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Abstract: Dynamics of the membrane potential in a single neuron can be studied by estimating biophysical parameters
from intracellular recordings. Diffusion processes, given as continuous solutions to stochastic differential equations, are
widely applied as models for the neuronal membrane potential evolution. One-dimensional models are the stochastic
integrate-and-fire neuronal diffusion models. Biophysical neuronal models take into account the dynamics of ion
channels or synaptic activity, leading to multidimensional diffusion models. Since only the membrane potential can be
measured, this complicates the statistical inference and parameter estimation from these partially observed detailed
models. This paper reviews parameter estimation techniques from intracellular recordings in these diffusion models.

Résumé : On peut étudier la dynamique du potentiel de la membrane d’un neurone en estimant des paramétres biophy-
siques a partir d’enregistrement intracellulaire. Les processus de diffusion, définis comme solution A temps continu
d’équations différentielles stochastiques ont été tres utilisés pour modéliser I’évolution du potentiel membranaire.
Parmi les processus de dimension un, les plus connus sont les modeles de diffusion integre-et-tire. D’autres modeles
neuronaux sont plus biophysiques et prennent en compte la dynamique des canaux ioniques ou de 1’activité synaptique.
Ce sont des processus de diffusion multidimensionnels. L’estimation des parametres de ces modeles est difficile
car seulement le potentiel membranaire peut étre mesuré. Ce papier résume les techniques d’estimation qui ont été
proposées pour ces modeles de diffusion de données intracellulaires.
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1. Introduction

Neurons communicate by short and precisely shaped electrical impulses, the so-called spikes or
action potentials. It is therefore of major interest to understand the principles of the underlying
spike generating mechanisms, starting by understanding the dynamics of the membrane potential
in a single neuron. Intracellular recordings provide high frequency observations of good precision,
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Review of parameter estimation in neuronal diffusion models from intracellular recordings 7

typically measured around every 0.1 ms. There is thus a growing demand for robust methods to
estimate biophysical relevant parameters from such data.

Diffusion processes, given as continuous solutions to stochastic differential equations, are
widely applied as models for the neuronal membrane potential evolution. The stochastic integrate-
and-fire neuronal diffusion models are one-dimensional, though they have also been extended to
include a recovery variable to model memory in the system. They are probably some of the most
common mathematical representations of single neuron electrical activity, and result from more
or less dramatic simplifications of more involved neuronal models. The simplification implies
that the shape of the action potential is neglected and represented by a point event, typically
represented by the first hitting time to a firing threshold, an upper bound of the membrane potential.
More biophysical neuronal models take into account the dynamics of ion channels or synaptic
activity, leading to multidimensional diffusion models. Electrical activity in neurons consists of
ionic currents through the cell membranes. Conductance-based models are simple biophysical
representations of excitable cells like neurons, and are based on an electrical circuit model of a cell
membrane. In these models current flows across the membrane due to charging of the capacitance
and movement of ions across ion channels in the membrane. These models are based on the
seminal work by Hodgkin and Huxley (1952), which formulated a mathematical model including
dynamics of gating variables in dependence of the membrane potential, and in turn influencing the
evolution of the membrane potential, creating a feedback system capable of producing oscillatory
behavior and spikes. Since only the membrane potential can be measured, this complicates the
statistical inference and parameter estimation from these partially observed detailed models.

This paper reviews parameter estimation techniques from intracellular recordings in models of
the type

where X; = (V;,Y;) is a d-dimensional process with first coordinate V, representing the mem-
brane potential, and Y¥; being unobserved coordinates representing for example gating variables,
proportion of open ion channels of a specific ion or inhibitory or excitatory synaptic input. If
d = 1 then X; = V;. Here, b(x; 0) is the drift function taking values in R?, £(x; 0) is the diffusion
matrix taking values in R¥*” and W, is an m-dimensional standard Wiener process. The goal
is to estimate the parameter vector 6 € ® C R”. Data are discrete measurements of V;. Denote
fo <t < --- <, the observation times, which we assume equidistant, and denote the sampling
step by A =t —t;_;. We denote V; = V,, the observation at time 7;, and V., = (Vo, Vi,...,V,) the
vector of all observed data. An example of a sample trace of the membrane potential in a spinal
motoneuron of an adult red-eared turtle during 600 ms (6000 data points) is shown in Figure 1.

