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Abstract: In this paper we provide a comprehensive analysis of the Bovine spongiform encephalopathy (BSE) epidemic
evolution in Great-Britain. Our study is based on a multi-type branching process model and on different stochastic and
statistical tools. We first focus on the growth phase until the first sanitary control measure in 1988, and provide an
estimation of the unknown parameters of our model, using a Bayesian approach. We then consider the decay phase of
the epidemic and estimate its new infection parameter using a frequentist approach, which enables us to predict the
future incidences of cases, the epidemic extinction time and the total epidemic size. We finally evaluate the risks that
would be caused by a very long decay phase. For this purpose we condition the process on a very late extinction, and
thanks to an estimation of the infection parameter, we predict the evolution of the epidemic in this worst-case scenario.

Résumé : Dans cet article nous proposons une analyse complète de l’évolution de l’épidémie d’encéphalopathie
spongiforme bovine en Grande-Bretagne. Notre étude est basée sur un modèle de processus de branchement multitype
et sur différents outils probabilistes et statistiques. Nous nous focalisons en premier lieu sur la phase de croissance
jusqu’à la première mesure de contrôle sanitaire en 1988, pour laquelle nous proposons une estimation des paramètres
inconnus de notre modèle via une approche bayésienne. Nous considérons ensuite la phase de déclin et estimons
par une approche fréquentiste le paramètre d’infection afférent, ce qui nous permet de prédire l’incidence des cas à
venir, le temps d’extinction de l’épidémie ainsi que sa taille totale. Pour finir, nous évaluons les risques qui seraient
conséquents à une très longue phase de déclin. Dans ce but nous conditionnons le processus à une extinction très
tardive, et prédisons grâce à une estimation du paramètre d’infection l’évolution de l’épidémie dans le cas de ce
scénario le plus défavorable.
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102 Jacob and Pénisson

1. Introduction

BSE (Bovine Spongiform Encephalopathy), also known as “mad cow disease”, was first officially
identified in 1986 (Wells et al., 1987) reached its peak in 1992 (36682 cases) and is obviously now
in its decay phase. This disease, the epidemiology of which is now well-known (see e.g. Anderson
et al., 1996) is due to a change in the early 1980s of the rendering process by which livestock
carcasses are converted to protein supplements for livestock feed. It is a fatal neurodegenerative
transmissible disease in cattle due to the abnormal form of the protein prion. It causes a spongy
degeneration in the brain and spinal cord leading to death. The main routes of transmission are
horizontal via the oral route by protein supplements (MBM (Meat and Bone Meal), milk replacers)
and maternal from a cow to its calf (Donnelly, 1998). It may be transmitted to human by the
food route. The human disease, called vCJD, was first detected in 1995 and caused 177 deaths in
the United Kingdom until July 31th, 2014. The key measure for controlling BSE was the ban of
feeding ruminants with ruminant-derived proteins in July 1988. This measure was then extended
in 1996 to mammalian-derived proteins and to all farmed livestock (HMSO, 1996).

Our goal is to provide a methodology taking into account the randomness of the main factors of
propagation of the disease over time, and which would enable to quantify the infection over time
according to the different sources (feed, maternal, excretion). This should allow to evaluate the
efficiency of the key feed ban law (July 1988). Moreover even if now the disease should obviously
soon come to an end (2 cases in 2012, 3 in 2013, and 1 in 2014, World Organisation for Animal
Health, 2014), this methodology should lead to more accurate and longer-term predictions than
those given by the classical back-calculation methods. More generally, the methodology that we
intend to develop should be useful to analyze and predict any epidemic in a large population with
a large incubation period respectively to the population dynamics.

These purposes suppose a stochastic modeling that takes into account the population dynamics
(births and deaths) and the disease dynamics, and allows an estimation of the unknown parameters
based only on the yearly notified infectives (observations given in Subsection 2.1). To this end,
we first build in Subsection 2.2 a non classical multitype branching process in discrete time
which describes more particularly the time evolution of the subpopulation of infectives within a
finite population, and which takes into account their time of infection. Then, in Subsection 2.3,
assuming a rare disease at the initial time and the probability for an animal to be exposed to a given
infective inversely proportional to the population size, we recursively derive from this process, as
the initial size of the population increases to infinity, a limit process on the incidence of clinical
cases. We show that this limit process may be written either as a single-type Markovian process
with a Poissonian transition distribution whose order d depends on the largest potential incubation
time, or as a multitype branching process with d types and Poisson offspring distributions. The
limit process has the advantage of depending only on the incidence of clinical cases at successive
times, which corresponds to the observations. We then estimate in Subsection 2.4, thanks to a
Bayesian approach using the whole epidemic until 2007, the unknown parameters of the limit
process (the efficiency of the MBM ban in 1988, the infection parameters via the horizontal route,
the incubation period distribution, and the initial cases numbers from 1982 to 1986. Due to the
time-inhomogeneity of the process and the number of unknown and heterogeneous parameters
including initial data, the Bayesian approach is here the most convenient approach. We show in
particular the good efficiency of the MBM ban in 1988, which leads to a single remaining infection
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The BSE epidemic in GB: a generic example of risk assessment during the growth and decay phases 103

parameter θ corresponding to the mean number of infectious aggregates of prion produced by an
infectious alive animal.

We then focus in Section 3 on the decay phase starting from 1989, and during which the
limit process can be considered to be time-homogeneous. It then belongs to the general class of
multitype BGW (Bienaymé-Galton-Watson) processes. This section is aimed at predicting the
future spread of the disease. For this purpose we first provide in Subsection 3.2 an estimation
of θ , the other parameters being deduced from the estimations presented in Section 2. Due to
the time-homogeneity of the process and the single dimension of the parameter, we choose here
the frequentist approach, namely a WCLSE (Weighted Conditional Least Squares Estimator).
Combined with the numerous theoretical properties of the multitype BGW process describing
the epidemic in this phase, this enables us to provide the asymptotic properties of the estimator
as the number of cases from 1989 to 1997 grows to infinity (strong consistency and asymptotic
normality) and to accurately predict the future spread of the epidemic from 2014, namely its speed
of extinction, its extinction time distribution, the future incidences of cases and of infected cattle,
and the total epidemic size (Subsection 3.3).

Then, in order to investigate the worst-case scenario of an extremely late extinction of the
epidemic, we introduce in Section 4 the so-called Q-process, obtained by conditioning the
epidemic process on a very late extinction. In the frame of this Q-process, we estimate θ by a
WCLSE (Subsection 4.2). Then thanks to its asymptotic properties as time tends to infinity (strong
consistency and asymptotic normality), we predict by simulations of the estimated Q-process
the behavior of the "most dangerous" evolution of the epidemic, namely the future incidences of
infectives and infected cattle (Subsection 4.3).

2. Modeling the whole epidemic: time-inhomogeneous setting

2.1. Observations

They consist in the number of cases of BSE per year reported in Great Britain until 2013 by the
World Organisation for Animal Health (2014) (see Table 1), where we detail the observations until
1987, attributing 9 cases in 1986, 1 case in 1985 and 0 case before 1985. Recall that the disease
was notifiable from 1988, and that different types of active surveillance began since 1999, in
particular the most efficient one required by the European Union that started in 2001 (Department
for Environment, Food & Rural Affairs, 2014). Hence the accuracy of the observations increases
with time. In particular, the first observations simply concern the clinical status while the current
observations from 2001 concern the infectious stage including the clinical status. However we
will not take into account this accuracy evolution when estimating unknown parameters.

2.2. Epidemic branching process in a finite population

The disease propagates within each animal according to the steps described in Figure 1, where an
animal E1 has just been infected and an animal I1 has just been infectious. Contrary to the usual
Markovian approach which forgets the time already spent in the state E, the steps E1 and I1 are
crucial for a general modeling approach of the incubation process when the distribution of the
incubation time is a priori unknown. While the infection process may be assumed instantaneous
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104 Jacob and Pénisson

TABLE 1. Yearly number of cases of BSE reported in Great-Britain from 1981 to 2013.

n 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

in 0 0 0 0 1 9 432 2469 7137 14181 25032

n 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

in 36682 34370 23945 14302 8016 4312 3179 2274 1355 1113 1044

n 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

in 549 309 203 104 53 33 9 11 5 2 3

and while it is commonly accepted that the infectious stage, including the clinical state, should
last a few months and no more than a year, the incubation process itself can last several years.

E  newly infected I  newly infectious
1 1
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Figure 1: Evolution of health status in the BSE epidemic.

We choose a discrete time approach with a time unit of one year for consistency with the
observations and the duration of the infectious state. In addition this unit removes the seasonal
effects.

Let NI1

n (resp. NI
n) be the number of new infectives (resp. total number of infectives) at time

n ∈ N. Due to the chosen unit time, we have NI
n = NI1

n . Let similarly NE1

n be the number of newly
infected animals and Nn the total population size at time n.

