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A pruned dynamic programming algorithm to
recover the best segmentations with 1 to Kmax

change-points.
Titre: Un algorithme de programmation dynamique élagué pour trouver les meilleures segmentations avec

1 à Kmax ruptures.

Guillem Rigaill1

Abstract: A common computational problem in multiple change-point models is to recover the segmentations with 1
to Kmax change-points of minimal cost with respect to some loss function. Here we present an algorithm to prune the
set of candidate change-points which is based on a functional representation of the cost of segmentations. We study the
worst case complexity of the algorithm when there is a unidimensional parameter per segment and demonstrate that it
is at worst equivalent to the complexity of the segment neighbourhood algorithm: O(Kmaxn2). For a particular loss
function we demonstrate that pruning is on average efficient even if there are no change-points in the signal. Finally,
we empirically study the performance of the algorithm in the case of the quadratic loss and show that it is faster than
the segment neighbourhood algorithm.

Résumé : Dans les modèles de ruptures multiples la recherche des segmentations de coût minimal, au sens d’une
certaine fonction de perte, avec une à Kmax ruptures est un problème algorithmique courant. Ici, nous présentons un
algorithme, basé sur une représentation fonctionnelle des segmentations, qui élague l’ensemble des ruptures candidates.
Nous étudions la complexité au pire de cet algorithme quand il y a un paramètre unidimensionnel par segment. Nous
démontrons dans ce cas que ça complexité est équivalente à celle de l’algorithme « segment neighborhood » en
O(Kmaxn2). Pour une fonction de perte particulière nous démontrons que l’élagage est en moyenne efficace quand il
n’y a pas de ruptures dans le signal. Enfin nous étudions empiriquement les performances de l’algorithme dans le cas
de la perte quadratique et montrons qu’il est plus rapide que l’algorithme « segment neighborhood ».
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1. Introduction

A common computational problem in multiple change-point models is to recover segmentations
with 1 to Kmax change-points of minimal cost where the cost is some well chosen criteria, such as
minus the log-likelihood or the quadratic loss (Bai and Perron, 2003; Picard et al., 2005; Harchaoui
and Cappé, 2007; Guédon et al., 2007; Killick and Eckley, 2011; Arlot et al., 2012; Cleynen and
Lebarbier, 2014; Cleynen et al., 2014a). Many algorithms have been proposed to exactly solve
this problem (Bellman, 1961; Fisher, 1958; Auger and Lawrence, 1989; Bai and Perron, 2003;
Guédon, 2008). All these are dynamic programming algorithms and have a complexity which
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is linear in Kmax and quadratic in the length of the signal n: O(Kmaxn2). We will refer to these
algorithms as segment neighbourhood algorithms.

In practice, this quadratic complexity in n is a problem. Indeed, if n is larger than 105 or 106

one run of the algorithm can take several hours or even days. In applications such as DNA copy
number studies the signal length is typically of this order: n = 105-106. Several strategies have
been developed to cope with this problem, the most famous is probably the binary segmentation
heuristic (Scott and Knott, 1974). A common idea is to first identify a restricted set of candidate
change-points with any fast heuristic and then run a segment neighbourhood algorithm on this
restricted set (Kolesnikov and Fränti, 2003; Harchaoui and Lévy-Leduc, 2010; Gey et al., 2008).
These heuristics typically have a complexity which is linear in n. From a computational perspective
the main drawback of these approaches is that they lack optimality.

Most algorithms and heuristics that aim at recovering the segmentations of minimal cost operate
on segmentations through their costs. Here we propose a new representation of the segmentations
that we call the functional cost where the cost of a segmentation is represented as a function
of a, possibly multidimensional, parameter. We demonstrate that using this functional cost it is
theoretically possible to prune the set of segmentations while searching for segmentations of
minimal costs with 1 to Kmax change-points and thus to carry out the calculation only for a small
subset of candidate segmentations. We call the resulting algorithm pruned dynamic programming
algorithm (pDPA).

From an intuitive point view, if we consider a random sequence of n data-points with K true
abrupt change-points, we expect that the segmentation with those K change-points will greatly
outperform other possible segmentations in terms of cost. Hence it makes sense that it is possible to
efficiently prune the set of segmentations. On the contrary, if we now consider a random sequence
of n data-points without any change-points, all segmentations will have roughly the same cost
and we do not expect an efficient pruning of the set of segmentations. This intuition is indeed
true if segmentations are represented through their cost. In the context of another change-point
optimization problem, the optimal partitioning problem (Jackson et al., 2005), this idea was made
particularly clear by Killick et al. (2012).

For this problem, the PELT algorithm, that prunes segmentations based on their cost, was
proven to be linear if the true number of change-points is linear in the number of data-points. If it
is not linear, in particular if there are no change-points, PELT’s pruning is less efficient.

Here we argue that if we consider the functional costs of segmentations, rather than their
costs, we can have an efficient pruning even for random sequences without any change-points.
As a proof of concept we study the complexity of the pDPA for change-point models with a
unidimensional parameter per segment. In that case, we demonstrate that the algorithm is at worst
as efficient as segment neighbourhood algorithms. For a special loss function we demonstrate
that on average pruning is efficient even if we consider random sequences without change-points
and we retrieve an average complexity which is sub-quadratic in O(n log(n)). We implemented
the algorithm for the commonly used quadratic loss and empirically show that it is faster than
segment neighbourhood algorithms.

