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Abstract: In this paper, we first introduce the general stochastic epidemic model for the spread of infectious diseases.
Then, we give methods for inferring model parameters such as the basic reproduction number R0 and vaccination
coverage vc assuming different types of data from an outbreak such as final outbreak details and temporal data or
observations from an ongoing outbreak. Both individual heterogeneities and heterogeneous mixing are discussed. We
also provide an overview of statistical methods to perform parameter estimation for other stochastic epidemic models.
In the last section we describe the problem of early outbreak detection in infectious disease surveillance and statistical
models used for this purpose.

Résumé : Dans cet article, nous introduisons le modèle stochastique épidémique général pour la propagation des
maladies infectieuses. Nous décrivons ensuite des méthodes pour l’inférence des paramètres du modèle tels que le
nombre de reproduction de base R0 et la couverture vaccinale vc à partir de différents types de données épidémiques
telles que des informations sur l’état final de l’épidémie et des données temporelles ou des observations pour une
épidémie en cours. La prise en compte d’hétérogénéités individuelles et des contacts hétérogènes est discutée. Nous
fournissons également une vue d’ensemble des méthodes statistiques pour l’estimation des paramètres d’autres modèles
épidémiques stochastiques. Dans la dernière section nous décrivons le problème de la détection précoce d’épidémies
dans la surveillance des maladies infectieuses et les modèles statistiques utilisés dans ce contexte.
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1. Introduction

Infectious disease models aim at understanding the underlying mechanisms that influence the
spread of diseases and predicting disease transmission. Mathematical models have been increas-
ingly used to evaluate the potential impact of different control measures and to guide public health
policy decisions.

Deterministic models for infectious diseases in humans and animals have a vast literature, (e.g.
Anderson and May, 1991; Keeling and Rohani, 2008). Although these models can sometimes be
sufficient to model the mean behaviour of the underlying stochastic system and guide towards
parameter estimates, they do not allow the quantification of the uncertainty associated to model
parameters estimates (Becker, 1989). Stochastic models (Andersson and Britton, 2000; Britton,
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54 Britton and Giardina

2004; Diekmann et al., 2013), can be used to infer relevant epidemic parameters and provide
estimates of their variability.

Infectious disease data are commonly collected by surveillance systems at certain space and
time resolutions. The main objectives of surveillance systems are early outbreak detection and
the study of spatio-temporal patterns. Early outbreak detection commonly relies on statistical
algorithms and regression models for (multivariate) time series of counts accounting for both time
and space variations.

In this overview paper, we start by analysing the general stochastic epidemic model, which
describes the spread of a Susceptible Infected Recovered (SIR) disease assuming a closed popula-
tion with homogeneous mixing, and show how to make inference on important epidemiological
parameters, namely the basic reproduction number R0 and the critical vaccination coverage vc.
We then describe inference procedures for various extensions increasing model realism. Moreover,
we describe statistical models used for the analysis and forecasting of time series of infectious
disease data in surveillance settings.

Section 2 defines the general stochastic model, and describes inference procedures for R0 and
vc depending on the available data (final size or temporal data). Section 3 presents extensions of
the general stochastic models treating both individual and mixing heterogeneities and Section 4
discusses the main issues in statistical inference from ongoing outbreaks, relating estimates of
the exponential growth rate r to R0 using e.g. serial intervals and generation time estimation. The
main challenge in parameter estimation for epidemic models is that the infection process is not
observed. Section 5 presents an overview of statistical methods to estimate transmission model
parameters dealing with the missing data and describes recent advances in statistical algorithms
to improve computational performance. Section 6 shows how statistical models with space/time
structures can be applied to infectious disease surveillance settings for early outbreak detection
and forecasting. Section 7 mentions some further extensions and model generalizations as well as
new approaches to perform statistical inference for infectious diseases.

2. Inference for a simple stochastic epidemic model

2.1. A simple stochastic epidemic model and its data

We start by defining a simple stochastic model known as the general stochastic epidemic model
(e.g. Section 2.3 in Andersson and Britton, 2000). This model considers a so-called SIR-disease
where individuals at first are Susceptible. If they get infected they immediately become Infectious
(an infectious individual is called an infective) and remain so until they Recover assuming
immunity during the rest of the outbreak. Individuals can hence get infected at most once. The
general stochastic epidemic assumes a closed population in which individuals mix uniformly in
the community, and all individuals are equally susceptible to the disease and equally infectious if
they get infected.

Consider a closed population of size n. An individual who gets infected immediately becomes
infectious and remains so for an exponentially distributed time with rate parameter γ . During the
infectious period an individual has “close contact” with other individuals randomly in time at rate
λ , each such contact is with a uniformly selected individual, and a close contact is a contact which
results in infection if the contacted person is susceptible; otherwise the contact has no effect.
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Introduction to statistical inference for infectious diseases 55

Let (S(t), I(t),R(t)) denote the numbers of susceptible, infectious and recovered individuals
at time t. Because the population is closed and of size n we have S(t)+ I(t)+R(t) = n for all
t. At the start of the epidemic we assume that (S(0), I(0),R(0)) = (n−1,1,0), i.e. that there is
one initially infective and no immune individuals. The model is Markovian implying that it may
equivalently be defined by its jump rates. An infection occurs at t with rate λ I(t)S(t)/n (since
each infective has close contacts at rate λ and a close contact results in infection with probability
S(t)/n). The other event, recovery, occurs at t with rate γI(t), since each infective recovers at rate
γ .

The epidemic evolves until the first (random) time T when there are no infectives. Then both
rates are 0 and the epidemic hence stops. The final size of the epidemic is denoted Z = R(T ),
the number of individual that were infected during the outbreak, all others still being susceptible
(S(T ) = n−Z).

