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Approximation and inference of epidemic
dynamics by diffusion processes

Titre: Approximation et inférence des dynamiques épidémiques par des processus de diffusion

Romain Guy1,2 , Catherine Larédo1,2 and Elisabeta Vergu1

Abstract: Epidemic data are often aggregated and partially observed. Parametric inference through likelihood-based
approaches is rarely straightforward, whatever the mathematical representation used. Recent data augmentation and
likelihood-free methods do not completely circumvent the issues related to incomplete data in practice, mainly due to
the size of missing data and to the various tuning parameters to be adjusted. In this context, diffusion processes provide
a good approximation of epidemic dynamics and allow shedding new light on inference problems related to epidemic
data. In this article we summarize and extend previous work on the elaboration of a statistical framework to deal
with epidemic models and epidemic data using multidimensional diffusion processes with small diffusion coefficient.
First, we construct multidimensional diffusion processes with small variance as mathematical representations of
epidemic dynamics, by approximating Markov jump processes. Second, we introduce an inference method related to
the asymptotic of the small diffusion coefficient on a fixed time interval for the parameters of the diffusion processes
obtained, when all the coordinates are discretely observed. Consistency and asymptotic normality of estimators for
this case are obtained for parameters in drift (high and low frequency observations) and diffusion (high frequency
observations) coefficients. Third, as an extension of previous work, the case of incomplete data, when only one
coordinate of the system is observed, is considered for high frequency observations. Finally, the performances of our
estimators are explored for single outbreaks (SIR model, simulated data) and for recurrent outbreaks (SIRS model,
simulated and observed data).

Résumé : Les données épidémiques sont souvent agrégées et partiellement observées. L’inférence paramétrique par
des approches de vraisemblance est rarement pratiquable, indépendamment du formalisme mathématique utilisé. Les
méthodes récentes d’augmentation de données ou sans vraisemblance ne permettent pas de résoudre définitivement
le problème des données incomplètes en pratique, notamment à cause de la taille des données à compléter et des
différents paramètres algorithmiques d’ajustement. Dans ce contexte, les processus de diffusion fournissent de
bonnes approximations des dynamiques épidémiques et apportent un nouvel éclairage aux problèmes d’inférence liés
aux données épidémiques. Dans cet article, nous résumons et complétons des travaux précédents sur l’élaboration
d’un cadre statistique pour traiter les modèles et les données épidémiques en utilisant des processus de diffusion
multidimensionnels à petite variance. Premièrement, nous construisons de tels processus, comme représentations
mathématiques des dynamiques épidémiques, en approximant des processus Markoviens de sauts. Deuxièmement,
nous introduisons une méthode d’inférence dans le cadre asymptotique de la petite variance sur un intervalle de temps
fixe pour les paramètres des processus de diffusion obtenus, lorsque toutes les coordonnées du système sont observées
de façon discrétisée. La convergence et la normalité asymptotique des estimateurs sont obtenues dans ce cas pour
les paramètres de la dérive (observations haute et basse fréquence) et du coefficient de diffusion (observations haute
fréquence). Troisièmement, en prolongation de travaux précédents, nous étudions le cas des données incomplètes,
lorsque seulement une coordonnée du système est observée, pour des observations haute fréquence. Finalement, les
performances de nos estimateurs sont explorées pour une seule vague épidémique (modèle SIR, données simulées) et
pour des épidémies récurrentes (modèle SIRS, données simulées et observées).
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1. Introduction

The increasing role of mathematical models in understanding dynamics of pathogen spread at
various temporal and spatial scales, their prevention and control is now well recognized. These
models are by essence mechanistic and naturally include parameters in their description. The
insights provided by models are even more valuable when their parameters are estimated from data.

Typically, as summarized in the article by Britton and Giardina (2014) in this journal issue,
epidemic dynamics in closed population of size N can be described by SIR models based on
three health states (Susceptible, Infectious and Removed from the infectious chain, most usually
following immunisation), which form a partition of the population. The SIR model can be naturally
formalized by a two-dimensional continuous-time Markov jump process. Since the population is
closed, for all t, we have R(t) = N−S(t)− I(t) and we can define the process Z(t) = (S(t), I(t))
characterized by the initial state Z(0) = (S(0), I(0)) and transitions (S, I)−→ (S−1, I +1) and
(S, I)−→ (S, I−1). The SIRS variant of this model assumes an additional transition (S, I)−→
(S+1, I) accounting for the return at the susceptible state from the R state.

When data are available, key parameters can be estimated using these models through likelihood-
based or M-estimation methods sometimes coupled to Bayesian methods (Diekmann et al., 2013).
However, these data are most often partially observed (e.g. infectious and recovery dates are not
observed for all individuals during the outbreak, not all the infectious individuals are reported)
and also temporally and/or spatially aggregated. In this case, estimation through likelihood-based
approaches is rarely straightforward, regardless to the mathematical formalism. As summarised
in section 5 of Britton and Giardina (2014), various approaches were developed during the last
years to deal with partially observed epidemics. Data augmentation and likelihood-free methods
(such as the approximate Bayesian computation) opened some of the most promising pathways
for improvement (Bretó et al., 2009; McKinley et al., 2009). Nevertheless, these methods do
not completely circumvent the issues related to incomplete data. As stated also in Britton and
Giardina (2014), there are some limitations in practice, due to the size of missing data and to the
various tuning parameters to be adjusted (Andersson and Britton, 2000; O’Neill, 2010). Moreover,
identifiability issues are rarely addressed.

In this context, it appears that diffusion processes, satisfactorily approximating epidemic dynamics
(see e.g. Fuchs, 2013; Ross et al., 2009), can be profitably used for inference of model parameters
from epidemiological data, due to their analytical power. After normalizing the SIR Markov jump
process (Z(t)) by N, an ODE system is asymptotically obtained as the population size N goes to
infinity: x(t) = (s(t), i(t)) with (s(0) = 1− i0, i(0) = i0).

A first order approximation of the process (Z(t)/N)t≥0 with respect to N leads to a diffusion
process (XN(t))t≥0 with diffusion coefficient proportional to 1/

√
N. Hence, epidemic dynamics

can be described using the two-dimensional diffusion (XN(t))t≥0 with a small diffusion coefficient
proportional to 1/

√
N. Since epidemics are usually observed over limited time periods, we con-
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Diffusion processes for epidemic dynamics 73

sider in what follows the parametric inference based on observations of the epidemic dynamics
on a fixed interval [0,T ].

In this paper, we summarize and complete previous work on the use of diffusion processes with
small diffusion coefficient to study epidemic dynamics (Guy et al., 2014, 2015). By extending
results stated in (Ethier and Kurtz, 2005, chapter 8), for density-dependent population processes,
we develop here a generic and rigorous method to construct multidimensional diffusion processes
with small variance as mathematical representations of epidemic dynamics, by approximating a
Markov jump process (section 2). Section 3 contains assumptions, notations, statistical framework
and a short recap of classical results on the parametric inference for diffusion processes. In section
4, we introduce an inference method for the parameters of the diffusion process obtained in section
2, when the data consist of n discrete observations of (X(t)) with sampling interval ∆ on a fixed
time interval [0,T ]. Concerning the application of diffusion approximations to epidemic data,
we consider the special case where the same parameters are both present in the diffusion and
drift terms, the number n of observations satisfying n∆ = T . We consider the case where both
coordinates of the diffusion are observed (corresponding here to the observation of susceptible
and infected individuals). The consistency and asymptotic normality of estimators are investigated
in the two distinct asymptotic frameworks: the number of observations n is fixed (low frequency
observations corresponding to ∆ = T/n) and the population size N→ ∞; n→ ∞ (high-frequency
observations corresponding to ∆ = ∆n→ 0) and N→ ∞ simultaneously. Motivated by epidemics
where only infected individuals can be observed, the novel case of partial data (observation of
one coordinate of the system only) is investigated in section 5. Finally, the accuracy of these
estimations is explored (section 6) for single outbreaks (SIR model, simulated data) and for
recurrent outbreaks (SIRS model, simulated and observed data).

2. Approximation of jump processes describing epidemic dynamics by diffusion models

This section presents a general approach for building multidimensional diffusion processes with
small diffusion coefficient by approximating Markov jump processes, based on Guy et al. (2015).
We first detail our approach which is the basis for the statistical inference. Using limit theorems
for stochastic processes, we characterize the limiting Gaussian process. Then, based on the theory
of perturbations of dynamical systems (Freidlin and Wentzell, 1978), we link the normalised
process to a diffusion process with small diffusion coefficient (2.1). These approximations are
then applied to SIR and SIRS models for epidemic dynamics (2.2).

2.1. The approximation scheme

The simplest stochastic model for describing epidemic dynamics in closed populations of size
N is a multidimensional Markov jump process (Z(t), t ≥ 0) with state space E ⊂ Zp, where p
corresponds to the number of health states assumed in the model of the infection dynamics. This
process is usually described by an initial distribution on E, and a collection of non negative
functions (αl(.) : E→ R+) indexed by l ∈ Zp, l 6= (0, . . . ,0) that satisfy,

∀k ∈ E,0 < ∑
l∈Zp

αl(k) = α(k)< ∞. (1)
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These functions are the transition rates of the process (Z(t)) with Q-matrix having as elements

qk,k+l = αl(k) if l 6= 0, and qk,k =−α(k) for k,k+ l ∈ E. (2)

Another useful description of (Z(t)) is based on the joint distribution of its jump chain and
holding times. The process Z(t) stays in each state k ∈ E during an exponential time E (α(k)),
and then jumps to the state k+ l according to a Markov chain (Xn) with transition probabilities
P(Xn+1 = k+ l | Xn = k) = αl(k)/α(k).