Related works Since the first pre-print of this work (Rigaill, 2010), the pDPA has been im-
plemented for other losses (Cleynen et al., 2014b), and in the context of DNA copy number
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analysis its competitive runtime compared to the segment neighbourhood algorithm, PELT or
other approaches for this problem was confirmed by others (Hocking et al., 2013; Hocking, 2013;
Maidstone et al., 2014). Furthermore, we demonstrate in this new version of the paper, for a
simple, yet non-trivial, loss function that on average the pDPA pruning is efficient even if we
consider random sequences without change-points.

Finally, the main contribution of this paper is of a computational nature, i.e an algorithm that
recovers the segmentations with 1 to Kmax change-points of minimal cost. From a computational
point of view several methods boil down to this specific problem. Importantly, the statistical
properties of these methods have been studied theoretically and empirically through simulations
and on real data by many (Yao and Au, 1989; Horváth, 1993; Lavielle and Moulines, 2000;
Lavielle, 2005; Lebarbier, 2005; Birgé and Massart, 2007; Boysen et al., 2009; Cleynen and
Lebarbier, 2014; Zhang and Siegmund, 2007; Lai et al., 2005; Cleynen et al., 2014a), and recently
the pDPA as implemented in the R cghseg package for the quadratic loss was shown to reach state
of the art performances for the segmentation of DNA copy number profiles (Hocking et al., 2013).

Outline Section 2 describes the change-point framework used in the paper. Section 3 gives a
quick overview of segment neighbourhood algorithms and informally describes the functional
cost and the pDPA. Section 4 gives a detailed description of the functional cost and the pDPA.
Section 5 is about the worst case, average and empirical complexity of the pDPA.

2. Change-point framework and cost minimization

Data We assume that we have a sequence of n observations. We denote this sequence Y =
{Yt}1≤t≤n and denote Yi: j a subsequence between data-point i and data-point j− 1, i.e. Yi: j =
{Yt}i≤t< j.

Segmentations We define a segmentation m of Y by a set of K change-points splitting the
sequence in K+1 segments. We denote the positions of these K change-points τk for k = 1, . . . ,K
and we also set the convention that τ0 = 1 and τK+1 = n+ 1. We call rk the k-th segment of a
segmentation: rk = τk−1 : τk = {i|τk−1 ≤ i < τk}. τk−1 is thus the first data-point belonging to
rk and τk is the first data-point not belonging to rk. For K > 0, we define M K

1:t as the set of all
possible segmentations with exactly K change-points of the sequence Y1:t . There are

(t−2
K

)
such

segmentations and so for the whole sequence we have |M K
1:n+1|=

(n−1
K

)
.

Statistical model Our goal is to infer from the data both the positions and the number of
change-points. Many methods, statistical models and model selection criteria have been proposed
to address this problem for various types of data and various types of changes, i.e. change in
the mean, in the variance, in the distribution etc. . .(Lavielle, 2005; Cleynen and Lebarbier, 2014;
Arlot et al., 2012). In practice most of these methods critically rely on algorithms or heuristics
that explore the set of all possible segmentations in search for a list of optimal segmentations
w.r.t. some well chosen statistical criteria. However, this set of segmentations is extremely large
(|M K

1:n+1|=
(n−1

K

)
) and it is hard to explore it efficiently, especially when n is large.

From a computational point of view this exploration problem is often re-formulated as a cost
minimization problem under the constraint that the number of change-points is K = 1,2 · · ·Kmax,
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where Kmax is defined by the user (Bellman, 1961; Fisher, 1958; Auger and Lawrence, 1989;
Hawkins, 2001; Bai and Perron, 2003; Harchaoui and Cappé, 2007; Guédon, 2008; Arlot et al.,
2012; Cleynen and Lebarbier, 2014; Guédon, 2013). To be more specific, the aim is to find the
segmentations of minimal cost in M K

1:n+1 for K from 1 to Kmax, where the cost of a segmentation
is the sum of the costs of its segments:

Rm =
K+1

∑
k=1

cτk−1:τk , (1)

with cτk−1:τk is the cost of the k-th segment of m.

A smaller class of problems In this paper, we consider a smaller class of models and methods
for which it is possible to write the cost of a segment as follows:

cτk−1:τk = min
µ

{
τk−1

∑
t=τk−1

γ(Yi,µ)+g(µ)

}
,

where γ is a loss function, depending on the data-point Yi and the (possibly multi-dimensional)
parameter µ , and the function g is a regularization penalty. For this class of models we show in
the following that it is theoretically possible to prune the set of segmentations and we explain how
to implement this pruning if µ is unidimensional.

The quadratic loss belongs to this class of model: γ(Yi,µ) = (Yi−µ)2. This framework also
includes maximum likelihood inference of identically distributed and independent data-points.
Indeed, it suffices to take γ equal to minus the log-likelihood: γ(Yi,µ) =− log(p(Yi,µ)). Let us
give some examples.

1. We can consider a linear model. To do that we take Yi = (Zi,xi1, . . . ,xip) in Rp+1, µ =
(β0,β1, . . . ,βp,σ

2) in Rp+1×R+ and within a segment τk−1 : τk we assume that

Zi = β0 +
p

∑
j=1

β jxi j + εi with εi ∼N (0,σ2) i.i.d.