We define for any pair of health states (H0,H1) ∈ {(S,E1),(S,R),(E1, I1), . . .}, a′ > 1 and
n′,n ∈ N, n′ < n, the Bernoulli variable δ

H0,H1
a′,n′;n,i equal to 1 if animal i aged a′ and in state H0 at

time n′, undergoes during the interval (n′,n) the single transition H0→H1. Moreover denoting by
Rc = S∪E ∪ I the alive state, we define δ

H0,Rc

a′,n′;n,i the Bernoulli variable equal to 1 if animal i aged

a′ and in state H0 at time n′, is still alive at time n. Finally, let δ
(H,a)
n,i be the Bernoulli variable

equal to 1 if animal i is H and aged a at time n.
Then the evolution of the populations in each of the health states {S,E, I} could be described

by a classical (Markovian of order 1) multitype age, health, and population dependent branching
process. However this kind of process has a large number of types, especially here since the
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The BSE epidemic in GB: a generic example of risk assessment during the growth and decay phases 105

distribution of the incubation time cannot be considered as a geometric law. Moreover we aim
to build a model essentially based on the set of variables {NI

n}n which are the only observed
variables. Therefore we describe NI

n as the sum of all the infectives at time n that have been
infected at any previous time n− k by infectives of this time. Thus

NI
n =

am−1

∑
k=1

am

∑
a=k+1

Nn−k

∑
i=1

δ
(E1,a−k)
n−k,i δ

E1,I1

a−k,n−k;n,i, (2.1)

where am 6 +∞ is the largest theoretical animal survival age and the process {Nn}n has the
branching property: defining Yn,i as the number of newborn animals of dam i born at time n−1,
which are therefore aged 1 at time n if they are still alive, and denoting Na,n the number of animals
aged a at time n, then

Nn =
am

∑
a=1

Na,n, where Na,n =
Nn−1

∑
i=1

1{a>2}δ
(Rc,a−1)
n−1,i δ

Rc,Rc

a−1,n−1;n,i +1{a=1}

Yn,i

∑
j=1

δ
(Rc,1)
n,i, j , (2.2)

the variables {Yn,i}i,n being independent and identically distributed with a finite population and
time independent expectation m and finite variance.

In addition, the number of newly infected animals at time n is given by

NE1

n =
Nn

∑
i=1

am

∑
a=1

δ
(E1,a)
n,i . (2.3)

The random variables {δ (H,a)
n,i }i are identically distributed, and so are the other sets of Bernoulli

random variables. We assume that the set of variables (NI
n,N

E1

n ,{Na,n}am
a=1) depend on the past

through {{Na,n−k}am
a=1,N

I
n−k}

am−1
k=1 at most, and we denote σ({{Na,n−k}am

a=1,N
I
n−k}

am−1
k=1 ) =: Fn−1.

As a consequence, am−1 is the largest memory length of NI
n. The time origin 0 may be defined

by any time such that NI
0 6= 0. The time indices before the origin are then denoted by −1,−2, . . .

and the corresponding values of the process define the initial conditions.
Finally, in order to achieve to define the process {(NI

n,N
E1

n ,{Na,n}am
a=1)}n given by (2.1)-(2.3),

we have to define, for each n, the conditional distributions given Fn−1 of the Bernoulli variables
involved in (2.1)-(2.2) and the conditional distribution given Fn of δ

(E1,a)
n,i . For this purpose, we

shall make the following assumptions relating to the population dynamics characteristics and the
disease propagation process.

(AS) - Characteristics of the non infectious population dynamics.
(AS1) - Survival probability for the S animals. In absence of any disease, the animals all have

the same time-homogeneous probability S(a) to survive at least until age 1 6 a 6 am.
We set S(0) = 1, the survival probability at birth.

(AS2) - Survival probability at each time for the E animals. Since the E animals cannot be
distinguished from the S animals, we assume that they have the same probability to
die at each time, that is, for each a > 2 and n′ > n−1,

E
(

δ
E,Rc

a−1,n−1;n,i |Fn′
)
= E

(
δ

S,Rc

a−1,n−1;n,i |Fn′
)
=

S (a)
S (a−1)

+1{n′>n}ea−1,n−1;n|n′ ,

(2.4)
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106 Jacob and Pénisson

where ea−1,n−1;n|n′ , which represents the influence of the future on the mortality of
i at n, may be assumed to satisfy limNn−1→∞ ea−1,n−1;n|n′

a.s.
= 0 (this influence on a

given animal at time n− 1 decreases as the population size at n− 1 increases), or
equivalently, under (AS3), limN0→∞ ea−1,n−1;n|n′

a.s.
= 0.

(AS3) - Stability of the population. Until time 0, the infectious population size is assumed
negligible with respect to the whole population size, and the population size and the
distribution of ages are assumed stable over time, that is, for all 1 6 a 6 am and
−am +2 6 n 6 0,

lim
N0→∞

Nn+1

Nn

a.s.
= 1, lim

N0→∞
P̂age,n(a)

a.s.
= mS (a) =

S (a)
∑a′>1 S (a′)

=: Page(a),

where {N0→ ∞} := {Nn→ ∞,−am +2 6 n 6 0} and for all n′ > n,

P̂age,n(a) :=
Na,n

Nn
= E

(
δ
(Rc,a)
n,i |Fn′

)
.

(AI) - Infection process.

(AI1) - Infection probability. This assumption concerns δ
(E1,a−k)
n−k,i |Fn−1{k>1} , k > 0. We denote

this quantity by δ
(E1,a)
n,i |Fn′ , where n′ > n. There exists at each time n for each living

animal at this time, a possible horizontal infection due to the ingestion of prion either
excreted from the NI

n infectives, or present in the MBM or milk replacers. The latter
results from the NE last ,R

n−1,n := NE last

n−1 −NI
n animals that were in the last stage E last of

the non infectious incubation period at time n− 1 and are slaughtered at time n.
Moreover a calf may be infected by its dam with a probability pmat which is assumed
to be constant over time (maternal infection). Finally, we assume that the infection
probability of an S animal follows a model of Reed-Frost’s type. We define p̂a,Rc

n|n′ (resp.

p̂a,R
n|n′) as the probability given Fn′ and the survival of the animal at n, that an animal

aged a at n is infected at this time by a given infectious aggregate set of prion excreted
by an I animal (resp. produced in the environment by a dead infectious animal). We
denote by γRc

NI
n (resp. γRNE last ,R

n−1,n ), the number at time n of the corresponding prion
sets. We define φn ∈ [0,1] as the efficiency of the control measure on the exposition
of an S animal to the prion coming from the NE last ,R

n−1,n animals at time n, where φn = 0
expresses a total efficiency. We then assume that, for each 1 6 a 6 am,

P
(

δ
(E1,a)
n,i = 1 | NE last ,R

n−1,n , δ
(Rc,a)
n,i = 1, Fn′

)
a.s.
= 1−

(
1− p̂a,Rc

n|n′

)γRc
NI

n
(

1− p̂a,R
n|n′

)γRNElast ,R
n−1,n

(
1−1{a=1} p̂mat,n|n′

NI
n

Nn

)
, (2.5)

where similarly to (2.4), we may assume that p̂a,u
n|n′ = p̂a,u

n|n +1n′>neu
a,n|n′ , u ∈ {R,Rc},

and p̂mat,n|n′ = pmat +1n′>nemat
1,n|n′ with, under (AS3), limN0→∞ eu

a,n|n′
a.s.
= 0 for each u ∈
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{Rc,R,mat} and a = 1, . . . ,am. Therefore (2.5) implies that

P
(

δ
(E1,a)
n,i = 1 | δ (Rc,a)

n,i = 1, Fn′
)

a.s.
=
(

p̂a,Rc

n|n Nnγ
Rc
+ p̂a,R

n|n Nnγ
R
λ̂n|n′φn +1{a=1}pmat

) NI
n

Nn
+ εa,n|n′ , (2.6)

where

λ̂n|n′ := 1{NI
n 6=0}

E
(

NE last ,R
n−1,n |Fn′

)
NI

n
= 1{NI

n 6=0}

E
(

NE last

n−1 |Fn′
)

NI
n

−1

 (2.7)

is the mean ratio given Fn′ of the animals among the population of size NE last

n−1 that are
dead at time n, relatively to those still alive, and εa,n|n′ is the error term. Denoting

θ̂
a,Rc

n := p̂a,Rc

n|n Nnγ
Rc
, θ̂

a,R
n := p̂a,R

n|n Nnγ
R, (2.8)

we assume that θ̂
a,Rc

n and θ̂
a,R
n are continuous functions of {P̂age,n(a)}16a6am only.

Under this assumption, εa,n|n′ = O
((

NI
n/Nn

)2
)

as N0 → ∞. For example , for u ∈
{R,Rc}, p̂a,u

n|n = νa,uµa,u/∑a′ c
a,u
a′ Na′,n, where νa,u is the probability for an S animal to

be infected when exposed to a given aggregate set of prions while µa,u/∑a′ c
a,u
a′ Na′,n

is the probability for the animal to be exposed to this set. The quantity θ̂
a,Rc

n (resp.
θ̂

a,R
n ) is the mean number of animals aged a infected at time n by a given I animal

(resp. a slaughtered E last animal).