An important class of pure jump Markov processes in a closed population consists of the density
dependent Markov jump processes which possess a limit behaviour when normalised by the
population size N. Let us define the two sets

E = {0, . . . ,N}p; E− = {−N, . . . ,N}p. (3)

In the sequel, we assume that the state space of (Z(t)) is E and that its jumps belong to E−.
From the original jump process (Z(t)) on E = {0, . . . ,N}p, one defines a family of normalized
jump Markov process (ZN(t), t ≥ 0) where

ZN(t) =
Z(t)
N

with state space EN = {N−1k,k ∈ E}. (4)

Its jumps are now z = l/N with l ∈ E− and transition rates from y ∈ EN to y+ z ∈ EN defined
using (2),

qN
y,y+z = αNz(Ny) (= αl(k) if y = k/N,z = l/N). (5)

Denote for y = (y1, . . . ,yp) ∈ Rp, [y] = ([y1], . . . , [yp]) ∈ Zp, where [yi] is the integer part of yi.

We assume in the sequel that there exists a collection of functions βl : [0,1]p→ R+ such that,

(H1): ∀l ∈ E−, ∀y ∈ [0,1]p 1
N αl([Ny]) −→

N→+∞
βl(y);

(H2): ∀l ∈ E−, βl ∈C2([0,1]p).

A jump process (Z(t)) with state space E (see (3)) is density dependent if it satisfies (H1).
Then, define the two functions bN and b : [0,1]p → Rp and the two p× p positive symmetric
matrices ΣN and Σ (with the notation tM for the transposition of a matrix or vector) by

bN(y) =
1
N ∑

l∈E−
l αl([Ny]), b(y) = ∑

l∈E−
l βl(y) and (6)

ΣN(y) =
1
N ∑

l∈E−
αl([Ny]) l tl, Σ(y) = ∑

l∈E−
βl(y) l tl. (7)

Since the number of jumps is finite, the function b(.) is well defined under (H1) and Lipschitz
under (H2). Therefore, there exists a unique smooth solution x(t) to the ODE

x(t) = x0 +
∫ t

0
b(x(u))du. (8)
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The resolvent matrix Φ(t,u) associated with (8) is defined as the solution

dΦ

dt
(t,u) =

db
dx

(x(t))Φ(t,u); Φ(u,u) = Ip, where
db
dx

(x) =
(∂bi

∂x j
(x)
)

1≤i, j≤p. (9)

Based on notations, definitions and assumptions introduced above, we can run through two distinct
approaches to build approximations of the family of processes (ZN(t)). The first approach is
similar to (Ethier and Kurtz, 2005, Chapter 9) but proofs are based on different tools. While
the convergence results of Ethier and Kurtz (2005) are based on an explicit expression of pure
jump Markov processes as sums of random time changed Poisson processes, we use in Guy et al.
(2015) general convergence theorems for Markov processes (Jacod and Shiryaev, 1987) to obtain
convergence results for (ZN(t)) (almost sure convergence and associated central limit theorem) in
the case of processes satisfying (H1), (H2). The second approach we used relies on the theory of
small perturbations of dynamical systems (Freidlin and Wentzell, 1978). We obtained that the
first order approximation of (ZN(t)) with respect to N could be derived from a diffusion process
(XN(t)) with small diffusion coefficient. All these results are detailed below in Theorems 2.1 and
2.2.

Let (D,D) denote the space of “cadlag” functions f : R+→ Rp endowed with the Skorokhod
topology D and denote, for y ∈Rp, ‖ y ‖ its Euclidean norm. We can now detail the first approach
which corresponds to a central limit theorem associated to the convergence of (ZN(t)) to a
Gaussian process when N→ ∞.

Theorem 2.1. Assume (H1), (H2) and that ZN(0)→ x0 as N→ ∞. Then, using definitions (4),
(7), (8) and (9)

∀t ≥ 0, lim
N→∞

sup
u≤t
‖ ZN(u)− x(u) ‖= 0 a.s. (10)

where x(u) is solution of (8).
The process

√
N(ZN(t)− x(t))t≥0 belongs to D and satisfies

√
N(ZN(t)− x(t))t≥0→ (G(t)) in distribution in (D,D), (11)

where (G(t)) is a centered Gaussian process with covariance matrix

Cov(G(t),G(r)) =
∫ t∧r

0
Φ(t,u)Σ(x(u)) t

Φ(r,u)du. (12)

The proofs of these results are given in Guy et al. (2014), Guy et al. (2015).

Note that there is no time scaling here, but only a scaling of the state space. Therefore these results
naturally extend to time-dependent Markov jump processes (Z(t)) with transition rates αl(t,k)

with α(t,k) = ∑
l∈Zp

αl(t,k)< ∞ under the assumptions,

(H1b): ∀t ≥ 0, ∀l ∈ E−, ∀y ∈ [0,1]p 1
N αl(t, [Ny]) −→

N→+∞
βl(t,y);

(H2b): ∀l ∈ E−, βl(t,y) ∈C2(R+, [0,1]p).
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The second approach for approximating (ZN(t)) rests on a generator based expansion. Indeed, the
process (ZN(t)) in (4) is a Markov process with generator AN defined for f ∈C2(Rp,R) by

AN f (y) = ∑
l∈E−

αl(Ny)( f (y+
l
N
)− f (y)).

Heuristically, a Taylor expansion of AN f (y) yields, using (H1), (H2) and (6),

AN f (y) = ∑l∈E− Nβl(y)( f (y+ l
N )− f (y))+o(1/N)

= b(y)∇ f (y)+ 1
2N

(
∑l∈E− βl(y)∑

p
i, j=1 lil j

∂ 2 f
∂yi∂y j

(y)
)
+o(1/N)

= b(y)∇ f (y)+ 1
2N ∑

p
i, j=1 Σi j(y)

∂ 2 f
∂yi∂y j

(y)+o(1/N),

where the last equality is obtained using (7).
The first two terms of the last expression correspond to the generator of a diffusion process on Rp

with drift coefficient b(.) and diffusion matrix 1
N Σ(.),

dXN(t) = b(XN(t))dt +
1√
N

σ(XN(t))dB(t) ; XN(0) = ZN(0), (13)

where (B(t)t≥0) is a Brownian motion on Rp defined on a probability space P= (Ω,(Ft)t≥0,P)
independent of ZN(0), and σ(.) is a square root of Σ(.),

σ(.) : Rp→ Rp×Rp such that σ(y) t
σ(y) = Σ(y).

Let us note that, contrary to the first approach, this does not yield an approximation result between
the sample paths of (ZN) and (XN). Indeed, no similar limit theorem can justify that (XN) approxi-
mates (ZN), since the (ZN) are not expressible in terms of any kind of limiting process (see Ethier
& Kurtz , chapter 11, section 3). A coupling theorem of Kolmos-Major-Tusnady is required to get
a direct comparison. The main interest of this second approach lies in the fact that it allows all the
mathematical developments available for diffusion processes to be used in our framework.

However, these two approaches can be linked a posteriori using the theory of random perturbations
of dynamical systems (or stochastic Taylor expansion of diffusion processes) (Freidlin and
Wentzell, 1978; Azencott, 1982) and the following theorem.

Theorem 2.2. Setting ε = 1/
√

N, the paths of XN(.) satisfy, as ε → 0,

XN(t) = Xε(t) = x(t)+ εg(t)+ ε
2Rε(t), with supt≤T ‖ εRε(t) ‖→ 0 in probability, (14)

where x(t) is the solution of (8) and (g(t)) is the process satisfying the SDE

dg(t) =
db
dx

(x(t))g(t)dt +σ(x(t))dB(t), g(0) = 0.

This stochastic differential equation can be solved explicitly and we get a closed form for its
solution g(.),

g(t) =
∫ t

0
Φ(t,s)σ(x(s))dB(s). (15)
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Hence, (g(t)) is a centered Gaussian process having the same covariance matrix (12) as the process
(G(t)) defined in (11). Therefore, for ε = 1/

√
N,
√

N(ZN(t)− x(t))t≥0 and ε−1 (Xε(t)− x(t))t≥0
converge to a Gaussian process having the same distribution.

For sake of clarity, we have detailed above these approximations for diffusion processes with drift
and diffusion coefficients depending only on the state space variable x. However, this expansion
of Xε(.) is still true for time-dependent jump processes leading to diffusion processes (XN(.))
with drift term and diffusion matrix respectively b(t,x) and 1

N Σ(t,x): the corresponding ODE and
Gaussian process are respectively,

x(t) = x0 +
∫ t

0
b(u,x(u))du, g(t) =

∫ t

0
Φ(t,s)σ(s,x(s))dB(s). (16)

2.2. The diffusion approximation applied to the SIR epidemic model

We apply first the generic method leading successively to b(.), Σ(.) and (XN) described in 2.1
to the SIR model introduced in section 1 and in Britton and Giardina (2014) through the two-
dimensional continuous-time Markov jump process Z(t) = (S(t), I(t)), to build the associated SIR
diffusion process. Along to its initial state Z(0) = (S(0), I(0)), the Markov jump process is char-

acterized by two transitions, (S, I)
λ

N SI
−→ (S−1, I +1) and (S, I)

γI−→ (S, I−1). Parameters λ and
γ = 1/d represent the transmission rate and the recovery rate (or the inverse of the mean infection
duration d), respectively. The rate λSI/N translates two main assumptions: the population mix
homogeneously (same λ for each pair of one S and one I) and the transmission is proportional to
the fraction of infectious individuals in the population, I/N (frequency-dependent formulation of
the transmission term).

The diffusion approximation of the initial jump process describing the epidemic dynamics can be
summarized by three steps.
First, transition rates need to be defined. The original SIR jump process in a closed population has
state space {0, . . . ,N}2, the possible jumps (symbolized by l in 2.1) are (−1,1) and (0,−1) with
transition rates,

q(S,I),(S−1,I+1) = λS
I
N

= α(−1,1)(S, I); q(S,I),(S,I−1) = γI = α(0,−1)(S, I).

