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Abstract: We consider a new class of non Markovian processes with a countable number of interacting components,
both in discrete and continuous time. Each component is represented by a point process indicating if it has a spike or
not at a given time. The system evolves as follows. For each component, the rate (in continuous time) or the probability
(in discrete time) of having a spike depends on the entire time evolution of the system since the last spike time of
the component. In discrete time this class of systems extends in a non trivial way both Spitzer’s interacting particle
systems, which are Markovian, and Rissanen’s stochastic chains with memory of variable length which have finite
state space. In continuous time they can be seen as a kind of Rissanen’s variable length memory version of the class of
self-exciting point processes which are also called “Hawkes processes”, however with infinitely many components.
These features make this class a good candidate to describe the time evolution of networks of spiking neurons. In this
article we present a critical reader’s guide to recent papers dealing with this class of models, both in discrete and in
continuous time. We briefly sketch results concerning perfect simulation and existence issues, de-correlation between
successive interspike intervals, the longtime behavior of finite systems and propagation of chaos in mean field systems.

Résumé : Nous considérons une nouvelle classe de processus non-markoviens à temps discret ou continu, comportant
un nombre dénombrable de composantes en interaction. À chaque instant, chaque composante (neurone) peut prendre
deux valeurs, indiquant la présence ou l’absence d’un potentiel d’action (spike). La dynamique du processus est définie
de la manière suivante : pour chaque composante, la probabilité d’avoir un potentiel d’action à l’instant suivant dépend
de la trajectoire du système entier depuis l’instant du dernier spike de cette composante. Cette classe de processus
stochastiques étend de manière non triviale à la fois les systèmes de particules en interaction, qui sont markoviens, et
les chaînes de mémoire variable, qui ont un espace d’états fini. En temps continu, cette classe de processus peut être
considérée comme une version des chaînes à mémoire variable pour les processus ponctuels auto-excitants de Hawkes
mais avec un nombre infini de composantes. Cette classe de processus constitue ainsi une bonne classe de modèles
pour décrire l’évolution temporelle de systèmes neuronaux biologiques. Nous présentons une revue critique des articles
récents discutant cette classe de modèles, aussi bien en temps continu qu’en temps discret. Nous exposons brièvement
des résultats sur la simulation parfaite, la décorrélation entre intervalles inter spike successifs, le comportement en
temps long de systèmes finis ainsi que sur la propagation du chaos dans des systèmes en interaction du type champ
moyen.
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18 Galves et Löcherbach

1. Introduction

A biological neural system has the following characteristics. It is a system with a huge (about
1011) number of interacting components, the neurons. The activity of each neuron is represented
by a point process, namely, the successive times at which the neurons emit an action potential or a
so-called spike. It is generally considered that the spiking activity is the way the system encodes
and transmits information.

The model we consider in the present paper is based on the assumption that the spiking
probability or rate of a given neuron depends on its membrane potential, and that given the
values of all membrane potentials, the neurons update independently. Moreover the membrane
potential of a given neuron is affected by the actions of all other neurons interacting with it.
Neurons interact by synapses. Our model allows to describe both chemical or electrical synapses.
Chemical synapses can be described as follows. Each neuron spikes randomly following a point
process with rate depending on the membrane potential of the neuron. At its spiking time, the
membrane potential of the spiking neuron is reset to an equilibrium potential 0. At the same time,
simultaneously, the neurons affected by it receive an additional amount of potential which is
added to their membrane potential.

Electrical synapses occur through gap-junctions which allow neurons in the brain to communi-
cate with one another. This induces an attraction between the values of the membrane potentials
of each other and, as a consequence, a drift of the value of the membrane potential of a given
neuron to a mean value which can be interpreted as local field potential. Finally, leakage channels
may induce a loss of membrane potential for each neuron.

Assuming that neurons in the brain can be described as stochastically active units which are
driven by independent Poisson random measures whose rates depend on their potential is of
course a massive simplification. This simplification is usually justified relying on the argument
that in the real brain, the stochasticity of the cells is due to highly fluctuating input received from
the outside. If this input is constituted of a balanced amount of excitation and inhibition, it is
reasonable to assume that the driving noises for each neuron are independent. We refer the reader
to Renart et al. (2010) for further details. Based on these premises, the aim of our model is to
highlight some of the central features of the spiking activity of the brain. We propose a simple
model that can be fitted to data and that is analytically tractable.

The fact that the membrane potential of each neuron is reset to 0 when it spikes makes its
time evolution to be dependent of a variable length of the past. More precisely, it depends on
the influence received from its presynaptic neurons since its last spiking time. In other terms,
the time evolution of such a system is obviously not described by a Markov process (Cessac,
2011). In particular, if we consider a time continuous description of the system, the waiting
times between two successive spikes of a single neuron are not exponentially distributed (see, for
instance, Brillinger, 1988).

