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Abstract: This article addresses the estimation of the Sobol index for dependent static and dynamic inputs. We study
transformations in the input, whose image is an input with independent components. They have the basic property to
give an invariance property for conditional expectation between a subset of inputs and their image that allows to use
the Pick and Freeze method.
We first focus on the static case. The general case and the Gaussian case are detailed . In the non Gaussian case we
apply the conditional quantile function generally used to simulate random vectors in a new framework. In the Gaussian
case the dependent variables are separated into two groups of independent variables.
In the dynamic case the definition of the index has been slightly modified in order to take into account the two
dimensions of dependence (temporal and spatial). For Gaussian processes the same method as previously is used. For
non Gaussian processes for which in general there is no sufficient information to get a model, we propose to use a
copula model to get back to Gaussian inputs. Different cases are studied in order to underline on the weakness, in
sensitivity studies, to use the correlations like the measures of dependence.

Résumé : Cet article traite de l’estimation des indices de Sobol pour des entrées dépendantes, statiques et dynamiques.
Nous proposons de transformer l’entrée dépendante en une image dont les composantes sont indépendantes. Elles ont
la propriété de vérifier l’invariance des espérances conditionnelles sachant le sous espace formé des entrées et celui de
leurs images, ce qui nous permet d’appliquer la méthode Pick and Freeze au modèle.
Nous traitons tout d’abord l’aspect statique, en détaillant le cas général non Gaussien et le cas Gaussien. Dans le
cas non Gaussien, nous appliquons la méthode dite des quantiles conditionnels, généralement utilisée pour simuler
des vecteurs aléatoires. Dans le cas Gaussien, les variables dépendantes sont séparées en deux groupes de variables
indépendantes.
Concernant l’aspect dynamique, la définition des indices a été légèrement modifiée afin de prendre en compte les deux
dimensions de dépendance de l’entrée, la dimension temporelle et la dimension spatiale. Pour les processus Gaussiens,
nous utilisons la même méthode que dans le cas statique. Pour les processus non Gaussiens, nous proposons d’utiliser
un modèle à base copule pour revenir à des entrées Gaussiennes.
L’étude de différents cas met en évidence le fait que, dans les études de sensibilité, l’utilisation de la corrélation comme
mesure de dépendance a ses limites.
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66 Grandjacques, Delinchant and Adrot

1. Introduction

Global sensitivity analysis (GSA) aims to pick out, in a input-output system, the variables that
contribute the most to the uncertainty on the output.

GSA is popular for systems such as non linear regression or more complex systems, which are
studied mainly by stochastic tools for independent inputs.

Many methods exist in the literature (see for example Saltelli et al., 2000 and references therein).
The most used one is the Sobol index which is defined if the variables are assumed to be
independent random variables. Their probability distributions account for the practitioner’s belief
in the input uncertainty. This turns the model output into a random variable, whose total variance
can be splitted down into different partial variances (this is the so-called Hoeffding decomposition,
also known as functional ANOVA, see Liu and Owen, 2006). Each partial variance is defined as
the variance of the conditional expectation of the output with respect to each input variable. By
considering the ratio of each partial variance to the total variance, we obtain the Sobol sensitivity
index of the variable Sobol (1993, 2001). This index quantifies the impact of the variability of the
factor on the output. Its value is between 0 and 1, allowing to prioritize the variables according to
their influence.

Popular methods to calculate Sobol indices are for instance :
– Fourier methods (Cukier et al., 1973; Mara, 2009) used in a different setting, with the aim to

simplify computations
– Orthogonal polynomials for example polynomial chaos Sudret (2008)
– Random balance design Tarantola et al. (2006)
but they require independent input components and (or) a known precise analytical form of f .

A quite different approach, suggested by Sobol (see Sobol, 2001 and Gamboa et al., 2013) is the
Sobol Pick-Freeze (SPF) scheme. It is also based on the independence of components but it is
more flexible on the form of the inputs and does not take into account the shape of the input-output
model. In SPF, a Sobol index is viewed as the regression coefficient between the output of the
model and its pick-freezed replication. This replication is obtained by holding the value of the
variable of interest (frozen variable) and by sampling the other variables (picked variables). The
sampled replications are then combined to produce an estimator of the Sobol index. There is no
requirement about the knowledge of f , except the possibility to simulate the system which is of
course a severe constraint. Janon and al. (Janon et al., 2013, 2014) give asymptotic results when
the sample size tends to infinity. Estimators are convergent, satisfy a central limit theorem and
have robustness properties.

However, in most applications, the parameters or the inputs are dependent due to physical
constraints. The interpretation in this case is not easy. If we want to study the sensitivity with
respect to a component say X1, it is of course not sufficient to study only X1 as it appears
explicitly in the model. It contributes to uncertainty through the other components linked with
it. So, conventional methods of sensitivity analysis cannot be used with dependent inputs. The
classical orthogonal Hoeffding decomposition must be used with precautions. In particular the
notion of interaction between two components, valid for independent cases, is here meaningless.

Journal de la Société Française de Statistique, Vol. 157 No. 2 65-89
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2016) ISSN: 2102-6238



Pick and Freeze estimation of sensitivity index for static and dynamic models with dependent inputs 67

Several studies have been conducted in the case of dependent parameters. Mara and al.Mara and
Tarantola (2012), Xu and al. Xu and Gertner (2011) give approaches that are most often used
for linear models and specific forms of dependence. Da Veiga and al. Da Veiga et al. (2009)
use a very natural idea : when we have a sample (X (i),Y (i))i=1,...,N of the system, even if f is
unknown, we can estimate E(Y |X1) and the conditional moments of the output with respect to
some factor of interest : X1. The use of non parametric statistics for this kind of problem is
common in other fields such as econometrics, for instance LOESS method is quite easy in this
framework. Kutcherenko and al. Kucherenko et al. (2012) calculate a sensitivity index analogous
to Sobol’s formula, from a priori knowledge of probability distribution functions. To obtain it they
propose to transform the input into a Gaussian copula. Then this copula is used as a model. If we
take an input with uniform marginals and given correlation, there are a lot of models with various
properties, so the misspecification when one chooses a model can lead to very different sensitivity
indices.