The epidemic model has two parameters, λ and γ , plus the population size n. The perhaps most
important quantity for any epidemic model is called the basic reproduction number and denoted
R0. The definition of R0 is that it equals the average number of infections caused by a typical
individual during the early stage of an outbreak (when nearly all individuals are still susceptible).
It is often defined assuming that the population size n tends to infinity. For the general stochastic
epidemic, the basic reproduction equals

R0 = λ/γ.

This is so because an individual infects others at rate λ (when all individuals are susceptible)
while infectious, and the mean duration of the infectious period equals 1/γ . The most important
property of R0 is that it has a threshold value at 1: if R0 > 1, i.e. if infected individuals infect
more than one individual on average, then the epidemic can take off thus producing a “major
outbreak”, whereas if R0 ≤ 1 the disease will surely die out without affecting a large fraction of
individuals. This has important consequences for vaccination. If, prior to the outbreak, a fraction
v are vaccinated (or immunized in some other way), then the number of infections caused by a
typical individual is reduced to R0(1− v) since only the fraction 1− v of all contacts result in
infection. The new reproduction number is hence Rv = (1−v)R0. For the same reason as above, a
positive fraction of the community may get infected if and only if Rv > 1. Using the expression for
Rv this is seen to be equivalent to v > 1−1/R0. The value vc where we have equality is denoted
the critical vaccination coverage and given by

vc = 1− 1
R0

.

The conclusion is hence that the fraction necessary to vaccinate (or isolate in some other way) to
surely avoid a big epidemic outbreak is a simple function of R0. This explains why R0 and vc are
considered the perhaps two most important parameters in infectious disease epidemiology (cf.
Anderson and May, 1991).

Now we study inference procedures for these parameters (and others) in the general stochastic
model. What we can infer, and with what precision, depends on the available data. We mainly
focus on the two extreme types of data. The first is where we only observe the final size Z = R(T ).
The second situation is where we have detailed information about the state of all individuals
throughout the outbreak, i.e. where we observe the complete process {(S(t), I(t),R(t));0≤ t ≤ T},
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56 Britton and Giardina

called complete observation. In reality, it is often the case that some temporal information is
available even if the exact state of all individuals is not known. For example, the onset of symptoms
may sometimes be observed for infected individuals. How the onset of symptoms relate to the time
of infection and time of recovery depends on the disease in question. Since we do not considering
any specific disease, we treat the two extreme situations of final size and complete observation
(Sections 2.2 and 2.3) , the precision of any estimator based on partial temporal observations will
lie between these two situations.

There are many extensions of the model defined above. For example, it is sometimes assumed
that the infectious period is different from the exponential distribution assumed above. The
situation where it is assumed non-random is called the continuous time Reed-Frost epidemic
model, but also other distributions may be relevant. Another extension is where the disease has
a latent period, i.e. where there is a period between when an individual gets infected and until
he or she becomes infectious. Such models are often referred to as SEIR epidemics, where the
“E” stands for “exposed (but not yet infectious)”. Some perhaps even more important extensions
are where the community is considered heterogeneous with respect to disease spreading. For
example, some individuals (like children and elderly) may be more susceptible to the disease but
it is also possible that certain individuals are more infectious be shedding more virus during the
infectious period. A different form of heterogeneity of high relevance is where the community
has heterogeneous social structures, which all communities do. For example, individuals are more
likely to spread the disease to members of the same household than to a random individual in the
community (Section 3).

There are two main reasons why making inference in infectious disease outbreaks is harder
than in many other situations. The first is that infection events are not independent: whether I get
infected is not at all independent of whether my friends get infected. Most standard theory for
statistical inference is based on independent events, but such methods are hence not applicable in
our situation. The second complicating factor is that we rarely observe the most important events:
when and by whom an individual is infected and when they stop being infectious. Instead we
observe surrogate observations such as onset of symptoms and stop of symptoms or similar, and
to infer the former from the latter is not straightforward. Statistical methodology to analyse such
data imputing missing observations is reviewed in Section 5.

2.2. Final size data

Most disease outbreaks of concern, whether in human or animal populations, consist of many
individuals getting infected, implying that by necessity the population size n is also large. However,
in veterinary science it also happens that controlled experiments are performed, where disease
spread is studied in detail in several small isolated units (e.g. Klinkenberg et al., 2002). We start
by describing how to make inference in this situation, i.e. when observing disease spread in many
small units. We do this for the somewhat simpler discrete time Reed-Frost model in which an
infected individual in generation i infects other individuals independently with a probability p in
generation i+1. If we start with k isolated pairs of individuals, one being initially infected and
the other initially susceptible, then p is estimated by p̂ = Z/k, the observed fraction that were
infected by the infected “partner” of the same isolated unit. This estimator is based on a binomial
experiment and it is well-known that it is unbiased with a standard error of s.e.(p̂) =

√
p̂(1− p̂)/k.
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A confidence bound on the estimator is constructed using the normal distribution and it is observed
that the uncertainty in the estimator decreases with the number of pairs in the experiment as
expected. Having estimated the transmission probability p, the natural next step is to estimate
R0. However, this is not straightforward since the transmission probability p (for each specific
individual) may vary depending on the animal being in one isolated pair or in some herd (it will
be most likely smaller in this case). If the transmission probability is the same when the individual
is in a herd, the basic reproduction number will equal R0 = mp if there are m individuals in the
vicinity of any individual. This type of inference, for isolated units, can be extended to situations
where there are more than two individuals out of which at least one is initially inoculated. However,
the inference gets fairly involved even with very moderate unit sizes (e.g. size 4 units) due to the
dependence between individuals getting infected. We refer the reader to e.g. Becker and Britton
(1999), who also consider vaccinated and unvaccinated individuals with the aim to estimate
vaccine efficacy, for further treatment of these aspects.