Such a system can be described in discrete time in the following way. Consider a small interval
of time, typically of the order of 10ms which is more or less the time it takes for a neuron to
emit a spike, followed by a refractory period. We indicate the presence or absence of a spiking
activity for each neuron within each such time window. Then the process we obtain is a system of
interacting chains with memory of variable length and a large number of components. This class
of systems extends in a non trivial way both the interacting particle systems, which are Markov,
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Networks of spiking neurons 19

see Spitzer (1970), and the stochastic chains with memory of variable length which have finite
state space, see Rissanen (1983) or Galves and Löcherbach (2008).

A continuous time description of the process seems however more convenient both from a
modeling and a mathematical point of view. This is the point of view adopted in De Masi et al.
(2015), Duarte and Ost (2015) and Fournier and Löcherbach (2015).

The present article is considered as a critical reader’s guide to the papers mentioned above.
We will briefly sketch the main results of these papers as well as challenges and next steps to be
addressed.

This paper is organized as follows. In Section 2 we introduce a model of an infinite network of
spiking neurons in discrete time; in Section 3 an analogous continuous time model using point
processes is introduced. In Section 4, we show that under appropriate conditions, such a system of
interacting point processes can be represented via an associated interacting particle system which
is Markovian. In Section 5 we give an existence and perfect simulation result for the process
defined in Sections 2 and 3. Section 6 considers a finite system composed of N neurons where
the graph of synaptic weights is a realization of a (slightly) supercritical directed Erdös-Rényi
random graph. In this case, the correlations of two neighboring interspike intervals are shown to
be asymptotically de-correlated, as the system size tends to infinity. Sections 7 to 9 are devoted
to a study of the associated interacting particle system introduced in Section 4 where we deal
successively with the longtime behavior of finite particle systems, with the hydrodynamical limit
within a mean field system and finally with asymptotic properties of the limit process. In Section
10 we mention challenges and next steps to be addressed. We close our paper with a discussion in
Section 11.

2. Infinite systems of interacting processes with memory of variable length in discrete time

We introduce a new class of stochastic processes, both in discrete and in continuous time, which
are models of networks of spiking neurons. The processes we consider are infinite systems of
interacting processes with memory of variable length.

Let I be a countable set of neurons and introduce a family of synaptic weights Wj→i ∈ R, for
j 6= i, Wj→ j = 0 for all j. We interpret Wj→i as the synaptic weight of neuron j on neuron i. We
suppose that the synaptic weights have the following property of uniform summability

sup
i∈I

∑
j
|Wj→i|< ∞. (1)

Moreover, we shall use a family of spiking rate functions φi : R→ [0,1], i ∈ I, and a family of
leak functions gi : N→ R+, i ∈ I. All functions φi and gi are measurable functions. We assume
that φi is increasing and uniformly Lipschitz continuous, i.e. there exists a positive constant γ

such that for all s,s′ ∈ R,
|φi(s)−φi(s′)| ≤ γ|s− s′|. (2)

We start by considering a model in discrete time which is partly inspired by Cessac (2011)
who proposes a finite dimensional system. We consider a stochastic chain (Xt)t∈Z taking values
in {0,1}I, where I is the countable set of neurons, defined on a suitable probability space
(Ω,A ,P). For each neuron i at each time t ∈ Z, Xt(i) = 1 reports if neuron i has a spike at that
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20 Galves et Löcherbach

time t. Otherwise we put Xt(i) = 0. The global configuration of neurons at time t is denoted
Xt = (Xt(i), i ∈ I). For each neuron i ∈ I and each time t ∈ Z let

Li
t = sup{s < t : Xs(i) = 1} (3)

be the last spike time of neuron i strictly before time t. At each time t, conditionally on the whole
past, sites update independently. This means that for any finite subset J ⊂ I, ai ∈ {0,1}, i ∈ J, if
we introduce the filtration

Ft = σ(Xs,s ∈ Z,s≤ t), t ∈ Z,
then we have

P(Xt(i) = ai, i ∈ J|Ft−1) = ∏
i∈J

P(Xt(i) = ai|Ft−1), (4)

where

P(Xt(i) = 1|Ft−1) = φi

∑
j

Wj→i

t−1

∑
s=Li

t

g j→i(t− s)Xs( j)

 . (5)

Here φi is the spiking rate function of neuron i, introduced above, and g j→i the leak function
associated to the synapse between j and i. Observe that, since φi is increasing, the contribution of
components j is either excitatory or inhibitory, depending on the sign of Wj→i.