(AI2) - Incubation time. Let {P
(

δ
E1,I1

a”,n”;n,i = 1 | δ E1,Rc

a”,n”;n,i = 1,Fn”

)
}16n−n”6am−a” be the intrin-

sic incubation time distribution for an animal aged a” at its infection time n”. We
assume that there is no overcontamination during the incubation time and that the
incubation time is independent of the population, of the time, and of the age of i at its
infection time. This means that, for each 1 6 a” 6 am−1, there exists a probability
distribution Pinc(.) such that

P
(

δ
E1,I1

a”,n”;n,i = 1 | δ E1,Rc

a”,n”;n,i = 1,Fn′
)
= Pinc (n−n”)+1{n′>n”}e

inc
a”,n”;n|n′ ,

where limN0→∞ einc
a”,n”;n|n′

a.s.
= 0, and Pinc (k) = 0, if k 6 0 or k > am−a′′.

(AI3) - Asymptotic independence. We assume that there exists for each animal i a bounded
neighborhood Bi such that any animal i′ not belonging to Bi is independent from i,
which is not the case if i′ ∈ Bi. More precisely, there exists x > 1 such that for any
i, i′ ∈ Bi and any k,k′ > 1,

E
(

δ
(E1,a−k)
n−k,i δ

E1,I1

a−k,n−k;n,iδ
(E1,a′−k′)
n−k′,i′ δ

E1,I1

a′−k′,n−k′;n,i′ |Fn−1

)
a.s.
= O

(
max

l6n−1

(
NI

l
Nl

)x)
,

(2.9)
as N0→ ∞, and similarly concerning E

(
δ
(E1,a)
n,i δ

(E1,a′)
n,i′ |Fn

)
. For example, since a

given set of prions cannot infect two different animals, then Bi could be the herd or a
group of herds to which i belongs.
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108 Jacob and Pénisson

Remark 2.1.

1. Thanks to Lemma 6.1 (see Appendix), (AS) implies that the whole population size and
the distribution of ages in the population are stable over time provided that the infectives
population is negligible with respect to the whole population when the size of the latter
tends to infinity, i.e., for any n > 0,

lim
N0→+∞

Nn+1

Nn

a.s.
= 1 with lim

N0→+∞
P̂age,n(a) := lim

N0→+∞

Na,n

Nn

a.s.
= Page(a).

2. Due to (AS)-(AI), the memory length of {(NI
n,N

E1

n )}n is d = min{tinc,am − 1}, where
tinc := sup{k : Pinc(k) 6= 0} is the largest incubation time.

3. In order to obtain the limit process of Proposition 2.2, we could assume a more complex
model than (2.5) provided that it satisfies (2.6) with εa,n|n′ = O

((
NI

n/Nn
)u), u > 1.

Thanks to these assumptions, the processes {NI
n,{Na,n}a}n and {NI

n,N
E1

n−1,{Na,n}a}n are popula-
tion-dependent and non Markovian multitype branching processes.

2.3. Limit process as the initial population size tends to infinity

The epidemic model presented in Subsection 2.2 is built for a finite population. Yet it is neither
theoretically nor practically usable for large populations such as the cattle population in Great-
Britain (around 9 million). However, comparing the number of BSE cases with the total population,
it seems reasonable to assume that even at its peak time, this epidemic remains a rare disease in
a large population. We shall therefore study the limit in distribution of {NI

n,N
E1

n }n as the initial
population size tends to infinity, under the assumptions (AS)-(AI). We denote by {In,E1

n}n the
limit process, and define F I

n := σ ({Ih}h6n), Fn({Ih}) = Fn ∩{NI
h = Ih}h6n. Recall also that

{N0→ ∞} := {Nn→ ∞,−am +2 6 n 6 0}.

Proposition 2.2. Let us assume (AS)-(AI), d <+∞, and that for all 0 6 n 6 d−1,

lim
N0→∞

NI
−n

a.s.
= I−n, lim

N0→∞
λ̂−n

a.s.
= λ−n.

Then for each n > 1, NI
n |Fn−1({Ih}) and NE1

n |Fn({Ih}) converge in distribution as N0→ ∞ to
In |F I

n−1 and E1
n |F I

n given by

In |F I
n−1

D
:= Poiss

(
d

∑
k=1

Ψk|n−kIn−k

)
, (2.10)

E1
n |F I

n
D
:= Poiss

(
Ψ0|nIn

)
, (2.11)

where for each 0 6 k 6 d and u ∈ {R,Rc},

Ψk|n−k :=
am

∑
a=k+1

Ψ
a−k
n−kPage (a)Pinc (k) , (2.12)
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Ψ
a−k
n−k := θ

a−k,Rc
+θ

a−k,R
λn−kφn−k +1{a=1}pmat , (2.13)

θ
a−k,u :a.s.= lim

N0→∞
θ̂

a−k,u
n−k ,

λn−k
a.s.
= lim

N0→∞
λ̂n−k|n−1{k>1}

= 1{In 6=0}

 ∑l>In lBin(l,1−Page(1))(In)Poiss
(

∑
d
k=1 ΨE last

k|n−1−kIn−1−k

)
(l)

In ∑l>In Bin(l,1−Page(1))(In)Poiss
(

∑
d
k=1 ΨE last

k|n−1−kIn−1−k

)
(l)
−1

 , (2.14)

and

Ψ
E last

k|n−1−k :=
am

∑
a=k+1

Ψ
a−k
n−1−kPage (a)Pinc (k+1) .

Moreover, if λnφn depends on n only, then the processes {NI
n}n and {NI

n,N
E1

n }n converge in dis-
tribution as N0→∞ to the respective Markovian processes {In}n, {In,E1

n}n whose transition laws
are defined by (2.10)-(2.11). If in addition φn = 0, then these processes are time-homogeneous.

The proof of this proposition is postponed in Section 6.

Remark 2.3.

1. The quantity Ψk|n−k (resp. ΨE last

k|n−k) represents the mean number of new infectives (resp.
E last animals) produced at time n with a delay k by an animal that is infectious at time n−k,
while Ψ0|n represents the mean number of new infected animals produced at time n by an
animal infectious at this time. Moreover, θ a,Rc

Page (a) (resp. θ a,RPage (a)) represents the
mean number of newly infected animals aged a at each time, produced by an I animal at
this time (resp. by a slaughtered E last animal). Recall also that Page (a) = S (a)/∑a′>1 S (a′)
(probability for a S animal to be aged a at any time n, see Lemma 6.1) and that Pinc (·) is
the probability law of the incubation time given survival (see (AI2)).

2. In the general case when φn 6= 0, since In depends on {Ik}n−1
k=n−d and {λk}n

k=n−d by (2.10)
and (2.13), and since λn depends on {Ik}n

k=n−1−d by (2.14), then In depends on {Ik}k6n−1.

Note that by (2.10), if λnφn depends on n only, then we may also write In = ∑
d
k=1 ∑

In−k
j=1Y (k,1)

n, j ,

where the {Y (k,1)
n, j }k, j are independent, and the {Y (k,1)

n, j } j are identically distributed with

Y (k,1)
n, j

D
= Poiss(Ψk|n−k). (2.15)

This variable represents the incidence of infectives generated at time n with a delay k by animal j
infectious at time n− k.

We may then represent the limit process {In}n by a multitype Markovian branching process
with d types. Let us define, for each n > 0, the d-dimensional vector In := (In,1, , . . . , In,d) :=(
In, . . . , In−(d−1)

)
. Thus, for each i = 1, . . . ,d, In,i = In−(i−1) = In−1,i−1.
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Proposition 2.4 (Jacob et al., 2010). If λnφn depends on n only, the process {In}n is a time-
inhomogeneous multitype Markovian branching process satisfying for each i = 1 . . .d,

In,i =
d

∑
k=1

In−1,k

∑
j=1

Y (k,i)
n, j ,

where the {Y (k,i)
n, j }k,i, j are independent given F I

n−1, and for each n,k, i, the {Y (k,i)
n, j } j are identically

distributed with Y (k,1)
n, j defined by (2.15), and for i = 2 . . .d, Y (k,i)

n, j = δk,i−1 (δ stands here for the
Kronecker delta).

Remark 2.5. If λnφn is constant over time, then Ψk|n−k =: Ψk depends on k only, and {In}n is a
classical multitype BGW process. Denoting by ei the i-th basis vector of Rd , its offspring generat-
ing function f = ( f1, . . . , fd) defined on [0,1]d by fi(r) = E

[
rI1

1 . . .rId
d | I0 = ei

]
then satisfies{

fi(r) = e−(1−r1)Ψiri+1, i = 1 . . .d−1,

fd(r) = e−(1−r1)Ψd .
(2.16)

Moreover the mean matrix M, defined by E(In|F I
n−1) = In−1M, is given by

M =



Ψ1 1 0 . . . 0
Ψ2 0 1 . . . 0
...

...
. . .

...
Ψd−1 0 . . . . . . 1
Ψd 0 . . . . . . 0


. (2.17)

2.4. Estimation

This subsection is detailed in Jacob et al. (2008) and Jacob et al. (2010). We give in Subsection
2.4.1 some constraints on the parameters which are consistent with the epidemiological problem
and which allow to decrease the number of unknown parameters.