Second, normalizing Z(t) by the population size N, we obtain, setting y = (s, i) ∈ [0,1]2,

1
N

α(−1,1)([Ny]) −→
N→+∞

β(−1,1)(s, i) = λ si;
1
N

α(0,−1)([Ny]) −→
N→+∞

β(0,−1)(s, i) = γi.

These two limiting functions clearly satisfy (H1)-(H2).
Finally, the two functions given in (6), (7) are well defined and now depend on (λ ,γ).
Set θ = (λ ,γ) and denote b(θ ,y) and Σ(θ ,y) the associated functions. We get

b(θ ,(s, i)) =
(
−λ si

λ si− γi

)
; Σ(θ ,(s, i)) =

(
λ si −λ si
−λ si λ si+ γi

)
. (17)
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78 Guy, Larédo and Vergu

We can now derive the diffusion approximation of the SIR epidemics obtained in (13). On a filtered
probability space (Ω,F = (Ft),P), let B(t) = t(B1(t),B2(t)) denote a standard two-dimensional
Brownian motion and consider the Choleski decomposition of Σ(θ ,y),

σ(θ ,(s, i)) =
( √

λ si 0
−
√

λ si
√

γi

)
.

Assume that Z(0) = (S(0), I(0)) satisfies (S(0)
N , I(0)

N ) −→
N→+∞

(s0, i0) = x0. Then, XN(t) =
(

SN(t)
IN(t)

)
satisfies the stochastic differential equation defined by XN(0) = x0 and

dSN(t) =−λSN(t)IN(t)dt + 1√
N

√
λSN(t)IN(t)dB1(t),

dIN(t) = (λSN(t)IN(t)− γIN(t))dt− 1√
N

(√
λSN(t)IN(t)dB1(t)−

√
γ IN(t)dB2(t)

)
.

In order to visualize the influence of the population size N on the sample paths of the normalized
jump process ZN(t) = Z(t)/N, several trajectories have been simulated using an SIR model
with parameters (λ ,γ) = (0.5,1/3). Results are displayed in Figure 1. We observe that, as the
population size increases, the stochasticity of sample paths decreases. However, it still keeps a
non negligible stochasticity for a large population size (N = 10000). Since the peak of IN(t) is
quite small (about 0.08 here), this can be explained by a moderate size of the ratio “signal over
noise” even for large N (here of order 0.08/0.01 ).
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FIGURE 1. Five simulated trajectories of the proportion of infected individuals over time using the SIR Markov jump
process for (s(0), i(0)) = (0.99,0.01) (λ ,γ) = (0.5,1/3) and for each N = {400,1000,10000} (from left to right).
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2.3. The diffusion approximation applied to the SIRS epidemic model with seasonal forcing

Another important class of epidemics models introduced in section 1 is the SIRS model, which
allows possible reinsertion of removed individuals into S class. The additional transition writes

as (S, I)
δ (N−S−I)−→ (S+1, I), where δ is the average rate of immunity waning. To mimic recurrent

epidemics, additional mechanisms need to be considered. Hence, an appropriate model to describe
recurrent epidemics is the SIRS model with seasonal transmission (at rate λ (t)), external immi-
gration flow in the I class (at rate η) and, when the time-scale of study is large, demography (with
birth and death rates equal to µ for a stable population of size N). Seasonality in transmission is
captured using a time non homogeneous transmission rate, expressed under a periodic form

λ (t) := λ0(1+λ1sin(2πt/Tper)) (18)

where λ0 is the baseline transition rate, λ1 the amplitude of the seasonality in transmission and
Tper the period of the seasonal trend (see Keeling and Rohani, 2011, Chapter 5).

Figure 2 illustrates the dynamics of the SIRS model (in ODE formalism) which is forced using
sinusoidal terms. In particular, given the parameter values we have chosen, we can notice two
distinct regimes: one with annual cycles (top panel) and the other with biennial dynamics (middle
panel). The qualitative changes in model dynamics following the modification of a control
parameter or bifurcation parameter (here λ1) are summarized in the bifurcation diagram (bottom
panel; more detail in the figure caption).

The diffusion approximation is built following the same generic scheme of section 2.1 as for
the SIR model in section 2.2. Assuming again a constant population size, we obtain a new
two dimensional system with four transitions for the corresponding Markov jump process. The
jump process is time-dependent and so we have to check (H1b)-(H2b). First, four jumps l
corresponding to functions αl are possible in this model, l ∈ {(−1,1);(−1,0);(0,−1);(1,0)}.
The corresponding transition rates are q(S,I),(S−1,I+1), q(S,I),(S−1,I), q(S,I),(S,I−1) and q(S,I),(S+1,I),
which respectively write as

(S, I)
λ (t)

N S(I+Nη)
−→ (S−1, I +1)⇒ α(−1,1) =

λ (t)
N S(I +Nη)

(S, I)
µS−→ (S−1, I) ⇒ α(−1,0) = µS

(S, I)
(γ+µ)I−→ (S, I−1)⇒ α(0,−1) = (γ +µ)S

(S, I)
µN+δ (N−S−I)−→ (S+1, I) ⇒ α(1,0) = µN +δ (N−S− I)S.

Second, straightforward computations yield, for (s, i) ∈ [0,1]2,
β(−1,1)(t,(s, i)) = λ (t)s(i+η)
β(−1,0)(t,(s, i)) = µs
β(0,−1)(t,(s, i)) = (γ +µ)i
β(1,0)(t,(s, i)) = µ +δ (1− s− i).
Clearly, (H1b) and (H2b) are satisfied.
Finally, setting θ = (λ0,λ1,γ,δ ,η ,µ), the associated drift function b(θ ,(s, i)) and diffusion
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FIGURE 2. Proportion of infected individuals, I(t), over time simulated using the ODE variant of the SIRS model with
N = 107, Tper = 365, µ = 1/(50×Tper), η = 10−6, (s0, i0) = (0.7,10−4) and (λ0,γ,δ ) = (0.5,1/3,1/(2× 365)).
The top panel corresponds to λ1 = 0.05, the middle panel to λ1 = 0.1. The bottom panel represents the bifurcation
diagram with respect to λ1. This diagram is constructed as follows: for each specific value of λ1, the proportion of
infected individuals (once the dynamics reached the asymptotic state) is plotted at the last day of each year. For λ1
values smaller than 0.08, the simulated dynamics is annual (as the forcing function in (18)) and one dot on y-axis
corresponds to each value of λ1. For values of λ1 above 0.08, biennial dynamics occur, which is shown by the two dots
on the y-axis for each value of λ1.

matrix Σ(θ , t,(s, i)) are

b(θ , t,(s, i)) =

(
−λ (t)s(i+η)+δ (1− s− i)+µ(1− s)

λ (t)s(i+η)− (γ +µ)i

)
, (19)

Σ(θ , t,(s, i)) =

(
λ (t)s(i+η)+δ (1− s− i)+µ(1+ s) −λ (t)s(i+η)

−λ (t)s(i+η) λ (t)s(i+η)+(γ +µ)i

)
. (20)

Choosing σ(θ , t,(s, i)) such that σ(.) t
σ(.) = Σ(θ , t,(s, i)), we obtain that the approximating

diffusion XN(t) satisfies

dXN(t) = b(θ , t,(SN , IN))dt +
1√
N

σ(θ , t,(SN , IN)); XN(0) = x0. (21)

3. Inference for diffusion processes with small diffusion coefficient: general framework

Inference for diffusion processes observed on a finite time-interval presents some specific proper-
ties. For sake of clarity, a short recap of classical results for diffusion processes inference is then
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given. We first present the general framework required for time-dependent diffusion processes
and then detail these results.

3.1. Framework and main assumptions

Our concern here is parametric inference. In the sequel, we assume that the parameter set Θ is a
subset of Ra×Rb and denote θ = (α,β ) ∈Θ the current parameter.
In order to deal with general epidemics, we consider time-dependent diffusion processes on Rp

with small diffusion coefficient ε = 1/
√

N satisfying the following SDE:

dX(t) = b(α; t,X(t))dt + εσ(β ; t,X(t)) dB(t) ; X(0) = x0, (22)

where (B(t)t≥0) is a p-dimensional standard Brownian motion defined on a probability space
P= (Ω,(Ft)t≥0,P), b(α; t, .) : Rp→ Rp and σ(β ; t, .) : Rp→ Rp×Rp.
We assume that b(α; t,x) and σ(β ; t,x) are measurable in (t,x), Lipschitz continuous with respect
to the second variable and satisfy a linear growth condition for all t ≥ 0,x,y ∈ Rp, i.e. there exists
a global constant K such that

(S1): ∀(α,β ) ∈Θ,‖ b(α; t,x)−b(α; t,y) ‖+ ‖ σ(β ; t,x)−σ(β ; t,y) ‖≤ K ‖ x− y ‖;
(S2): ∀(α,β ) ∈Θ,‖ b(α; t,x) ‖2 + ‖ σ(β ; t,x) ‖2≤ K(1+ ‖ x ‖2);
(S3): ∀(β , t,x), Σ(β ; t,x) = σ(β ; t,x) t

σ(β ; t,x) is invertible.