3. Infinite systems of interacting processes with memory of variable length in continuous
time

In continuous time, the activity of each neuron i∈ I is described by a counting process Zi recording
for any −∞ < s < t < ∞ the number Zi(]s, t]) of spikes of neuron i during the interval ]s, t]. The
sequence of counting processes (Zi, i ∈ I) is characterized by its intensity process (λ i

t , i ∈ I)
defined through the relation

P(Zt has a jump in ]t , t + dt ]|Ft) = λ
i
t dt, i ∈ I,

where Ft = σ(Zi(]s,u]),s≤ u≤ t, i ∈ I) and where

λ
i
t = Mi φi

(
∑
j∈I

Wj→i

∫
[Li

t ,t[
g j→i(t− s)dZ j

s

)
. (6)

Here, Mi, i ∈ I, is a collection of positive numbers giving the maximal intensity of spiking per
neuron (recall that φi takes values in [0,1]), and Li

t = sup{s < t : Zi([s]> 0}.
This form of an intensity process is close to the typical form of the intensity of a multivariate

nonlinear Hawkes process as it has been considered since Hawkes (1971). We refer the interested
reader to Brémaud and Massoulié (1996) for an extensive and comprehensible study of stability
properties of nonlinear Hawkes process, and to Hansen et al. (2015) for the use of Hawkes
processes as models of spike trains in neuroscience. See also Delattre et al. (2015) for a study
of infinite systems of nonlinear Hawkes processes. Our form of the intensity (6) differs from the
classical Hawkes setting by its variable memory structure introduced through the term Li

t . Hence
the spiking intensity of a neuron only depends on its history up to its last spike time which is a
biologically very plausible assumption on the memory structure of the process. Therefore, our
model can be seen as a nonlinear multivariate Hawkes process where the number of components
is infinite with a variable memory structure.
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Networks of spiking neurons 21

4. Associated Markov interacting particle system

The choice of a leak function g j→i ≡ 1 in (6) gives rise to an intensity process which is Markov.
In this case, write

Ui(t) = ∑
j∈I

Wj→i

∫
[Li

t ,t[
dZ j

s . (7)

We can interpret Ui(t) as value of the membrane potential of neuron i at time t. Then it is
straightforward to see that (Ui(t))i∈I is a Markov process taking values in RI, whose generator is
given for any smooth test function f : RI → R by

L f (x) = ∑
i∈I

Miφi(xi) [ f (x+∆i(x))− f (x)] , (8)

where

(∆i(x)) j =

{
Wi→ j j 6= i
−xi j = i

}
. (9)

In such a system of interacting processes Ui(t), each neuron is represented by the height xi of its
membrane potential. It spikes at a rate depending on this height. When spiking, it goes back to the
value 0 which can be interpreted as resting potential. At the same time, neurons influenced by
i, i.e. the postsynaptic neurons, receive an additional amount of potential Wi→ j, independently
of the former value xi of the membrane potential of the spiking neuron. In particular, there is
no conservation of mass (i.e. of potential), since the spiking neuron does not re-distribute its
own potential (this is for instance a main difference with the Potlatch process or with sandpile
processes).

Notice that from a mathematical point of view the existence of such a process in infinite
dimension, i.e. in the case when I is infinite, is not evident, since the interactions might come
down from infinity. We do not go into the details, but for a general discussion of existence issues
in infinite dimension, we invite the interested reader to consult for example Chapter 1 of Liggett
(1985).

Sometimes, we will concentrate on the finite case and take I = {1, . . . ,N}, for some fixed
N > 0. In this case, we might add to the above dynamics (8) two terms. The first one is a leak
term modeling the fact that throughout its evolution, the membrane potential looses potential
due to leakage channels. The second is a drift term modeling the effects of gap-junctions to
the system. Whereas the leakage channels tend to push the membrane potential of each neuron
towards zero, the gap junctions, on the contrary, tend to push the whole system towards its
average membrane potential value. We are thus led to consider a continuous time Markov process
U(t) = (U1(t), . . . ,UN(t)) taking values in RN , whose infinitesimal generator is given for any
smooth test function f : RN → R by

L f (x) =
N

∑
i=1

Miφi(xi) [ f (x+∆i(x))− f (x)]−
N

∑
i=1

∂ f
∂xi

(x)
N

∑
j=1

λi, j[xi− x j]

−α

N

∑
i=1

∂ f
∂xi

(x)xi, (10)

where λi, j ≥ 0 and α ≥ 0 are positive parameters. Here, λi, j models the strength of the electrical
synapse between neuron j and neuron i, and α the leakage effect.
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22 Galves et Löcherbach

5. Existence results and perfect simulation

It is natural to ask if there exists at least (and at most) one stationary process which is consistent
with the dynamics defined through (4) and (5) in discrete time or through (6) in continuous time.
The answer to this question is intimately related to the structure of interactions given by the
synaptic weights. These interactions can be represented as a directed weighted graph where the
directed link i→ j is present if and only if Wi→ j 6= 0, and where each directed link is weighted by
Wi→ j. For each neuron i, we introduce

V·→i = { j ∈ I, j 6= i : Wj→i 6= 0},

the set of all neurons that have a direct influence on neuron i. Notice that in our model, V·→i can be
both finite or infinite. We fix a growing sequence (Vi(k))k≥−1 of subsets of I such that Vi(−1) = /0,
Vi(0) = {i}, Vi(k)⊂Vi(k+1), Vi(k) 6=Vi(k+1) if Vi(k) 6= V·→i∪{i} and

⋃
k Vi(k) = V·→i∪{i}.