2.4.1. Model and parameters

Given that the number of observed BSE cases are relatively small compared to the cattle population
size (see Subsection 2.1), the epidemic is here assumed to follow the limit model described in
Subsection 2.3. Thanks to item 2 of Remark 2.3 and in order to simplify the estimation procedure,
we assume in addition that λnφn depends on n only and is a constant piecewise function. We
assume that λnφn = 1 for n 6 1988, λnφn = φ ∈ [0,1] for 1989 6 n 6 1996, and λnφn = 0 for
n> 1997. The parameter φ depends on the efficiency of the feed ban of 1988. Moreover we assume
that for each a> 2, θ a,R = θ 2,R and that θ a,Rc

is independent of the age a and we denote θ a,Rc
=: θ

for all a. Because of an identifiability problem concerning (θ , pmat), we set pmat = 0.1 which is
the largest admitted value based on observations. We choose for the distribution of the incubation
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time a discretized Weibull distribution of parameters (γ,α) with density x 7→ γαxα−1e−γxα 1x>0,
where γ = (α−1)/(αβ α). The parameter α (resp. β ) is the shape parameter (resp. mode) of the
Weibull probability density. Note for instance that α > 2 for convex densities in a neighborhood of
0. Our choice is justified by the fact the Weibull distribution covers a very large set of uni-modal
probability densities. The discretization of this distribution leads to the following definition of the
incubation time distribution: for each k ∈ N∗,

Pinc (k) = e−γ(k−1)α − e−γkα

. (2.18)

The estimations of the survival probabilities {S(a)}16a6am are drawn from Supervie and Costagli-
ola (2004), where âm = 10. We then set am = 10 and d = am−1 = 9.

The disease was unknown until 1986 and it is admitted that it did not start before 1982. We
thus choose as initial time the year 1982 and the unknown multidimensional parameter that we
plan to estimate is

θθθ := (θ1, . . . ,θ11) =
(
(i1982, ..., i1986) ,(α,β ) ,φ ,

(
θ

1,R,θ 2,R,θ
))

.

Because of the large dimension of θθθ and the presence of numbers of cases as unknown parameters,
we choose a Bayesian approach for estimating θθθ , which enables us to get exact credibility intervals
from the posterior marginal distributions of the parameters and to get the correlation between the
parameters. However this approach depends on the prior distributions which represent the lack of
information (uncertainty) about each individual parameter. Assuming that these parameters are a
priori independent, then the posterior distribution P(θθθ | i1981, i1987, ..., i2007) satisfies

P(θθθ | i1981, i1987, ..., i2007) ∝

11

∏
j=1

P(θ j)P(i1981, i1987, ..., i2007 | θθθ) , (2.19)

where P(i1981, i1987, ..., i2007 | θθθ) is the likelihood of the process of infectives at these observations,
deduced from (2.10).

2.4.2. Prior distributions

Due to the lack of knowledge of the parameters values, we assume that all prior distributions are
uniform distributions:

– in ∼U (0,1000), for 1982 6 n 6 1986;
– α ∼U (1,5), β ∼U (3,10);
– φ ∼U (0,1);
– θ 1,R ∼U (0,100000) (calves), θ 2,R ∼U (0,100000) (cows);
– θ ∼U (0,100).

2.4.3. Algorithm and software

All calculations are performed with the software OpenBUGS (2009). BUGS stands for Bayesian
inference Using Gibbs Sampling. This software mainly developed at the MRC Biostatistics Unit,
Cambridge, UK, automatically implements MCMC algorithms for a very wide variety of models.
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2.4.4. Parameters estimation

We shall present here the main results. More details can be found in Jacob et al. (2008). The
empirical marginal posterior distributions for each θ j, j = 1, . . . ,11, are computed from N = 26000
simulations of θθθ done with the Markov Chain leading to the posterior distribution. We use here
the observations until 2007 (Table 1). Note that since the observations from 2008 until 2013
are in small numbers and in the decay phase of the epidemic, they should not have a significant
influence on the estimations. The MAP (Maximum A Posteriori) Bayesian estimation of θθθ based
on (i1981, i1987, . . . , i2007) is, for am = 10,

θ̂θθ
obs
MAP = ((0,0,0,181,545) ,(3.84,7.46) ,0,(838,1200,2.43)) . (2.20)

Note that if we take into account the few cows that are still living at a larger age than 10 years
and that do not contribute to the survival probability estimation given in Supervie and Costagliola
(2004), we obtain, for example, by an extrapolation of the observed survival law until am = 19,

θ̂θθ
obs
MAP = ((0,0,0,236,540) ,(4.14,5.95) ,0,(233,616,1.056)) ,

which roughly stays in the same order of magnitude as for am = 10. From now on we shall only
provide the results for am = 10. According to Table 3, the mode of the incubation distribution
is correlated with the infection parameters. Hence these estimations must be interpreted with
caution.

TABLE 2. Empirical statistics computed from the empirical marginal posterior distributions corresponding to each
parameter using am = 10; s.d. stands for empirical standard deviation, MC_error = s.d./

√
N is the Monte Carlo

standard error for the mean, and qp is the p-quantile defined by P̂(θ j 6 qp | i1981, i1987, ..., i2007) = p, where P̂(.) is
the empirical probability.

Parameter mean s.d. MC_error q0.025 median q0.975

i1982 0.6955 0.6921 0.004654 0.01762 0.4899 2.543

i1983 0.9755 0.967 0.006083 0.02544 0.6809 3.589

i1984 2.541 2.519 0.01526 0.06208 1.778 9.255

i1985 177.4 13.42 0.09923 149.5 178.0 202.3

i1986 545.1 35.19 0.2557 478.2 544.6 616.8

α 3.84 0.03425 4.527E-4 3.772 3.841 3.907

β 7.46 0.1347 0.003829 7.204 7.457 7.737

φ 7.75E-5 6.079E-5 5.99E-7 2.76E-6 6.381E-5 2.251E-4

θ 1,R 842.8 34.29 0.5332 775.7 842.6 910.9

θ 2,R 1202.0 134.2 3.836 949.6 1198.0 1479.0

θ 2.464 0.1266 0.003252 2.231 2.458 2.728

From Tables 2 and 3, we see the good efficiency of the MBM ban, which leads from 1989
to the single remaining infection parameter θ via the horizontal route (i.e. the horizontal route
is the only route allowing an eventual exponential evolution of the disease). Its estimation is
θ̂ obs

MAP = 2.43.
Note that model (2.10)-(2.11), where θθθ is distributed according to the posterior distribution

(2.19), allows to obtain, for any n, empirical credibility bands of {Ik(θθθ)}16k6n and {E1
k (θθθ)}16k6n
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TABLE 3. Empirical correlations between the parameters for am = 10.

i1982 i1983 i1984 i1985 i1986 α β φ θ 1,R θ 2,R θ

i1982 1.00 -0.02 0.00 -0.20 0.17 0.06 0.06 0.02 -0.02 0.04 0.05

i1983 -0.02 1.00 -0.02 -0.27 0.20 0.06 0.05 0.02 -0.01 0.03 0.04

i1984 0.00 -0.02 1.00 -0.49 0.26 0.07 0.05 0.02 -0.01 0.03 0.04

i1985 -0.20 -0.27 -0.49 1.00 -0.54 0.17 -0.17 0.00 -0.21 -0.05 -0.15

i1986 0.17 0.20 0.26 -0.54 1.00 0.53 0.16 0.08 -0.10 0.10 0.15

α 0.06 0.06 0.07 0.17 0.53 1.00 0.31 0.22 -0.76 0.46 0.27

β 0.06 0.05 0.05 -0.17 0.16 0.31 1.00 0.25 -0.35 0.96 0.89

φ 0.02 0.02 0.02 0.00 0.08 0.22 0.25 1.00 -0.29 0.29 -0.17

θ 1,R -0.02 -0.01 -0.01 -0.21 -0.10 -0.76 -0.35 -0.29 1.00 -0.58 -0.31

θ 2,R 0.04 0.03 0.03 -0.05 0.10 0.46 0.96 0.29 -0.58 1.00 0.86

θ 0.05 0.04 0.04 -0.15 0.15 0.27 0.89 -0.17 -0.31 0.86 1.00

from simulations of these processes (Jacob et al., 2010). However, we intend to focus on an
accurate prediction of the future evolution of these processes which is based on an estimator of θ

with good properties (at least strong consistency for an appropriate asymptotic).