Assumptions (S1)-(S3) are classical assumptions that ensure that for all θ equation (22) admits
a unique strong solution (see e.g. Karatzas and Shreve, 1998, Chapter 5.2.B.). Under some
additional regularity assumptions, the expansion (14) still holds for time-dependent diffusion
processes (Azencott, 1982).
Introducing the dependence with respect to t and parameters (α,β ) in (8), (9), (15) yields,

xα(t) = b(α;s,xα(s))ds,
gα,β (t) =

∫ t
0 Φα(t,s)σ(β ;s,xα(s))dB(s), with Φα such that

∂Φα

∂ t (t,u) = ∂b
∂x (α; t,xα(t))Φα(t,u) , Φα(u,u) = Ip,

(23)

where ∂b
∂x (α; t,x)is the p× p matrix ( ∂bi

∂x j
(α; t,x))i j. Then the expansion (14) writes

XN(t) = Xε(t) = xα(t)+ εgα,β (t)+ ε2Rε,α,β (t), where
supt≤T ‖ εRε,α,β (t) ‖→ 0 in probability as ε → 0.

(24)

Let θ0 be the true value of the parameter. For inference, we need the following assumptions
(S4): Θ = Ka×Kb is a compact set of Ra+b, θ0 ∈ Θ̆;
(S5): For all t ≥ 0, b(α; t,x) ∈C2(Ka×Rp,Rp) and σ(β ; t,x) ∈C2(Ka×Rp,Mp(R));
(S6): α 6= α ′⇒ b(t;α,xα(t)) 6≡ b(t;α ′,xα ′(t));
(S7): β 6= β ′⇒ Σ(t;β ,xα0(t)) 6≡ Σ(t;β ′,xα0(t)).

Finally, we denote by Pε
θ
=Pε

α,β the distribution of (X(t)) satisfying (22) on C =(C([0,T ],Rp),C ),
with C the Borel σ -algebra on C([0,T ],Rp).
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3.2. Short recap of inference for diffusion processes

Classical results concern autonomous diffusion processes, i.e. with drift and diffusion coefficients
b(α,x) and σ(β ,x). They differ according to the observations.

(1) Continuous observation of the sample path on [0,T ]
Consider first the case where the diffusion (X(t)) with drift term b(.) and diffusion matrix σ(.) is
continuously observed on a finite time interval [0,T ]. Let PT

b,σ denote its distribution on (C,C ).
Then, the two distributions PT

b,σ and PT
b,σ ′ are orthogonal if σ(.) 6≡ σ ′(.). (see e.g Lipster and

Shiryaev, 2001). Therefore, this excludes maximum likelihood approaches for different values of
β . The consequence is that it is possible to identify the diffusion coefficient (or parameters present
in it) without a statistical method. This is done for instance using that the quadratic variations
of X(t), ∑

n
k=1(X(tk)−X(tk−1))

2, tend to
∫ T

0 σ2(X(s))ds in probability, as ∆ tends to 0 (where
tk = k∆ and T = n∆).
Assuming that β = β0 is fixed, two diffusion processes with drift functions b(α,x), b(α ′,x)
have absolutely continuous distributions on (C([0,T ],Rp),C ). Then, (see Kutoyants, 1984), the
maximum likelihood estimator α̂ε is consistent and satisfies that, under Pε,T

α0,β0
, as ε → 0,

ε
−1 (α̂ε −α0)→N

(
0, I−1

b (α0,β0)
)

in distribution, with (25)

Ib(α0,β0) =

(∫ T

0

t
∂b
∂αi

(α0,xα0)(s)Σ
−1(β0,xα0(s))

∂b
∂α j

(α0,xα0)(s)
)

1≤i, j≤a
(26)

The matrix Ib(α0,β0) is the Fisher information of this statistical experiment, which has to be
assumed invertible for getting (25).

(2) Discrete observations of the sample path with sampling interval ∆ on [0,T ]
Assume that T = n∆ and that X(0) = x0 is fixed. Then, the observations consist of the n-
tuple (X(k∆),k = 1, . . . ,n). Denote by Pε,∆

α,β the distribution on (Rn,B(Rn)) of the n-tuple
(X(k∆),k = 1, . . . ,n). Note that now, distributions corresponding to different values of (α,β ) are
absolutely continuous. The main difficulty here lies in the intractable likelihood. This is a well
known problem for discrete observations of diffusion processes. Alternative approaches based on
M-estimators or contrast processes (see e.g. van der Vaart, 2000) have to be investigated. There
are distinct asymptotic results according to ∆.
High frequency sampling: ∆ = ∆n→ 0 with T = n∆n

This implies that the number of observations n→ ∞. Then, Gloter and Sørensen (2009) proved,
under assumptions linking the two asymptotics ε and n, the existence of consistent and asymptoti-
cally Gaussian estimators (α̃ε,n, β̃ε,n) of (α,β ), which converge at different rates, parameters in
the drift function being estimated at rate ε−1 and parameters in the diffusion coefficient at rate√

n = ∆
−1/2
n : (

ε−1(α̂ε,n−α0)√
n(β̂ε,n−β0)

)
−→

n→∞,ε→0
N

(
0,
(

I−1
b (α0,β0) 0

0 I−1
σ (α0,β0)

))
. (27)
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The matrix Ib is the matrix defined in (26), the matrix Iσ is

Iσ (α,β ) =

(
1

2T

∫ T

0
Tr(

∂Σ

∂βk
Σ
−1 ∂Σ

∂βl
)(β ;s,xα(s))ds

)
1≤k,l≤b

, (28)

where Ib(α0,β0) and Iσ (α0,β0) are assumed invertible (Tr(A) denoting the trace of a matrix A).
Low frequency sampling: fixed ∆

Since T = n∆ is finite, this implies that the number of observations n is finite. Investigating the
inference for a finite number of observations, n, is not classical. But this occurs in practice for
epidemics, along with the population size asymptotics (i.e. ε → 0). This is a framework that we
investigated in Guy et al. (2014) and that will be summarised in section 4.2.

4. Inference for discretely observed diffusions motivated by epidemic data

This section sums up the statistical results obtained in Guy et al. (2014) and Guy et al. (2015)
for multidimensional time-dependent diffusion processes (X(t),0≤ t ≤ T ) with small diffusion
matrix, obtained as approximations of epidemic processes. Observations consist of discrete
observations of the sample path with sampling ∆ on a fixed time interval T = n∆. In the sequel,
we denote (X(tk)) the n-tuple (X(t1), . . . ,X(tn)) with ti = i∆.
At first glance, the low frequency sampling seems a priori more appropriate for epidemic data.
However, both high and low frequency observations could be appropriate in practice, because the
choice of the statistical framework depends more on the relative magnitudes between T , ∆ and
the population size N (= ε−1/2) than on their accurate values.
We present successively results obtained for the high frequency sampling, where the asymptotics is
ε = 1/

√
N→ 0, ∆n = T/n→ 0 (section 4.1), and for the low frequency sampling, ε = 1/

√
N→ 0,

∆ (and also the number of observations, n), fixed (section 4.2).

4.1. High frequency observations

We assume that both ε and ∆ go to 0. The sample path (X(t)) is observed at times tk = k∆. Hence,
the number of observations n goes to infinity. The inference in the case σ(β ,x) ≡ 1 was first
investigated for one dimensional diffusion process by Genon-Catalot (1990), using expansion
(14).
The results obtained in Gloter and Sørensen (2009) require conditions linking ε and ∆ that do not
fit epidemic data, where generally the parameter ε is small, and orders of magnitude for N and n
satisfy N >> n so that ∆ is comparatively large with respect to ε .
We proposed in Guy et al. (2014) another method based on the Taylor expansion of Xε(.), which
extends results obtained in Genon-Catalot (1990). This yields another contrast process based on
the property that the random variables

Bk(α,X) = X(tk)− xα(tk)−Φα(tk, tk−1) [X(tk−1)− xα(tk−1)] (29)

are approximately conditionally independent centered Gaussian random variables on Rp with
covariance matrix

Sk(α,β ) =
1
∆

∫ tk

tk−1

Φα(tk,s)Σ(β ;s,xα(s))
t
Φα(tk,s)ds. (30)
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Let

Uε,∆ (α,β ;(X(tk))) =
n

∑
k=1

(
log(det Sk(α,β ))+

1
ε2∆

tBk(α,X) S−1
k (α,β ) Bk(α,X)

)
. (31)

Under Pε

α0,β0
, as ε, ∆→ 0, we proved in Guy et al. (2014) that ε2Uε,∆ (α,β ;(X(tk)))→K(α0,α;β ),

with K(α0,α;β ) =
∫ T

0
t
Γ(α0,α; t)Σ−1(β ,xα0(t)Γ(α0,α; t)dt and

Γ(α0,α; t) = b(α0; t,xα0(t))−b(α; t,xα(t))− ∂b
∂x (α; t,xα(t))(xα0(t)− xα(t)).

Define the minimum contrast estimator

(α̂ε,∆, β̂ε,∆) = argmin
α,β

Uε,∆ (α,β ;(X(tk))) .

We proved for autonomous (Guy et al., 2014) and time-dependent (Guy et al., 2015) diffusion
processes the following result (for proofs, see these two articles cited).

Theorem 4.1. Assume (S1)-(S7). Then, under Pε

α0,β0
, as ε, n→ ∞ (∆ = T/n→ 0),(

ε−1(α̂ε,∆−α0)√
n(β̂ε,∆−β0)

)
−→

n→∞,ε→0
N

(
0,
(

I−1
b (α0,β0) 0

0 I−1
σ (α0,β0)

))
in distribution, (32)

where the two matrices Ib(α,β ) and Iσ (α,β ) are defined in (26), (28).

Remark 1. The covariance matrix Sk(α,β ) and the random variables Bk(α,X) depend on Φα(t,s)
and might be difficult to compute. Using that, for small ∆ and ε , Sk(α,β )'Σ(β ; tk−1,X(tk−1)) and
Φα(tk, tk−1)' Ip+∆

∂b
∂x (α, tk−1,x(tk−1)), we can replace Sk(α,β ) and Φα(tk, tk−1) by these latter

more tractable quantities in (31). This yields another contrast process Ũε,∆(α,β ;(X(tk))), together
with another minimum contrast estimators (α̃ε,∆, β̃ε,∆), which are asymptotically equivalent to
(α̂ε,∆, β̂ε,∆).