We now state our existence and uniqueness result. We formulate it for discrete time systems
incorporating spontaneous spike times, see Condition (11) below. These spontaneous spikes can
be interpreted as external stimulus or, alternatively, as autonomous activity of the brain. In order to
state our result, let us introduce, for all s < t ∈ Z, the process X t

s(i) = (Xs(i),Xs+1(i), . . . ,Xt(i)),
which is the trajectory of X(i) between times s and t.

Theorem 1. [Theorem 1 of Galves and Löcherbach (2013)]
Grant conditions (1) and (2). Assume that the functions φi and g j→i satisfy moreover the following
assumptions:

i) There exists δ > 0 such that for all i ∈ I,s ∈ R,

φi(s)≥ δ . (11)

ii) We have that

G(1)+
∞

∑
n=2

(1−δ )n−2n2G(n)< ∞, (12)

where G(n) = supi, j ∑
n
m=1 g j→i(m) and where δ is as in condition 1.

iii) We have fast decay of the synaptic weights, i.e.

sup
i

∑
k≥1
|Vi(k)|

(
∑

j/∈Vi(k−1)
|Wj→i|

)
< ∞. (13)

Then the following assertions hold true.
1) There exists a critical parameter δ∗ ∈]0,1[ such that for any δ > δ∗, there exists a unique
probability measure P under which (Xt)t∈Z satisfies (4) and (5).
2) There exists a non increasing function ` : N→R+, such that for any 0 < s < t ∈N the following
holds. For all i ∈ I, for all bounded measurable functions f : {0,1}[s,t]→ R+,∣∣E[ f (X t

s(i))|F0]−E[ f (X t
s(i))]

∣∣≤ (t− s+1)‖ f‖∞ `(s). (14)

Moreover, `(n)≤C 1
n−1 for some fixed constant C.
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Networks of spiking neurons 23

Example 1. Take I = Zd , g j→i(s) = 1 for all i, j,s, and

Wi→ j =
1

‖ j− i‖2d+α

1

for some fixed α > 1, where ‖ · ‖1 is the L1−norm on Zd . In this case, if we choose Vi(k) =
{ j ∈ Zd = ‖ j− i‖1 ≤ k}, we have |Vi(k)|= (2k+1)d , and it is easy to see that condition (13) is
satisfied.

The proof of Theorem 1 implies the existence of a perfect simulation algorithm of the stochastic
chain (Xt)t∈Z. By a perfect simulation algorithm we mean a simulation which samples in a finite
space-time window precisely from the stationary law P. We refer the interested reader to Galves
and Löcherbach (2013). In continuous time, the existence of a unique stationary version of a
process (Zi)i∈I having intensity (6) can be shown by following similar same ideas. Details can be
found in Hodara and Löcherbach (2014). In particular, here again, we obtain a perfect simulation
algorithm for the stationary law.

6. The interaction graph and de-correlation of neighboring interspike intervals

Throughout this chapter, we work within the discrete time model of Section 2.
One central question in theoretical neuroscience is the distribution of consecutive interspike

intervals (ISI) and in particular their dependence or independence. In order to answer to this
question, we have to specify our choice of an interaction graph. This is related to the second
central question in theoretical neuroscience: what kind of graph should be considered? Beggs and
Plenz (2003) argue that networks of living neurons should behave in a slightly supercritical state.
Therefore we consider a slightly supercritical directed Erdös-Rényi random graph.

More precisely, for a large but finite system of N neurons, let Wi→ j, i 6= j,1 ≤ i, j ≤ N, be
random synaptic weights. The sequence Wi→ j, i 6= j, is a sequence of i.i.d. Bernoulli random
variables defined on some probability space (Ω̃, ˜A , P̃) with parameter p = pN , i.e.

P̃(Wi→ j = 1) = 1− P̃(Wi→ j = 0) = pN ,

where
pN = λ/N and λ = 1+ϑ/N for some 0 < ϑ < ∞. (15)

We put Wj→ j ≡ 0 for all j. Conditionally on the choice of the connectivities W = (Wi→ j, i 6= j),
the dynamics of the chain are then given by

PW (Xt(i) = 1|Ft−1) = φi(∑
j

Wj→i

t−1

∑
s=Li

t

g j→i(t− s)Xs( j))

as before. We denote PW the conditional law of the process, conditioned on the choice of W.