The models and different parameter estimation approaches will be discussed next. To read more
about the derivation of the models and biophysical justifications, we refer to Tuckwell (1988);
Gerstner and Kistler (2002); Izhikevich (2007); Laing and Lord (2010); Bachar et al. (2013);
Gerstner et al. (2014).
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FIGURE 1. Observations of the membrane potential in a spinal motoneuron of an adult red-eared turtle during 600 ms
measured every 0.1 ms. Data from Berg Laboratory, see Berg et al. (2007).

2. Models

The model for the membrane potential is given by an equation of the form

dav
Ci
dt

where C is the cell membrane capacitance, and V is the membrane potential evolution. Sometimes
the constant C is not specifically stated and absorbed into other parameters. The currents are
ions, such as sodium, potassium, calcium and chloride, flowing in and out of the cell through
ion channels in the cell membrane, as well as input currents received from other neurons in the
surrounding network, or injected current controlled by the experimentalist. The noise models
the inherent stochasticity of neural activity. These models fall into two classes, posing different
statistical challenges, namely one-dimensional models (integrate-and-fire models), where there are
no hidden components, and multi-dimensional models with unobserved coordinates, complicating
the statistical analysis considerably.

= sum of currents + noise

2.1. Integrate-and-fire models

The integrate-and-fire neuronal models are reviewed in Burkitt (2006), see also references therein.
We will only treat the subclass of diffusion integrate-and-fire models given as solutions to the
It6-type stochastic differential equation

dv, = b(Vt;e)dl—i-G(Vz;e)d‘/V,, Vo = vo. (D)

For the theory of diffusion processes, see e.g. Kloeden and Platen (1992); @ksendal (2010). Due
to the simplicity of the model, spike generation is not an inherent part of process (1) as in more
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complex models, and a firing threshold has to be imposed. An action potential is produced when
the membrane voltage V exceeds a voltage threshold, V;;, for the first time, and such that V;, > vy.
Formally, the spike time is identified with the first-passage time T of the threshold,

T =inf{r >0:V, >V}, )

and V; is then reset to vo. When estimating 0 from equation (1), only recordings of the subthreshold
fluctuations between spikes are used, and the parameter estimation problem reduces to estimation
in one-dimensional diffusions from discrete observations. In this model, the spike is reduced to a
point event, triggered by a fixed value of V;, whereas in the real system, a spike takes a couple of
miliseconds, and the threshold seems random, see e.g. Fig. 6 in Jahn et al. (2011). This makes
the estimation of the threshold a non-trivial task. If measuring is done around every 0.1 ms, as
is customary, many observations during each spike has to be discarded. Furthermore, it is not
clear when the diffusive behavior ends and the more deterministic behavior of the spike begins,
see Figure 1. Different ad-hoc methods have been proposed, and in most studies it is not even
specified how it was done. It is straightforward to localize the peak of all spikes, and the problem
is to decide how large an interval to cut out around this peak. Lansky et al. (2006) defined the
beginning of the spike as the last point with decreasing depolarization before the spike in an
interval from 10.05 ms before the voltage reaches -35.5 mV. Then the data was transformed by
a moving average over 6 values and they then defined the end of a spike as the minimum in the
first valley after the peak. The valley is defined to start when the membrane potential reaches the
value of -65.5 mV for the first time after the spike, and ends 10.05 ms later. The same approach
was adopted in Picchini et al. (2008). In Jahn et al. (2011) all spikes were aligned according
to the peak, and then the empirical variance was estimated cross-sectionally at each time point
backwards in time from the peak. The spike initiation was then defined to be where the variance
started decreasing, determined to be 4 ms before the peak.

Maximum likelihood estimation can be used in some few cases where the transition density is
available, but in general other approaches are necessary. The methodology of parameter estimation
in one-dimensional diffusions, equation (1), from discrete observations is well studied, see for
example Prakasa Rao (1999); Sgrensen (2004); Forman and Sgrensen (2008); Iacus (2008);
Sgrensen (2012), and references therein. There is a bias issue with the drift parameters, though,
caused by the sampling conditioned on being below the threshold, see Bibbona et al. (2010);
Bibbona and Ditlevsen (2013). This is more pronounced when the neuron is frequently firing.
The problem is commonly ignored when analysing data, which we will also do in the sequel.
Here we review estimators from maximum likelihood or martingale estimating functions for a
few common integrate-and-fire models.