4.2. Low frequency observations

The sampling interval ∆ is fixed, so that the data consist of a finite number n of observations
(X(tk),k = 1, . . . ,n) with T = n∆. Only parameters in the drift function can be consistently
estimated. This agrees with the previous results where the rate of estimation for β in the high
frequency set-up is

√
n. This can be easily illustrated considering the Brownian motion with drift,

dX(t) = αdt + ε β dB(t);X(0) = 0.

The random variables (X(tk)−X(tk−1),k = 1, . . . ,n) form a sequence of Gaussian independent
random variables, N (α∆,ε2σ2∆). The likelihood is explicit and the maximum likelihood esti-
mators are α̂ε,∆ = X(T )

T , β̂ 2
ε,∆ = 1

n∆ε2 ∑
n
1(X(tk)−X(tk−1)−∆α̂ε,∆)

2.

Under Pε
θ0

, ε−1(α̂ε,∆−α0) = β0
B(T )

T , which has distribution N (0,β 2
0 /T ), and therefore α̂ε,∆ is

consistent and Gaussian as ε → 0. The estimator of β̂ 2
ε,∆ satisfies β̂ 2

ε,∆ = β 2
0 (

1
n ∑

n
1U2

k −
1
n

B(T )2

T ),
where (Uk) are i.i.d N (0,1). Hence, since n is fixed, β̂ 2

ε,∆ is a given random variable which does
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not depend on ε . Its expectation is β 2
0 (1− 1

n) 6= β 2
0 , implying that it is a biased estimator of β0.

Therefore, for estimating α in presence of unknown parameters in the diffusion coefficient, a
conditional least squares method based on the random variables Bk(α) defined in (29) must be
used. It results in substituting Sk(α,β ) by Ip in (31). Consistent and ε−1 convergent estimators of
α are obtained (see Guy et al., 2014).

However, for epidemic data, we can use the property that the same parameters both appear in the
drift and diffusion coefficients of the approximating diffusion processes. Therefore, substituting β

by α in (31) yields another contrast process which writes, using (29), (30),

Uε,∆ (α;(X(tk))) =
n

∑
k=1

(
log(det Sk(α,α))+

1
ε2∆

tBk(α,X) S−1
k (α,α) Bk(α,X)

)
. (33)

Then, under Pε
θ0

, as ε → 0,

ε
2Uε,∆(α,(X(tk)))→ K∆(α0,α) =

1
∆

n

∑
1

tBk(α,x(α0, .))S−1
k (α,α)Bk(α,x(α0, .)) a.s.

The identifiability assumption ensuring that the function α → K∆(α0,α) is positive and equal 0
for α = α0 leads to the following modification of (S6)

(S6b): α 6= α ′⇒ (xα(tk),k = 1 . . . ,n) 6≡ (xα ′(tk),k = 1 . . . ,n).

The minimum contrast estimator α̂ε,∆ is consistent and satisfies that, under Pα0,ε ,

ε
−1 (α̂ε,∆−α0)−→

ε→0
N (0, I−1

∆
(α0)). (34)

The matrix I∆(α0) is explicit and satisfies that, as ∆→ 0, I∆(α0)→ Ib(α0), the Fisher information
of the continuous observations model of (X(t), t ≤ T ) defined in (26). As expected, this property
is not recovered when using conditional least squares (used in the general case of β unknown)
which leads to a covariance matrix V∆(θ0) for α̃ε,∆, tending to (J(θ0)

−1Ib(θ0)J(θ0)
−1) instead of

I−1
b (θ0) as ∆→ 0. The matrix J(θ) is explicit and given in Proposition 3.1 of Guy et al. (2014).

5. Statistical inference for partially observed epidemic dynamics

In the case of epidemics, numbers of susceptible and infected individuals over time are gen-
erally not observed. In practice, (sometimes noisy) observations are often assumed to corre-
spond to aggregated numbers, over the sampling interval ∆, of newly infected individuals (i.e.∫ tk

tk−1
λS(s)I(s)ds). In the SIR diffusion model, this corresponds to the recovered individuals

(R(tk)−R(tk−1)),k = 1, . . .n (for diseases with short duration of the infected period). Hence, this
situation can be assimilated, as a first attempt, to the case where only one coordinate can be
observed.
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In this section, we consider the case of a two-dimensional diffusion process X(t) = t(Y (t),Z(t))
where only the first coordinate Y (t) is discretely observed on a fixed time interval [0,T ] with
sampling ∆. Therefore, the observations are now

Y (tk), k = 1, . . .n, with tk = k∆, T = n∆. (35)

For continuous observations of (Y (t)) on a finite time interval [0,T ], two studies (James and
Le Gland, 1995; Kutoyants, 1994) are concerned with parametric inference in this statistical
framework. Both studied the maximum likelihood estimator of parameters in the drift function for
a diffusion matrix equal to ε2Ip. This likelihood is difficult to compute since it relies on integration
on the unobserved coordinate. James and Le Gland (1995); Kutoyants (1994) proposed filtering
approaches to compute this likelihood, as it is done for general Hidden Markov Models (see e.g.
Cappé et al., 2005; Douc et al., 2011). Here, we can take advantage of the presence of ε and
extend to partial observations the method by contrast processes and M- estimators that had been
developed for complete observations (Genon-Catalot, 1990; Sørensen and Uchida, 2003; Gloter
and Sørensen, 2009; Guy et al., 2014).

We study the case of small (or high frequency) sampling interval, ∆ = ∆n→ 0, on a fixed time
interval [0,T ] with T = n∆, which yields explicit results. This allows to disentangle problems
coming from discrete observations and those coming from the missing observation of one coordi-
nate and hence provides a better understanding of the problems rising in this context. The case of
∆ fixed could be studied similarly, with more cumbersome notations and no such insights.
First, the notations required are introduced, results are then stated, and finally, to illustrate this
approach, the example of a two-dimensional Ornstein-Uhlenbeck process, where all the computa-
tions are explicit is developed.

5.1. Notations for partial observations and assumptions

Some specific notations need to be introduced. For x ∈ R2, Xε(t), the diffusion process, B(t) the
Brownian motion, and M a 2×2 matrix, we write

x =
(

y
z

)
; Xε(t) =

(
Yε(t)
Zε(t)

)
; B(t) =

(
B1(t)
B2(t)

)
; M =

(
M11 M12
M21 M22

)
. (36)

For functions defined for x ∈ R2 and depending on parameters, we use two distinct notations.

Derivation with respect to the state variable x is ∂ f
∂x =

(
∂ f1
∂y

∂ f1
∂ z

∂ f2
∂y

∂ f2
∂ z

)
.

For θ = (θi), derivation with respect θi is ∇i f with the convention that, for f (θ ,x(θ , t)),
∇i f (θ ,x(θ , t)) = ∂ f

∂θi
(θ ,x(θ , t))+ ∂ f

∂x (θ ,x(θ , t))
∂x
∂θi

(θ , t).

We keep the notation ∂ f
∂θi

for the derivation w.r.t. θi if needed.
We also use the notation ∇i j f = ∇i(∇ j f ).
As in the previous section, the starting point of the diffusion is assumed to be fixed, X(0) =

x0 =

(
y0
z0

)
. The observations are (Y (k∆),k = 0, . . .n). Since z0 is not observed and unknown, we
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choose to add it to the parameters and set, using (S4)

η = (α,z0) ∈ Ra+1; θ = (α,z0,β ) = (η ,β ) ∈ Ra+b+1. (37)

The quantities introduced in (14) depend on α or η , θ and can be written x(η , t)= t(y(η , t),z(η , t)),

g(θ , t) =
(

g1(θ , t)
g2(θ , t)

)
, Rε(θ , t) =

(
Rε

1(θ , t)
Rε

2(θ , t)

)
and Φ(η , t,s).

The expansion of Xε(t) stated in (14) yields that Yε(t) satisfies, using notations (36),

Yε(t) = y(η , t)+ εg1(θ , t)+ ε
2Rε

1(θ , t) with (38)

g1(θ , t)=
∫ t

0
(Φ(η , t,u)σ(β ,x(η ,u)))11 dB1(u)+

∫ t

0
(Φ(η , t,u)σ(β ,x(η ,u)))12 dB2(u). (39)

Using that Φ(t,u) = Φ(t,s)Φ(s,u) yields another expression for g1(θ , tk)

g1(θ , tk) = (Φ(η , tk, tk−1)g(θ , tk−1))1
+

∫ tk
tk−1

(Φ(η , t,u)σ(β ,x(η ,u)))11 dB1(u)+(Φ(η , t,u)σ(β ,x(η ,u)))12 dB2(u).
(40)

5.2. Inference from high frequency sampling observations

In this case of partial observations, consistent and asymptotically normal contrast-based estimators
are built. Parameter identifiability is also discussed.
For estimating parameters, we use, instead of a filtering approach, the stochastic expansion of
Xε(t), where the unobserved component Zε(t) is substituted by its deterministic counterpart
z(η , t). For building a tractable estimation criterion, we also simplify the expression of Bk(α)
(see (29)) by replacing Φ(η ; tk, tk−1) by its first order approximation, so that Φ11(tk, tk−1) '

1+∆
∂b1
∂y (α,x(η , tk−1)). The sample path used in (29) is now

(
Y (t)

z(η , t)

)
leading, instead of Bk(α),

to the vector
(

Ak(η ,Y )
0

)
, where

Ak(η ,Y ) = Y (tk)− y(η , tk)−
(

1+∆
∂b1

∂y
(α,x(η , tk−1))

)
(Y (tk−1)− y(η , tk−1)). (41)

For a first approach, we consider an estimation criterion based on the conditional least squares
built on the Ak(η ,Y )’s (41):

Ūε,∆(η ,Y ) =
1

ε2∆

n

∑
k=1

Ak(η ,Y )2. (42)

The associated estimators are then defined as

η̄ε,∆ = argmin
η∈Ka×Kz

Ūε,∆(η ,Y ). (43)

Note that this process could also be used for estimating η for fixed ∆ and low frequency data,
using Φ11(tk, tk−1) instead of its approximation.