Fix a neuron i and consider its associated sequence of successive spike times

. . . < Si
−n < .. . < Si

0 ≤ 0 < Si
1 < Si

2 < .. . < Si
n < .. . , (16)
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24 Galves et Löcherbach

where
Si

1 = inf{t ≥ 1 : Xt(i) = 1}, . . . ,Si
n = inf{t > Si

n−1 : Xt(i) = 1},n≥ 2,

and
Si

0 = sup{t ≤ 0 : Xt(i) = 1}, . . . ,Si
−n = sup{t < Si

−n+1 : Xt(i) = 1},n≥ 1.

Let us fix W. We are interested in the covariance between successive inter-spike intervals

CovW (Si
k+1−Si

k,S
i
k−Si

k−1) = EW [(Si
k+1−Si

k)(S
i
k−Si

k−1)]−EW (Si
k+1−Si

k)E
W (Si

k−Si
k−1),

for any k 6= 0,1. Being in stationary regime, the above covariance does not depend on the particular
choice of k. The next theorem shows that neighboring inter-spike intervals are asymptotically
uncorrelated as the number of neurons N tends to infinity.

Theorem 2. [Theorem 3 of Galves and Löcherbach 2013] Assume that (2), (11) and (12) are
satisfied. Then there exists a measurable subset A ∈ ˜A , such that on A,

|CovW (Si
3−Si

2,S
i
2−Si

1)| ≤
3

δ 2 N(1−δ )
√

N ,

where δ is the lower bound appearing in Condition (11). Moreover,

P̃(Ac)≤ e2ϑ N−1/2.

For large N, if the graph of synaptic weights belongs to the “good” set A, the above result
is compatible with the discussion in Gerstner and Kistler (2002) arguing that two consecutive
interspike intervals can be considered as independent.

7. Longtime behavior for the associated Markov interacting particle system

We briefly discuss the longtime behavior of the Markov interacting particle system having
generator (10). Notice that such a process is a piecewise deterministic Markov process (PDMP).
We concentrate on the case when all synapses are excitatory, i.e. Wi→ j ≥ 0 for all i, j. Moreover
we consider a homogenous population where all neurons have the same spiking behavior, i.e.
Miφi ≡ φ for all i. We do not suppose φ to be bounded nor to be globally Lipschitz continuous
any more. All we have to assume is

Assumption 1. φ : R+→R+ is non-decreasing, φ(0) = 0, φ(x)> 0 for all x > 0, there exists
r > 0 such that

∫ 2r
0 φ(x)/xdx < ∞, lim∞ φ = ∞.

Finally, we suppose that λi, j =
λ

N for alli, j, for some fixed λ ≥ 0.
In this case, the existence of the process is deduced by a simple coupling argument going back

to Fournier and Löcherbach (2015) proving that the total number of jumps during any finite time
interval is finite almost surely. Moreover, interestingly enough, Duarte and Ost (2015) show that,
if the parameter r of Assumption 1 satisfies

r > max
i

∑
j

Wj→i,
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Networks of spiking neurons 25

and if α > 0, i.e. there is some leakage phenomenon, then

P(∃T such that no spikes occur in [T,∞[) = 1.

(Theorem 2.3 of Duarte and Ost (2015), compare also to Theorem 1 of Robert and Touboul
(2014)). In particular, in this case, the process goes extinct almost surely. However, if α = 0 and
there is no leak effect, then it is straightforward to show that the process does not go extinct, but
will converge to a non trivial invariant measure. Even more, in this case the process is recurrent
in the sense of Harris on RN

+ \{0}, see Theorem 2.4 of Duarte and Ost (2015). In particular, the
trivial invariant measure δ0 is non attractive.

8. Mean field limits

Suppose we observe a large homogeneous population of N neurons in continuous time evolving
according to (10). Then we can assume that we are in an idealized situation where all neurons
have identical properties, leading to a mean field description. The mean field assumption appears
through the assumption that Wi→ j =

1
N for all i 6= j. Moreover, we suppose from now on, that

there is no leakage effect, i.e. α = 0. Finally, we suppose that every cell is electrically coupled to
all other cells, i.e. we assume that λi, j = λ/N for all i, j. 1

In order to keep track of the size of the system, we denote the process by

UN(t) = (UN
1 (t), . . . ,UN

N (t)), t ≥ 0,

and identify the state of the system at time t with its empirical measure

µ
N
t =

1
N

N

∑
i=1

δUN
i (t). (17)

In Theorem 2 of De Masi et al. (2015) it has been shown that, in the limit as N → ∞, this
membrane potential distribution becomes deterministic and it is described by a density ρt(r),
where for any interval I ⊂ R+,

∫
I ρt(r)dr is the limit fraction of neurons whose membrane

potentials are in I at time t. The limit density ρt(r) is proved to obey a non linear PDE which is a
conservation law of hyperbolic type

∂

∂ t
ρt +

∂

∂x
(V ρt) =−φρt , x > 0, t > 0, (18)

where
V (x,ρt) :=−λ (x− ρ̄t)+ pt (19)

is the velocity field, where the first term describes the attraction to the average membrane potential
of the system, due to the gap junction effect, the second one the drift produced by the other
neurons spiking. Here, the limit total firing rate per unit time pt and the limit average membrane
potential ρ̄t are

pt =
∫

∞

0
φ(x)ρt(x)dx, ρ̄t =

∫
∞

0
xρt(x)dx. (20)

1 This assumption can actually be relaxed. We refer the interested reader to Duarte et al. (2015) where a spatially
structured model of interacting neurons is investigated.