We now treat the situation when one large outbreak takes place in a large community (of
uniformly mixing homogeneous individuals). As before we let n denote the population size and
we assume data consists of the final size Z, i.e. the ultimate number of infected individuals during
the course of the outbreak. Using results from probabilistic analyses of a class of epidemic models
(containing the general stochastic epidemic model) it is known that in case a major outbreak
occurs in a large community, then the outbreak size Z is approximately normally distributed with
mean nτ and variance nσ2 where τ and σ2 are functions of the model parameters. These results,
together with delta-method, can be used to obtain an explicit estimate R̂0 and standard error for
the estimate (see Section 5.4 in Diekmann et al., 2013):

R̂0 =
− log(1−Z/n)

Z/n
s.e.(R̂0) =

1√
n

√
1+ c2

v(1−Z/n)R̂2
0

(Z/n)(1−Z/n)
.

The point estimate is based on the so-called final size equation for the limiting fraction infected τ :
1− τ = e−R0τ . The expression for the standard error contains one unknown parameter cv which is
the coefficient of variation of the duration of the infectious period TI : c2

v =V (TI)/E(TI)
2. For the

general stochastic epidemic the infectious period is exponential leading to that cv = 1 whereas
cv = 0 for the Reed-Frost epidemic. Most infectious diseases have an infectious period with less
variation than the exponential distribution, so replacing cv by 1 usually gives a conservative (i.e.
large) standard error.

In case the outbreak takes place in a large community it may be that the total number of
infected Z is not observed, but instead the number of infected Zm in a sample of size (say) m
may be the data at hand. Therefore, there are two sources of error in the estimate: the uncertainty
from the final outcome being random, and the uncertainty from observing only a sample of the
community. The latter is bigger the smaller sample is taken. In this situation, the estimator of R0
and its uncertainty can be shown to be

R̂0 =
− log(1−Zm/m)

Zm/m

s.e.(R̂0) =

√
1+ c2

v(1−Zm/m)R̂2
0

n(Zm/m)(1−Zm/m)
+

(1−m/n)(1− (1−Zm/m)R̂0)2

m(Zm/m)(1−Zm/m)
.
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58 Britton and Giardina

The above approximation uses the delta-method together with the fact that V (Zm) = E(V (Zm|Z))+
V (E(Zm|Z)). We see that the first term in the square root equals the standard error when observing
the whole community and the second term vanishes if m = n as expected. If on the other hand
m� n the second term under the square root dominates; then nearly all uncertainty comes from
observing only a small sample.

Another fundamental parameter mentioned above is the critical vaccination coverage vc: the
necessary fraction to immunize in order to surely prevent a major outbreak. For our simple
model we know that vc = 1−1/R0. The estimator for this quantity is obtained by plugging in the
estimator for R0 given above, and a standard error is obtained using the delta-method again. The
result is (see Section 5.4 in Diekmann et al., 2013)

v̂c = 1− 1
R̂0

= 1− Z/n
− log(1−Z/n)

s.e.(v̂c) =
1√
n

√
1+ c2

v(1−Z/n)R̂2
0

R̂4
0(Z/n)(1−Z/n)

.

In case only a sample is observed the following estimator and standard error can be derived:

v̂c = 1− Zm/m
− log(1−Zm/m)

s.e.(v̂c) =

√
1+ c2

v(1−Zm/m)R̂2
0

nR̂4
0(Zm/m)(1−Zm/m)

+
(1−m/n)(1− (1−Zm/m)R̂0)2

mR̂4
0(Zm/m)(1−Zm/m)

.

As when estimating R0 the second term vanishes as m→ n whereas it dominates if we have a
small sample, i.e. m� n.

The above estimates were based on final size data from one outbreak assuming that all n
individuals were initially susceptible. In many situations there are also initially immune individ-
uals when an outbreak occurs. Suppose as above that there are n initially susceptible and Z/n
denotes the fraction infected among the initially susceptible, but that there were additionally nI

initially immune individuals. Then the estimate R̂0 above is actually an estimate of the effective
reproduction number RE = sR0, where s = n/(n+nI) denotes the fraction initially susceptible
(just as if a fraction 1− s were vaccinated). The estimate of R0 and vc (the fraction necessary to
vaccinate assuming everyone is susceptible) are then given by the expressions above replacing R̂0
by R̂0/s. The corresponding standard errors are as before but dividing by s for R̂0, and multiplying
by s for v̂c.

2.3. Temporal data

The estimates of the previous section were based on observing the final outcome of an outbreak,
denoted Z. Quite often some temporal data, such as weekly reported cases, are also observed. This
will improve inference for R0 and vc as compared with final size data. However, for the simple
scenario of the current section where there are no individual heterogeneities and where individuals
mix uniformly, the gain from having temporal data is limited. In Andersson and Britton (2000),
Exercise 10.3, the precision based on final size data is compared with the estimation precision
from so-called complete data, meaning that the time of infection and time of recovery of all
infected individuals are observed. Even with such very detailed data the gain in reduced standard
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error is only of the order 10-15% for some common parameter values. Since most temporal
data is less detailed than complete data, but more detailed than final size data, the gain from
such temporal data will be even smaller, say 5-10%. A disadvantage with using temporal data in
the analysis is that the estimators and their uncertainties are quite involved, using for example
martingale methods, as compared to the rather simple estimators for final size data given above.
Further, for some partial temporal data types it might even be hard to specify what is observed
in terms of model quantities and estimators may therefore be lacking. For this reason we do not
present estimators for temporal data and refer the interested reader to e.g. Diekmann et al. (2013),
Section 5.4.