A deep work on dependent inputs, starting from ideas of Stone et al. (1997) and Hooker (2007), is
the work of Chastaing and al. (Chastaing et al., 2011; Chastaing and Le Gratiet, 2015; Chastaing,
2013) perhaps limited by computation problems but giving a clear formulation of the dependence
role. This work is based on the existence of an Hoeffding representation under light conditions on
the density of the input:

f (X1, . . . ,X p) =
p

∑
j=1

f j(X j)+
p

∑
k, j=1
k 6= j

fk, j(X j,Xk)+ · · ·+ f1,...,p(X1, . . . ,X p) (1)

The classical orthogonality due to independence which allows easy computations of the Sobol
index is lost but a useful other form of orthogonality extends the classical one. Hierarchical
orthogonal decomposition means that a term indexed by k1, . . . ,kp is orthogonal to any term
indexed by a subset of {k1, . . . ,kp} and this property is sufficient to obtain (1).

In a time related framework such that :

Yt = ft ((X s)s=0,...,t) (2)

where f (·) : Rp(t+1) → R, and the input is (not necessarily independent) a vectorial process
(X s)s∈N ⊂ Rp. Few studies propose to study the sensitivity for dynamic inputs. The sensitivity
is calculated at each time step t without taking into account the dynamic behaviour of the input.
Indeed, the impact of the variability is not always instantaneous. Therefore it seems necessary
to develop a new method for dynamic dependent inputs. The Sobol index definition has been
modified in order to take into account the dynamic behaviour of the inputs. Each partial variance
is defined as the variance of the conditional expectation of the output with respect to a certain
time of observation (called memory) : (X t , . . . ,X t−k) of the input vector variable. So the index
is defined for each k ∈ [0, t] and each t. For stationary processes we prove in Grandjacques et al.
(2015) that the k−sensitivity is independent of k and converges as t→ ∞ at least for important
situations but probably not for all.

Our proposition is to find a transformation that turns dependent inputs into independent inputs
and that keeps the sensitivity invariant. It is then possible to apply the Pick and Freeze method to
the independent variables to calculate the Sobol indices.
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68 Grandjacques, Delinchant and Adrot

The article is decomposed into two parts. The first regards the static case, when the inputs are
vectorial. The second part develops the case where the inputs are dynamic.

In the static case, a method based on the conditional quantile method is proposed. This method
is the most general to simulate random vectors. Dependent variables with any distribution are
transformed into independent uniform variables and therefore very easily simulated. So, the Pick
and Freeze method can be applied.

A remark is done on the easiest case : the case of Gaussian inputs. The transformation is given
by a general multivariate regression both for input vectors that input processes. The Pick and
Freeze method is easily applied, the independent variables obtained by the transformation are also
Gaussian and so are easily generated.

When the information is not sufficient to fix a model, a second method is proposed based on
the copula model. This method allows to create a model of dependent variables from the given
marginal distributions and correlation matrix Ghosh and Henderson (2003). In the static part we
detail a copula type model and to complete Kucherenko et al. (2012) study, we show that the
choice of the copula is important, concerning sensitivity analysis. The sensitivities are computed
for different simple models and we deal with, specifically for sensitivity values, the difficulties
arising from the use of correlation as a dependence measure to build convenient models.

In the dynamic case, after to give the new definition of the Sobol index, some properties are given
for the most usual processes : the stationary processes. The calculation of the Sobol index for
dependent Gaussian processes is detailed.

When the processes are not Gaussian, Cario and Nelson (1996) propose a method called NORTA
(NORmal To Anything) that produces a random process with some desired properties (marginals
and different kind of correlations) via a transformation of a multivariate normal random process
easily generated them. This model will be used in the dynamic part to calculate sensitivity for
non Gaussian processes. We consider a copula type model to get back to Gaussian inputs where
sensitivity method of calculation is easily applied. It is chosen starting from each input marginal
function and starting from the correlation between X t and X t−1,X t−2, . . . .

2. Sensitivity for dependent inputs : static case

2.1. Sobol index and Pick and Freeze method : independent case

Let an input-output system given by :
Y = f (X) (3)

with Y ∈ R, X = (X1, . . . ,X p) ∈ Rp.

The closed Sobol index is defined as :

SXJ
=

Var
(
E(Y |XJ)

)
VarY

. (4)

with XJ = (X j1 , . . . ,X jq), J = { j1, . . . , jq} ⊂ {1, . . . , p}.
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Pick and Freeze estimation of sensitivity index for static and dynamic models with dependent inputs 69

Lemma 1. Sobol (2001): Let X = (XJ,X J̄) and Y = f (XJ,X J̄) with J̄ = {1, . . . , p}\ J.
If XJ and X J̄ are independent :

Var(E(Y |XJ)) = Cov(Y,Y XJ
)

with Y XJ
= f (XJ,(X J̄)′) where (X J̄)′ is an independent copy of X J̄ . Copy meaning a random

vector independent of X J̄ with the same distribution.

We can deduce the expression of the index SXJ
when XJ and X J̄ are independent :

SXJ
=

Cov(Y,Y XJ
)

VarY
(5)

A natural estimator consists in taking the empirical estimators of the covariance and of the variance.
Let a N−sample {(Y (1),Y XJ ,(1)), . . . ,(Y (N),Y XJ ,(N))} a natural estimator of SXJ

is :

ŜXJ

N =
1
N ∑

N
i=1Y (i)Y XJ ,(i)− ( 1

N ∑
N
i=1Y (i))( 1

N ∑
N
i=1Y XJ ,(i))

1
N ∑

N
i=1(Y (i))2− ( 1

N ∑
N
i=1Y (i))2

(6)

Janon et al. (2013) suggest an improvement using a symmetric form :

S̃XJ

N =
1
N ∑

N
i=1Y (i)Y XJ ,(i)− ( 1

2N ∑
N
i=1Y (i)+Y XJ ,(i))2

1
N ∑

N
i=1

(Y (i))2+(Y XJ ,(i))2

2 − ( 1
N ∑

N
i=1

Y (i)+Y XJ ,(i)

2 )2
(7)

In Janon et al. (2013) these estimators are shown to be consistent, and if E(|Y |4)< ∞, they satisfy
a central limit theorem. Asymptotically, the variance of ŜXJ

N is the lowest possible one.