In that case minus the log-likelihood is

γ(Yi,µ) =
1
2

log(2πσ
2)+

1
2σ2 (Zi−β0−

p

∑
j=1

β jxi j)
2.

If the variance is known this simplifies to γ(Yi,µ) = (Zi−β0−∑
p
j=1 β jxi j)

2.

2. We can also consider the segmentation in the mean of a p-dimensional sequence. Here we
take Yi = (Xi1, . . .Xip) in Rp, µ = (β1, . . . ,βp,σ

2) in Rp×R+ and for all i within a segment
τk−1 : τk we assume that

Xi j = β j + εi j with εi j ∼N (0,σ2) i.i.d.

In that case minus the log-likelihood is

γ(Yi,µ) =
p
2

log(2πσ
2)+

1
2σ2

p

∑
j=1

(Xi j−β j)
2.

If the variance is known this simplifies to γ(Yi,µ) = ∑
p
j=1(Xi j−β j)

2.
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3. We could also consider categorical data. Indeed, we can take Yi ∈{1, . . . , p}, µ =(π1, . . . ,πp)
in [0,1]p with ∑ j π j = 1 and assume that within a segment, Yi are independent and follow a
multinomial distribution with P(Yi = j) = π j. In that case minus the log-likelihood is

γ(Yi,µ) =−
p

∑
j=1

I{Yi = j} log(π j),

where I is the indicator function.

Many segmentation models do not include a regularization penalty (g(µ) = 0), however, in
some cases it can be of interest to include a regularization penalty such as the ridge penalty. We
could take this into account by setting g(µ) = λ µ2. For simplicity, in the rest of this paper we
will only consider the case g(µ) = 0, however extension to g(µ) 6= 0 is straightforward.

3. Exact segment neighbourhood algorithm and pruning

In this section, we first describe the main update rule of the standard dynamic programming
algorithm - often called the segment neighbourhood algorithm - used to recover the segmentations
of minimal cost for K = 1 to Kmax:

CostK
1:n+1 = min

m∈M K
1:n+1

{Rm}, (2)

Then we present the functional cost representation of a segmentation and informally explain
how using this representation it is possible to prune the search space of the segment neighbourhood
algorithm. In the last subsection (3.5) we explicitly describe the optimal partitioning problem and
the advantages and disadvantages of functional pruning over inequality based pruning (as is done
in PELT (Killick et al., 2012)).

3.1. The segment neighbourhood algorithm update rule

Rm is segment additive, thus the Bellman optimality principle applies and if a segmentation is
optimal any sub-segmentation of this segmentation is also optimal. Mathematically, this can be
expressed as the following update rule:

CostK
1:t = min

τ<t
{CostK−1

1:τ + cτ: t}, (3)

This update rule can be performed with an O(t) time complexity. Many algorithms developed
for various statistical models implement this particular update rule (Fisher, 1958; Bellman, 1961;
Auger and Lawrence, 1989; Bai and Perron, 2003; Guédon, 2008). This algorithm was called
the segment neighbourhood algorithm by Auger and Lawrence (1989). To recover CostK

1:n+1 we
need to apply update rule (3) for every t smaller than n+1 and for every K smaller than Kmax.
The overall time complexity is thus in O(Kmaxn2). Most of these algorithms have an O(n2) space
complexity. However some, like Guédon (2008), have an O(Kmaxn) space complexity.
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3.2. Functional cost

The segment neighbourhood algorithm and in fact most algorithms and heuristics that aim at
recovering the segmentation of minimal cost operate on segmentations through their costs, Rm,
which are numbers in R. Our pruned DPA algorithm is different and uses a slightly more complex
representation that we call the functional cost of a segmentation. We define this function of µ as:

R̃m(µ) =
K

∑
k=1

cτk−1:τk + c̃τK :τK+1(µ) (4)

with c̃τK :τK+1(µ) = ∑
τK+1−1
t=τK γ(Yi,µ) if τK+1 > τK

and c̃τK :τK+1(µ) = 0 if τK+1 = τK

In words, the functional cost, R̃m(µ), is the cost of segmentation m if the parameter of m’s last
segment is set to µ , rather than the optimal value µ̂ = arg min{c̃τK :τK+1(µ)}. The minimum value
of the functional cost is simply the cost: i.e. minµ{R̃m(µ)}= Rm

The functional cost is a more complex representation of a segmentation than the cost, however,
it leads to some great simplifications. Namely the functional cost is point additive, i.e if we
consider a segmentation m of M K

1:t with change-points τ1,τ2, ...,τK and the segmentation m′ of
M K

1:t+1 with the same change-points we have:

R̃m′(µ) = R̃m(µ)+ γ(Yt ,µ).

In the next sub-section (3.3) we explain informally how this functional formulation and the
point additiveness makes it theoretically possible to prune the set of segmentations.