Having temporal data is hence not so important for precision in estimation of R0 and the critical
vaccination coverage vc when having a homogeneous community that mixes (approximately)
uniformly. However, temporal data may be useful for many other reasons. Firstly, having temporal
data enables estimation of the two model parameters λ and γ separately, and not only the ratio of
the two R0 = λ/γ . Another important reason is that it may be used as model validation. It can
for example happen that the close contact parameter (λ ) changes over time, for example due to
increasing precautions of uninfected individuals. Without temporal data such deviation from the
model above cannot be detected. Similarly, if the community actually is heterogeneous in some
way this will typically lead to a quicker decrease of incidence as compared to a homogeneous
community. Another reason to collect temporal data is of course that it is not necessary to wait
until the end of the outbreak before making inference. This is particularly important for new
emerging outbreaks (see Section 4 below). Moreover, infectious diseases surveillance systems
rely on the availability of temporal data for early outbreak detection and forecasting, as explained
in Section 6.

3. Heterogeneities

The model treated in the previous section assumed a community of homogeneous individuals that
mix uniformly. Reality is of course not like that and various heterogeneities affect the spreading
patterns of an infectious disease. The type of heterogeneities to consider will depend on both
the type of community and the type of disease. Think for example of influenza and a sexually
transmitted disease; for these two diseases the relevant contact patterns clearly differ. Roughly
speaking, heterogeneities can be divided into two different sorts, individual heterogeneities and
mixing heterogeneities. These will be discussed below in separate subsections as they quite often
require different methods of both modelling and statistical analysis.

3.1. Individual heterogeneities

Individual heterogeneities are factors which affect the risk of getting infected or of spreading the
disease onwards. This can for example be age and/or gender, (partial) immunity or vaccination
status. Such factors can often be used to categorize individuals into different types, and outbreak
data will then be reported as final size (or temporal) data separately for the different cohorts. This
type of data is often called a multitype epidemic outbreak. Final size data would then be to observe
the number, or fraction, infected in the different cohorts. If there are k groups we let the final
fraction of infected in each group be denoted by τ̃1, . . . , τ̃k, and the known community fractions
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of the different groups are given by π1, . . . ,πk (so πi is the community fraction of individuals
being of type i). From this data we would like to estimate the model parameters {λi j,γi}; there
is now a close contact rate between all pairs of groups (λi j/n is the rate at which an infectious
i-individual infects a given susceptible type- j individual) and a type-specific recovery rate γi. In
general we hence have k2 + k model parameters whereas the data vector has dimension k. Clearly
it will hence not be possible to estimate all parameters from final size data. In fact, it will not even
be possible to estimate the basic reproduction number R0 consistently, where R0 is now the largest
positive eigenvalue of the so-called next generation matrix M with elements mi j = λi jπ j/γi. An
intuitive explanation to this result is easy to give for the situation where λi j = αiβ j, so the first
factor is the infectivity of i-individual and the second factor the susceptibility of j-individuals. By
observing the fraction of infected of the different types in a multitype epidemic it is possible to
infer which of the types are more susceptible to the disease, but the data contains less information
on which types are more infectious in case they get infected. However, and the latter affects the
estimation of R0 as well. The equations which to base parameter estimates on are the following
(corresponding to the final size equations for the multitype epidemic model):

1− τ̃ j = e−∑i λi jπiτ̃i/γi , j = 1, . . . ,k.

If the number of parameters are reduced down to k, or if some parameters are known, the k
equations above may be used to estimate the remaining parameters including R0. Uncertainty
estimates can also be obtained using probabilistic results of Ball and Clancy (1993), but to derive
them explicitly remains an open problem.

An important common particular type of multitype setting is where there are asymptomatic
cases. For many infectious diseases certain infected individuals have no symptoms but may still
spread the disease onwards. This situation is slightly different from the description above in that
there are not two distinguishable types of individuals; it is only upon infection that individuals
react differently and either become symptomatic or asymptomatic. The most challenging statistical
feature is that the asymptomatic cases are rarely observed. In order to make good inference in
this situation it is necessary to obtain information about the fraction of asymptomatic cases, for
example by testing for antibodies in a random sample in the community.

3.2. Heterogeneous mixing

Individuals are also heterogeneous in the way they mix with each other. In the simple model
defined in the previous section it was assumed that individuals mix uniformly with each other,
but reality is of course nearly always more complicated, which hence should be taken into
account in modelling and statistical analysis. For human diseases there are mainly two types
of mixing heterogeneities that has been accounted for: households and networks. The first and
most important is the relevance of household structure for many diseases: for diseases like
influenza the risk of transmitting to a specific household member is much higher than the risk
of transmitting to a (randomly selected) individual in the community. This can be modelled by
assuming a transmission rate λH to each individual of the same household, and another “global”
transmission rate λG/n (of different order) to each individual outside the household. The effect
of such additional transmission within household is that infected individuals will tend to cluster
in certain households leaving other households unaffected (e.g. Ball et al., 1997), and the higher
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λH is, the more will infected individuals be clustered. This can be used when inferring model
parameters including reproduction numbers as illustrated by Ball et al. (1997), but also more
recently in e.g. Fraser (2007).

