASO-method (in the lower half of each cell) for various sample sizes
n and various dimensions p

p

n
1000 5000 10000 50000

2
0.44

0.81
2.17

1.45
4.40

2.12
36.02

7.33

5
1.06

1.37
5.30

2.65
11.13

4.04
63.90

17.13

10
2.14

3.20
10.64

4.84
23.81

7.96
148.1

41.39

25
5.16

5.04
35.65

13.17
57.23

21.15
309.6

96.20
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FIGURE 4. Average sensitivity curves over the 1000 replications, for ε = 5% of contamination of the sample of size
n = 1000 and of dimension p = 2, 5 or 10, with the outliers at values ranging from 0 to 5.5 on the scale of the standard
normal. (At the top) ASO, α = 5%: New outlier identification method based on the asymmetrical outlyingness measures
ASOi, with ξ1−α = ξ0.95 – (In the middle) ASO, α = 1%: Idem, with ξ1−α = ξ0.99 – (At the bottom) AO: Outlier
identification method of Hubert and Van der Veeken, based on the adjusted outlyingness measures AOi

7. Application

In this application, we try to identify outlying counties in the US in terms of the relation obesity-
physical inactivity-diabetes for the year 2010. The data are available from the Centers for Dis-
ease Control and Prevention (CDC) at http://www.cdc.gov/diabetes/atlas/countydata/
County_ListofIndicators.html. These data correspond to the percentage of diabetes, obe-
sity and physical inactivity prevalence in all US counties (except for 3 missing observations
that we do not take into account for our analysis). The size of the analysed sample is therefore
n = 3143 and the number p of dimensions is equal to 3.

We use the methodology discussed above. We first determine the asymmetrical global outlying-
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ness measures ASOi (i = 1, . . . ,3143). In Figure 5, we present the kernel estimation as well as the
Tukey-based estimation of the density of these measures. We draw a line at percentile 99 of the
latter distribution (i.e. 3.58) to illustrate the cut-off point.

0
.1

.2
.3

.4
.5

0 2 4 6
x

kernel* Tukey based

*Epanechnikov kernel, Silverman rule for bandwith

ASO density estimation

FIGURE 5. Kernel and Tukey-based estimations of the density of the asymmetrical outlyingness measures ASOi for the
data of the CDC (n = 3143, p = 3)

Using this cut-off point (with α = 1%), 72 counties are identified as outlying (approximately
2.3% of the counties). Interestingly, several types of outliers seem to be present. Firstly, some
counties are extreme in the sense that they have very high levels in the three dimensions. This is
for example the case for Greene county in Alabama or Claiborne county in Mississippi. These
counties have respectively 36.5% and 39.7% prevalence of inactivity, 19.7% and 16.1% prevalence
of diabetes and 47.9% and 41.4% prevalence of obesity. On the other extreme other counties such
as Denver county and Ouray county in Colorado have very low levels in the three dimensions.
These counties have respectively 14.3% and 14.8% prevalence of inactivity, 6.1% and 6.4%
prevalence of diabetes and 18.2% and 17.5% prevalence of obesity. Then you have other cases
such as Potter county in South Dakota or Johnson county in Nebraska that have relatively high
levels of physical inactivity (respectively 29.6% and 32.9%) and obesity (respectively 28.4% and
30%) but relatively low levels of diabetes prevalence (8.7% and 8.2%).

If we compare the results with those obtained by a standard Stahel-Donoho estimator that
assumes elliptical symmetry, we have that 70 of the 72 counties identified as outliers by the
methodology proposed here are identified as such by the standard method. On the other hand,
the standard methodology identifies 25 individuals as outliers that our methodology identifies as
standard.