2.2. General framework to reduce the dependent case to the independent case

Let Y = f (X) an input-output system and X = (X1, . . . ,X p). The Pick and Freeze method is
based on the Sobol lemma which requires independent inputs. To apply the Pick and Freeze
method to dependent inputs we look for an inversible transformation T : Rp→ Rp of the form
(XJ,X J̄) 7→ (XJ,W ) such that :
– W independent of XJ

– W is the projection of X on the orthogonal space of L2(XJ) then L2(X) = L2(XJ,W ).
Let us consider the random vector X = (XJ,X J̄), as previously.

Thus by definition W ∈ L2(X), it exists a function ψ such that :

W = ψ(XJ,X J̄) = ψX J (X J̄)

and
X J̄ = ϕ(XJ,W ) = ϕX J (W )
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70 Grandjacques, Delinchant and Adrot

Under this condition the input-output model Y = f (XJ,X J̄) can be rewrite as :

Y = f (XJ,X J̄)

= f (XJ,ψ−1
X J (W ))

= h(XJ,W )

Thus to compute the sensitivity SXJ
, the Pick and Freeze method is applied to the model h where

the inputs (XJ,W ) are independent. Indeed :

E
(

f (XJ,X J̄)|XJ
)
= E

(
h(XJ,W )|XJ) (8)

2.3. General case : the conditional quantile method

We now suppose that X has a density g with respect to the Lebesgue measure.

Let:
G(xk|X1 = x1, . . . ,Xk−1 = xk−1) = Gk|1,...,(k−1)(x

k,x1, . . . ,xk−1)

= P(Xk < xk|X1 = x1, . . . ,Xk−1 = xk−1)
(9)

the conditional distribution of Xk when (X1, . . . ,Xk−1) are fixed. It results from the existence of g
that all these conditional distributions are well defined.

Lemma 2. Lévy-Rosenblatt (Rosenblatt, 1956) : Let (U1, . . . ,U p) the random variables defined
for 1≤ k ≤ p such that :

Uk = Gk|1,...,(k−1)(X
k,X1, . . . ,Xk−1) (10)

then (U1, . . . ,U p) are uniform and independent random variables.

Proof 1. The proof is quite obvious

P(U i ≤ ui, i = 1, . . . , p) =
∫
{U,U i≤ui}

. . .
∫

Gp|1,...,(p−1)(x
p,x1, . . . ,xp−1)dxp . . .

∫
G1(x1)dx1

=
∫ uk

0
. . .
∫ u1

0
duk . . .du1

by definition of conditional distributions and chain property.

Thus Uk is a function of (X1, . . . ,Xk).

In order to simplify the definition of inverse functions, we make a (weak) assumption on g.

Let C = closure{x, g(x)> 0} and assume:

g(x)> 0 if x ∈ interior(C ) (11)

From (11), Gk|1,...,(k−1)(x
k,x1, . . . ,xk−1) is a strictly increasing continuous function from R to

[0,1] for every (x1, . . . ,xk−1). Thus G−1
k|1,...,(k−1) is well defined.
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So from (11) we get by induction :

Xk = G−1
k|1,...,(k−1)(U

k,X1, . . . ,Xk−1)

= G−1
k|1,...,(k−1)(U

k,X1(U1), . . . ,Xk−1(U1, . . . ,Uk−1))

noted for simplicity :
Xk = G−1

k|1,...,(k−1)(U
k,U1, . . . ,Uk−1) (12)

So for h ∈ L2(X1, . . . ,Xk), k ∈ [0, p] :

h(X1, . . . ,Xk) = h(X1(U1),X2(U1,U2), . . . ,Xk(U1, . . . ,Uk))

= l(U1, . . . ,Uk)

where l is a square integrable function.

Thus by recurrence, we see that for all k ∈ [1, p] :

L2(X1, . . . ,Xk) = L2(U1, . . . ,Uk) (13)

The space L2(U1, . . . ,Uk) is splitted into two spaces : L2(U1, . . . ,Uk−1)⊕L2(Uk), where (U1, . . . ,Uk−1)
and Uk are independent.
So L2(X1, . . . ,Xk) is splitted into two spaces : L2(X1, . . . ,Xk−1)⊕L2(Uk).

As a consequence, we are in the situation of the part 2.2 :

Lemma 3. The space L2(U1, . . . ,Uk) = L2(X1, . . . ,Xk) for every k and so we have the equality
of conditional expectations :

E(·|X1, . . . ,Xk) = E(·|U1, . . . ,Uk)

Now :

Y = f (X1, . . . ,X p) (14)

= f (X1(U1), . . . ,X p(U1, . . . ,U p)) (15)

= f̃ (U1, . . . ,U p) (16)

and by the lemma (3) :
SU1

= SX1
(17)

where SU1
is given by

Var
(
E
(

f̃ (U1, . . . ,U p)|U1
))

Var(Y )
, f̃ given by (16),

Thus for a specific ordering, say (X1, . . . ,X p) we can only compute the sensibilities as
(SX1

, SX1X2
, . . . , SX1...X p

).

Thus if we want to compute all first order sensitivity indices SXk
with k = 1, . . . , p, we choose an

order among the (p−1)! possible beginning by Xk.

If we want all second order sensitivity indices we need exactly
p(p−1)

2
different orders and so

on, if we want SX j1 ,...,X jq
we have to take an order beginning by ( j1, . . . , jq).
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72 Grandjacques, Delinchant and Adrot

Example : Let p = 2. The input vector is assumed to be : X = (X1,X2) defined by a uniform
distribution on the triangle:

D =

{
0≤ x1,x2 ≤ 1
x1 + x2 ≤ 1

and the input-output model is :
f (X1,X2) = X1 +X2

We compare the index SX1
calculated directly and the index SU1

using the transformation T−1

such that : (U1,U2)
T−1

−−→ (X1,X2).

To avoid all confusions with the indices, the square of variables is denoted in brackets (.)2.

Let us calculate U1 and U2 and deduce X1 and X2 :

U1 = G(X1) = 2X1− (X1)2 implies X1 = 1−
√

1−U1

U2 = GX2|X1(X2) =
X2

1−X1 11[0,1−X1] so X2 =U2
√

1−U1

The density of (X1 +X2) is 2(x1 + x2)110<x1+x2<1 and its variance
1
18

.