3. Focus on a specific period: time-homogeneous setting

In this section, which is aimed at predicting in a comprehensive way the future spread of the
disease, we focus on the process from 1989 to 2013, i.e. from the first feed ban law to the time
of the last available data (see Table 1). The assumptions on the parameters are the same as in
Subsection 2.4.1. The study exposed in Section 2, which is based on the epidemic data from
1981 to 2007, concludes to a full efficiency of the 1988 feed ban law (φn = 0 for n > 1989), and
provides the Bayesian estimations (α̂obs

MAP, β̂
obs
MAP) = (3.84,7.46) (see (2.20)) of the parameters

(α,β ) of the incubation time distribution (see (2.18)). Although these estimations are not based
on the whole epidemic data, they take into account a relatively large portion of the epidemic
(including the peak in 1992 which contains the maximal information about the incubation period
distribution). This leads us to consider them as relevant enough to be used in the following as
known parameters. However, we reckon that the infection parameter θ (mean number of newly
infected animals produced by an infective) should be estimated by taking into account the new
available data from 2008 to 2013 as well, since they could play a significant role in the evolution
of the epidemic from 1989.

The setting of this section is thus the following. The multitype branching process {In}n is
assumed to be time-homogeneous (see Remark 2.5), and the Ψk defined by (2.12) only depend on
the unknown parameter θ . We write for each k = 1 . . .d,

Ψk (θ) = θPinc (k)
am−k

∑
a=1

Page (a+ k)+ pmatPage (k+1)Pinc (k) =: akθ +bk, (3.1)

and denote by ΨΨΨ(θ), a and b the corresponding d-dimensional vectors. The vectors a and b are
known by setting pmat = 0.1, (α,β ) = (3.84,7.46) and by deducing as previously the survival
probabilities from Supervie and Costagliola (2004).
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In Subsection 3.1 we first recall important theoretical results regarding the epidemic process
{In}n. In Subsection 3.2, we provide a least squares estimation of the infection parameter θ based
on (i1989, . . . , i2013), which combined with the theoretical properties of {In}n enables us to predict
in Subsection 3.3 the future spread of the epidemic from 2014, namely its speed of extinction and
extinction year, the future incidences of cases and of infected cattle, and the total epidemic size.

3.1. Theoretical results

3.1.1. Extinction of the epidemic

Almost sure extinction. The d-dimensional process {In}n becomes extinct when it reaches the
d-dimensional null vector 0 (or equivalently when {In}n is null at d successive times). According
to the theory of multitype positive regular and nonsingular BGW processes (Athreya and Ney,
1972), the extinction of {In}n occurs almost surely (a.s.), if and only if ρ 6 1, where ρ is the
dominant eigenvalue (Perrons root) of the mean matrix M defined by (2.17). Thus ρ is solution of
∑

d
k=1 Ψkρ−k = 1. In general for d > 1, ρ has no explicit expression. We nevertheless obtain the

following explicit threshold criteria.

Proposition 3.1. The epidemic becomes extinct almost surely if and only if R0 6 1, where the
so-called basic reproduction number R0 := ∑

d
k=1 Ψk is the total mean number of new infectives

generated by one infective. Moreover, assuming d > 1, then ρ < 1 (resp. ρ = 1, ρ > 1) implies
R0 < ρ (resp. R0 = ρ , R0 > ρ).

Note that when d > 1, R0 only provides information about the threshold level, whereas ρ

provides an additional information about the speed of extinction of the process, as shown in the
next two paragraphs.

Speed of extinction. Thanks to the Perron-Frobenius theorem (see e.g. Athreya and Ney, 1972),
we can deduce the expected incidence of infectives in the population at time n, for n large.
Denoting by u and v the right and left eigenvectors of M associated to the Perron’s root ρ , that is,
MuT = ρuT and vM = ρv, with the normalization convention u ·1 = u ·v = 1, where u ·v stands
for the usual scalar product in Rd and where the superscript T denotes the transposition, then
E(In | I0) = I0Mn ∼ ρnI0uT v as n→ ∞. Hence if ρ < 1 the mean number of infectives decreases
exponentially at the rate ρ . More precisely, computing explicitly I0uT v, we (Pénisson and Jacob,
2012),

Eθ (In | I0) ∼
n→∞

ρ
n ∑

d
i=1 I−i+1 ∑

d
k=i Ψk(θ)ρ

−k+i−1

∑
d
j=1 ∑

d
k= j Ψk(θ)ρ−k

. (3.2)

In the following section, we provide a more refined result on the estimation of the disease
extinction time in the population.

Extinction time of the epidemic. The extinction time distribution can be derived as a function
of the offspring generating function. This quantity is calculated conditionally on the initial
value of the vector I0, which since we are building tools for the prediction of the spread of
the disease would correspond here to the time of the last available data, in our case 2013. Let
T I := inf{n > 1,In = 0} denote the extinction time of the process {In}n, and T = T I−d the last
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appearance time of a clinical case. Let fn = ( fn,1, . . . , fn,d) be the n-th iterate of the generating
function f given by (2.16). Then, by the branching property of the process, the probability of a
last appearance of a clinical case before time n is given by

P(T 6 n | I0) = P(In+d = 0 | I0) = ( fn+d,1 (0))I0 . . .( fn+d,d (0))I−d+1 . (3.3)

It can be immediately deduced from convergence results for fn (0) as n→ ∞ (Joffe and Spitzer,
1967), that if ρ = 1, P(T 6 n | I0) ∼ 1− ((n+d)η)−1 I0 · u, while if ρ < 1, P(T 6 n | I0) ∼
1−ρn+dγ I0 ·u, for some constants η ,γ > 0. As a consequence, the closer ρ is to unity, the longer
the time to extinction will be in most realizations. More specifically, formula (3.3) enables the
exact computation (resp. estimation) of P(T 6 n | I0) for any n by the iterative computation of
fn, I0 being given, when the parameters of ΨΨΨ(θ) defined by (3.1) are known (resp. estimated).
Moreover, under the assumption ρ 6 1, then P(T <+∞ | I0) = 1 and formula (3.3) consequently
enables us to compute for any given probability p ∈ [0,1[ the p-quantile nT

p of T , defined by

nT
p := min{n > 0 : P(T 6 n | I0)> p}. (3.4)

3.1.2. Total size of the epidemic

Under the assumption ρ 6 1 and the independence of the {Y (k,i)
n, j }n,k,i, j, we derive the distribution

of the future total size N := ∑
T
n=1 In of the epidemic until its extinction, i.e. the future total number

of infectives. It can be shown that, given the initial value I0, N is distributed as the sum of Borel-
Tanner variables. Its probability distribution is given by (Devroye, 1992; Consul and Famoye,
2006):

P(N = n | I0) = ∑
{06yk,i6n,{16nk,i, j6n} j}i,k :

∑
d
k=1 ∑

I−k+1
i=1 ∑

yk,i
j=1 nk,i, j=n

d

∏
k=1

I−k+1

∏
i=1

e−∑
d
l=k Ψl

(
∑

d
l=k Ψl

)yk,i

yk,i!

×
yk,i

∏
j=1

e−nk,i, j ∑
d
l=1 Ψl

(
nk,i, j ∑

d
l=1 Ψl

)nk,i, j−1

nk,i, j!
. (3.5)

Hence it can be explicitly calculated (resp. estimated), replacing the Ψk(θ) by their values (resp.
estimations). In practice, for any p ∈ [0,1[, we are then able to compute the p-quantile nN

p of the
total epidemic size,

nN
p := min{n > 0 : P(N 6 n | I0)> p}. (3.6)

We obtain moreover an explicit formula for the mean value and variance of the size of the
epidemic,

E(N | I0) =
∑

d
k=1 I−k+1 ∑

d
i=k Ψi (θ)

1−∑
d
k=1 Ψk (θ)

, Var(N | I0) =
∑

d
k=1 I−k+1 ∑

d
i=k Ψi (θ)(

1−∑
d
k=1 Ψk (θ)

)3 . (3.7)
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3.1.3. Exposed population

It is also crucial to study and predict the evolution of the incidence of infected cattle, which is
here unobservable. This information is given by the process {E1

n}n defined by the conditional

distribution E1
n | In

D
=Poiss(Ψ0 (θ) In) where Ψ0 (θ) = θ + pmatPage (1) (see (2.11)-(2.13)). This

property enables on the one hand to reconstruct the whole past epidemic (i.e. the incidence of
infectives as well as of infected cattle) thanks to the observable data. On the other hand, it allows
to simulate the evolution of the incidence of infected cattle in the future, based on predictions of
the evolution of the epidemic process {In}n.

3.2. Estimation

We estimate θ by the following WCLSE which generalizes the well-known Harris estimator
(Harris, 1948) in a BGW process. Let Θ :=]θ1,θ2[, θ2 > θ1 > 0, such that θ ∈Θ. The WCLSE
has the following definition and explicit form:

θ̂ := argmin
θ∈Θ

n

∑
k=1

(Ik−ΨΨΨ(θ) · Ik−1)
2

a · Ik−1
=

∑
n
k=1 (Ik−b · Ik−1)

∑
n
k=1 a · Ik−1

. (3.8)

Denoting by m(k)
i j (θ) the (i, j)-th entry in the k-th power of the matrix M(θ) given by (2.17), we

obtain the following asymptotic results as the initial population size |I0| tends to infinity.