8. Conclusion

In multivariate analysis, it is fairly difficult to identify outliers in case of skewed or heavy-
tailed distributions. Indeed, most commonly used identification tools such as robust Mahalanobis
distances rely on the elliptical symmetry assumption. Recently, some authors such as Hubert and
Van der Veeken (2008) have proposed some tools for multivariate outlier identification but these
are associated to very large computational complexities and cope mainly with skewed and not
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heavy-tailed distributions and unbounded supports. In this paper we propose a very simple method
based on projections that keeps the computational complexity of the problem very low, of the order
O(np). The proposed method works well with both asymmetrical and/or heavy-tailed unimodal
distributions, and with both bounded and unbounded supports. We run several simulations and the
new method seems to perform well for a very wide range of single peaked distributions.
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Appendix 1: The estimation of the parameters of the Tg,h(A,B) distribution

Let Z ∼ N(0,1), Y = A+Bτg,h(Z)∼ Tg,h(A,B) and Y (n) = {y1, . . . ,yn} be a series of n indepen-
dent realizations of Y . For ν ∈ (0,1), let us denote by zν and yν the quantiles of order ν of the
N(0,1) and of the Tg,h(A,B) distributions, respectively, and by Qν(Y (n)) the empirical quantile
of order ν in the series Y (n).
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a) Estimation of A

Since τg,h(z) is a one-to-one monotone function of z ∈ R, we have, for all ν ∈ (0,1):

yν = A+Bτg,h(zν). (8)

Since z0.5 = 0 and τg,h(0) = 0, relation (8) implies that y0.5 = A. The location parameter A
corresponds to the median of the Tukey distribution and can be simply estimated by the empirical
median of the series Y (n):

Â = Q0.5(Y
(n)). (9)

b) Estimation of g

In the outlier identification method we propose, we exclusively have to adjust right-skewed
distributions by Tukey g-and-h distributions. Hence, we may here restrict ourselves to the case
where g has a non-zero value and is strictly positive.

Relation (8) actually implies, for ν > 0.5, that

UHSν

LHSν

= exp(gzν)

where UHSν and LHSν are the ν-th upper and lower half spreads of the Tg,h(A,B) distribution,
respectively:

UHSν = yν − y0.5,

LHSν = y0.5− y1−ν .

Consequently, for any ν > 0.5:

g =
1
zν

ln
(

UHSν

LHSν

)
.

A natural estimate of the parameter g is then given by

ĝν =
1
zν

ln

(
UHSν(Y (n))

LHSν(Y (n))

)
(10)

for any fixed order ν ∈ (0.5,1), where

UHSν(Y (n)) = Qν(Y (n))−Q0.5(Y
(n)),

LHSν(Y (n)) = Q0.5(Y
(n))−Q1−ν(Y (n)).

This estimator of g has a breakdown point of (1−ν)×100%. From then on, by choosing ν = 0.90,
we make so that the breakdown point of the estimator of g is as high as 10%.

Naturally, if one wants to increase the efficiency of the estimator of g by using more information
contained in the data, and especially in the tails of the observed distribution of Y (n), several
values of ν could be considered and g could be estimated by the median of the estimates ĝν

associated with these different values of ν ∈ (0.5,1) (see Jiménez and Arunachalam, 2011). But
simulations showed us that, in the context of estimation of the parameters of a Tukey distribution
considered in this paper, it is not necessary to use this alternative estimator of g since we already
get very good results when simply using ĝ0.90.
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c) Estimation of B and h

When g 6= 0, the parameter that controls the elongation of the tails (h) and the scale parameter (B)
can be jointly estimated conditionally on the value of g. Indeed, as highlighted by Hoaglin et al.
(1985),

ln(y0.5−θν) = ln
(

B
g

)
+

1
2

hz2
ν (11)

with θν < y0.5 for all ν > 0.5 and, for all ν ∈ (0,1), ν 6= 0.5,

θν =
yνy1−ν − y2

0.5
UHSν −LHSν

·

Note that θν = θ1−ν . The values of B and h can then be estimated using a linear regression of
ln
(

Q0.5(Y
(n))−θ

(n)
ν

)
on 1

2 z2
ν , for different values of ν , where θ

(n)
ν is the empirical counterpart

of θν : The estimate of h corresponds in that case to the estimate of the slope parameter and the
value of the scale parameter B is estimated by multiplying the previously estimated value of g by
the exponential of the estimate of the intercept term (see Jiménez and Arunachalam, 2011).

We propose here a quite different procedure in which h and B are estimated separately.

c.1) Estimation of B

If Y =A+Bτg,h(Z)∼ Tg,h(A,B), then Y ∗= Y−A
B = τg,h(Z)∼ Tg,h(0,1). Denoting by y∗ν (ν ∈ (0,1))

the quantile of order ν of the standardized Tg,h(0,1) distribution and defining IQR = y0.75− y0.25
and IQR∗ = y∗0.75− y∗0.25 — IQR and IQR∗ are the interquartile ranges of the Tg,h(A,B) and the
Tg,h(0,1) distributions, respectively — we clearly have:

IQR = B IQR∗

and hence:

B =
IQR
IQR∗

=
cIQR
cIQR∗

(12)

for c = 1/(z0.75− z0.25) = 0.7413 (c is the constant factor ensuring that the empirical interquartile
range is a Fisher consistent estimator of the scale parameter σ in the Gaussian case).