E(X1 +X2|X1) =
1+X1

2
and Var(

1+X1

2
) =

1
72

, thus the indices values are :

SX1
= SX2

= 1/4

Now if we use the function f̃ (U1,U2) = 1−
√

1−U1 +U2
√

1−U1 :

E
(

f̃ (U1,U2)|U1)= 1−
√

1−U1 +
1
2

√
1−U1 = 1− 1

2

√
1−U1

Var
(

1− 1
2

√
1−U1

)
= 1/72

So : SU1
= SX1

.
But we can notice that SU2 6= SX2

. To calculate SX2
we need to reorder the variables.

The Hoeffding decomposition of f̃ is obtained by centering
√

1−U1 and U2 :

f̃ (U1,U2) =
1
3
− 1

2

(√
1−U1− 2

3

)
− 2

3

(
U2− 1

2

)
+

(
U2− 1

2

)(√
1−U1− 2

3

)

SU1,U2
can be interpreted as an interaction sensibility between U1 and U2. The sensitivity with

respect to X2 depends on U1 and U2 so there is no obvious interpretation in terms of (X1,X2) of
this interaction.
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Pick and Freeze estimation of sensitivity index for static and dynamic models with dependent inputs 73

2.3.1. Pick and Freeze estimation and conditional quantile method

Starting from Y = f (X1, . . . ,X p) we have built a model Y = f̃ (U1, . . . ,U p) using a transformation
T : X 7→U from Rp to Rp.

The use of conditional quantile functions is the most general key to simulate any random vector.
If Gk|1,...,k−1 is known for every k, it can be possible to simulate X (i) using the simulation of
U (i) = (U1,(i), . . . ,U p,(i)) then solving this equation recursively :

Gk|1,...,k−1(x
k,(i),X1,(i), . . . ,Xk−1,(i)) =Uk,(i)

when the solution is X1,(i).

So we start with a simulation of U to obtain a simulation for X .

Algorithm 1 Quantile method
Require: N,Gi|1,...,(i−1) for all i = 1, . . . , p
1: U = matrix(0,ncol = N,nrow = p) ; U ′ = matrix(0,ncol = N,nrow = p)
2: X = matrix(0,ncol = N,nrow = p) ; X ′ = matrix(0,ncol = N,nrow = p)
3:
4: U ∼U {Simulation of a sample of uniform variables of size N}
5: U ′ ∼U {Simulation of a second sample of uniform variables of size N}
6:
7: X [1, ] = Solve (G1(X) =U [1, ])
8: X ′[1, ] = X [1, ] {X [1, ] is frozen}
9: for i = 2 to p do

10: for j = 1 to N do
11: X [i, j] = Solve

(
Gi|1,...,(i−1)(X) =U [i, j]

)
12: X ′[i, j] = Solve

(
Gi|1,...,(i−1)(X) =U ′[i, j]

)
13: end for
14: end for
15:
16: Y = η(X) {Sample of size N with the variable X1[1, ] frozen}
17: Y X = η(X ′) {Sample of size N with the variable X1[1, ] frozen}
18: return Y,Y X

Thus the algorithm to estimate SX1
is as follows:

1. Simulate (p− 1)−samples (U2,(i))′, . . . ,(U p,(i))′), i = 1, . . . ,N of uniform independent
variables.

2. Main step: Solve equations recursively :

Gk|1,...,k−1((x
k,(i))′,(x1,(i))′, . . . ,(xk−1,(i))′) = (Uk,(i))′ i = 1, . . . ,N

Let (Xk,(i))′ be the solution, k = 2, . . . , p ; i = 1, . . . ,N and for
k = 1, G1(X1,(i)) =U1,(i)

The Newton or Quasi Newton method is easy to apply here to solve these one dimensional
equations, for Gk|1,...,k−1 are continuous, strictly increasing functions of xk (Habegger et al.,
2010).
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3. Compute Y (i) and Y XJ ,(i) using as inputs (X1,(i), . . . ,X p,(i)) or
(X1,(i),(X2,(i))′, . . . ,(X p,(i))′)

4. With these outputs we can estimate ŜX1
using formula (6) or (7).

If we want to compute all first order sensitivity indices SXk
with k = 1, . . . , p, we choose an order

among the (p− 1)! possible beginning by Xk. The computation complexity of this method is
higher ( O(p2)) that for the independence case (O(p)) and so the time of computation increase
fastly with the dimension of the input vector.

2.4. The Gaussian case

Let X a Gaussian vector and Y = f (X) a input-output model. The multi-regression of X J̄ onto XJ

is written as :
X J̄ = ΛXJ +W (18)

where W is a Gaussian vector independent of XJ and Λ a (p−q)×q matrix given by :

Λ = Γ
J̄J(ΓJJ)−1 (19)

with Γ
J̄J = E(X J̄(XJ)∗) and Γ

JJ = E(XJ(XJ)∗).

The Pick and Freeze method can be applied to the independent variables (XJ,W ) of the model h.
Indeed :

f (XJ,X J̄) = f (XJ,ΛXJ +W )

= h(XJ,W )

Levy-Rosenblatt method in the Gaussian case :
For Gaussian distribution, we define sequentially (10) :

Uk = G(Xk|X1, . . . ,Xk−1) = Φ

(
Xk +∑

k−1
j=1(Ck j/Ckk)(X j)√

C/Ckk

)
(20)

where Cp
k j is the cofactor of Ck j in Cp when Cp is the restriction of the covariance matrix

C = (Ck j)k=1,...,p; j=1,...,p to 1≤ j,k ≤ p, and Φ the Gaussian repartition.

W k = Φ
−1

(
Xk +

k−1

∑
j=1

(Ck j/Ckk)(X j)

)√
C/Ckk is another way to get (18).

2.5. Incomplete information : copula as models and the Pick and Freeze method

When the information on the inputs is not sufficient to build a model, models are chosen in a
class of models taking into account this partial information. The choice of a model is supported
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by some practical properties. We detail here a class of model which have good properties for
sensitivity. These models are the copula one, well adapted to the Pick and Freeze method.

Copulas are used to build models when the information extracted from the data is incomplete and
reduced to the p repartitions F1, . . . ,F p of the p random variables of interest (in our case the input
of the system) (Nelsen, 2013; Sklar, 1959). The correlation of the input vector is an information,
often easy to obtain and that the metamodel has to incorporate. This led to correlation constrained
copulas. Other constraint can be incorporated.

We show that the Pick and Freeze method is adapted to this kind of model and also that sensitivity
is not always well associated to correlation.

Suppose that we know F1, . . . ,F p the distribution functions of X = (X1, . . . ,X p) and R its correla-
tion.