3.3. Functional cost and pruning

The pDPA searches for:

C̃ost
K
1:n+1(µ) = min

m∈M K
1:n+1

{R̃m(µ)}, (5)

for K = 1 to Kmax. This is the functional formulation of equation (2). Like the cost (see update
rule (3)), the functional cost is segment additive and a similar update rule applies:

C̃ost
K
1:t(µ) = min

τ<t
{CostK−1

1:τ + c̃τ: t(µ)}. (6)

Thanks to the point-additiveness of R̃m(µ), it is possible to further simplify this update rule.
If we consider a given value of µ , two last change-points τ and τ ′ and a time t ′ > t we get the
following implication:{

CostK−1
1:τ + c̃τ: t(µ)≤ CostK−1

1:τ ′ + c̃τ ′: t(µ)
}

=⇒
{

CostK−1
1:τ + c̃τ: t ′(µ)≤ CostK−1

1:τ ′ + c̃τ ′: t ′(µ)
}
.

(7)
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In other words, if for a given t and µ the functional cost of last change-point τ is less than the
functional cost of τ ′, then this will still be the case for any time point in the future (i.e. for any
t ′ > t). Hence for the parameter value µ we can discard τ ′ as it will never be minimal.

If we consider only one value for µ , this pruning rule can be formalised as the following update
rule:

C̃ost
K
1:t+1(µ) = min

{
C̃ost

K
1:t(µ)+ γ(Yt ,µ) , CostK−1

1:t + γ(Yt ,µ)
}
, (8)

and this update rule can be performed with an O(1) time complexity. We only need to compare

the values of C̃ost
K
1:t(µ)+ γ(Yt ,µ) and CostK−1

1:t + γ(Yt ,µ) .

3.4. Implementing update rule (8) for all possible µ

Update rule (8) cannot be implemented in practice, because the rule would have to be applied
to all possible values of µ and in most cases the set of all µ is uncountably infinite. A key idea
to cope with this problem is to consider the set of µ for which a particular last change-point
τ is better than any other change-point τ ′ in the sense that CostK−1

1:τ + c̃τ: t(µ) is smaller than
CostK−1

1:τ ′ + c̃τ ′: t(µ). We will call this set S K
1:t,τ . We will properly define and study the properties

of S K
1:t,τ in section 4. As yet let us have a look at these sets on a small example. We will consider

the segmentations with one change-point (K = 1) of a four-point signal with the quadratic loss:
γ(yi,µ) = (yi−µ)2. Our observations are y1 = 0, y2 = 0.5, y3 = 0.4, y4 =−0.5 (see Figure 1).

Y i

i

FIGURE 1. Four-point signal. yi as a function of i. y1 = 0, y2 = 0.5, y3 = 0.4, y4 =−0.5

Functional cost of Y1:3 Let us first consider the first two data-points: Y1:3. The first segmen-
tation we need to consider is the one with a change-point at τ = 2. The functional cost of this
segmentation is simply the cost of its first segment, r1:2, which is 0, plus the functional cost of
the last segment, which is the polynomial function µ → (y2− µ)2. We should also consider a
segmentation with a change-point at τ = 3. Indeed, for t = 2 its functional cost is well defined: it
is the cost of its first segment, r1:3, which is 0.125, plus the functional cost of its last segment, r3:3.
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Fu
nc

tio
na

lC
os

t

µ

τ Functional cost S 1
1:3,τ

2 0.25−µ +µ2 [ 0.146 , 0.854 ]

3 0.125 [ −∞,0.146 ]∪ [ 0.854,+∞ ]

FIGURE 2. Functional cost of Y1:3 for K = 1 using the quadratic loss. (Left) Functional cost as a function of µ of
segmentations having a change-point at τ = 2 (solid red) and τ = 3 (orange dashed). (Right) Analytical expression of
the functional costs for τ = 2 and τ = 3 and the set of µ , for which they are optimal: S 1

1:3,τ .

Fu
nc

tio
na

lC
os

t

µ

τ Functional cost S 1
1:4,τ

2 0.41−1.8µ +2µ2 [ 0.190 , 0.709 ]

3 0.285−0.8µ +µ2 /0

4 0.14 [ −∞,0.190 ]∪ [ 0.709,+∞ ]

FIGURE 3. Functional cost of Y1:4 for K = 1 using the quadratic loss. (Left) Functional cost of a segmentations having
a change-point at τ = 2 (solid red) τ = 3 (orange dashed) and τ = 4 (blue dotted). (Right) Analytical expression of the
functional costs for τ = 2, 3 and 4 and the set of µ , for which they are optimal: S 1

1:4,τ .

r3:3 is empty and so its functional cost is simply the zero function: µ → 0. These two functional
costs are represented in figure 2-left as a solid red line for τ = 2 and a dashed orange line for
τ = 3. Simple calculations show that the set of µ for which τ = 2 is best, S 1

1:3,2, is an interval
centered on 0.5: [ 0.146 , 0.854 ]. S 1

1:3,3 is a union of two intervals: [ −∞,0.146 ]∪ [ 0.854,+∞ ].
These intervals are also given in figure 2-right.