Journal de la Société Française de Statistique, Vol. 157 No. 1 17-32
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2016) ISSN: 2102-6238



26 Galves et Löcherbach

In (18), the expression −φ(x)ρt(x) is a loss of mass term due to spiking. Finally, since (18) is
only defined for x, t > 0, we have to complete the PDE with boundary conditions which read as
follows.

ρ0(x) = u0(x), ρt(0) =
pt

V (0,ρt)
=

pt

pt +λρ̄t
, (21)

where u0 is some initial density of neurons at time t = 0.
It can be shown that under suitable assumptions on the initial distribution of neurons at time 0,

there exists a unique weak solution ρt(x) of (18)–(21). This is e.g. the case if the distribution of
neurons at time 0 is of compact support. For further details, we refer the reader to Theorem 4 of
Fournier and Löcherbach (2015).

Theorem 3 (Theorem 2 of De Masi et al. (2015)). Grant Assumption 1 and suppose that
UN

i (0),1 ≤ i ≤ N are i.i.d. random variables having smooth density u0(x). Let ρt(x) be the
unique weak solution of (18)–(21). Then for any fixed T > 0,

L (µUN
[0,T ]

)
w→P[0,T ] (22)

(weak convergence in D([0,T ],S ′)) as N→∞, where P[0,T ] is the law on D([0,T ],S ′) supported
by the distribution valued trajectory ωt given by

ωt(φ) =
∫

∞

0
φ(x)ρt(x)dx, t ∈ [0,T ],

for all φ ∈S .

Remark 1. The equivalence between the “chaoticity” of the system and a weak law of large
numbers for the empirical measures, as proven in Theorem 3, is well-known (see for instance
Sznitman (1999)).This means that in the large population limit, the neurons converge in law to
independent and identically distributed copies of the same limit law. This property is usually
called “propagation of chaos” in the literature.

In case λ = 0 and u0(0) = 1, (18) reads as follows.{
∂tρt(x) = −pt∂xρt(x)−φ(x)ρt(x), x > 0,
ρt(0) = 1 for all t ≥ 0.

This equation is different from the so-called “population density equations” which are obtained
for integrate-and-fire neurons as considered e.g. in Chapter 6.2.1 of Gerstner and Kistler (2002),
see in particular their formula (6.14). As in integrate-and-fire models, also in our model spiking
neurons are reset to a reversal potential (which equals 0); but spiking does not create Dirac-masses
at the reset value. This is due to the Poissonian mechanism giving rise to spiking in our model. The
loss of mass at time t due to spiking of neurons having potential height x is therefore described by
the term −φ(x)ρt(x).

At the same time, spiking induces a deterministic drift ptdt for those neurons that are not
spiking. Finally, conservation of total mass implies that the initial density of neurons at the border
x = 0 is of height 1. This initial condition is different from the usual initial condition obtained in
integrate-and-fire models.
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Remark 2. The mean field approach intending to replace individual behavior in large homo-
geneous systems of interacting neurons by the mean behavior of the neuronal population has a
long tradition in the frame of neural networks, see e.g. Chapter 6 of Gerstner and Kistler (2002)
or Faugeras et al. (2009) and the references therein. Most of the models used in the literature are
either based on rate models where randomness comes in through random synaptic weights (see
e.g. Cessac et al. (1994) or Moynot and Samuelides (2002)); or they are based on populations
of integrate and fire neurons which are diffusion models in either finite or infinite dimension,
see for instance Delarue et al. (2012) or Touboul (2014). The model we consider is reminiscent
of integrate-and-fire models but firing does not occur when reaching a fixed threshold, and the
membrane potential is not described by a diffusion process. The only noise which comes in is the
Poissonian noise given by the spiking features, compare also to Robert and Touboul (2014).

9. Further results

The limit density ρt(x) which is solution of (18)–(21) can be interpreted as density of a typical
single neuron U(t), evolving within an infinite system of neurons according to (8). Its dynamics
can be described as follows. Let U(0) be a u0-distributed random variable, independent of a
Poisson measure N(ds,dz) on R+×R+ having intensity measure dsdz. Then

U(t) =U(0)−λ

∫ t

0
(U(s)−E[U(s)])ds

−
∫ t

0

∫
∞

0
U(s−)1{z≤φ(U(s−))}N(ds,dz)+

∫ t

0
E[φ(U(s))]ds. (23)

Notice that the above dynamics is the dynamics of a nonlinear Markov process (in particular,
non homogenous in time), since the law of the process itself – representing the state of the other
neurons within the infinitely large system – is involved in its dynamics.