For temporal data the two different transmission rates may be disentangled more directly
by comparing the current fraction of infectives in a household whenever infection occurs (cf.
Fraser, 2007). For a model having constant infectious rates throughout the infectious period, the
log-likelihood contribution relevant for estimating λG and λH equals

∑
i, j

log[Si(ti j−)(λHIi(ti j−)+
λG

n
I(ti j−))]−

∫ tobs

0
λH

(
∑

i
Si(u)Ii(u)

)
+

λG

n
S(u)I(u)du,

where {ti j}, ti j ∈ (0, tobs) are the observed infection times in household i and tobs is the end of
the observation period, Ii(t) and Ii(t−) denote the number of infectives in household i at t or
just before t respectively, and similar for Si(t) and Si(t−), and where (as before) S(t) = ∑i Si(t)
and I(t) = ∑i Ii(t) are the corresponding totals. This likelihood can be used (assuming the rare
situation where infection times are actually observed) to infer the transmission parameters λH and
λG, i.e. it enables distinction between if most transmission is within or between households. If
only final size data is available it is still possible to determine if most transmission takes place
within or between households by fitting parameters to the final size likelihood using recursive
equations (cf. Ball et al., 1997). This method also enables estimation of a reproduction number
R∗, which now both is more complicated to interpret and is a more complicated function of model
parameters. A similar structure to households, having higher transmission within the groups than
between, is that of schools and, for domestic animals, herds. These units are larger thus allowing
some large population approximations such that each herd may have its own R0. A complicated
inference problem lies in estimating the contact rates between herds using transportation data (e.g.
Lindström et al., 2009).

A different type of mixing heterogeneity which has received a lot of attention in the modelling
community over the last 10-15 years is where the community is treated as a social network and
where transmission takes place only (or mainly) between neighbours of the network (e.g. Newman,
2003). Both the structure of the network as well as the transmission dynamics taking place “on”
the network are important for inferring the potential of an outbreak (R0) and effects of various
preventive measures. A big difference from the household setting just discussed is that usually
the underlying network is rarely observed. At best, certain local properties of the network, such
as the mean degree, the degree distribution, the clustering coefficient and/or the degree-degree
correlation, may be known or estimated. From such local data more global structures determining
the potential of disease outbreaks are usually not identifiable (cf. Britton and Trapman, 2013).

3.3. Spatial models

Infectious disease epidemics in populations are inherently spatial because infectious agents are
spread by contact from an infectious host to a susceptible host that is “nearby”. Heterogeneity
in space may play an important role in the persistence and dynamics of epidemics. For example,
localised extinctions may be more common in smaller subpopulations whilst coupling between
subpopulations may lead to reintroduction of infection into disease-free areas. Understanding the
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62 Britton and Giardina

spatial heterogeneity has important implications in planning and implementing disease control
measures such as vaccination.

One way to account for spatial heterogeneity is to extend the general epidemic model by
partitioning the population into spatial subunits of the hosts: nearby hosts are grouped together
and interact more strongly than the ones that are further apart. These are the so-called meta-
population models (or patch models) and they have been used also to investigate aspects of global
disease spread in measles, SARS... A simple two-patch spatial model where hosts move between
the two patches at some rate m independent of a disease status would be as follows:

dS1(t)
dt

=−λS1(t)I1(t)/n1 +m(S2(t)−S1(t))

dI1(t)
dt

=λS1(t)I1(t)/n1− γI1(t)+m(I2(t)− I1(t))

dS2(t)
dt

=−λS2(t)I2(t)/n2 +m(S1(t)−S2(t))

dI2(t)
dt

=λS2(t)I2(t)/n2− γI2(t)+m(I1(t)− I2(t))

where Si, Ii and ni, i = 1,2 are the number of susceptibles, infected and the community size
in patch i respectively. The degree of mixing between groups can be specified, relaxing the
assumption of uniform mixing of all individuals.

Time series data sets of infectious disease counts are now increasingly available with spatially
explicit information. Some work has been done on time series susceptible-infected-recovered
(TSIR) model (Finkenstädt et al., 2002) and its extensions as epidemic metapopulation model
assuming gravity transmission between different communities (Xia et al., 2004; Jandarov et al.,
2014). According to a generalized gravity model, the amount of movement between the patches
(communities) i and j is proportional to nτ1

i nτ2
j /dρ

i j with ρ,τ1,τ2 > 0 and di j is the distance
between the patches. The transient force of infection by infecteds in location i on susceptibles in

location j is mi→ j,t ∝
nτ1

j,t I
τ2
i,t

dρ

i j
.

4. Statistical analysis of emerging outbreaks

One of the most urgent problems in infectious disease epidemiology over the last decade has
been to quickly learn about new diseases (or new outbreaks of old diseases). Examples include
SARS (Lipsitch et al., 2003; Riley et al., 2003), foot and mouth disease (Ferguson et al., 2001),
H1N1-influenza, (Yang et al., 2009; Fraser et al., 2009) and, most recently, the Ebola outbreak
in West Africa (WHO Ebola response team, 2014). A difference from the situation discussed
above is that here, in order to identify efficient control measures, estimations are urgent during the
outbreak. It is not possible to wait until the end of the outbreak and use final size data to infer R0
and related parameters. Instead inference has to be performed during the early growing stage of
the outbreak. Beside having less data this also introduces the risk of producing biased estimates
from the fact that individuals that are infected during early stages of an outbreak are usually
not representative for the community at large. As an example, the early predictions of the HIV

Journal de la Société Française de Statistique, Vol. 157 No. 1 53-70
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2016) ISSN: 2102-6238



Introduction to statistical inference for infectious diseases 63

outbreak in the 1980’s predicted tens of millions of infected within a couple of years, predictions
which turned out to be way too high. One partial explanation to this and similar situations is
that in a heterogeneous community highly susceptible individuals will get infected early in the
epidemic and if predictions are based on the whole community being equally susceptible as the
initial group of infected the predictions will overestimate the final size.