Functional cost of Y1:4 Now if we consider the first three data-points: Y1:4. We have to update
the functional cost of the segmentations having a change-point at τ = 2 and 3. We do this by
adding the function µ → (y3−µ)2 to both of them (point additiveness). We also need to consider
another possible change-point: τ = 4. Its functional cost is simply the cost of segment r1:4, which
is 0.14, plus the function cost of segment r4:4 which is the zero function: µ → 0. These three
functional costs are represented in figure 3-left as a solid red line for τ = 2, a dashed orange
line for τ = 3 and a blue dotted line for τ = 4. Simple calculations show that the set of µ for
which τ = 2 is best, S 1

1:4,2, is an interval centered on 0.45: [ 0.190 , 709 ]. S 1
1:4,4 is a union

Journal de la Société Française de Statistique, Vol. 156 No. 4 180-205
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



188 Rigaill

of two intervals: [ −∞,0.190 ]∪ [ 0.709,+∞ ]. S 1
1:4,3 is strikingly empty. Based on equation

(7), this means that irrespective of the last data-point it is sure that the segmentation with a last
change-point at τ = 3 will always have a greater cost that those with a change-point at 2 or 4.
Thus for all possible values of µ we can discard τ = 3. Note however that neither τ = 2 nor τ = 4
are better than τ = 3 for all µ .

This simple example illustrates that by keeping track of the S K
1:t,τ we might be able to prune

some candidate change-points very early in the process. We will make this idea explicit in the
next sections (section 4 and 5).

3.5. Segment Neighbourhood, Optimal partitioning and PELT

Since 2010 another pruned algorithm, PELT, has been proposed for change-point detection
problems by Killick et al. (2012). pDPA and PELT are different in nature. First, they do not solve
the same problem. PELT is an extension of the optimal partitioning algorithm (Jackson et al.,
2005) rather than the segment neighbourhood algorithm. More precisely, if we call M1:n+1 the
set of all segmentations, the optimal partitioning problem is to find:

OPCost1:n+1 = min
m∈M1:n+1

{Rm +λ |m|}, (9)

where Rm is defined in equation (1), λ is a user defined scalar and |m| is the number of change-
points of segmentation m. Intuitively, the number of change-points of the recovered solution
decreases with λ . If the penalty λ is known in advance solving the optimal partitioning problem
is faster than solving the segment neighbourhood problem. The advantage of solving the segment
neighbourhood problem is that this gives optimal segmentations for a range of numbers of
change-points.

Second PELT and the pDPA do not prune segmentations in the same way. PELT’s prune
segmentations based on their cost and the pDPA based on their functional cost. In a recent pre-
print, Maidstone et al. (2014) called these two ways of pruning respectively inequality based
pruning (IP) and functional based pruning (FP) and studied their relationship. The benefit of IP
over FP is that it is more widely applicable than FP, i.e. the assumptions on the segment cost to
apply FP imply the assumptions to apply IP. Furthermore the implementation of IP is usually
straightforward which is not the case of FP. The advantage of FP over IP is that it can prune
efficiently the set of change-points even if there are only a few change-points in the sequence. We
prove this for a special loss function and under some restrictive conditions in sub-section 5.2. We
empirically confirm this result for the quadratic loss in sub-section 5.3. Furthemore, Maidstone
et al. (2014) proved in Theorem 6.1 for the optimal partitioning and segment neighbourhood
problem that any candidate change-point pruned by IP will also be pruned by FP at worst at the
same time. In other words FP cannot prune less than IP.

4. Functional pruning of the set of segmentations

In this section we first describe the key quantities and properties used by the pruned DPA algorithm.
Then we describe the algorithm.
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4.1. Key quantities and their properties

The four main quantities of interest in the pDPA are given below.
1. the optimal functional cost with K change-points:

C̃ost
K
1:n+1(µ) = min

m∈M K
1:n+1

{R̃m(µ)},

where the functional cost of a segmentation R̃m(µ) is defined in equation (4).
2. the optimal functional cost with K change-points if the last change-point is τ ≤ t:

C̃K
1:t,τ(µ) = CostK−1

1:τ + c̃τ: t(µ), (10)

where CostK−1
1:τ is the optimal cost with K−1 change-points up to τ defined in equation (2)

and c̃τ: t(µ) is defined in equation (4).
3. the set of µ for which the last change-point τ is optimal:

S K
1:t,τ = {µ |C̃K

1:t,τ(µ) = C̃ost
K
1:t(µ)}.

4. the set of last change-points which are optimal for at least one µ 1

τ
K
1:t =

{
τ < t |S K

1:t,τ 6= /0
}

Below are the properties of these quantities. The proofs of these properties are given afterwards.

Property 1. The optimal functional cost may be computed using only the (pruned) set of
change-points which are optimal for at least one µ .

C̃ost
K
1:t(µ) = min

τ<t
{C̃K

1:t,τ(µ)}

= min
τ∈τK

1:t

{C̃K
1:t,τ(µ)}.

Property 2. The functional cost with a last change-point τ is easy to update using point
additivity.

C̃K
1:t+1,τ(µ) = C̃K

1:t,τ(µ)+ γ(Yt ,µ).

Property 3. The set of µ for which a change-point τ is optimal decreases with t (w.r.t. set
inclusion) and can be pruned.

∀ τ < t, S K
1:t+1,τ = S K

1:t,τ

⋂
{µ | C̃K

1:t,τ(µ)≤ CostK−1
1:t } (11)

S K
1:t+1,t =

⋂
τ∈τK

1:t

{µ | CostK−1
1:t ≤ C̃K

1:t,τ(µ)} (12)

S K
1:t,τ = /0 =⇒ ∀ t ′ ≥ t, S K

1:t ′,τ = /0. (13)

1 Depending on the properties of γ it might be possible to consider only the set of last change-points τ for which
S K

1:t,τ is not restricted to a finite set of µ . This is the case for the quadratic loss which is continuous.
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Property 4. The set of candidate change-points can be pruned and computed recursively.