Definition 1. Let (F1, . . . ,F p,R) and R a correlation matrix given. We say that Np(0,ϒ) with ϒ

a correlation matrix, is a Gaussian copula for (F1, . . . ,F p,R) if and only if :{
X i = (F i)−1 ◦Φ(Zi), i = 1, . . . , p
the correlation matrix of X is R

(21)

where Zi is a Gaussian variable and φ the Gaussian distribution.

Once R is given, ϒ can be computed.

By definition the p× p matrix R = (Ri, j) i=1,...,p
j=1,...,p

is :

Ri, j = Cor(X i,X j) (22)

is given and thus we want to compute ϒ = (ϒi, j) i=1,...,p
j=1,...,p

(the correlation matrix of the Gaussian
vector Z) so that R is the correlation matrix of X by a calculation of the type :

E(X iX j)=
1

2π
√

1− (ϒi, j)2

∫∫ (
(F i)−1 ◦Φ

)
(zi)
(
(F i)−1 ◦Φ

)
(z j)exp

− 1
2(1−(ϒi, j)2)

((zi)2−2ϒi, jziz j+(z j)2

dzidz j

(23)

From now, in order to simplify our example we consider uniform variables (X1, . . . ,X p).

In this case R and ϒ are linked by a simple form Biller and Ghosh (2006):

ϒ
i, j = 2sin

(
πRi, j

6

)
(24)

Note that |ϒi, j|= 1⇔ |Ri, j|= 1, ϒi, j = 0⇔ |Ri, j|= 0.

Numerically :
ϒ

i, j = 1.047Ri, j−0.047(Ri, j)3 (25)

is a good approximation. Thus this correspondence between Ri, j and ϒ
i, j is well defined.

R is given as a correlation matrix but nothing says that (in p dimensions) ϒ = (ϒi, j) i=1,...,p
j=1,...,p

is a
correlation matrix (positive type matrix). This point is related to the following definition.
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Definition 2. Let (F i)i=1,...,p a family of marginal distributions and R a correlation matrix. We
say that ((F i)i=1,...,p,R) is feasible as a Gaussian copula if and only if there is a Gaussian vector
Z = (Zi)i=1,...,p whose correlation matrix is ϒ, satisfying :

X i = (F i)−1(Φ(Zi)) for i = 1, . . . , p (26)

where X has R as correlation.

We don’t discuss here the problem of feasibility. If ϒ is not positive it is often possible to find
correlation matrices "close to" ϒ (Ghosh and Henderson, 2006).

Let us now show how to apply Pick and Freeze method for a copula model.
For Zi = Φ

−1 ◦F i(X i) is a monotone bijection for all J ⊂ {1, . . . , p} and every output

f̃ (Z1, . . . ,Zp) = f (Φ−1 ◦F1(X1), . . . ,Φ−1 ◦F p(X p)) (27)

Then :
E( f̃ (Z1, . . . ,Zp)|ZJ) = E( f (X1, . . . ,X p)|XJ) (28)

Thus we can use the Pick and Freeze method on the Gaussian copula to compute all the sensitivities
for the model f (X).

In the following example, sensitivities of different copulas chosen as model taking into account the
partial information are compared in order to illustrate that for the same constraint of correlation,
the sensitivities can be different.

2.5.1. Example on the Ishigami model

Sensitivity is estimated by the Pick and Freeze method in all the cases. We have selected the
model of Ishigami, a classical toy model in sensitivity and optimisation studies defined as follows
:

Y = sin(X1)+7sin(X2)+0.1(X3)4 sin(X1) (29)

(X1,X2,X3) have a uniform distribution with support [−π,π].

The correlation matrix given is :

1 0 ρ

0 1 0
ρ 0 1

 and X2 is supposed (to simplify) to be independent

of the pair (X1,X3). We consider two distributions :
– case 1 : the Gaussian copula
– case 2 : the copula given by this density probability :

fα(x1,x2,x3) =
1

4π2 11[−π,π]2(x
1,x3)+αx1x3 (30)

fα is a density probability if |α| ≤ 1
4π2 . This condition implies that :

ρ = E(X1X2) =
4π3α

9
thus |ρ| ≤ π

9
.
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The sensitivity values are calculated by applying the method of conditional quantile and the results
are discussed with respect to different ρ values.

Case 1 : Gaussian copula :
Zi, i = 1,2,3 is defined by :

X i = π(2Φ(Zi)−1)

where X i is uniform on [−π,π]. The correlation ρ
′ of Z1,Z3 is given by :

ρ
′ = 2sin(

πρ

6
)

Following our previous results in section 2.4 we write the Ishigami model with independent
Gaussian variables Z1,Z2,W .
Z1 is defined by : (26) and W by the regression :

Z3 = ρ
′Z1 +

√
1− (ρ ′)2W with W ∼N (0,1)

Thus the input-output system is now :

Y = sin(π(2Φ(Z1)−1))+7sin(π(2Φ(Z2)−1))+0.1
(

π(2Φ(ρ ′Z1 +
√

1−ρ ′2W )−1)
)4

sin(π(2Φ(Z1)−1))
(31)

As X1 and X2 are independent we know that SX1
= SZ1

and SX2
= SZ2

.
To compute SX3

the expression (31) of Y .

Results related to ρ are plotted in figure : 1.

ρ = 0 corresponds to the case of independent variables.

Case 2 : fα copula :
The conditional quantile method is used to calculate the indices. First as X1 and X2 are

independent variables we have :

U1 =
X1/π +1

2
U2 =

X2/π +1
2

(32)

U1 and U2 are uniform independent variables.
U3 is defined such that :

U3 = FX3|X1(X3) =
1

2π
(X3 +π)+παX1 (X

3)2−π2

2

U3 is a uniform variable independent from U1 and U2.
Thus :

X3 =
−1+

√
1−8π2αX1(1−π2αX1−2U3)

4απX1 (33)
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TABLE 1. Sensitivity for Gaussian copula and fα copula, for different values of ρ

ρ SX1
SX2

SX3

copula fα 0 0.31 0.44 0
copula fα π/9 0.36 0.40 0.46

Gaussian copula 0 0.31 0.44 0
Gaussian copula π/9 0.30 0.50 0.08

The canonical formula for the Ishigami and the input given by the α−copula is obtained by the
substitution in (29). With this order 1,2,3 we can calculate the indices SX1

,SX2
,SX1X2

(X1 and X2

are independent in this case). If we want to compute SX3
we have to resume our work choosing

the order (3,2,1) for example :

U1 =
X3/π +1

2
U2 =

X2/π +1
2

(34)

and thus U3 is defined by :

U3 =
1

2π
(X1 +π)+παX3 (X

1)2−π2

2

The results are given in figure 1. We can only compare the results for 0≤ |ρ| ≤ π

9
, for instance in

table 1

These results show that the practitioner has to be cautious with the use of models with incomplete
information when sensitivities are computed. Correlation does not give, in any case, a very good
information on dependences when we compute the sensitivity of different inputs. For a same
correlation we get different copulas, which gives very different sensitivity results.