Let us first study Ūε,∆(η ,Y ).
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Lemma 5.1. Assume (S1)-(S5). Then, the process Ūε,∆(η ,Y ) defined in (42) satisfies, as ε and
∆→ 0, that, under Pε

θ0
,

ε
2Ūε,∆(η ,Y )→ JT (η0,η) =

∫ T

0
Γ1(η0,η ; t)2dt a.s., where (44)

Γ1(η0,η ; t) = b1(α0,x(η0, t))−b1(α,x(η , t))− ∂b1

∂y
(α,x(η , t))(y(η0, t)− y(η , t)). (45)

So, to get that Ūε,∆(η ,Y ) is a contrast process, we need an assumption that ensures that {η 6=
η0⇒ JT (η0,η)> 0}. This leads to the additional identifiability assumption using (45),

(S8) : η 6= η0⇒{t→ Γ1(η0,η ; t) 6≡ 0}.

For deterministic systems, the notion of observability is used in the case of partial observations
(Pohjanpalo, 1978; Sedoglavic, 2002), which is here {η 6= η0⇒ x(η , .) 6≡ x(η0, .)}. If the un-
derlying deterministic system is not observable, assumption (S8) which makes reference to the
identifiability of the model with respect to the parameters is not satisfied. But the converse is not
true, assumption (S8) being a bit stronger.

The proof of lemma 5.1 relies on two properties. First, an application of the stochastic Taylor
expansion yields that, as ε→ 0,(Y (t),0≤ t ≤ T )→ (y(η0, t),0≤ t ≤ T ) almost surely under Pε

θ0
.

Second, letting ∆→ 0, we get that, uniformly with respect to η = (α,z0),

supk=1,...n‖
Ak(η ,y(η0, .))

∆
−Γ1(η0,η ; tk−1)‖→ 0.

From now on, we use the convention that ∇a+1 f = ∂ f
∂ z0

. To study the asymptotic behaviour of
η̄ε,∆, we have to introduce additional quantities. First, we define the vector D(η , t) ∈ Ra+1,

if i = 1, . . . ,a, Di(η , t) = − ∂b1
∂αi

(α,x(η , t))− ∂b1
∂ z (α,x(η , t)) ∂ z

∂αi
(η , t)

if i = a+1, Di(t) = − ∂b1
∂ z (α,x(η , t)) ∂ z

∂ z0
(η , t).

(46)

Then, built on the the Di’s, define the matrix Λ(η) = (Λi j(η)) by

Λi j(η) = 2
∫ T

0
Di(η , t)D j(η , t) dt. (47)

Finally, define the three functions

v1(θ ; t) = σ2
11(β ,x(η , t))+σ2

12(β ,x(η , t)) = Σ11(β ,x(η , t)),
v2(θ ; t,s) = σ11(β ,x(s))(Φ(t,s)σ(β ,x(s)))21 +σ12(β ,x(s))(Φ(t,s)σ(β ,x(s)))22

= (Φ(η ; t,s)Σ(β ,x(η ,s)))21 ,
v3(θ , t,s) =

∫ t∧s
0 (Φ(t,u)σ(x(u)))11 (Φ(s,u)σ(x(u)))11 du
+
∫ t∧s

0 (Φ(t,u)σ(x(u)))22 (Φ(s,u)σ(x(u)))22 du.

(48)

Based on the above elements, we can now state the main result of this section.
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Theorem 5.1. Assume (S1)-(S8). If moreover Λ(η0) defined in (47) is invertible, then, as ε,∆→ 0,

ε
−1(η̄ε,∆−η0)→L N (0,Λ(η0)

−1V (θ0)Λ(η0)
−1) under Pε

θ0
, (49)

where V (θ) =V (1)(θ)+V (2)(θ)+V (3)(θ) with, using (46), (48),

V (1)
i j (θ) =

∫ T
0 Di(η , t)D j(η , t)v1(θ , t) dt,

V (2)
i j (θ) =

∫ ∫
0≤s≤t≤T Di(η ,s)D j(η , t) ∂b1

∂ z (α,x(η ,s))v2(θ , t,s))ds dt,

V (3)
i j (θ) =

∫ T
0
∫ T

0 Di(η ,s)D j(η , t) ∂b1
∂ z (α,x(η ,s)) ∂b1

∂ z (α,x(η , t))v3(θ , t,s)ds dt.

(50)

The main difficulty of the proof lies in a precise study of ε∇iŪε,∆(η0,Y ), which is the sum of n
terms that are no longer conditionally independent. The three terms in the matrix V (θ0) come
from this expansion. Indeed,

ε(∇iŪε,∆(η0,Y ))i,→Na+1
(
0,V (θ0)

)
in distribution under Pε

θ0
. (51)

Then, studying ε2∇i jŪε,∆(η ,Y ) yields, using (42), (46), as ε,∆→ 0,

ε
2
∇i jŪε,∆(η0,Y )→ Λi j(η0) = 2

∫ T

0
Di(η0, t)D j(η0, t)dt a.s. under Pε

θ0
. (52)

5.3. Two-dimensional Ornstein-Uhlenbeck process: an explicit case

Let us describe our method on a partially observed two-dimensional Ornstein-Ulhenbeck process

where all the computation are explicit. Let Xε(t) =
(

Yε(t)
Zε(t)

)
satisfy

dXε(t) = AXε(t)dt + εσdB(t), Xε(0) =
(

y0
z0

)
with A =

(
a b
0 a+h

)
,σ = σ

(
1 0
0 1

)
. (53)

We assume that h 6= 0, σ > 0. The parameter in the drift is α = (a,b,h). For partial observations,
we also need introducing η = (a,b,h,z0) and θ = (a,b,h,z0,σ). The observations consist of
(Y (tk),k = 0, . . . ,n), where T = n∆ and tk = k∆.
The solution of the ODE (8) applied to the drift of diffusion process (53) is

y(η , t) = (y0−
z0b
h

)eat +
z0b
h

e(a+h)t ; z(η , t) = z0e(a+h)t . (54)

Assumption (S1)-(S7) are satisfied. Looking at the analytical expression of y(η , t), we have that
bz0 = b̃z̃0 leads to identical solutions y(η ; t). Therefore, assumption (S8) is not satisfied and it is
impossible to estimate b and z0 separately when observing one coordinate only. Moreover, this
would also hold for the continuous observation case: the non identifiability is an intrinsic problem
to the partial observation case.
So, we have to define a new parameter b′ = bz0 and associated η ′ = (a,b′,h). Then, it is easy to
check that (S8) is now satisfied.
For computing the matrix Φ(t,u) = e(t−u)A, let decompose the matrix A as A = PDP−1, with
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P =

(
1 b/h
0 1

)
, D =

(
a 0
0 a+h

)
.

Then, Φ(t,s) =
(

ea(t−s) b
h

(
e(a+h)(t−s)− ea(t−s)

)
0 e(a+h)(t−s)

)
. The solution of (53) is therefore

Xε(t) = PetDP−1X(0)+ εσ

∫ t

0
Pe(t−s)DP−1dB(s). Hence,

Yε(t) = y(η , t)+ εσ

(∫ t

0
ea(t−s)dB1(s)+

b
h

∫ t

0
(e(a+h)(t−s)− ea(t−s)) dB2(s)

)
. (55)

Using that “ ∂b1
∂y (α,x(η , t)) = a” and definition (54) yield that

Ak(η ,Y ) = Y (tk)− y(η , tk)− (1+a∆)(Y (tk−1)− y(η , tk−1)) . (56)

The various quantities introduced in the previous section have a closed expression. The functions
Di(η

′, t) defined in (46) write, using (52), (54)
D1(η

′, t) = Da(η
′, t) =−y(η ′, t)−b′te(a+h)t =−(y0− b′

h )e
at − (b′

h +b′t)e(a+h)t ;
D2(η

′, t) = Db′(η
′, t) =−e(a+h)t and D3(η

′, t) = Dh(η
′, t) =−b′te(a+h)t .

The matrix Λ(η ′) is (Λi j(η
′))1≤i, j≤3, with Λi j(η

′) =
∫ T

0 Di(η
′, t)D j(η

′, t)dt.
The functions defined in (48) are
v1(θ

′, t) = σ2; v2(θ
′, t,s) = 0 ; v3(θ

′, t,s) = σ2b2 ∫ t∧s
0 e(a+h)(t+s−2u)du = σ2b2

2(a+h)e
2(a+h)(t∧s).

Therefore, Vi j(θ) = σ2 ∫ T
0 Di(η , t)D j(η , t)dt + σ2b2

2(a+h)

∫ T
0
∫ T

0 Di(η , t)D j(η ,s)e2(a+h)(t∧s)ds dt.
The estimator η ′

ε,∆ defined by (43) is a consistent estimator of η ′0 and satisfies (49) with the
matrices Λ(η ′0) and V (θ ′0) obtained above. The asymptotic covariance matrix is therefore

σ
2
Λ
−1(η ′)+

σ2b2

2(a+h)
Λ
−1(η ′)

(∫ T

0

∫ T

0
Di(η , t)D j(η ,s)e2(a+h)(t∧s)dsdt

)
i jΛ
−1(η ′). (57)

In the case of complete discrete observations, the first term of (57) is the asymptotic variance
obtained with conditional least squares. Therefore, the loss of information coming from partial
observations is measured by the second term of (57) (added to the fact that only bz0 is identifiable).