The simplest integrate-and-fire model is just the Wiener process with constant drift, the diffusion
approximation of the random walk model for the membrane dynamics, first introduced in Gerstein
and Mandelbrot (1964). Here, b(v;0) = u and 6(v; ) = o are just constants so that 8 = (u,6?).
It is assumed that g > 0 so that the waiting time for a spike is finite. The process is Gaussian, and
the maximum likelihood estimators are

A:Vn_VO . 62:L

nA ’ nA !

(Vi— Vi —AQ)?

(ngE

Il
—_

with asymptotic variances Var({1) = 6% /nA and Var(62) = ¢*/n. This is one of the few models
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10 Ditlevsen and Samson

where the first passage time distribution is known, which is an inverse Gaussian distribution, and
justifies why this model has been popular.

The Wiener model does not take into account the leakage of the neuronal membrane, namely
that current flows through the membrane due to its passive properties. The most popular leaky
integrate-and-fire model is the Ornstein-Uhlenbeck process, where b(v;0) = —v/T + u and
o(v;0) = o. Here, u characterizes neuronal input and 7 > 0 is the membrane time constant
and reflects spontaneous voltage decay in absence of input. For an input u > V;;, /7, the neuron
fires regularly, whereas for u < Vj;, /7, the model only fires due to noise. This defines the sub—
and suprathreshold regimes. Parameters V;;, vo and 7 characterize the neuronal membrane, u
characterizes the input signal, and ¢ scales the noise.

The maximum likelihood estimators are given as solutions to the equations

Y (Vi—=Viiip)

a6 = R
n(l—p)
P VYUY U
Y (Vier—@)?
s 2 (G- a- (V- )p)
n(1—p2)t
where & = [17 estimates the asymptotic variance, and p = —logA /7 estimates the autocorrelation,

see Ditlevsen and Samson (2013). The maximum likelihood estimator exists only if Y"1, (V; —
o) (Vi1 — &) > 0. Note that if 7 is known, the likelihood equations become particularly simple,
the estimators are explicit and always exist. The asymptotic variances obtained by inverting the
Fisher information are Var(%) = 213 /nA, Var(&) = 6>7/nA and Var(6?) = 26*/n. Using that
intracellular recordings are high-frequency, i.e., A < 7, the above likelihood equations can be
simplified using the approximation p = e /7~ 1 — A/, in which case the estimators become
explicit, see Lansky (1983). The same estimator is derived in Habib and Thavaneswaran (1990)
and extended to allow time varying parameters such that the drift function is also a function of
time; b(v,1;0) = —B(¢t)v+ u(r).

Picchini et al. (2008) extended the model to accomodate a slowly fluctuating signal, by
permitting U to change stochastically between spikes, assuming a normal distribution. This is a
random effects model. The likelihood is no longer tractable, but is approximated by Gauss-Hermite
quadrature.

Paninski et al. (2005) proposed a more involved model, based on the basic integrate-and-
fire model, generalizing the spike-response model in Gerstner and Kistler (2002). The model
accomodates memory effects, and thus is a generalization of the renewal model, now allowing for
burstiness, refractoriness or adaptation. The maximum likelihood estimator is derived for all model
parameters, including the threshold. The threshold value V;;, is biased, though, probably caused by
assuming a fixed threshold, when it is more likely not so sharp, see also discussion above. They
propose to solve this by first detecting the spiking times (via automatic thresholdings), then fit
the parameters except V;;, by linear least squares, and finally estimate V;; using the likelihood
depending on V};, only.

The Ornstein-Uhlenbeck leaky integrate-and-fire model is unbounded and does not take into
account non-linearities, for example caused by the inhibitory reversal potential, V;, a lower limit
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for the membrane potential. The Feller model (also called the square-root model, or the Cox-
Ingersoll-Ross model in mathematical finance) has the same drift term as the Ornstein-Uhlenbeck,
and diffusion term o(v;0) = 6v/v — V;. When 2 +2V;/T > 62, the process stays above V; if
vo > V. Bibbona et al. (2010) reviewed and compared estimation methods for the Feller process in
simulations, assuming 7 known, thus estimating 6 = (u, 62). They use least squares, conditional
least squares, martingale estimating functions, a Gauss-Markov method, optimal estimating
functions, and maximum likelihood estimation. They discuss the bias issue in the estimation of u
arising from the conditional sampling under the threshold, and suggest a bias correction. They
recommend to use martingale estimating functions, or the Gauss-Markov method if only u is
estimated, with the bias correction. If all parameters should be estimated, we refer to Forman and
Serensen (2008) for martingale estimating functions, which only treats the case of unconditional
sampling. Their estimators are

fj - n n
2 ZV 1
n2— - -
<J—1 ! ) (j—l Vfl)
n 1 R ) A2 A
Y v Vi=Viap—a(l—p))p
2 j=1"i-1
- 1 (& &
— ((E=vi)p = (a—-V,)p+—=
Lo (G v -y
where, as before, & = [iT and p = —logA/%.