τ
K
1:t+1 = {τ ∈ (τK

1:t ∪{t}) |S K
1:t+1,τ 6= /0}.

Property 1 is very similar to the update rule of the segmentation neighbourhood algorithm
(equation (3)). The main difference is that the set of last change-points to consider is not necessarily
all those before t: {τ|τ < t} but rather those that still have a chance to be optimal at this stage: τK

1:t .
At worst this τK

1:t is equal to {τ|τ < t} but based on property 4 this set could be smaller. Indeed
any change-point that has been discarded from τK

1:t will never be included again.
The four previous properties are in fact simple consequences of the point additiveness and

segment additiveness of the functional cost. However given their combinatorial nature they
might look a bit tedious. To clarify those properties we provide detailed proofs in the following
paragraphs.

Proof of property 1 As the cost in the segment neighbourhood algorithm, the functional cost
of a segmentation is segment additive, thus the Bellman optimality principle holds and we recover
the first part of property 1. The second part follows by definition of τK

1:t . Indeed, if τ is the optimal

last change-point then there must exist a µ for which its functional cost is equal to C̃ost
K
1:t(µ) and

thus τ is in τK
1:t �

Proof of property 2 By definition of C̃K
1:t,τ(µ) (see equation (10)) we have:

C̃K
1:t+1,τ(µ) = CostK−1

1:τ + ∑
t
i=τ γ(Yi,µ)

= CostK−1
1:τ + ∑

t−1
i=τ

γ(Yi,µ) + γ(Yt ,µ)

= C̃K
1:t,τ(µ)+ γ(Yt ,µ) �

Proof of property 3 Using property 1 and by definition of S K
1:t+1,τ ′ we get that for τ ′ < t +1:

S K
1:t+1,τ ′ =

{
µ | C̃K

1:t+1,τ ′(µ)≤ min
τ<t+1

{C̃K
1:t+1,τ(µ)}

}
=

⋂
τ<t+1

{
µ | C̃K

1:t+1,τ ′(µ)≤ C̃K
1:t+1,τ(µ)

}
.

Now, using property 2 we also have for τ < t +1:

{µ | C̃K
1:t+1,τ ′(µ)≤ C̃K

1:t+1,τ(µ)}= {µ | C̃K
1:t,τ ′(µ)≤ C̃K

1:t,τ(µ)}.

Finally, by defintion we also have C̃K
1:t,t(µ) = CostK−1

1:t .
Combining these three facts for τ ′ < t we get:

S K
1:t+1,τ ′ =

⋂
τ<t+1

{
µ |C̃K

1:t,τ ′(µ)≤ C̃K
1:t,τ(µ)

}
= S K

1:t,τ ′
⋂ {

µ | C̃K
1:t,τ ′(µ)≤ C̃K

1:t,t(µ)
}

= S K
1:t,τ ′

⋂ {
µ | C̃K

1:t,τ ′(µ)≤ CostK−1
1:t

}
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and we recover equation (11) of property 3.
We recover equation (12) of property 3 by taking τ ′ = t:

S K
1:t+1,t =

⋂
τ<t

{
µ | CostK−1

1:t ≤ C̃K
1:t,τ(µ)

}
=

{
µ | CostK−1

1:t ≤min
τ<t
{C̃K

1:t,τ(µ)}
}

=

{
µ | CostK−1

1:t ≤ min
τ∈τK

1:t

{C̃K
1:t,τ(µ)}

}
=

⋂
τ∈τK

1:t

{
µ | CostK−1

1:t ≤ C̃K
1:t,τ(µ)

}
.

Finally, if S K
1:t,τ = /0 using equation (11) we have that

S K
1:t+1,τ = S K

1:t,τ

⋂
{µ | C̃K

1:t,τ(µ)≤ CostK−1
1:t }= /0

and by induction we recover equation (13) of property 3 �

Proof of property 4 By definition of τK
1:t+1 we have

τ
K
1:t+1 ⊇ {τ ∈ (τK

1:t ∪{t}) |S K
1:t+1,τ 6= /0}.

Now suppose τ is in τK
1:t+1. If τ < t, then using equation (13) of property 3 we see that τ must

also be in τK
1:t . If τ = t, then by definition of τK

1:t+1 we have that S K
1:t+1,t is not empty. Thus we

recover:

τ
K
1:t+1 ⊆ {τ ∈ (τK

1:t ∪{t}) |S K
1:t+1,τ 6= /0} �

4.2. The pDPA algorithm

The pruned dynamic programming algorithm uses the four properties described in subsection 4.1
to update the optimal functional cost, the set of optimal last change-points and the set of µ for
which these last change-points are optimal. For every t ≤ n and K ≤ Kmax the algorithm:

1. updates for each τ in τK
1:t the set of µ for which they are optimal (equation (11));

2. initialises the set of values for which a change-point at t is optimal (equation (12));

3. updates the set of possible last change-points (property 4);

4. updates the functional cost of possible last change-points (property 2);

5. computes the minimal cost with K change-points at t (property 1).
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More formally the algorithm can be described as:

Data: A sequence Y1:n+1
Result: Two matrices DK,t and IK,t of size (n+1)×Kmax containing the optimal cost and

optimal last change-points
for K = 1 to Kmax do

τK
1:K+1←{K}

C̃K
1:K+1,K(µ)← CostK−1

1:K + γ(YK ,µ)

for t = K +1 to n do

for τ ∈ τK
1:t do

S K
1:t+1,τ ←S K

1:t,τ
⋂
{µ | C̃K

1:t,τ(µ)≤ CostK−1
1:t }

end

S K
1:t+1,t ←

⋂
τ<t {µ | CostK−1

1:t ≤ C̃K
1:t,τ(µ)}

τK
1:t+1← {τ ∈ (τK

1:t ∪{t}) |S K
1:t+1,τ 6= /0}

for τ ∈ τK
1:t+1 do

C̃K
1:t+1,τ(µ)← C̃K

1:t,τ(µ)+ γ(Yt ,µ)

end

DK,t+1← min
τ∈τK

1:t+1

{
minµ{C̃K

1:t+1,τ(µ)}
}

IK,t+1← arg min
τ∈τK

1:t+1

{
minµ{C̃K

1:t+1,τ(µ)}
}

end

end
Algorithm 1: Pruned DPA algorithm

Importantly C̃ost
K
1:t(µ), S K

1:t,t and τK
1:t are used only at step K, t and K, t +1 . So they need not

be stored, they can be discarded or overwritten immediately.

Implementing the pruned DPA The pruned DPA critically relies on the possibility of easily
updating the functional cost (µ→ C̃K

1:t,τ(µ)) and the set of µ for which one particular last change-
point is optimal (S K

1:t,τ ). If this is not the case then the algorithm and the fact that the set of last
change-points can be functionally pruned is purely theoretical.

Representing and updating the functional cost is easy typically if there exists a simple analytical
decomposition of the functional cost. For example, if we consider the quadratic loss, the functional
cost is a second degree polynomial function and it can be represented by the three coefficients of
this polynomial function. Other loss functions can be represented in such a way, and in fact the
pruned DPA has been implemented for other losses since its first pre-print (namely the Poisson
and negative binomial log-likelihood losses, Cleynen et al. (2014b))

Representing the sets S K
1:t,τ is a priori more difficult. Their representation depends on the

dimensionality of µ and the characteristic of the loss function γ . In the next section we study
theoretically and empirically the expected and worst case complexity of functional pruning in
the simple case where µ is a unidimensional parameter in R and all functions µ → ∑γ(Yi,µ) are
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unimodals. Here by unimodal we mean functions such that for any c in R the set {x| f (x)≤ c}
is an interval. In that case it is simpler to keep track of the sets {µ | CostK−1

1:t ≤ C̃K
1:t,τ(µ)} and

S K
1:t,τ as they are respectively intervals and union of intervals. Functional pruning is theoretically

possible even if those conditions are not valid and in particular if µ is multidimensional. However
the implementation and the theoretical study of functional pruning in a multidimensional case is
not straightforward and is outside the scope of this paper.

5. Complexity of the algorithm for a unidimensional µ

In this section we study the complexity of the pruned DPA for µ in R. We also assume that updating
the functional cost is in O(1), which is the case if there is a simple analytical decomposition
of the functional cost. Finally we will assume that any function µ → ∑i γ(Yi,µ) is a unimodal
function of µ . This last assumption is true if γ is convex, which is often the case if we take γ to be
minus the log-likelihood. Under those conditions all S K

1:t,τ are unions of intervals 2.
A key question then is how many intervals do we precisely need. In this section, we propose a

bound of this number and using it we bound the worst case complexity of the pDPA and show that
it is at worst as efficient as the segment neighbourhood algorithm (see subsection 5.1). Then we
theoretically study the average complexity of the pDPA algorithm for a particular loss function
for a random sequence without change-points (see subsection 5.2). Finally, we empirically study
the complexity of the algorithm for the quadratic loss (see subsection 5.3).

5.1. Worst case complexity of the pDPA

In this section we prove that the pDPA is at worst as efficient as the segment neighbourhood
algorithm. More precisely we have the following proposition.

Propostion 5. If all ∑ j γ(Yj,µ) are unimodal in µ and if both minimising C̃K
1:t,τ(µ) and finding

the roots of C̃K
1:t,τ(µ) = CostK−1

1:t are in O(1), the pDPA is at worst in O(Kmaxn2) time and in
O(Kmaxn) space.

Proof. The key quantity to control is the number of intervals needed to represent S K
1:t,τ . For a

given K and at step t the number of candidate last change-points is obviously bounded by t. If
all ∑

t+1
j=τ+1 γ(Yj,µ) are unimodal, using theorem 8 (proved in appendix A) we get that the total

number of intervals is bounded by 2t−1. Thus at each step there is at most t last change-points
and 2t−1 intervals to update. By summing all these bounds from 1 to n and for every possible K
we retrieve an O(Kmaxn2) worst case time complexity.
As for the worst case space complexity, we need to store two (n+1)×Kmax matrices (DK,t and
IK,t) and at each step there is at most t candidates and 2t−1 intervals. This gives an O(Kmaxn)
space complexity �

2 Indeed, if all µ → ∑i γ(Yi,µ) are unimodal functions then all {µ | C̃K
1:t,τ (µ)≤ CostK−1

1:t } are intervals as CostK−1
1:t

is a constant in R and all C̃K
1:t,τ (µ) are unimodal. Then using property 3 we get by induction that all S K

1:t,τ are
unions of intervals.
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The previous theorem provides a worst case bound on the complexity. One can wonder in which
cases this quadratic complexity in n is reached. Let us consider the sequence such that ∀i, Yi = i,
segmentations with one change-point and the quadratic loss. The best segmentation of Y1:t has a
change-point at t/2. So at step t of the pDPA the change-point τ = t/2 has not been pruned and
in fact all change-points from t/2 to t haven’t been pruned. Hence, at each step we have at least
t/2 candidates to update. Hence by summing from t = 1 to n we recover a quadratic complexity:
O(n2).