As described in ealier sections, the basic reproduction number R0 carries information about
the potential of the epidemic and hence also how much preventive measures are needed to stop
an outbreak. During an emerging outbreak, the data (such as weekly reports of new cases) carry
information about the exponential growth rate r of the epidemic (also known as the Malthusian
parameter), so estimates of r are easily obtained. However, there is no direct relation between r
and R0; for example, a disease with twice as high transmission and recovery rate has the same
R0 but larger growth rate r. It is the so-called generation time that determines r, the generation
time is defined as the time between infection of an individual to the (random) time of infection of
one of the individuals he/she infects. The Malthusian parameter r is defined as the solution to the
Lotka-Volterra equation ∫

∞

0
e−rt

µ(t)dt,

where µ(t) determines the expected generation time and is defined as the average rate at which an
infected individual infects new individuals t time units after he/she was infected. The shape of
µ(t) is very influential on the value of r, and the duration and variation of the latent as well as
infectious periods have a large impact on r, and thus on what can be inferred also about R0 in an
emerging epidemic outbreak. See Wallinga and Lipsitch (2007) for more about the connection
between r, the generation time and R0.

In most emerging outbreaks the distribution µ(t) of the generation time is not known and
inference methods are needed. However, very rarely infections times, end of latency periods and
end of infectious periods are observed. Instead, some related events, such as onset of symptoms
and end of symptoms are at best observed. The time between such successive observable events,
e.g. the time between onset of symptoms of an infected and the time of onset of symptoms of one of
the individuals infected by him/her, is denoted the serial time. As has been thoroughly investigated
by Svensson (2007), generation time and serial time need not have the same distributions, the
latter typically has more variation. As a consequence, even though inference about the serial times
is possible from observable data it cannot be used directly to infer the generation time.

A final complicating matter when inferring r and R0 using data from an emerging outbreak is
that the generation time, the “forward” process defined above, is often estimated using data from
the corresponding “backward” process. By backward process we mean that infected individuals
are contact-traced backwards in time aiming at finding the infection time of their infector (e.g.
WHO Ebola response team, 2014). By looking backward in time, short generation time will be
over-represented because infections from longer generation times might not have yet occurred (cf.
Scalia Tomba et al., 2010). If this bias is not accounted for, predictions based on the backward
intervals will be biased in that the predicted number of cases will be over-estimated.

As it has just been explained, there are several potential pitfalls when estimating R0 and
effects of preventive measures from an ongoing emerging outbreak, the reason being that the
observed/estimable growth rate r is not directly related to R0 but only indirectly through the
generation time, and the latter is sensitive to usually unknown latent and infectious period
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distributions. But suppose this complicating problem is somehow under control. Is then estimation
of R0 straightforward? The immediate answer is that heterogeneities in the community also play a
role when inferring R0 in an emerging outbreak. However, Trapman et al. (2015) show that for the
most commonly studied heterogeneities: multitype epidemics, network epidemics and household
epidemics, their effect is very minor. More precisely, estimating R0 assuming a homogeneous
community when in fact it is a multitype epidemic gives exactly the correct estimate of R0,
estimating R0 assuming a homogeneous community when in fact it comes from a (configuration)
network epidemic makes the estimate of R0 slightly biased from above (the conservative, “better”
direction), and finally estimation of R0 assuming homogeneity when the outbreak agrees with
a household epidemic will make the estimate of R0 close to the correct value and most often
conservative. As a consequence, when the relevant heterogeneities make up a combination of the
above heterogeneities the simpler estimate assuming homogeneity will slightly overestimate R0,
see Trapman et al. (2015) for more on this topic.

5. Estimation methods (for partially observed epidemics)

As mentioned in Section 2, the main difficulty in parameters estimation for epidemic models is
that the infection process is only partially observed and observed quantities may be aggregated
(e.g. weekly, monthly etc...). Therefore, the likelihood may become very difficult to evaluate,
especially when considering temporal data, since evaluating the likelihood typically involves
integration over all unobserved quantities, which is rarely analytically possible. Data imputation
methods embedded into statistical inference techniques, such as the expectation-maximisation
(EM) algorithm and Markov chain Monte Carlo (MCMC) have been used to estimate the unknown
parameters in epidemic models.

The EM algorithm has been considered for epidemic inference problems by e.g. Becker (1997).
If we denote with Y the observed data, with Z the augmented data (latent or missing) and with
θ the parameter (vector) to estimate, the EM algorithm seeks to find the maximum likelihood
estimate of the marginal likelihood by iteratively applying the following two steps: the E-step
(expectation step) and the M-step (maximisation step). Once an initial parameter θ0 is chosen, the
E-step and M-step are performed repeatedly until convergence occurs, that is until the difference
between successive iterates is negligible. The E-step consists of computing the expected value
of the complete data log-likelihood conditional on the observed data and the parameter estimate
θ (t) at iteration t, i.e. Q(θ |θ (t)) = EZ|Y,θ (t) [logL(θ ;Y,Z)] and the M-step requires maximising the
expectation calculated in the E-step with respect to θ to obtain the next iterate. The latent data
should be chosen such that the log-likelihood of the complete data is relatively straightforward.
However, the evaluation of the expectation step can be rather complicated.

Data-augmented MCMC can be used to explore the joint distribution of parameters and latent
variables in a similar fashion. Especially in the Bayesian context, the approach is straightforward
and it consists in specifying an “observation level” model P(Y |Z,θ), a “transmission level”
model P(Z|θ) and a prior p(θ), as outlined by Auranen et al. (2000), resulting in P(Y,Z,θ) =
P(Y |Z,θ)P(Z|θ)p(θ). One drawback with this approach is that it requires high memory for
large-scale systems and in addition, designing efficient proposal distributions for the missing data
may be challenging. Therefore, applications of data augmentation in MCMC have been mainly
concerned with the situation in which data arise from a single large outbreak of a disease (Gibson
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and Renshaw, 1998; O’Neill and Roberts, 1999) or data on small outbreaks across a large number
of households (O’Neill et al., 2000).