Hoepfner (2007) applied a kernel estimator to non-parametrically estimate the drift and the
diffusion functions in (1) to data from a pyramidal neuron from a cortical slice preparation exposed
to different levels of potassium. He finds both Ornstein-Uhlenbeck and Feller behavior in different
trials. The same approach is employed in Jahn et al. (2011) on data from a spinal motoneuron
from a red-eared turtle, where the most suitable model is first determined non-parametrically, and
then fitted parametrically. Here it is found that the neural activity is well described by a Feller
process when the neuron is stimulated, and by an Ornstein-Uhlenbeck under spontaneous activity
with no stimulation.

Lanska and Lansky (1998) derived a model of type (1) taking into account both inhibitory and
excitatory reversal potentials. The drift is linear with a leaky term as in the Ornstein-Uhlenbeck
process, with diffusion term 6(v;0) = o/(1 —v)v. This is a Jacobi diffusion, called this way
because the eigenfunctions of its generator are the Jacobi polynomials, see Forman and Sgrensen
(2008). It lives on a bounded interval, in this formulation on the interval (0, 1), after a suitable
affine transformation of the observations. The exact likelihood is not available for this model.
Three estimation methods are proposed in Lanska and Lansky (1998); maximum likelihood based
on a discretization of the continuous time likelihood, a Bayesian approach assuming Gaussian
priors on the parameters in the drift, and a minimum contrast method. Estimators, based on
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12 Ditlevsen and Samson

martingale estimating functions, are given as solutions to the equations,

i Vi—=Vj-1p
N J:1Vj71(1_vrl)
a = m 1
(1-p)
j:zivlfl(l_vjfl)
i (Vi—a)(Vi-1 — @)
=TIy
b= i (Vi1 — @)’
S Via(1=Vi)
n A A A 2
o~ L WimViip-ai-p)
nAj:l Vj—l(l—vj—l)
where, as before, & = iT and p = —logA/%.

When the estimators are based on a (approximate) maximum likelihood or estimating equations,
asymptotic variances can be derived.

3. Synaptic conductance based model

The neuronal membrane potential is as in the previous Section only modeled during sub-threshold
fluctuations (i.e. between spikes), but now the membrane equation is driven by two independent
sources of synaptic conductance noise, namely excitatory and inhibitory currents. These models
are called point-conductance models by Destexhe et al. (2001). For notational reasons we now
write V(1) = V;, to distinguish between a subindex and the time variable. The system is given by

Cav(t) = (—8r(V() =VL) = g(t)(V(1) = Vo) = gi(t)(V () = Vi) + I)dt + 5dW (1)
1

dge(t) = _a(ge(t)_geo)dt"‘aedwe(t)
dgilt) = ——(ale) — go)dr + W (1) @

1

where g7, g.(t), gi(t) are the conductances of leak, excitatory and inhibitory currents, V;, V, and
V; are their respective reversal potentials, C is the capacitance, / is a constant current, W (¢), W, (¢)
and W;(t) are independent Brownian motions, and ¢, 0, and o; are the diffusion coefficients. We
set C = 1, since it only enters as a proportionality constant, and is thus unidentifiable. Unknown
parameters are 6 = (g1, 8.0, &i0, Te, T, Ve, Vi, Vi, I, 62,62, 67).

Note that the two hidden components g.(¢) and g;(¢) are autonomous: they do not depend
on the membrane potential V(). This simplifies the statistical analysis. Moreover, they are
Ornstein-Uhlenbeck processes.

Estimation in these synaptic conductance models using discrete observations of V (¢) has been
widely studied, and depends on the noise and whether some of the diffusion coefficients are set to
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0. When noise appears in all three equations, then system (3) can be viewed as a hidden Markov
model (HMM). We refer to Cappé et al. (2005) for a well documented review of estimation
methods. Nevertheless, the synaptic conductance based model with noise in all components has
not been treated much in the literature.