Theorem 3.2 (Pénisson and Jacob, 2012). Let us assume that, for each i= 1 . . .d, there exists some
αi ∈ [0,1] such that lim|I0|→∞ I0,i/ |I0|= αi. Then θ̂ is strongly consistent, that is lim|I0|→∞ θ̂

a.s.
= θ ,

and is asymptotically normally distributed:

lim
|I0|→∞

√
∑

n
k=1 a · Ik−1

σ2(θ̂)

(
θ̂ −θ

)
D
= N (0,1) , (3.9)

where

σ
2(θ̂) := θ̂ +

∑
n
k=1 ∑

d
j=1 ∑

d
i=1 α jbim

(k−1)
ji (θ̂)

∑
n
k=1 ∑

d
j=1 ∑

d
i=1 α jaim

(k−1)
ji (θ̂)

.

Remark 3.3. In the supercritical case ρ > 1, the estimator (3.8) presents in addition asymptotic
properties as n→∞ (Pénisson, 2014). Indeed, on the set of non-extinction, it is strongly consistent
as n→ ∞, that is limn→ θ̂

a.s.
= θ , and asymptotically normally distributed:

lim
n→∞

√
(a ·v)2W (1+ . . .+ρn−1)

ρv1

(
θ̂ −θ

)
D
= N (0,1) ,

where v is the left eigenvector of M associated to the Perron’s root ρ as introduced in Subsection
3.1.1, and W is the following limit random variable limn→∞ ρ−nIn

a.s.
= Wv.

Our estimation of θ is based on the yearly number of cases of BSE reported in Great Britain
from 1989 until 2013 (Table 1). We set I0 = i1997 = (i1997, . . . , i1989), hence |I0|= 167977 which
is close to the asymptotic |I0| → ∞. The estimator (3.8) leads to the estimation

θ̂
obs = 2.4301,
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which is almost identical to the Bayesian estimation θ̂ obs
MAP = 2.43 based on the whole epidemic

until 2007 and assuming a uniform prior probability (see (2.20)). Note that due to the uniform
prior distributions, θ̂ obs

MAP is also the Maximum Likelihood Estimator of θ . However, unlike in the
case d = 1, this estimator is different from the WCLSE. Moreover these two estimators are not
based on the same data set. The fact that they are very close shows their good robustness.

Using (3.9) we compute the confidence interval [θ̂min, θ̂max] with asymptotic probability 95%,
where θ̂min := θ̂ −1.96/ĉ1, θ̂max := θ̂ +1.96/ĉ1 and ĉ1 := (∑n

k=1 a · Ik−1/σ2(θ̂))1/2. Assuming
αi = i1997−i+1/|i1997|, we obtain:

θ̂
obs
min = 2.3820, θ̂

obs
max = 2.4782. (3.10)

Since the estimation of θ relies on the values given to the other model parameters {pmat ,α,β},
we evaluate in addition its sensitivity to the values of these parameters. Some results are collected
in Table 4. It appears that the estimation of θ is almost independent of the value of the maternal
infection parameter pmat . However, the estimation seems more strongly dependent on the parame-
ters (α,β ) of the latent period distribution. Nevertheless, even for very unrealistic values (α,β ),
all the estimations of θ remain in the same order of magnitude of several units. This is really
small compared to estimations obtained for the infection via MBM or lactoreplacers (before 1989)
which are of the order of 1000 (see 2.20). However, although these estimations are all very small,
θ seems non null. This could eventually suggest the existence of a minor but non null infection
source which is not of maternal type.

TABLE 4. Sensitivity analysis. Estimation and 95% asymptotic confidence interval [θ̂ obs
min , θ̂

obs
max] of the infection

parameter θ , for different values of {pmat ,α,β}.

pmat α β θ̂ obs [θ̂ obs
min , θ̂

obs
max]

0.1 3.84 7.46 2.4301 [2.382,2.4782]

0 3.84 7.46 2.4838 [2.4357,2.5319]

1 3.84 7.46 1.9468 [1.8991,1.9946]

0.1 2 7.46 2.7818 [2.7271,2.8365]

0.1 20 7.46 4.0104 [3.9315,4.0894]

0.1 3.84 1 1.0126 [0.9924,1.0328]

0.1 3.84 10 6.2060 [6.0848,6.3272]

0.1 3 6 1.5392 [1.5085,1.5699]

0.1 4 5 1.0221 [1.0015,1.0428]

3.3. Prediction

3.3.1. Extinction of the epidemic

We know thanks to Proposition 3.1 that {In}n becomes extinct almost surely if and only if
R0 = ∑

d
k=1 Ψk(θ) 6 1. The estimated basic reproduction is here R0(θ̂

obs) = 0.1071. Moreover,
we obtain with a computing program the following value for the Perron’s root ρ(θ̂ obs) = 0.6664,
which provides the speed of decay of the expected yearly incidence of cases (see 3.2): from a
certain time, the expected number of new cases will decrease from around 33% every year.
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3.3.2. Prediction of the incidences of cases and incidences of infected cattle

Let us predict the spread of the disease from 2014 by means of simulations of {In}n, where
θ is replaced by its previous estimation θ̂ obs = 2.4301. We first point out that the process is
likely to provide a satisfying prediction of the overall evolution of the real epidemic from 2014,
since it at least provides quite realistic simulations on the period 1998–2013 compared to the
real observations on the same period (see Figure 2a). We simulate 10000 trajectories of {In}n

initialized by i2013, with the estimated infection parameter θ̂ obs = 2.4301. Five of them are plotted
in Figure 2b. Using 2.11, we generate for each n > 2014 and for each of the 10000 previously
simulated values of In, a realization of E1

n , corresponding to the incidence of infected cattle at
time n and thus to the hidden face of the epidemic. We then illustrate in Figure 2c (resp. Figure
2d), the yearly maximum, median, and 95% quantile associated with the 10000 realizations of In

(resp. E1
n ).

3.3.3. Prediction of the year of extinction and of the epidemic size

As in Subsection 3.1.1, let T denote the last appearance year of a clinical case and N the total size
of the future epidemic from 2014. Thanks to (3.3) and (3.5), we explicitly compute the cumulative
distribution functions of T and N conditionally on {I0 = i2013} for any infection parameter, in
particular for the estimated value θ̂ obs = 2.4301. This enables us to compute the associated
p-quantiles nT

p and nN
p defined by (3.4) and (3.6), whose values for some significant p ∈ [0,1] are

collected in Table 5. Moreover, in order to take into account the uncertainty around the estimation
θ̂ obs of the infection parameter θ , we make use of the asymptotic 95% confidence interval (3.10)
of θ and of the fact that θ 7→ Pθ (T 6 n | I0) and θ 7→ Pθ (N 6 n | I0) are decreasing functions of
θ , which implies that for every n > 2013 and m > 0,

P
(
Pθ (T 6 n | I0) ∈

[
P

θ̂max
(T 6 n | I0) ,Pθ̂min

(T 6 n | I0)
])
' 95% (3.11)

P
(
Pθ (N 6 m | I0) ∈

[
P

θ̂max
(N 6 m | I0) ,Pθ̂min

(N 6 m | I0)
])
' 95%. (3.12)

We obtain in particular the realizations of the asymptotic confidence intervals of Pθ

(
T 6 nT

p |i2013
)

and Pθ

(
N 6 nN

p |i2013
)

for different values of p, collected in Table 5. Finally, we deduce from
(3.7) that

E
θ̂ obs

min
(N | i2013) = 6.3845, Var

θ̂ obs
min

(N | i2013) = 7.9714,

E
θ̂ obs

max
(N | i2013) = 6.6666, Var

θ̂ obs
max

(N | i2013) = 8.4015.

4. Worst-case scenario

4.1. Model

Even in the case when the epidemic dies out almost surely (ρ 6 1), and although one can provide
the p-quantile nT

p of the extinction time with the probability p as large as wanted (see (3.4)),
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(a) 5 simulations of {In}n initialized by i1997, and com-
parison with the observations on the period 1998–2013.

2010 2015 2020 2025 2030
0

2

4

6

8

10

12

Year

N
um

be
r 

of
 c

as
es

Observations

Simulations from 2014

(b) 5 simulations of {In}n initialized by i2013
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(c) Prediction of the yearly incidences of cases from
2014, based on 10000 simulations of {In}n initialized
by i2013.
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(d) Prediction of the yearly incidences of infected cattle
from 2014, based on 10000 simulations of {E1

n}n.

Figure 2: Prediction of the spread of the disease, based on simulations with the infection parameter
θ̂ obs = 2.4301.