As in the case of finite systems of neurons, also the limit process possesses exactly two invariant
measures supported in R+. The first one is δ0. The second one is of the form g(dx) = g(x)dx,
with g : [0,∞) 7→ [0,∞) defined by

g(x) =
p

p+λm−λx
exp
(
−
∫ x

0

φ(y)
p+λ (m− y)

dy
)

1{0≤x<m+p/λ},

where p > 0 and m > 0 are uniquely determined by the constraints
∫

∞

0 g(dx) = 1,
∫

∞

0 xg(dx) = m.
Furthermore, we have

∫
∞

0 φ(x)g(dx) = p and m+ p/λ > 1. Note that for λ = 0, this reads as

g(x) = exp
(
− 1

p

∫ x

0
φ(y)dy

)
. (24)

Contrarily to the case of a finite system of neurons, it is surprisingly difficult to show that the
limit system does not go extinct, i.e. ρt(x)dx does not tend to δ0, weakly - at least in the case of
presence of gap junctions λ > 0. The whole picture is only known in the case λ = 0.

Proposition 1 (Prop. 9 of Fournier and Löcherbach (2015)). Grant Assumption 1 and suppose
moreover that φ ∈C2(R+) is convex increasing and supx≥1[φ

′(x)/φ(x)+φ ′′(x)/φ ′(x)]< ∞. Let
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λ = 0 and suppose that U(0)∼ u0 ∈C1
b([0,∞)) where u0 satisfies u0(0)= 1,

∫
∞

0 φ 2(x)u0(x)dx<∞

and
∫

∞

0 |u′0(x)|dx < ∞. Denote by ρ(t) the law of U(t) and write g(dx) = g(x)dx for the invariant
probability measure defined in (24). Then we have limt→∞ ‖ρ(t)−g‖TV = 0, where ‖·‖TV denotes
the total variation distance. In particular, the process does not go extinct, almost surely.

The case λ 6= 0 is more subtle, and we only know that the process does not go extinct, under
minimal conditions on the spiking rate function, cf. Proposition 11 of Fournier and Löcherbach
(2015).

10. Questions and challenges

In this section we raise several natural questions in the context of the models considered in this
paper.

To which extend is a mean field description as adopted in Sections 8 and 9 above relevant
from a neurobiological point of view? The mean field approach intending to replace individual
behavior in large homogeneous systems of interacting neurons by the mean behavior of the
neuronal population has a long tradition in the frame of neural networks. Bressloff (2009) argues
that considering homogeneous populations “is motivated by the observation that neurons in cortex
with similar response properties tend to be arranged in vertical columns. A classical example is
the columnar-like arrangement of neurons in primary visual cortex that prefer stimuli of similar
orientation”. Therefore it is reasonable to consider that such systems of neurons are governed by
interactions of mean-field type.

Moreover, Bojak et al. (2010) claim “that a mean field model of brain activity can simultane-
ously predict EEG and fMRI BOLD ...”. For a recent review paper we refer the reader to Pinotsis
et al. (2014).

Description of the system and propagation of chaos. EEG as well as fMRI data describe the
collective behavior of huge subpopulations of neurons. This makes it reasonable to consider
a space-time rescaling of the “microscopic system” reminiscent of what is usually done for
interacting particle systems under the name of “hydrodynamical limits”, see De Masi and Presutti
(1991) and Kipnis and Landim (1999). The difficulty for neurobiological models is that contrarily
to the case of thermodynamical systems considered in statistical physics, we have no macroscopic
qualitative results available. In a nutshell, as far as we know, in neurobiology there is presently
nothing that plays the role that the Fourier law plays in thermodynamics. Therefore, the first
problem is to understand what kind of limiting behavior should be obtained when rescaling a
stochastic model describing a system of spiking neurons.

Chaos propagation is an issue which is directly associated to the above discussion. The concept
of propagation of chaos has been introduced by Mark Kac in his seminal paper of 1956, see Kac
(1956). His goal was to show that within a system of a huge number of interacting components,
in a suitable limit, any fixed number of components behave as independent stochastic processes
having the same distribution (for more details, we refer the reader to the classical reference
Sznitman (1991)).

The recent literature in neuromathematics presents many results concerning the propagation
of chaos in stochastic models of neuronal networks. However, it is far from being clear what
is the neurobiological meaning of these results. Moreover, it is difficult to find neurobiological
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experimental results clearly related with chaos propagation. At the same time, in a large majority
of the mathematical papers, including ours, there is no discussion about the neurobiological
relevance of this issue.