In the next two subsections, we focus on model (3) with noise only in the hidden components
(o = 0), which has been considered by Rudolph and Destexhe (2003); Destexhe et al. (2004);
Rudolph et al. (2004b,a); Pospischil et al. (2007, 2009a,b), and then on model (3) with noise only
on the first equation (o, = o; = 0), which has been considered by Huys et al. (2006); Paninski
et al. (2010).

3.1. Noise on the synaptic conductance equations

Two main estimation methods have been proposed for model (3) with noise only in the hidden
components (¢ = 0), a method based on the probability distribution of the membrane potential
V(t), and a method based on the extraction of the synaptic conductances. We start with the
distribution of V (z).

V probability distribution method The seminal paper is Rudolph and Destexhe (2003) which
computes the probability distribution of the membrane potential V (¢) at steady-state. Following
this idea, several papers have derived estimators of some parameters (Destexhe et al., 2004;
Rudolph et al., 2004b,a; Pospischil et al., 2009a). The probability distribution of the membrane
potential V(¢) at time ¢ is denoted p(v,¢). Using intensive Itd calculus on the two Ornstein-
Uhlenbeck processes g, (¢) and g;(¢), the dynamics of p(v,¢) can be described by a Fokker-Planck
equation. Then under the steady-state assumption (f — oo), an analytic expression of p(v,t) is
available:

p(nt) = Nexp(Ailog(o;t.(v—V.)*+075(v—Vi)?) 4)
o’t,(v—V,) +ort(v—Vi)

(V. — Vi), /020777

where A| and A, are two constants which depend on all the parameters 6, and N is a normalizing
constant.

+Aj; arctan

Given the expression of p(v,t), Destexhe et al. (2004) claim that it is possible to estimate 6
directly by maximizing [T, p(V(#),t;). However, it is emphasized by Rudolph et al. (2004b)
that since p(v,#) is highly non-linear in 6, standard maximization procedure may not converge.
While some maximization procedure such that simulated annealing could converge, they instead
propose to approximate p (v,¢) with a Gaussian distribution, which corresponds to a second-order
Taylor expansion of (4):

(v—V)?

267

)

where V and o2 are functions of 8 (see Rudolph et al., 2004b, for analytic expressions). They
focus on the estimation of the conductance parameters, namely (g0, gio, 63, Gl-z). There are thus

p(n1) ~ exp(—
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14 Ditlevsen and Samson

four parameters, but only two quantities can be identified using the Gaussian approximation
(namely the expectation V and the variance G‘%). Rudolph et al. (2004b) propose to use two sets of
experimental data traces Vj.,, corresponding to two sets of experimental conditions, to identify
and estimate the four parameters (g0, g0, 63, O'iz) (the others assumed fixed and known). No
theoretical properties of these estimators have been studied and it might be difficult to derive the
asymptotic variance of these estimators.

Following Rudolph et al. (2004b), Pospischil et al. (2009a) suggest the use of the power
spectral density of V(¢) to estimate two parameters more, 7, and 7;. An approximation of the
power spectral density is given by

Sy (u) = C— (

1 +ult?

o’ (V.- V)* o?nu(V,—V)?
1+ u?t? 1—|—u2’ci2

where 1,, = 1/g7 is the effective time constant, g7 = g1 + g.0 + gio is the total conductance, and
V = (gLVL + ge0Ve + gioVi)/gr is the mean membrane potential. Maximizing Sy yields estimators
of 7, and 7;. No theoretical properties of these estimators have been studied.

Extraction of synaptic conductance method Pospischil et al. (2007, 2009a,b) focus on the
estimation of the synaptic currents g.(z), g;(¢), which are non-observed random processes. They
propose to discretize the first equation of model (3) using an Euler scheme with a time step
A, and to derive an approximation of g; at discrete times ;. We call this approximation g;(#),
which is a function of V (#) and g.(#), V (#) being observed but not g,(#). Then, discretizing
the two last equations of (3) using an Euler-Maruyama scheme with a time step A, and plugging
Zi(tx) into these discretized equations, one can obtain an approximation of the transition density

Pi = P(8e(tkt1),8i(tk+1)18e (1), 81 (1)),

Pk X exp <_21A <c:2(ge(fk+l) —&e(tr) — i(—ge(fk) —ge0))?