For large epidemics in large populations, another option is to find analytically tractable approx-
imations of the epidemic model. In epidemic time series data a natural choice is to approximate
continuous-time models by discrete-time models (Lekone and Finkenstädt, 2006). An important
constraint in those models is that one observation period must effectively capture one generation
of cases. This may be achieved only if the generation time of the disease is equal to the length of
observation periods, or is a multiple of it. In the latter case, the data must be further aggregated,
which may lead to an additional loss of information.

Cauchemez and Ferguson (2008) propose a statistical framework to estimate epidemic time-
series data tackling the problem of temporal aggregation (and missing data), by augmenting the
data with the latent state at the beginning of each observation period and introducing a diffusion
process that approximates the SIR dynamic and has an exact solution. See also Guy et al. (2015)
in this journal issue.

Ionides et al. (2006) formulates the inference problem for epidemic models in terms of nonlinear
dynamical systems (or state-space models) which consist of an unobserved Markov process Zt

i.e. the state process and the observation process Yt . The model is completely specified by the
conditional transition density f (Zt |Zt−1,θ), the conditional distribution of the observation process
f (Yt |Yt−1,Zt ,θ) = f (Yt |Zt ,θ) and the initial density f (Z0|θ). The basic idea is to consider the
parameter θ as a time varying process θt , i.e. a random walk in Rdim(θ) so that E(θt |θt−1) = θt−1,
Var(θt |θt−1) = σ2Σ, E(θ0) = θ and Var(θ0) = σ2c2Σ with σ and c scalar quantities. Then, the
objective is to obtain estimate of θ by taking the limit as σ → 0. The authors use iterated filtering
to produce maximum likelihood estimates with a Sequential Monte Carlo (SMC) method.

A general technique that alleviates the problems generated by likelihood evaluation and that
is growing in popularity in epidemiology is the so-called Approximate Bayesian Computation
(ABC). ABC utilizes the Bayesian paradigm in the following manner: if M represents the model
of interest, then the observed data Y are simply one realization from M, conditional on θ . For a
given set of candidate parameters θ ′, drawn from the prior distribution, we can simulate a data set
Y ′ from M. If ρ(s(Y ′),s(Y ))≤ ε , where ρ is a similarity metric, s(·) is a set of lower dimensional
(approximately) sufficient summary statistics and ε is chosen small, then θ ′ is a draw from the
posterior. ABC (or likelihood-free computation) can be used with rejection sampling (McKinley
et al., 2009), MCMC (Marjoram et al., 2003) or SMC routines (Toni et al., 2009). A general
criticism of this method concerns the level of approximation generated by: the choice of metric ρ ,
the tolerance ε and the number of simulations to obtain estimates.

For stochastic models where simulation is time consuming, it may not be possible to use
likelihood-free inference. Learning about parameters in a complex deterministic or stochastic
epidemic model using real data can be thought of as a “computer model emulation/calibration”
problem (Farah et al., 2014). Emulators are statistical approximations of a complex computer
model, which allow for simpler and faster computations. An emulator may consist of a regression
model allowing for model discrepancy and measurement error and can be easily fitted to the
reported epidemic data. Recent work in emulation and calibration for complex computer models
for fitting epidemic models include Jandarov et al. (2014) where a Gaussian process approximation
is chosen to mimic the disease dynamics model using key biologically relevant summary statistics
obtained from simulations of the model at different parameter values.
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6. Statistical models for infectious diseases surveillance

Infectious disease data are often collected for disease surveillance purposes and information
is typically available as incidence counts aggregated over regular intervals (e.g. weekly). As a
consequence, individual information is often lost. Also, the number of susceptibles in a population
is rarely available. The typical goal in a surveillance setting is to monitor disease incidence,
detecting outbreaks prospectively. Due to the lack of detailed information mentioned above, this
is rarely achieved by fitting epidemic stochastic models to data, i.e. by explicitly modelling the
transmission process.

Commonly the problem is formulated as statistical analysis for detecting an anomaly (step
increase) in univariate count data time series {yt , t = 1,2, . . .}. The first approach dates back to
Farrington et al. (1996) who compared the observed count in the current week with an expected
number, which is calculated based on observations from the past, i.e. similar weeks from the
previous years from a set of so-called reference values. An upper threshold is then derived so
that an outbreak alarm is triggered once the current observation exceeds this threshold. At time
s, ys = {yt ; t ≤ s} the statistic r(·) is calculated on the basis of ys compared to a threshold value
g. This results in the alarm time Ta = min{s ≥ 1 : r(ys) > g}. Several variations/extensions of
the Farrington’s method exist, (Salmon et al., 2014), based on a two-step procedure: first, a
Generalized Linear (Additive) Model (Poisson or Negative Binomial) is fitted to the reference
values, and then the expected number of counts µs is predicted and used (with its variance) to obtain
an upper bound gs: the alarm is raised if ys > gs. Other model generalizations allow the detection
of sustained shifts through cumulative sum methods (Höhle and Paul, 2008). Applications are in
both human and veterinary epidemiology, see e.g. Kosmider et al. (2006).