Extensive simulations have allowed us to establish that there exists an almost perfect relation
between cIQR∗ on the one hand, and, on the other hand, the quantiles-based measures of skewness

SK =
y∗0.90 + y∗0.10−2y∗0.5

y∗0.90− y∗0.10
=

y0.90 + y0.10−2y0.5

y0.90− y0.10

and of kurtosis

T =
y∗0.90− y∗0.10
y∗0.75− y∗0.25

=
y0.90− y0.10

y0.75− y0.25
·
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We have 15:

cIQR∗ ' 0.6817766+0.0534282 SK+0.1794771 T−0.0059595 T2. (13)

Hence, a natural estimate of B is:

B̂ =
cIQR(Y (n))

ĉIQR∗
, (14)

where ĉ IQR∗ is obtained by replacing, in the right member of (13), SK and T by their empirical
counterparts SK(Y (n)) and T(Y (n)), respectively.

c.2) Estimation of h

Let us consider consider once again Y ∗ = Y−A
B , where Y ∼ Tg,h(A,B):

Y ∗ ∼ Tg,h(0,1).

Then, relation (11) applied for Y ∗ becomes:

ln(−θ
∗
ν ) = ln

(
1
g

)
+

1
2

hz2
ν

for all ν > 0.5, where

θ
∗
ν =

y∗νy∗1−ν
− (y∗0.5)

2

UHS∗ν −LHS∗ν
=

y∗νy∗1−ν

y∗ν + y∗1−ν

·

Consequently, for all ν > 0.5:

h =
2
z2

ν

ln(−gθ
∗
ν ).

We then obtain a natural estimate of h by taking, for any fixed ν > 0.5,

ĥν =
2
z2

ν

ln(−ĝνθ
∗(n)
ν ) (15)

where ĝν is the estimate of g and θ
∗(n)
ν is the empirical counterpart of θ ∗ν associated with the series

Y ∗(n) = {y∗1, . . . ,y∗n} where y∗i = (yi− Â)/B̂ (i = 1, . . . ,n).
Once again, we choose ν = 0.90 in order to have a breakdown point of 10% for the estimator

of h.
15 For each value of g varying from 0.001 to 2 (by step of 0.01) and each value of h varying from −0.2 to 2 (by step of

0.01), we have generated a sample Y
∗(n)

g,h of size n = 1000 from a standardized Tg,h(0,1) distribution. In each of these

samples — we actually had 43780 samples — we have determined the (corrected) interquartile range cIQR(Y ∗(n)g,h ),

the skewness measure SK(Y
∗(n)

g,h ) and the kurtosis measure T(Y ∗(n)g,h ). Using these measures, we have estimated (by
ordinary least squares) the following regression model: cIQR∗ = β0 +β1SK+β2T+β3T2 + ε . We have obtained
β̂0 = 0.6817766, β̂1 = 0.0534282, β̂2 = 0.1794771 and β̂3 =−0.0059595, with an adjusted R-squared of 0.9966.
Note that we can still obtained a better fit (with an adjusted R-squared of 0.9999) by considering, as explanatory
variables in the regression model, SK,SK2, . . . ,SK5 and T,T2, . . . ,T5. In practice, however, it appears sufficient to
consider the more parcimonious model to obtain a very good adjustment of cIQR∗.
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Appendix 2: The data distributions considered in Sections 5.2 and 6.1
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FIGURE 6. The univariate densities considered in Sections 5.2 and 6.1
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FIGURE 7. The bivariate densities considered in Sections 5.2 and 6.1
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FIGURE 8. Level curves (isocontours) for the univariate densities considered in Sections 5.2 and 6.1

Appendix 3: The SAS-normal(η ,δ ) distribution
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FIGURE 9. Density function of the SAS-normal(η ,δ ) distribution for various values of the skewness parameter η and
of the shape parameter δ
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