TABLE 5. p-quantiles nT
p , nN

p defined by (3.4)-(3.6) for the estimated value θ̂ obs = 2.4301, and observed asymptotic
confidence intervals of Pθ

(
T 6 nT

p | i2013
)

and Pθ

(
N 6 nN

p | i2013
)

based on (3.11)-(3.12).

p nT
p P

θ̂ obs
max

(T 6 nT
p |i2013) P

θ̂ obs
min
(T 6 nT

p |i2013) nN
p P

θ̂ obs
max

(N 6 nN
p |i2013) P

θ̂ obs
min
(N 6 nN

p |i2013)

0.50 2018 0.5083 0.5304 6 0.5133 0.5518
0.90 2023 0.9168 0.9242 10 0.9000 0.9176
0.95 2025 0.9609 0.9649 12 0.9662 0.9739
0.99 2029 0.9922 0.9932 14 0.9902 0.9966
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the epidemic might become extinct after this time with a small but non null probability of order
1− p. This raises the following question: how would the incidences of infectious and infected
cattle evolve in the (unlikely) case of a very late extinction? In terms of risk analysis, this issue
appears to be crucial to evaluate the risks associated with this worst-case scenario. The tools
developed in Section 3 allow to evaluate the probability of all possible outcomes. But since the
worst ones, typically a very late extinction, have a negligible probability, these tools do not bring
any information in these worst cases, and in particular do not inform on the evolution at each
time-step of the spread of the disease (would it decrease extremely slowly, stay at a constant rate
for a very long time, present several peaks in its evolution etc.). In order to study the propagation
of the epidemic in the decay phase, assuming that extinction occurs very late, we are interested in
the distribution of the process {In}n conditionally on the event that the epidemic has not become
extinct at time k, where k is very large. We therefore consider for any n1,n2, . . . ∈ N and any
i0, i1, i2, . . . ∈Nd the conditioned probability P(In1 = i1, . . . ,Inr = ir | I0 = i0,Ik 6= 0). If k is finite
this distribution cannot be easily handled due to its time-inhomogeneity. However, when ρ 6 1, it
is known (Dallaporta and Joffe, 2008) that this conditioned distribution converges, as k→ ∞, to
the distribution of a d-dimensional Markov process {I∗n}n:

lim
k→∞

P(In1 = i1, . . . ,Inr = ir | I0 = i0,Ik 6= 0) = P
(
I∗n1

= i1, . . . ,I∗nr
= ir | I∗0 = i0

)
. (4.1)

We shall further discuss in Proposition 4.3 the relevancy of approximating the conditioned
probability for k fixed by the limit quantity (4.1). The conditioned process {I∗n}n defined by (4.1)
is known in the literature as the Q-process associated with {In}n, also described as the process
conditioned on “not being extinct in the distant future”. It has the following transition probability:
for every n > 1, i, j ∈ Nd , i 6= 0,

P
(
I∗n = j | I∗n−1 = i

)
=

1
ρ

j ·u
i ·u

P(In = j | In−1 = i) ,

where u is the normalized right eigenvector of M associated to the Perron’s root ρ as introduced
in Subsection 3.1.1. In the same way as for the process {In}n (see Subsection 2.3), we define
the 1-dimensional process {I∗n}n such that I∗n = (I∗n,1, I

∗
n,2, . . . , I

∗
n,d) =: (I∗n , I

∗
n−1, . . . , I

∗
n−(d−1)). By

construction we then have, as for {In}n, I∗n,i = I∗n−i+1, for each n and each i = 1 . . .d.

Proposition 4.1 (Pénisson and Jacob (2012)). The stochastic process {I∗n}n is, conditionally on
its past, distributed as the sum of two independent Poisson and Bernoulli random variables, that
is

I∗n | I∗n−1
D
= Poiss

(
I∗n−1 ·ΨΨΨ(θ)

)
∗B

(
p
(
I∗n−1

))
,

where ∗ is the convolution product symbol, and

p
(
I∗n−1

)
:=

u1I∗n−1 ·ΨΨΨ(θ)

u1I∗n−1 ·ΨΨΨ(θ)+∑
d
k=2 I∗n−k+1uk

.

Remark 4.2. Note that {I∗n}n behaves at each time step like {In}n (i.e. according to a Poisson
distribution), except that it has the possibility to add one unit or not, according to a Bernoulli
random variable. If I∗n−1 = . . .= I∗n−(d−1) = 0, then the probability of adding one unit is one, which
prevents the extinction of the process {I∗n}n.

Journal de la Société Française de Statistique, Vol. 157 No. 1 101-128
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2016) ISSN: 2102-6238



The BSE epidemic in GB: a generic example of risk assessment during the growth and decay phases 121

Let us discuss the relevancy of approximating {In}n conditioned on non-extinction at some
finite time k, for k large, by the Q-process {I∗n}n obtained by letting k→ ∞. When considering the
case of late extinction, one works under an hypothetical assumption based on the unknown future,
hence in practice one does not focus on a specific value k for the survival of the disease in the
population. We therefore might consider that k is chosen large enough such that the approximation
of the process {In}n conditioned on the event {Ik 6= 0} by the process {I∗n}n is valid. Of course,
the order of magnitude of such k will depend on the rate of convergence of the conditioned process
to {I∗n}n.

Proposition 4.3 (Pénisson and Jacob, 2012). For each n1 6 . . . 6 nr and i0, . . . , ir ∈ Nd \ {0},
there exist some positive constants A,B,a,b such that for all k > nr,∣∣P(In1 = i1, . . . ,Inr = ir | I0 = i0,Ik 6= 0)−Pi0

(
I∗n1

= i1, . . . ,I∗nr
= ir | I∗0 = i0

)∣∣
6 A

2akm−1( |λ |
ρ
)

k
2 +bρ

k
2

1−akm−1( |λ |
ρ
)

k
2 −bρ

k
2
+Bρ

k,

where λ is an eigenvalue of M with multiplicity m = m(λ ) such that for any other eigenvalue µ

of M, ρ > |λ |> |µ|, and such that |λ |= |µ| implies m > m(µ).

Hence the concept of the Q-process will have most practical relevance to approximate the very
late extinction case if ρ is near to zero and if |λ | is small compared to ρ . Note however that the
very late extinction scenario is more likely to happen if ρ is near to unity because the time to
extinction in most realizations will then be long (see Subsection 3.1.1).

4.2. Estimation

In order to make predictions of the evolution of the epidemic in case of a very late extinction,
i.e. in order to make predictions of the behavior of the conditioned process {I∗n}n introduced in
Subsection 4.1, we need to estimate the parameter θ in the setting of this conditioned process.
We point out that θ does not play the same role in the conditioned process {I∗n}n and in the
unconditioned process {In}n, since, as shown in Proposition 4.1, this parameter interferes not
only in the Poisson random variable but also in the Bernoulli one. It would thus be irrelevant
to estimate θ with an estimator aimed for the unconditioned process such as θ̂ . Similarly as in
Subsection 3.2 we consider the WCLSE based on the process I∗n/

√
a · I∗n−1, namely

θ̂
∗ := argmin

θ∈Θ

Sn(θ), Sn(θ) :=
n

∑
k=1

(
I∗k√

a · I∗k−1
− f (θ ,I∗k−1)

)2

,

where Θ is defined in Subsection 3.2, and

f (θ ,I∗k−1) := Eθ

(
I∗k√

a · I∗k−1
| I∗k−1

)
=

I∗k−1 ·ΨΨΨ(θ)+ p
(
θ ,I∗k−1

)√
a · I∗k−1

.
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In what follows, we denote by f ′ the derivative of f with respect to θ . We define as well

g
(
θ ,I∗k−1

)
:= Eθ

( I∗k√
a · I∗k−1

− f (θ ,I∗k−1)

)2

| I∗k−1


=

I∗k−1 ·ΨΨΨ(θ)+ p
(
θ ,I∗k−1

)(
1− p

(
θ ,I∗k−1

))
a · I∗k−1

.

Theorem 4.4 (Pénisson and Jacob, 2012). The estimator θ̂ ∗ is strongly consistent, that is
limn→∞ θ̂ ∗

a.s.
= θ , and has the following asymptotic distribution,

lim
n→∞

∑
n
k=0 f ′(θ̂ ∗,I∗k)

2√
∑

n
k=0 f ′(θ̂ ∗,I∗k)2g(θ̂ ∗,I∗k)

(
θ̂
∗−θ

)
D
= N (0,1) . (4.2)

As in Subsection 3.2, our estimation of θ is based on the yearly number of cases of BSE
reported in Great Britain from 1989 until 2013 (Table 1). We set I0 = i1997, hence the number of
available observations until 2013 is n = 16, which is far from the asymptotic setting n→ ∞ of
Theorem 4.4. We point out that, by making use of the estimator θ̂ ∗ on the real data, we make an
unverifiable assumption on the future of the epidemic: we consider the data as if they were the
beginning of a trajectory with very late extinction. This should have the following consequence:
the estimation provided by θ̂ ∗obs should be a bit smaller than the value 2.4301 provided by θ̂ obs.
Indeed we obtain

θ̂
∗obs = 2.4279.

We then deduce from (4.2) the 95% asymptotic confidence interval [θ̂ ∗min, θ̂
∗
max] of θ , where θ̂ ∗min :=

θ̂ ∗−1.96/ĉ2, θ̂ ∗max := θ̂ ∗+1.96/ĉ2, ĉ2 =∑
n
k=0( f ′(θ̂ ∗,I∗k))

2
[
∑

n
k=0( f ′(θ̂ ∗,I∗k))

2g(θ̂ ∗,I∗k)
]− 1

2
. The

observed value of the interval are

θ̂
∗obs
min = 2.3798, θ̂

∗obs
max = 2.4760,

which is of the same magnitude order as the confidence interval [2.3842,2.4805] obtained with
the unconditioned process (see (3.10)).