Sometimes infectious disease data are available at a finer geographical scale (cases are geo-
referenced). In these situations the problem of spatio-temporal disease surveillance can be for-
mulated in terms of point-process models (Diggle et al., 2005). The focus is predicting spatially
and temporally localised excursions over a pre-specified threshold value for the spatially and
temporally varying intensity of a point process λ ∗(x, t) in which each point represents an individ-
ual case. In Diggle et al. (2005), the point process model is a non-stationary log-Gaussian Cox
process in which the spatio-temporal intensity has a multiplicative decomposition into two com-
ponents: one describing purely spatial λ ∗0 (x) and the other purely temporal variation µ0(t) in the
normal disease incidence pattern, and an unobserved stochastic component representing spatially
and temporally localised departures from the normal pattern Φ(x, t). Hence, the spatio-temporal
incidence is λ ∗(x, t) = λ ∗0 (x)µ0(t)Φ(x, t) for t in the prespecified observation period [0,T ],T > 0,
and observation region S ∈ R. Within this modelling framework, anomaly is defined as a spatially
and temporally localised neighbourhood within which Φ(x, t) exceeds an agreed threshold, g, via
the predictive probabilities p(x,s;g) = P(Φ(x,s)> g|data until time s).

Statistical models as the above mentioned, can also be used for the study of spatio-temporal
correlations and patterns explaining the statistical variability in incidence counts. In fact, as a
consequence of the disease transmission mechanism, the observations are inherently time and
space dependent and appropriate statistical models have to account for such feature in the data.
Geographic information can be available at different scales. For example, as in Diggle et al. (2005),
an entire region is continuously monitored. A (marked) point pattern model representation has
a branching process interpretation and therefore allows the calculation of the expected number
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of secondary infections generated by an infective within its range of interaction (proxy for R0),
see Meyer et al. (2014). A second possibility is that infections are obtained at a discrete set of
units at fixed locations followed over time, as farms during livestock epidemics (Keeling and
Rohani, 2008). In this case, an SIR modelling approach can be pursued. A third case, probably
the most common one, is to have individual data aggregated over some administrative regions and
convenient period of time (e.g. week, month etc...).

A general statistical framework for modelling such data can be found in Paul et al. (2008) that
extends the model previously proposed by Held et al. (2005). The model is based on a Poisson
branching process with immigration and can be seen as an approximation to a chain-binomial
model without information on the number of susceptibles to the disease. Previous counts enter
additively on the conditional mean counts that is decomposed in two parts: the endemic part
and the epidemic part. The former explains a baseline rate of cases that is persistent with a
stable temporal pattern, while the latter accounts for occasional outbreaks. In particular, the
number of cases observed at unit i at time t, i = 1, . . . ,m, t = 1, . . . ,T is denoted by yit . The
counts can be assumed to follow a Negative Binomial distribution yit |yit−1 ∼ NegBin(µit ,φ) with
conditional mean µit = λ ′yit−1 + exp(ηit) and conditional variance µit(1+ φ µit) where φ > 0
is an overdispersion parameter and λ ′ is an unknown autoregressive parameter. The epidemic
component is represented by λ ′yit−1 and the endemic part is exp(ηit). The inclusion of previous
cases allows for temporal dependence beyond seasonal patterns within a unit. To explain the spread
of a disease across units, the epidemic component can be formulated as λ ′yit−1 + γi ∑ j 6=i w jiy j,t−l
where y j,t−l denotes the number of cases observed in unit j at time t− l with lag l ∈ 1,2, . . . and
w ji are suitably chosen weights. To model seasonality, the endemic component can be specified
as νit = αi +∑

S
s=1 βssin(ωst)+δscos(ωst) where ωs are Fourier frequencies. The parameter αi

allows for different incidence levels in each of the m units.
Statistical models for surveillance are evaluated and selected in terms of predictive performance

in one step ahead-prediction. Strictly proper scoring rules are generally used for this purpose
(Gneiting and Raftery, 2007; Czado et al., 2009), the most popular for count data being the
logarithmic score.

Most of the statistical models mentioned above are implemented in the R package
surveillance (Höhle, 2007). Bayesian extensions are fitted via Integrated Nested Laplace
approximation (Rue et al., 2009).

7. Concluding remarks

In this paper we have presented results for the general stochastic epidemic model and shown
how to infer the most important epidemiological parameters, R0 and vc under different data
scenarios (final size data or temporal data). The general stochastic epidemic model assumes a
finite population that mixes homogeneously and a constant infection rate λ during the infectious
period. In Sections 3 and 4 we elaborate some model extensions, e.g. individual heterogeneity,
heterogeneous mixing and spatial models discussing how estimation changes.

However, there are other features that affect the disease spread (and therefore other model
extensions to account for them) that have not been treated in this work. For example, the probability
of getting infected with a disease is usually not constant in time: some diseases are seasonal e.g.
common cold viruses. Also an “external” change e.g. the implementation of a control measure,
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may affect either contact rates or infectiousness (or both). One way to account for that is to let the
infection rate λ change in time, e.g. as a periodic function (Cauchemez and Ferguson, 2008).

Epidemic models can also be used to derive estimators for the efficacy of control measures
such as vaccine, using data generated by field trials and observational studies. Understanding
the relation between disease dynamics and interventions is essential particularly for vaccination
programs. In fact, vaccines can have protective effects in reducing susceptibility, infectiousness or
both and efficacy estimation has to be performed accordingly (Halloran et al., 2010).

Over the last few years, an alternative approach for modelling infectious disease outbreaks
has focused on phylodynamics, the integration of phylogenetic methods to analyze the genetic
variation of the pathogen and epidemic models (Grenfell et al., 2004). This approach offers new
insights into the dynamics of disease outbreak with the aim of inferring transmission routes and
times of infection, see e.g. Volz et al. (2009) or Soubeyrand (2015) in this special issue.
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