+L2(gi(tk+l) — &t — 2 (—ain) - §io))2> )
O; T
Maximizing [];_, px with respect to (g.(#)) provides an estimator (g.(#)) of the excitatory
synaptic conductance which is then used in the expression of g;(f;) to estimate also the inhibitory
synaptic conductance, (;(#)). Extensions of this method are considered by Pospischil et al.
(2007) who suggest an averaging of this procedure in space, and by Pospischil et al. (2009a)
treating the case of correlated Brownian motions (W, (7)) and (W;(t)).

Note that this approach assumes that the parameters 0 are known. Therefore, Pospischil et al.
(2009b) propose a criteria to estimate also 6. This criteria, called a likelihood in their paper, even
if it is not a likelihood in the statistical sense, is the following

F Vo, 0) = ST P(8e(tiv1), 8i(trr1, 8e(tiv1)s Vier1))|8e (1), 8ith, 8e(tx), Vi) )dge (tk)
o STzt P(8e(tir1): 8iltir1))|8e (), 8i(tk) ) dge (1) dgitk)

Pospischil et al. (2009b) then maximize f(Vp.,, 0) to estimate 6.
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Note that it is not explained how these multidimensional integrals can be computed efficiently in
practice, especially the one appearing in the denominator, nor is it explained how the optimization
is performed. Moreover, no theoretical properties such as the asymptotic variance have been
stated for this procedure. The approximated g;(#) is in the same spirit as the approximation of
the hidden state proposed by Samson and Thieullen (2012) for a two-dimensional hypoelliptic
system (no noise on the first equation). Samson and Thieullen (2012) prove that a direct plug-in
of g;(#x) in an Euler discretization of the transition density of (g, (¢),g;(z)) induces a bias when
maximizing the corresponding criteria.

3.2. Noise on the membrane voltage equation

Consider model (3) with 6, = 6; = 0 and the mean values g., gip replaced by presynaptic inputs:

dg;t(f) _ _;ge(t)—le(t) ©®)
dgét(t) - —;gi(t)_li(t)

where I, () and I;(¢) are (random) functions that should be estimated.

Presynaptic input estimation A first approach focuses on the estimation of these presynaptic
inputs, assuming parameters 6 to be known.

Huys et al. (2006) show that the two synaptic conductances g.(7) and g;(¢) can be written as
convolutions of the presynaptic inputs, g(r) = [* I;(u)e~ /% du, for s = e or i being the two
synaptic conductances. Then, by discretizing the signals, the convolution can be approximated by

gx(tk) ~ Z e_(tk_[j)/rsls(tj) = K, (6)

J<k

where K; is a convolution matrix. The first equation of model (3) is also discretized using an
Euler-Maruyama scheme with step size A, and written in vectorial form as

AVo,, = A(_gL(VL - VO:n) - diag(Ve - VO:n)KeIeO:n + diag(Vi - VO:n)KiIiO:n - I)
+0C €
where diag(Vy — Vj.,) is a diagonal matrix with the kth diagonal term being Vi — V (1), and K is a
convolution matrix operating as described in (6). Then the problem of estimating I,¢., and [jo.,
reduces to a linear estimation problem with Gaussian noise, under the constraints that /9., and

Iio.n are non-negative. Concatenating all the shape matrices ((Vz, — Vo) or diag(Vs — Vo, )K;) in J
and the parameter vectors in a = (gz,, L,0:n, lio:n, I ), the model can be written

AV, = Ja+ o0&,
A solution to this linear equation can be written as a constrained optimization
a= arg min ||AVO:n - Ja| |2.
a,a,-zo
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16 Ditlevsen and Samson
As emphasized by Paninski et al. (2010), this is equivalent to solving a penalized criteria
a = argmin ||AVq., — Ja||* + A pen(a),
a

where A is a tuning parameter and pen is a penalty function. Paninski et al. (2010) suggest
pen(a) =Y ;log(a;) (they call this approach the log-barrier method).

As an alternative to this linear optimization, Paninski et al. (2012) use a particle filter to
infer the hidden synaptic inputs ,(¢) and [;(¢). Particle filters have been widely developed in the
HMM context, which is the case here because the hidden presynaptic inputs /,(¢) and ;(¢) are
autonomous and do not depend on V (¢). We refer the reader to Cappé et al. (2005) for a general
presentation.