3. Sensitivity for vectorial stochastic process inputs

3.1. Sensitivity for vectorial stochastic process inputs and memories

Suppose that we consider an input-output system :

Yt = ft(X t , . . . ,X t−k, . . . ,X0), t ∈ N (35)

In the following section the following notations are chosen :
– (X t)t∈Z = (X1

t , . . . ,X
p

t )t∈Z a stochastic vectorial process of dimension p.
– If J = { j1, . . . , jq} ⊂ {1, . . . , p} and J̄ = {1, . . . , p} \ J, XJ

t = (X j1
t , . . . ,X jq

t ) is a process of
dimension q

– Xt,t−k = (X t ,X t−1, . . . ,X t−k) a p× (k+1) matrix.
– Γ

i, j
s,v = E(X i

sX j
v )

– Γ
i, j
bs,tc,v = {Γ

i, j
u,v,s≤ u≤ t} a vector of dimension (t− s+2) whose generic term is Γ

i, j
u,v.

Journal de la Société Française de Statistique, Vol. 157 No. 2 65-89
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2016) ISSN: 2102-6238



Pick and Freeze estimation of sensitivity index for static and dynamic models with dependent inputs 79

FIGURE 1. Sensitivity indices for different values of ρ
′ applied to the Ishigami model for the Gaussian copula and the

fα copula

The output process at time t can depend on its past instants Yt−h and also the past instants of the
input process X t−k. Due to this phenomenon of memory, it is not wise to calculate the sensitivity
at time t in relation to the input at time t but to calculate the sensitivity with respect to Xt,t−k.

Definition 3. k−sensitivity
The k−sensitivity is the Sobol index of Yt with respect to XJ

t,t−k for 0≤ k < t.
It is defined by :

SXJ

t,k =
Var

(
E(Yt |XJ

t,t−k)
)

Var(Yt)
(36)

The index is measured as the ratio of the conditional expectation of Yt when (XJ
t , . . . ,X

J
t−k) is

fixed on the total variance Yt .

Var
(
E(Yt |XJ

t,t−k)
)

is the square norm of the projection of Yt onto the space L2(XJ
t,t−k) defined by

L2(XJ
t,t−k) = {φ(XJ

t , . . . ,X
J
t−k), E

(
φ

2)≤ ∞}.

We can noticed that :
L2(XJ

t,t−k−1)⊂ L2(XJ
t,t−k)

So :
0≤ SXJ

t,k−1 ≤ SXJ

t,k ≤ 1

The instantaneous sensitivity corresponds to k = 0.
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Definition 4. Total sensitivity :
The total sensitivity is the sensitivity taking into account the whole past of the input XJ

t .
It is thus defined as :

SXJ

t =
Var(E(Yt |XJ

t ))

Var(Yt)
. (37)

So, we have :
SXJ

t,k ≤ SXJ

t 0≤ k ≤ t

SXJ

t,k is an increasing function of k. When k tends towards t SXJ

t,k converges to SXJ

t .

In practice we choose k as the value from which the index SXJ

t,k does not increase in a significant
manner. This heuristic value k is called useful memory in terms of sensitivity. So the definition is :

Definition 5. Let ε > 0 fixed. The ε−useful memory is defined as :

kε = in f
{

k ≥ 0, SXJ

t −SXJ

t,k ≤ ε

}
(38)

In applications, ε is of course chosen considering the fit quality of the input and also the statistical
errors made when estimating SXJ

k .

3.2. Stationary case

The input-output system (X t ,Yt) defines a stochastic process with values in Rp×R. We consider
now the case where this process (X t ,Yt)t∈N is stationary. This implies that (Yt)t∈N and (X t)t∈N are
stationary stochastic processes.

We consider the stationary case where

Yt = f (X t , . . . ,X0,X−1, . . .) (39)

and the special case :
Yt = f (X t , . . . ,X t−h)

h is the memory. h is fixed and f non depending on t

The total sensitivity is given by :

SXJ

t,∞ =
Var(E(Yt |{Xs,−∞≤ s≤ t}))

Var(Yt)
(40)

But by shift invariance SXJ

t,∞ does not depend on t :

SXJ

k ≤ SXJ

∞ (41)

In Grandjacques et al. (2015), the following intuitive relation is proved for some processes
(X t ,Yt) :
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lim
k→∞

SXJ

k = SXJ

∞ (42)

and if the process : Y ?
t = ft(X t , . . . ,X0) = f (X t , . . . ,X0,0, . . .) associated to the stationary process

Yt :

lim
t→+∞

lim
k→t

Var(E(Y ?
t |{Xs,−∞≤ s≤ t}))

Var(Y ?
t )

= S?,X
J

∞

Then :
S?,X

J

∞ = SXJ

∞ (43)

3.3. Stochastic Gaussian processes

We can apply to Gaussian processes the Pick and Freeze method introduced in section 2.4. To
compute for instance SXJ

t,k we use the decomposition :

XJ̄
t,t−k = Λbt−k,tc,bt−k,tcXJ

t,t−k +Wt,t−k (44)

with Λt,t given by :

Λbt−k,tc,bt−k,tc =
(

Γ
JJ
bt−k,tc,bt−k,tc

)−1
Γ

JJ̄
bt−k,tc,bt−k,tc (45)

Γ
JJ
bt−k,tc,bt−k,tc is invertible.

For each t we apply the Pick and Freeze method to :

Yt = ft(XJ
t ,Λbt−k,tc,bt−k,tcXJ

t,t−k +Wt) (46)

= gt(XJ
t ,Wt) (47)

with XJ
t and Wt independent vectors.