4.3. Prediction

4.3.1. Relevancy of the approximation with the Q-process

Computing the eigenvalues ρ and λ1 introduced in Proposition 4.3, we obtain ρ(θ̂ ∗obs) = 0.6663
and |λ1(θ̂

∗obs)| = 0.5569. It thus appears that the convergence of the epidemic process {In}n

conditioned on non-extinction at time k to the Q-process {I∗n}n as k→ ∞ is not very fast. As
a consequence the study of the Q-process only provides information about the behavior of the
disease spread in the case of an extremely late extinction.
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4.3.2. Prediction of the incidences of cases and incidences of infected cattle

Let us predict the most dangerous evolution thanks to the transition law of the conditioned process
given by Proposition 4.1. First, we see thanks to Figure 3a that the simulations provided by the
conditioned process initialized by I∗0 = i1997, and where θ is estimated by θ̂ ∗obs = 2.4279, are
close to the real observations on the period 1998–2013. Figure 3b is an example of one simulated
trajectory on the period 2014–2040 of the conditioned process, for I∗0 = i2013. It appears that the
values of this simulated trajectory are rapidly very small, and of course are never equal to 0 for
d = 9 consecutive times. For a more refined prediction, we simulate 10000 realizations of this
process from 2014 until 2040, with I∗0 = i2013. Moreover, for every n > 2014 and for each of the
10000 simulated values I∗n , we make one realization of the incidence E1

n of infected cattle at time
n, according to the law given by (2.11). Figures 3c and 3d represent the yearly maximum, median
and 95% quantile associated with the 10000 realizations of respectively, the incidence of cases
and infected cattle, in case of an extreme late extinction. It appears thanks to Figures 3c and 3d
that the supposedly “most dangerous” trajectories nevertheless do not reach high values and do
not present a new peak of epidemic.

5. Conclusion

Starting from a general unconventional branching process describing the propagation of the disease
on branching trees relative to the population dynamics, and assuming reasonable epidemiological
assumptions, we obtained as a limit as the initial population size tends to infinity a simple
branching process on the incidence of infectives and infected animals. This led to a thorough
study of the behavior of the process, and several estimations from the observed incidences of
cases. The Bayesian estimation showed in particular the great efficiency of the feed ban of 1988,
and allowed us to estimate the incubation parameters, taking into account the uncertainty of the
beginning of the epidemic. Focusing then on the decay phase of the process and using a frequentist
approach, we confirmed mathematically what is commonly accepted, namely that BSE is fading
out in Great-Britain. More precisely, the last BSE case should occur before 2025 with a very
large probability, and less than 12 cases should appear until then. We obtained moreover the order
of magnitude of the number of infected cattle in the population. In addition, the estimation of
the infection parameter concluded to the possible existence of a minor but non null infection
source that is not of maternal type, and which is very small (only around 3 newly infected animal
per year and per infective) compared to the main source of horizontal infection until 1988 due
to protein supplements. All the estimations are based on am = 10, which is an undervaluation
of am. Taking am = 19 slightly reduces the estimation of the infection parameters (Subsection
2.4.4). Our estimations consequently slightly overvalue the future cases number and the epidemic
extinction date compared to the case am = 10. But the goal here is mainly to provide an order of
magnitude of the estimations, given that there are other error sources such as the model, which is
a simplified representation of the reality. Moreover in risk analysis it is safer to overestimate a
risk rather than to underestimate it. Finally, the study of the worst-case scenario showed that even
in the case of an extreme late extinction of the disease in the population, the incidence of cases
would decrease quite rapidly to 0, with afterward only 1 or 2 yearly cases occurring regularly
but sparsely, with no appearance of a new peak of epidemic. We have shown with this example
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(a) 5 simulations of {I∗n}n initialized by i1997, and com-
parison with the observations on the period 1998–2013.
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(b) One simulation of {I∗n}n initialized by i2013.
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(c) Prediction of the yearly incidences of cases from
2014 in the worst-case scenario, based on 10000 simu-
lations of {I∗n}n initialized by i2013 .
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(d) Prediction of the yearly incidences of infected cattle
from 2014 in the worst-case scenario, based on 10000
simulations of {E1

n}n.

Figure 3: Prediction of the spread of the disease in the worst-case scenario, based on simulations
with the infection parameter θ̂ ∗obs = 2.4279.
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that the methodology developed in Sections 3 and 4 provides accurate tools to study the decay
phase of an epidemic under the current sanitary measures, which would help to make new policy
decisions. This evaluation is all the more relevant since it is obtained not by simply computing
what should most probably happen, but also by taking into account the variability of many factors
(infection, incubation, survival), and by studying the potentially most dangerous evolution. It is
worth mentioning that this methodology could be applied to any other disease provided that the
epidemic can be considered as negligible relatively to the whole population, that this one is stable
over time, and that the individual probability to be infected is proportional to the proportion of
infectives in the whole population.

6. Appendix

Proof of Proposition 2.2. The proof is a recursive proof on n based on model (2.1)-(2.3). Consid-
ering first NI

n, we write, from (2.1),

NI
n =

d

∑
k=1

Nn−k

∑
i=1

δ
k
i , δ

k
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am

∑
a=k+1

δ
(E1,a−k)
n−k,i δ

E1,I1

a−k,n−k;n,i.

Let us define pk
i ({Ih}) := E

(
δ k

i |Fn−1 ({Ih})
)

and Bi as the set of individuals non independent
of i, given Fn−1 ({Ih}). We assume (2.10)-(2.11) until time n−1, and we are going to show these
relationships at time n. So let, for any A⊂ N,

∆n (A) :=

∣∣∣∣∣P(NI
n ∈ A |Fn−1 ({Ih})

)
−Poiss

(
d

∑
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Ψk|n−kIn−k

)
(A)

∣∣∣∣∣ .
Then

∆n (A)6 ∆
1
n (A)+∆

2
n (A) ,

where

∆
1
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We first apply Arratia-Goldstein-Gordon inequality (Arratia et al., 1989) on ∆1

n (A):

sup
A⊂N

∆
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∑
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,
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where Bk′
i is the set Bi intersected with the population at time n−k′. Let us compute pk

i ({Ih}). We
may express δ k

i as follows:

δ
k
i =

am

∑
a=k+1

δ
(Rc,a−k)
n−k,i δ
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n−k,i δ
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We then obtain pk
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a=k+1 pk

a,1 pk
a,2 pk
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a,4, where

pk
a,1 = P

(
δ

E1,I1

a−k,n−k;n,i = 1 | δ (E1,a−k)
n−k,i δ

E1,Rc

a−k,n−k;n,i = 1,Fn−1 ({Ih})
)
,

pk
a,2 = P

(
δ

E1,Rc

a−k,n−k;n,i = 1 | δ (E1,a−k)
n−k,i = 1,Fn−1 ({Ih})

)
,

pk
a,3 = P

(
δ
(E1,a−k)
n−k,i = 1 | δ (Rc,a−k)

n−k,i = 1,Fn−1 ({Ih})
)
,

pk
a,4 = P

(
δ
(Rc,a−k)
n−k,i = 1 |Fn−1 ({Ih})

)
.

Then using (AS) and the limit model until n− 1 (implying that the infectives population is
negligible until n−1), we obtain:
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= 0, u = 2,4. Using in addition Lemma 6.1, we consequently obtain
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Then (AI2) implies that pk
a,1 = Pinc (k). Moreover using (2.6) and (2.8), we get limN0→∞ p̂n−k|n′ =

limN0→∞ p̂n−k|n−k, n′ > n− k, and since limN0→∞ θ̂
a−k,u
n−k = θ a−k,u for u ∈ {R,Rc} thanks to (AI1)
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Thanks to the assumption on εa−k,n−k|n−1 (see (AI1)), then pk
i ({Ih}) ∈ O(In−k/Nn−k) as N0→ ∞.

This leads to
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Similarly, thanks to (2.9), we have
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∑
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According to the property of rare disease until n− 1 and the stability over time of the whole
population, it follows from the two previous inequalities that limN0→∞ ∆1

n (A)
a.s.
= 0. Moreover

since limN0→∞ λ̂n|n′ = λn (see proof below), then

d

∑
k=1

Nn−k

∑
i=1

pk
i ({Ih}) =

d

∑
k=1

Ψk|n−kIn−k +O
(

max
a,k

(
η

k
a,nIn−k,εa−k,n−k|n−1Nn−k

))
as N0→ ∞, which implies that limN0→∞ supA⊂N ∆2
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The proof is finally achieved by showing in the case where λnφn depends on n only, the

convergence in distribution of the whole Markov chain {Mn} of order d to {Xn}n, where Mn :=
(NI

n,N
E1

n ) and Xn := (In,E1
n ), that is, for all n1, . . . ,np and all p,

lim
N0→∞

P
(
Xn1 = Kn1 , . . . ,Xnp = Knp

)
= P

(
Xn1 = Kn1 , . . . ,Xnp = Knp

)
.

This is proved by iteration on p.
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