6. Assessment of estimator properties on simulated and real data

The properties of our minimum contrast estimators are assessed and compared to reference esti-
mators. For the case of a completely observed process, this is performed based on simulated data
(section 6.1 ), both on SIR and SIRS dynamics (models described in 2.2 and 2.3 respectively). For
partial observations, the SIR case is explored on simulated data in section 6.2, whereas the SIRS
dynamics are investigated on real data corresponding to influenza cases over several consecutive
seasons in France in section 6.3. Point contrast estimates (CE), 95% theoretical confidence inter-
vals (CIth, when available) and empirical ones (CIemp, built on 1000 runs) are provided for each
set of parameter values.
For parameter dimension greater than two, confidence ellipsoids are projected on planes, by
considering all pairs of parameters. Theoretical confidence ellipsoids are built as follows. By
denoting M(θ0) the variance-covariance matrix of the asymptotic normal distribution of estimators
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of parameters in drift term (i.e., I−1
b in (32), I−1

∆
in (34) and Λ(η0)

−1V (θ0)Λ(η0) in (49), we
have ε−1M(θ0)

−1/2(θ̂ε,∆−θ0)→L N (0, Ik) (where θ̂ε,∆ represents α̂ε,∆ in (32) and (34), and
η̄ε,∆ in (49) and where k is equal to a in (32) and (34), and to a+1 in (49)). Consequently we have,

1
ε2

t(θ̂ε,∆−θ0)M(θ0)
−1(θ̂ε,∆−θ0)→L χ2(k). (58)

The matrix M(θ0)
−1 being positive, the quantity t(θ̂ε,∆−θ0)M(θ0)

−1(θ̂ε,∆−θ0) is the squared
norm of vector θ̂ε,∆−θ0 for the scalar product associated to M(θ0)

−1. If we denote by q95
k the

95% quantile of the χ2(k) distribution, the relation (58) leads to the definition of a theoretical
asymptotic confidence ellipsoid in Rk as ‖θ̂ε,∆−θ0‖2

M(θ0)−1 ≤ ε2q95
k .

Empirical confidence ellipsoids are based on the variance-covariance matrix of centered estimators
(based on 1000 independent estimations), whose eigenvalues define the axes of ellipsoids.

6.1. The case of complete observations: SIR and SIRS models, simulated data

In this section, we consider the case where all the components of the epidemic process are observed.
In the two epidemic models detailed below, this means that both SN(t), IN(t) are observed on
[0,T ] with sampling ∆, ((SN(k∆), IN(k∆)),k = 1, . . .n) with T = n∆.
Simulated trajectories of epidemic dynamics by Markov jump processes are performed using the
algorithm of Gillespie (1977) for the SIR model and the τ-leap method (Cao et al., 2005), more
efficient for large populations, for the SIRS model. Based on these simulated data, the accuracy of
our estimators is investigated with respect to the population size N, the number of observations n
and some of the remaining parameters. Inference, using contrast (33) is based only on non extinct
trajectories (chosen, according to a frequently used empirical criterion, such as the final epidemic
size is larger than 5% of the number of initial susceptible individuals).

6.1.1. The SIR model

The parameters of interest for epidemics are considered following a reparameterisation: the basic
reproduction number, R0 =

λ

γ
, which represents the average number of secondary cases generated

by one infectious in a completely susceptible population, and the average infectious duration,
d = 1

γ
. Two values were tested for R0 = {1.5,5} and d was set to 3 (in days, an average value

consistent with influenza infection). Three values for the population size N = {400,1000,10000}
and of the number of observations n = {5,10,40} were considered, along with two values for the
final time of observation, T = {20,40} (in days). For each scenario defined by a combination of
parameters, the analytical maximum likelihood estimator (MLE), calculated from the observation
of all the jumps of the Markov process (Andersson and Britton, 2000), was taken as reference.

Effect of the parameter values {R0,d} and of the number of observations n
The accuracy of the CEs for N = 1000 and from trajectories with weak (R0 = 5) and strong
(R0 = 1.5) stochasticity is illustrated in Figure 3. R0 and d are moderately correlated (ellipsoids
are deviated with respect to the Ox and Oy axes). The shape of confidence ellipsoids depends on
parameter values: for R0 = 5, the CIth is larger for R0 than for d, whereas the opposite occurs for
R0 = 1.5. For R0 = 5, all the CIth are almost superimposed, which suggests that the estimation
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accuracy is not altered by the fact that not all jumps are observed. However, for R0 = 1.5 the shape
of ellipsoids varies with n. Point estimates for MLE and CE are very similar for different val-
ues of n, which confirms the use of the CEs in the case of a small number of observations available.

FIGURE 3. Point estimators (+) computed by averaging over 1000 independent simulated trajectories of the SIR
stochastic model completely observed and their associated theoretical confidence ellipses centered on the true value:
MLE with complete observations (red), CE for one observation/day, n = 40 (blue) and CE for n = 10 (black). Two
scenarios are illustrated: (R0,d,T ) = {(1.5,3,40);(5,3,20)}, with N = 1000. For both scenarios (S(0), I(0)) =
(0.99,0.01). The value of d is reported on the y-axis. Horizontal and vertical dotted lines cross at the true value.

FIGURE 4. Point estimators (+) computed by averaging over 1000 independent simulated trajectories of the SIR
stochastic model completely observed and their associated theoretical confidence ellipses centered on the true value:
MLE with complete observations (red), CE for one observation/day, n = 40 (blue), CE for n = 10 (black) and CE
for n = 5 (green) for (S(0), I(0)) = (0.99,0.01), (R0,d) = (1.5,3) and N = {400,1000,10000} (from left to right).
Horizontal and vertical dotted lines cross at the true value.

Effect of the parameter values {R0,d} and of the population size N
From Figure 4, we can notice that

√
N has an impact on estimation accuracy (the width of the

confidence intervals decreases with
√

N). The case of very few observations (n = 5) leads to the
largest confidence intervals. The MLE appears biased for N = 400. This could be due to the fact
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that the MLE is optimal when data represent a ’typical’ realization (i.e. a trajectory that emerges
leading to a non negligible number of infected individuals) of the Markov process, but could yield
a bias when observations are far from the average behaviour. Our CEs seem robust to the depar-
ture from the ’typical’ behaviour (i.e. for noisy trajectories obtained either for small N or small R0).

6.1.2. The SIRS model

For the SIRS model introduced in section 2.3, four parameters were estimated: R, d, λ1 and δ .
Concerning the remaining parameters, µ was set to 1/50 years−1 (a value usually considered
in epidemic models), Tper was set to 365 days (corresponding to annual epidemics) and η was
taken equal to 10−6 (which corresponds to 10 individuals in a population size of N = 107).
We should notice that instead of estimating the real R0 (more complicated to calculate for
periodical dynamics), we prefer to estimate a parameter combination similar to the R0 for SIR
model, λ0/γ , which was called here R. The performances of CEs were assessed on parameter
combinations: (R,d,λ1,δ ) = {(1.5,3,0.05,2) and (1.5,3,0.15,2)} and T = 20 years, with λ1 =
0.05 leading to annual cycles and λ1 = 0.15 to biennial dynamics (Figure 2). Numerically, the
scenarios considered are consistent with influenza seasonal outbreaks. The accuracy of estimation
is relatively high, as illustrated in Figure 5, regardless of the parameter. For one observation per
day (which can be assimilated to a limit of data availability), the accuracy is very similar to the
one based on a complete observation of the epidemic process (blue and red ellipsoids respectively).
Estimations based on one observation per week are less but still reasonably accurate.

FIGURE 5. Point estimators (+) computed by averaging over 1000 independent simulated trajectories of the SIRS
stochastic model with demography and seasonal forcing in transmission, completely observed, and their associated
planar projections of theoretical confidence ellipsoids centered on the true value: CE for one observation/day (blue)
and for one observation/week (black) for (R,d,λ1,δ ) = (1.5,3,0.15,2), T = 20 years and N = 107. Asymptotic
confidence ellipsoids (n→ ∞) are also represented (red). Horizontal and vertical dotted lines cross at the true value.
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6.2. The case of partial observations: SIR model, simulated data

In this section, we consider the case where only one component of the epidemic process is
observed on [0,T ], namely IN(k∆), with sampling ∆, ((SN(k∆), IN(k∆)),k = 1, . . .n) with T = n∆.
Theoretical identifiability of the model is first investigated and estimators based on contrast (42)
along with theoretical and empirical ellipsoids are then provided and compared.

6.2.1. Model identifiability

To investigate the indentifiability as defined in (S8), of parameters of the SIR ODE model, we
assume that the component i(t) is observed only.

Using notations from section 5.1, the drift term can be written as b((λ ,γ),(i,s)) =
(

λ si− γi
−λ si

)
.

Hence, b1(α,x(η , t)) = (λ s(t)− γ)i(t) and
∂b1

∂ i
(α,x(η , t)) = λ s(t)− γ .