Parameter estimation Paninski et al. (2010) also consider the estimation of 8, but they now
assume that the input signals ,(¢) and [;(¢) are known. They assume noisy measurements y., of
Vo:n- This simplifies the statistical problem in the sense that it enters the well-known framework
of HMMs. The likelihood is

p(on; 0) = / P(yo:n|Von: 0) p(Voun: 0)dVorp.-
One would like to optimize the log-likelihood, namely computing
arg mglxlogp (Vo3 6).
They replace this optimization by the related problem of the joint optimization of
argmax max (log p(yo.|V'30) +log p(V:6))
As this function is jointly quadratic in (V, 6), they use a single step of Newton’s method.

As an alternative, Paninski et al. (2012) couple an EM algorithm to a particle filter. The particle
filter is used to infer the hidden synaptic inputs 7,(¢) and I;(¢) (see above). Using inferred (or
simulated) synaptic inputs, the M step of the EM algorithm consists in maximizing the log
likelihood of the complete trajectories (V(¢),g.(f),gi(¢)). This is performed using a Newton-
Raphson or a conjugate gradient ascent method. No asymptotic variance of these estimators have
been described. It should be possible to compute the Fisher Information Matrix based on the EM
algorithm and the Louis’s principle (Louis, 1982) .

Presynaptic conductance and parameter estimation To the best of our knowledge, there is
no known method to jointly estimate the parameters and the presynaptic conductance in model (3).
Note that identifiability issue arises and at least the parameters of the first equation in (3) should
be considered as known. The only reference we found is Berg and Ditlevsen (2013) where only
the first equation for the membrane potential in (3) is considered, with the conductances g.(¢) and
gi(t) time-varying functions, which should be estimated. They propose to make a moving window,
within which the process is assumed approximately stationary. Inside this window the process is
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approximated by an Ornstein-Uhlenbeck process, and the time constant and the asymptotic mean
are estimated, either by fitting the empirical autocorrelation function to a mono-exponential decay,
or by maximum likelihood with subsampling to correct for the short time scales, where the model
is not suitable. The estimates can be used to identify the two conductances, assumed constant
within the window. By sweeping through the data trace, time-varying synaptic input conductances
are estimated.

4. Voltage conductance based model

In the previous models, only subthreshold fluctuations are modeled, and spikes are either ignored
or imposed by a point event triggered by high membrane potential values. In the following models,
the membrane voltage dynamics, also during spiking activity, is modeled by a membrane equation
driven by voltage conductances. The model is given by

cav(y) = (— 2 (V)= Vi) = Y g f()(V(1) = V,) —1) dt + cdW (1) )

where W () is a Brownian motion, o is the diffusion coefficient, gz, is the leak conductance, g, are
maximal membrane conductances for several conductance types ¢ (like K, Na or Ca), functions f,
represent the time-varying open fraction of the c-ion channel, and is typically given by complex,
highly nonlinear functions of time and voltage. For example, for the K™ channel in the model
introduced by Morris and Lecar (1981), the kinetics are given by fx(¢) = U(t) with

dU(t) = (o (V(0))(1 = U(1)) = Pu(V () U (2))dt + ou (V (1), U (1)) dWy (1) ®)

where Wy (7) is a Brownian motion, oy (-) is the diffusion coefficient function (the simplest
case is oy (v,u) = \/u(l —u)), and oy (v) and By (v) are non-linear functions of v, depending
on some parameters ¢. We set C = 1 for parameter identifiability. Unknown parameters are
0 =(g1,3,Ve,Ve,1,0,06%,062).

Estimation of 0 has been considered assuming both noisy and exact observations of V..
Counter-intuitively, noisy observations provide simpler estimation approaches. The two situations
are now detailed.

Noisy observations of the membrane potential With noisy observations yy., of the voltage
Vo:n, the model enters the HMM framework. This has been considered by Kostuk et al. (2012)
and Huys and Paninski (2009). Both papers approximate the transition density of the SDE with a
Gaussian Euler-Maruyama scheme.

Kostuk et al. (2012) estimate the parameters with an MCMC algorithm. The authors notice a
bias in the parameter estimates. It could be due to the Euler-Maruyama scheme, which induces a
bias when the data are low frequency. Then, as noticed by Roberts and Stramer (2001), a data
augmentation scheme should be used. This has been underlined again by Jensen et al. (2012) in
the case of a 2-dimensional neural FitzHugh Nagumo-model, assuming no observation noise and
both components observed (which is not plausible working with real data). We refer to Roberts
and Stramer (2001); Papaspiliopoulos et al. (2013) for more details on data augmentation.