3.3.1. Example of toy models for Gaussian inputs

We study two stationary non linear toy models given by:

Yt = 0.5Yt−1 +0.3X1
t X2

t (48)

Yt = X1
t X2

t − arctan(X2
t ) (49)

X1
t ,X

2
t is a VAR(1) stationary process given by:(

X1
t

X2
t

)
=

(
0.1 0.4
0.8 0.2

)(
X1

t−1
X2

t−1

)
+ωt (50)
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where ωt is a stationary Gaussian noise of covariance matrix Θ =

(
0.1 0
0 0.1

)
.

Indices are estimated with samples of size N = 10000. Results are given in figures 2 and 3.

All the indices converge quickly to a constant. The useful memory defines for ε = 0.02 is different
according to the model and the variable. It is k = 4 for the model (48) and k = 2 (variable X1) or
k = 3 (variable X2) for the model (49).

FIGURE 2. Plot of Sobol indices applied to model (48) in function of k .

FIGURE 3. Plot of Sobol indices applied to model (49) in function of k.
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3.4. Sensitivity and partial information for non Gaussian vectorial process inputs

3.4.1. Non Gaussian input process

A lot of variables have non Gaussian distribution. For example some climatic variables (temper-
ature, wind), heating or energy source variables are usually bounded. If we want to study the
impact of extreme cold or even a wave of heat on the indoor temperature, we cannot use Gaussian
variables because they have too heavy tails. It is the same for phenomena which present two main
values. The density in this case is bimodal.

Starting from data, the construction of a non Gaussian stochastic process is difficult and all the
more in a multivariate context. Thus, as often in these situations, the choice of the model is
constrained by some criteria. It must take into account some of the information which can be
extracted from the data and which seem the most important to the practitioner. These informations
can be qualitative or quantitative or mixed. For instance these informations concern :
– the marginal distribution of the inputs and the correlations at a fixed time between the

p−components
– the time dependence structure
For marginal distributions, qualitative information is, for instance, the number of modes (important
regimes). The semi-qualitative information is for instance the boundedness of the support of
the distribution. The quantitative informations can be the mean, the variance,the skewness, the
kurtosis. Information on dependence can be translated in terms of some correlation coefficients
or in terms of Markovian properties. Once these properties extracted or estimated from the data
we have to choose the input model and to be sure concerning our goals that it allows to compute
sensitivities with a quite good approximation. This last point is of course an important constraint.

The most classical problem is the following, which can be set in terms of constrained copulas
: suppose we want to build a stationary input process X t with fixed marginals (F1, . . . ,F p) and
some fixed correlations for instance : Cor(X t ,X t) and Cor(X t ,X t−1). These correlations are in
fact the correlations estimated with the data. The fixed marginals can be estimated using the data
in a parametric family, large enough to take into account qualitative and quantitative properties
according to the practitioner’s experience on sensitivity.

Thus we need to choose a family parametrized for instance by the first four moments of the
distribution, flexible enough to allow properties as : boundedness, bimodality, light and heavy
tails. This is the case of some families such as Pearson or Johnson one Johnson (1949). Their
properties in relation with our work are detailed in the appendix.

Let the correlation matrices Rq defined by :

Rq = Cor(X t ,X t−q) for 0≤ q≤ Q

Definition 6. Let R = {Rq,0 ≤ q ≤ Q} a correlation matrix given. We say that it is a problem
(F ,R) feasible if there is a stationary stochastic process X t such that its p marginals are given by
F = (F1, . . . ,FQ) and the Q+1 first correlations are given by R.

Until to day there are only partial results on this problem Cario and Nelson (1996). The most
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usual way is to try to build a model associated to a Gaussian one (modified to be feasible) and
which moreover allows to compute sensitivity indices.

The given information on X t is (F1, . . . ,F p) the p marginal distributions of the stationary process
X t and the correlation matrix R = {Rq,0≤ q≤ Q} with Rq = (Ri, j

q )1≤i, j≤p.
Let Zt∈Z a Gaussian stationary process defined by :

Zi
t = (Φ−1 ◦F i)(X i

t ) (51)

We look for the correlation matrix ϒ = (ϒ0, . . . ,ϒQ) of Zi
t in order that for 0≤ q≤ Q :

ϒ
i, j
q = Cor

(
((F i)−1 ◦Φ)(Zi

t),((F
j)−1 ◦Φ)(Z j

t−q)
)

(52)

This can be easily done by computing integrals analogous to (23), taking ϒ
i, j
q instead of ϒ

i, j.

Thus ϒ is now fixed. If ϒ is a positive definitive matrix, it gives the first Q correlation of the
process Zt . We discuss later the case when ϒ is not positive definite.

The class of stationary Gaussian VAR(Q) processes can be associated to ϒ. This class has the
property to allow easy computations of sensitivities by the Pick and Freeze method.

Let
Zt = A1Zt−1 + · · ·+AQZt−Q +ωt

with E(ωtω
∗
t ) = Θ, ωt being a Gaussian white noise.

A1, . . . ,AQ can be quite easily computed from (ϒ0, . . . ,ϒQ) and Θ.
Indeed all VAR(Q) processes can be rewritten as a VAR(1) process :

V t = BV t−1 + εt

with V t = (Zt ,Zt−1, . . . ,Zt−Q−1)
∗ and B =


A1 A2 A3 . . . AQ

Ip 0 0 . . . 0

0 Ip
. . . . . .

...
...

. . . Ip 0 0
0 . . . 0 Ip 0

 and ε = (ωt ,0, . . . ,0)∗.

Zt a VAR(Q) Gaussian process. Suppose to simplify, that Q = 1 :

A1 = ϒ1ϒ
−1
0 (53)

E(ωtω
∗
t ) = ϒ0−ϒ1ϒ

−1
0 ϒ1 (54)

Thus the process Zt can be easily simulate.

Zt defines a VAR(Q) Gaussian process, which is the VAR(Q) Gaussian copula associated to X t

by :
X i

t =
(
(F i)−1 ◦Φ

)
(Zi

t) (55)

It may happen that ϒ is not a correlation matrix (matrix not positive definite) leading to a stationary
process Zt . There are, until to day, only empirical methods (Biller and Nelson, 2005, 2003) to
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overpass this obstacle. The most efficient is to take a smaller Q (in general Q is chosen by an
Akaike criterion) and to change R slightly.

Now to compute the sensitivity, we use the following basic facts as previously in the static case :
T i = (F i)−1 ◦Φ is a monotone function.