As a consequence, the identifiability assumption (S8) writes, for η 6= η ′,

Γ1(η ,η ′; t) = (λ ′s′(t)−λ s(t)+ γ− γ
′)i′(t) 6≡ 0, (59)

where η = (λ ,γ,s0), η ′ = (λ ′,γ ′,s′0) and x(η ′, t) = (i′(t),s′(t)) in (45).
We assume here that the epidemic spreads, so we have ∀t ∈ [0,T ], i′(t) > 0 and parameters
(λ ,γ,s0,λ

′,γ ′,s′0) are all strictly positive. By deriving twice relation (59) we obtain the identifia-
bility of the SIR parameters. Indeed, if we assume that (S8) is not satisfied, then, deriving (59)
with respect to s(t) leads to λ 2s(t)i(t)−λ ′2i′(t)s′(t) = 0. We use (59) to rewrite this result as

s(t)
i′(t)

(λ i(t)−λ
′i′(t)) =

λ ′(γ ′− γ)

λ
, (60)

∀t ∈ [0,T ]. The above term being constant, by deriving it with respect to s(t) we get

−λ i(t)
s(t)
i′(t)

(λ i(t)−λ
′i′(t)) = 0. (61)

Since i(·) and s(·) are continuous and strictly positive at t = 0, we get from (61) λ i(t) = λ ′i′(t),
∀t ∈ [0,T ]. Morevover, since i(0) = i′(0), we have that λ = λ ′ and, from relation (60), that γ = γ ′.
This finally leads to s0 = s′0, by using the two equalities obtained in (59) for t = 0 .
So, the two parameters R0 = λ/γ and d = 1/γ , as well as the initial state s0 are identifiable when
observing i(t) only.

6.2.2. Comparison between theoretical and empirical ellipsoids

Performances of estimators in the case of partially observed SIR model are assessed on simulations
obtained with the following parameters: N = 10000, R0 = 1.5, d = 3, s0 = 0.97, T = 40. Obser-
vations are represented by vector IN(k∆). Estimations of parameters (R0,d,s0) are performed on
1000 simulated trajectories. Theoretical and empirical confidence ellipses are built as detailed in
the introduction of section 6.
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In figure 6, confidence ellipsoids were truncated at plausible limits in each direction to avoid
inclusion of negative values for parameters representing positive quantities and of values greater
than 1 for parameters representing proportions. Quantile-based empirical 95% confidence in-
tervals are more narrow than theoretical counterparts: [1.38,5.77] for R0, [2.64,5.90] for d and
[0.34,0.99] for s0. The relatively unexpected large volume of confidence ellipsoids, obtained
despite theoretical identifiability of model parameters when observing only one component of the
system (here IN(k∆)) is probably due to the fact that the numerical variance-covariance matrix is
ill-conditioned (the order of magnitude of the third eigenvalue is 100 times smaller than that of
the first two eigenvalues).

FIGURE 6. Point estimators (green) computed by averaging over 1000 independent simulated trajectories of the SIR
stochastic model, partially observed (I(k∆) only), with true values (R0,d,s0) = (1.5,3,0.97), T = 40 days and N =
10000. Theoretical confidence ellipsoid (black), centered on the true value and empirical confidence ellipsoid (blue),
centered on mean estimated value are provided. Both ellipsoids are represented after truncation at plausible limits in
each direction. Mean and median point estimators for (R0,d,s0) are (1.89,3.43,0.88) (red x) and (1.54,3.24,0.99)
(purple x), respectively.

6.2.3. Comparison with estimators based on complete observations

In order to assess the loss of accuracy when only partial observations are available compared to
the case of complete observations, theoretical confidence ellipsoids are built for estimation from
simulated data with parameter values: N = 10000, R0 = 1.5, d = 3, s0 = 0.97, T = 40. In the
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case of complete observation of the system (R0,d) are estimated, whereas for partial observations
(R0,d,s0) are estimated, since the initial condition (s0, i0) is generally not known in practice.
Figure 7 illustrates these results. It shows not only the difference in accuracy between estimators
in the two setups (red cross versus all other point estimates in blue), but also the effect of the
number of observations on estimation accuracy, which logically increases with the number of
observations.

FIGURE 7. Point estimators computed by averaging over 1000 independent simulated trajectories of the SIR stochastic
model, completely observed and partially observed (IN(k∆) only) with true values (R0,d,s0) = (1.5,3,0.97) and for
T = 40 days, N = 10000 and n ∈ {1000,100,40}: complete data (red cross), and partial data with n = 1000 (blue
star), n = 100 (green cross) and n = 40 (blue x), respectively. Theoretical confidence ellipse for complete observation
(red; very narrow around the corresponding point estimator), and a planar projection (corresponding to s0 = 0.97) of
the theoretical ellipsoid for partial observations (blue) are also represented.

6.3. The case of partial observations: SIRS model, real data on influenza epidemics

The performances of the contrast estimators for the case where only one coordinate of a diffusion
process is observed are evaluated on data related to influenza outbreaks in France, collected
by the French Sentinel Network (FSN), providing surveillance for several health indicators
(www.sentiweb.org). These data are represented by numbers of individuals seeing a doctor during
a given time interval, for symptoms related to influenza infection and are reported by a group of
general practitioners (GP) voluntarily enrolled into the FSN. Several levels of errors of observation
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are associated to these data: (i) the state of individuals consulting a GP from the FSN is not exactly
known: it can be assimilated to a new infection or to a new recovery, given that symptoms and
infectiousness are not necessarily simultaneous and that a certain delay occurs between symptoms
onset and consultation time (in fact, the observed state is more likely "infected", no more "newly
infected" and not yet "newly recovered"); (ii) not all infected individuals go and see a GP; (iii) the
GP’s supplying the FSN database represent only a proportion of all French GP’s; (iv) the exact
dates of consultations are not known, data are aggregated over two-week time periods; (v) data
are preprocessed by the FSN to produce observations with a daily time step.
Here, we account partly for (i) on one hand and jointly for (ii) and (iii) on the other hand and
assume that observations Ytk represent a proportion of daily (observation times tk = k∆, with
∆ = 1 day) numbers of newly recovered individuals: Ytk = ργItk , where ρ can be interpreted as
the reporting rate. Since data are available over several seasons of influenza outbreaks (data from
1990 to 2011, hence [0,T ] = [0,21.5] years), an appropriate model allowing to reproduce periodic
dynamics is the SIRS model described in section 2.3.
In summary, the data used are assumed to be discrete high frequency observations of one coordi-
nate of the following two-dimensional diffusion with small variance:{

dSt = (−λ (t)St(It +η)+δ (1−St − It)+µ(1−St))dt + 1√
N
(σ11dB1(t)+σ12dB2(t))

dIt = (λ (t)St(It +η)− (γ +µ)It)dt− 1√
N
(σ21dB1(t)+σ22dB2(t)).

The vector of parameters to be estimated is α = (R = λ0/γ,10λ1,d = 1/γ,δper = 1/δTper,10ρ),
where parameters are defined in equation (18) and more generally in the entire section 2.3. Param-
eters η , µ and Tper are fixed at plausible values: η = 10−6, µ = 1

50 (years−1) and Tper = 365 days.
The starting point x0 of the ODE system is unknown, but since we are interested in the stationary
behavior of this process, we fix (r−20Tper = 0.27, i−20Tper = 0.0001, see Cauchemez et al., 2008
for example) and let the system evolve until t = 0 for the tested set of parameter α to obtain our
initial starting point.

Estimation results are summarised in Figure 8, which represents multiannual dynamics of in-
fluenza cases: observed dynamics (blue curve) and simulated ones (using the ODE version of
the SIRS model based on estimated parameter values; red curve). Estimators are associated
to contrast process defined in (42). Point estimates of parameters are: (R,10λ1,d,δper,10ρ) =
(1.47,1.94,2.20,5.66,0.87). These values are in agreement with independent estimation based
on data from the same database but using a different inference method, the maximum iterating
filtering proposed by Bretó et al. (2009) (personal communication S. Ballesteros). As shown in
Figures 6 and 7 for the SIR model, widths of theoretical confidence intervals for each parameter
should be larger than those corresponding to complete observations of the SIRS model (drawn in
Figure 5). In particular, for λ1, the width of the confidence interval for partial observations will
be larger than 0.35 ∗

√
(107/6∗107) = 0.14 (after correction for the population size, which is

N = 107 in Figure 5 and N = 6∗107 in Figure 8).
We can notice from Figure 8 that predicted trajectories correspond to a regime with bi-annual
cycles, composed of two different peaks (red curve). The bifurcation diagram with respect to λ1
(similar to Figure 2), when the remaining parameters are either set to fixed values (defined in this
section) or to estimated values, exhibits the bifurcation from one annual cycle to bi-annual cycle
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at λ1 = 0.035. This bifurcation value is likely to belong to the confidence interval of λ1 (point
estimate equal to 0.19 and width of the confidence interval greater than 0.14). At our knowledge,
the potential influence on estimation of the proximity to a bifurcation point for models exhibiting
bifurcation profiles is not well characterized.

FIGURE 8. Time series of reported cases (expressed as a fraction of the total population in France) of influenza-like
illness provided by the FSN (www.sentiweb.org) (blue curve) and deterministic trajectories (mean behaviour) predicted
by the SIRS model based on estimated parameters using contrast (42) (red curve).

7. Discussion and concluding remarks

Several extensions to this study are possible for partial observations. First, we have chosen to
detail the case of small sampling interval. The study in the case of a fixed sampling interval ∆ can
easily be obtained with similar tools, leading to similar results. Another extension concerns our
choice of conditional least squares, by using instead an estimation criterion similar to the one used
in section 4.1, substituting Sk(α,β ) (see (30) or Σ(β ,X(tk)) by Σ(β ,x(η , tk)) for small sampling
leading to the new process, using (41),

Ūε,n(η ,(Y (tk))) =
n

∑
k=1

log Σ(β ,x(η , tk))+
1

ε2∆
Σ(β ,x(η , tk))−1(Ak(η ,Y ))2. (62)

The study of this process should yield estimators in the diffusion coefficient β , probably with
additional assumptions linking ε and ∆. For fixed ∆, Sk(α,β ) defined in (30) could be substituted
by (Sk(α,β ))11 in the case of distinct parameters in the drift and diffusion coefficients, and by
(Sk(α,α))11 in the case corresponding to epidemics where the same parameters are present in
both coefficients. Finally, another extension of the method described in section 5 is the case of a
p-dimensional diffusion process where only the first l-coordinates are observed (for instance the
SEIR model with only Infected observed).
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