Huys and Paninski (2009) focus on parameters in the membrane potential equation, assuming
known all the parameters entering the voltage conductance equations (called ¢ in the description
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above). Then they propose an EM algorithm coupled to a standard particle filter. As already
said, particle filters have been widely developed in the HMM context. As Huys and Paninski
(2009) focus on parameters of the first observed component, the conditional expectation (E step)
is Gaussian and the maximization step of the EM algorithm reduces to a linear optimization. No
asymptotic variance of these estimators have been described. This should be possible based on
the EM algorithm.

Direct observations of the membrane potential Huys and Paninski (2009) consider this case
assuming deterministic kinetics of the voltage conductances (oy = 0 in (8)). They also assume all
the parameters involved in these kinetics known, thus the voltage conductances can be computed
with an Euler discretization scheme given the observations of Vj.,. The estimation problem of
the parameter a = (gz,8.,V.,V.,I) then reduces to a linear problem, similarly to the synaptic
conductance model. It can be written

AVo., = Ja+ o€y

where J is the regressor matrix. The optimization in a is performed under constraints on a, since
the conductances are non-negative. Thus, it is a constraint optimization problem

. , e
a= argafglélo||AVo;n Ja||~.

Ditlevsen and Samson (2014) consider the conductance based model when voltage conductance
kinetics are assumed to be deterministic. They focus on the two-dimensional Morris-Lecar model,
which has only one hidden conductance channel (8). Unlike in Huys and Paninski (2009), this
model does not enter the class of HMMs, because the hidden component is not autonomous.
Ditlevsen and Samson (2014) propose an estimation method which also includes the estimation
of an unknown parameter in the conductance kinetics and with stochastic kinetics and provide
standard errors of the estimators. Their method is based on an EM algorithm coupled to a particle
filter. Particle filters, which have been developed in the HMM context, can not be used in this
case, as it could in Huys and Paninski (2009), because the transition density entering in the
computation of the weights does not depend only of the hidden components, but also on the
observations. Ditlevsen and Samson (2014) propose a particle filter to this non-autonomous hidden
state. Then the maximization step is also linear, like Huys and Paninski (2009), because only
linear parameters entering both the V(¢) and the U (¢) equations are estimated. Ditlevsen and
Samson (2014) prove the convergence of their algorithm, which requires the number of particles
to increase at a logarithmic rate with the iterations of the EM algorithm.

5. Conclusion

The estimation problem in stochastic diffusion neuronal models from intracellular recordings of
the membrane potential evolution becomes more difficult the more realistic the model is. For one-
dimensional models the problem is relatively straightforward, since only the observed component
enters the model. The complications here arise because of lack of fit, for example the time course
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of the action potential does not enter the model and has to be cut out of the data. Also the different
time scales present in the data (but not in the model) can cause problems, and it is important to be
aware on what time scales the one-dimensional models are appropriate. Notwithstanding these
problems, the one-dimensional models can still be useful approximations and reproduce many of
the statistical characteristics of the neuronal dynamics. For example they can serve as building
blocks for network models where more biophysical models would be entirely intractable.

For multi-dimensional models, where unobserved components such as channel dynamics or
synaptic input enter the equations, the estimation problem is more complex, and not all parameters
can be estimated from only partial observations, either because of identifiability issues of the
model itself, or because there is not enough information in the data inducing a large variance
of the estimates. It is then important to remember that conclusions and results depend on the
assumptions of the model, and which parameters are assumed known, as well as their presumed
specific values. The multi-dimensional and non-linear models are also difficult to handle because
the likelihood is not tractable, and the statistical machinery is complex. Often approximations
assuming Gaussian distributions are employed, which facilitates the estimation procedure a lot,
but comes at a price of loosing precision and tail behaviors. Moreover, in Gaussian and linear
models often fewer parameters are identifiable. In the future, numerical sampling such as Particle
MCMC (Andrieu et al., 2010) could be an alternative to estimate parameters of these models.
Research interest is now on how estimating parameters from complex hypoelliptic system, that
might have multi-dimensional hidden states.

Several models have been proposed but very few papers deal with model validation or model
choice. When the likelihood is computable, models could be compared with standard criteria such
as AIC or BIC, even if it is not commonly done in this field. Recently, tests have been developed
for extra-cellular data (Albert et al., 2015). For model validation with intra-cellular data, tools
from stochastic process theory such as uniform residuals (Pedersen, 1994) could be employed,
but it is not yet commonly done in this field.
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