Exceptions are recent papers and lectures of Olivier Faugeras and members of his team. For
instance, in Baladron et al. (2012) the authors write the following.“We prove a propagation of
chaos property which shows that in the mean-field limit, the neurons become independent, in
agreement with some recent experimental work [13] and with the idea that the brain processes
information in a somewhat optimal way.” In the above, [13] refers to Ecker et al. (2010) which
present experimental evidence concerning the de-correlation of neuronal firing in the visual
cortex. Here, the authors argue that “the de-correlated state of the neocortex [...] offers substantial
advantages for information processing.”

We believe that a more systematical discussion of the relation between mathematical results on
chaos propagation and qualitative experimental results of neurobiology should be done by the
neuromathematical community.

What about inhibitions? Inhibitions are considered in Sections 2, 3 and 5, but the theoretical
results proved there do not take advantage of the balance between excitatory and inhibitory
neurons. As far as we know, no rigorous neuromathematical result relies on this balance. This is
clearly a step which must be achieved in a near future.

On the other hand, in many articles of the neurobiological literature it is very often suggested
that inhibition should play a crucial role to explain many qualitative aspects found in the data. For
instance, Benayoun et al. (2010) suggest that the balance between inhibition and excitation is an
important ingredient in the explanation of avalanche phenomena. However, it is quite simple to
conceive mathematical toy models without inhibition for systems of spiking neurons in which
avalanches are produced. Another example is the belief which seems to be widespread in the
neuroscientific community concerning the role played by inhibition in phenomena like chaos
propagation (cf. for instance, van Vreeswijk and Sompolinsky (1996), Huntsman et al. (1999) and
Renart et al. (2010)). However, our Theorem 3 concerning propagation of chaos does not rely at
all on the presence of inhibitory synapses. We believe that it is important to better understand the
importance of inhibition in the qualitative behavior of stochastic models like those presented in
this paper.

What about statistical model selection? We have presented in this paper what we believe to be
a good class of candidate models describing spiking neuronal behavior. Therefore, if we were able
to do statistical model selection for this class of models we would be able to clarify issues like the
way different neurons and regions of the cortex interact. In mathematical terms, this amounts of
estimating the underlying interaction graph. There are two obvious difficulties.

First of all, our data concerns only an extremely tiny part of the cortex (between 102 to 103

neurons). What does this very small view tell us about the entire region? In former papers, one of
the authors show that for models coming from statistical physics like the Ising model, under a
Dobrushin type condition, it is possible to make inference of the entire system by just observing a
small part of it. We refer the interested reader to Galves, Orlandi and Takahashi (2015). Is this
type of result still valid when we look at a system like the brain?

The second problem is the computational complexity of the selection procedure among all
possible interaction graphs supporting models like ours. In the case of chains with memory of
variable length, the famous Context algorithm introduced by Rissanen (1983) and more recent
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versions of the BIC approach to the same problem by Cszisar and Talata (2006) as well as its
application to random Markov fields of variable neighborhoods in Löcherbach and Orlandi (2011),
this selection problem can be reduced to a linear complexity problem. Is a solution like this
available for the class of models considered here?

11. Discussion

We close with a discussion of the particular aspects of the models we propose in this paper. We
start by discussing the “ variable length memory dependence” on the past which is incorporated
in our models via (5) or (6). From a theoretical point of view, Cessac (2011) suggested the same
kind of dependence from the past in a discrete time model. In the framework of leaky integrate
and fire models, he considers a system with a finite number of membrane potential processes. The
image of this process in which only the spike times are recorded is a stochastic chain of infinite
order where each neuron has to look back into the past until its last spike time. Cessac’s process is
a finite dimensional version of the model considered in Section 2.

A second important feature of the class of processes introduced in our paper is the fact that we
are able to deal with infinite systems of neurons in a rigorous mathematical way. Finite systems
of point processes in discrete or continuous time aiming to describe biological neural systems
have a long history whose starting points are probably Hawkes (1971) from a probabilistic point
of view and Brillinger (1988) from a statistical point of view, see also the interesting paper by
Krumin et al. (2010) for a review of the statistical aspects. For non-linear Hawkes processes,
but in the frame of a finite number of components, Brémaud and Massoulié (1994) address the
problem of existence, uniqueness and stability. Møller and coauthors propose a perfect simulation
algorithm in the linear case, see Møller and Rasmussen (2005). In spite of the great attention that
Hawkes processes received recently, especially in association with modeling problems in finance
and biology, all the studies are reduced to the case of systems with a finite number of components.
Only recently, Delattre, Fournier and Hoffmann (2015) studied an infinite system of nonlinear
Hawkes processes but did not address the perfect simulation issue. Notice also that in none of the
above articles, a variable length memory dependence on the past is incorporated although this
kind of dependence is completely natural in the frame of neural nets.
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