Thus we have the equality of the L2 spaces :

L2(Z j1
t1 , . . . ,Z

jq
tn ) = L2(X j1

t1 , . . . ,X
jq

tn ) (56)

for every (t1, . . . , tq) and ( j1, . . . , jq) for every q.

Let Yt the output of the system :

Yt = f (X t ,X t−1, . . . ,X t−k)

for instance then :

Yt = f (T−1(Zt), . . . ,T−1(Zt−k))

= f̃ (Zt , . . . ,Zt−k)

where T (Zt) =
(
(F i)−1 ◦Φ(Zi

t)
)

i=1,...,p Thus :

E
(

E
(
Yt |X1

t , . . . ,X
1
t−s
)2
)
= E

(
E
(
Yt |Z1

t , . . . ,Z
1
t−s
)2
)

(57)

for every s.

We can compute : E
(
Yt |X1

t , . . . ,X
1
t−s
)

using the Pick and Freeze method already defined for the
Gaussian process (Zt)t∈Z in section 3.3.

Let us give an example.

3.4.2. Example

We study a non linear stationary model given by:

Yt = 0.5Yt−1−0.2sin(U2
t )+0.2U1

t (58)

where U t is a stationary process with uniform components. We suppose that the correlation
matrices are :

R0 =

(
R11

0 R12
0

R12
0 R22

0

)
=

(
0.063 −0.011
−0.023 0.061

)
R1 =

(
R11

1 R12
1

R12
1 R22

1

)
=

(
−0.003 0.023
0.047 0.003

)

The correlation matrices of the Gaussian process must verify : ϒ
i j
k = 2sin(

πRi j
k

6
), where ϒ is the

correlation of the process such as : Zi
t = Φ

−1(U i
t )
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So :

ϒ0 =

(
0.067 −0.012
−0.024 0.064

)
ϒ1 =

(
−0.029 0.024
0.049 0.003

)

One of the corresponding Gaussian processes might be :

Zt =

(
0.1 0.40
0.80 0.20

)
Zt−1 +ωt

where ωt is a Gaussian noise of covariance matrix Θ =

(
0.1 0
0 0.1

)
So to apply the Pick and Freeze method, the model used is :

Yt = 0.5Yt−1−0.2sin(Φ(Z2
t ))+0.2Φ(Z1

t )

where Φ is the distribution function and Z a Gaussian process defined as previously. To separate
the variables, we use the method developed in section 3.3.

The results are present in figure 4.

FIGURE 4. Plot of Sobol indices applied to model (58)
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4. Conclusion

We give a general framework for computing sensitivities for dependent inputs. In the static case,
for dependent inputs the definition of the sensitivity indices remains the same as for independent
inputs. But in the dynamic case, in order to take in consideration the temporal dependence, the
definition is slightly modified. We take into account the notion of memory related to sensitivity,
"memory" being used in a sense linked to physical inertia. The useful memory is the instant when
the index does not change significantly.

We study transformations of the input whose image is an input with independent components and
for which some conditional expectations are invariant. This property allows to use the Pick and
Freeze method to get the sensitivities.

When the inputs are Gaussian we first consider the static case, then the dynamic case and the
different ways to solve the problem.

When the inputs are not Gaussian, in the static case we use the conditional quantile functions.
They are a nodal point for the sensitivity studies and simulations. This method is the same as
the one basic used to simulate random vectors in general. The output Y takes the canonical
form Y = f̃ (U1, . . . ,U p) where (U1, . . . ,U p) are p uniform (or Gaussian) independent random
variables. This canonical form allows to apply the Pick and Freeze method but also all the more
or less classical methods to compute sensitivity starting from Hoeffding formula.
We have to take precautions with the order in which we calculate the index. When we want to
calculate the index of each variable we have to start with the variable listed first and then reorder
the list and so on for the other variables.
In some practical case where the information is not sufficient to allow the choice of a model,
we use the copulas and often the Gaussian copulas. A formula links the correlations of the non
Gaussian variable and the correlations of the Gaussian variable on which we can apply the Pick
and Freeze method.
In practical situations the notion of copula model has to be managed carefully. For the Ishigami
example we have shown that the correlation used to represent the dependence between variables
can be very weak for sensitivity studies.

In the dynamic case we use the copula model to go back to the Gaussian case. The model chosen
is an extension of the Gaussian copula applied to stochastic processes. The correlations used
for the model of the non Gaussian process X t are those between X t and X t−1,X t−2, . . . . These
correlations define the dynamics of the process.

In the case of stochastic process inputs and sensitivity estimation the same caution is required.
The specification of inputs becomes in application very important and difficult. Modelisation
can be improved using some quantitative and qualitative information, essential for the practical
problem and which can be extracted from the input data. For instance, for a practitioner, instead
of using the complete probability distribution of the inputs, the information can be summarized by
the mean, the variance, the skewness and the kurtosis of all the marginal functions of the inputs.
This is the case for the copulas with Johnson (or Pearson) distribution.
Finally, we could apply the conditional quantile function method to a dynamic case but if the
processes have a too important memory the computation is heavy.
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5. Appendix

Processes having marginal distributions from the Johnson translation system are defined by a
cumulative distribution function FX such as:

FX(x) = Φ(γ +δ f |(x−ξ )/λ |) (59)

where γ and δ are shape parameters, ξ location parameter, λ a scale parameter and f ()̇ is one of
the following function :

f (y) =


log(y) lognormal family
log(y+

√
y2 +1) unbounded law

log(
y

1− y
) bounded law

y normal family

(60)

Φ being the Gaussian repartition. (γ,δ ,ξ ,λ ) system is equivalent to the mean, variance, skewness,
kurtosis one. The maximal number of modes is 2.

Let X a random variables with distribution F and Z a Gaussian normal variable such that :

F(X) = Φ(Z) (61)

equality between uniform variables.

If X is a Johnson distribution thus Z = γ +δ f (
X−ξ

λ
) or X = ξ +λ f−1(

Z− γ

δ
) well defined for

f is a strictly increasing function. These formula are of course simpler than (61).

Thus the construction of the model is done estimating from the data for every j ; ( f j,ξ j,γ j,λ j,δ j).
We have at this stage taken into account the main qualitative features of every F j, j = 1, . . . , p
(maximum likelihood can be the tool for estimation).
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