However, as illustrated with an example in subsection 3.4 and demonstrated for a specific loss
function in the following subsection (5.2) one can hope that in many cases the pruning will be
more efficient than that.

5.2. Average pruning of the pDPA with a special loss function and Kmax = 1

In this subsection, we prove for a particular loss function and Kmax = 1 that on average we get
an efficient pruning with the functional cost representation even when we consider a random
sequence without true change-points. As explained in the introduction this result is not intuitive.
In subsection 5.3 we empirically show that this is also the case for the quadratic loss function.

Here, we will use the negative log-likelihood loss of a continuous uniform distribution defined
on [0,µ]. This loss function is:{

γ(Yi,µ) = log(µ) if 0≤ Yi ≤ µ

γ(Yi,µ) = ∞ otherwise

For this particular loss function 3 and for Kmax = 1, it is possible to bound the average number of
candidate last change-points, E(|τK

1:t |).

Property 6. For the negative log-likelihood loss, Kmax = 1, and for, Y1:n+1, n independent and
identically distributed random variables of density f and continuous distribution F, E(|τ1

1:n|) =
O(log(n)) and the average time complexity of the pDPA is in O(n log(n)).

Proof The proof of E(|τ1
1:t |) = O(log(t)) is given in appendix B. We obtain this result by

studying the set S 1
1:n,τ . More precisely we characterize some simple events for which S 1

1:n,τ is
empty and compute the probability of these events. Then by taking the expectation and summing
over all possible τ we get the desired result.

For the complexity using theorem 8 we know that the number of intervals stored by the pruned
DPA is always smaller than 2 times the number of candidate change-points. Thus for Kmax = 1,
for every t ≤ n the pruned DPA updates on average O(log(t)) functional costs and intervals. From
this the complexity follows �

5.3. Empirical complexity of the pDPA

In this section, we empirically assess the efficiency of the pDPA to analyze both simulated and real
data in the case of the quadratic loss, γ(Yi,µ) = (Yi−µ)2. The pDPA was implemented in C++

3 note that any µ → ∑i γ(Yi,µ) is unimodal.
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and was run on a Intel Core i7-3687U3 2.10 GHz. The code is available in the cghseg package on
the CRAN at the following webpage (http://cran.r-project.org/web/packages/cghseg/index.html).
Here is an example code using this function:

install.packages("cghseg")
library(cghseg)
Kmax <- 40; n <- 10^5;
y <- rnorm(n)
system.time(res_ <- cghseg:::segmeanCO(y, Kmax))

5.3.1. Synthetic data

We simulated a number of sequences with a constant, a sinusoid or a rectangular wave signal. We
considered an additional gaussian noise of variance 1, a uniform noise and a Cauchy noise. We
also considered the worst case scenario for the pDPA which is, as explained at the end of section
5.1, achieved for yi = i. We compared the pDPA with the segment neighbourhood algorithm for
n≤ 81 920. For all these tests, we set Kmax = 40. We then ran the pDPA alone for larger sequences
n≤ 2 621 440. The R code to ran the pDPA on these simulations is given in appendix C.

Figures 4-A and B show that for all simulated sequences (coloured dotted and dashed lines)
except the worst case scenario (black dashed and crossed line) the pDPA is faster than segment
neighbourhood (black solid line). It took roughly 150 seconds for the segment neighbourhood
algorithm to process a sequence of 81 920 data-points. In the worst case scenario the pDPA was
able to process 40 960 data-points in the same amount of time, and for other simulated signals
the pDPA was able to process more than 2.6 million data-points in the same amount of time. The
runtime of the pDPA depends on the nature of the noise, for example it is faster for a Cauchy
noise (green dotted lines in figure 4-A, B and green box-plots in figure 4-C).

5.3.2. Real data

We download the publicly available GSE17359 project from Gene Expression Omnibus (GEO:
http://www.ncbi.nlm.nih.gov/geo/). This data set is made of SNP (Single Nucleotide Polymor-
phism) array experiments. SNP arrays enable the study of DNA copy number gains and losses
along the genome. For this kind of sequence, a multiple change-point model based on the quadratic
loss is often used (Picard et al., 2005). This model has been shown to reach state of the art perfor-
mances (Lai et al., 2005; Hocking et al., 2013).

Each SNP array experiment can be viewed as a sequence of 1.8 million data-points. We
assessed the runtime of the pDPA to process these sequences from data-point 1 to t for various
values of t and again with Kmax = 40. The R code is given in appendix D. Runtimes are reported
in Figure 4-D. The runtime to process the 1.8 million data-points was on average 28 seconds and
was always smaller than 33 seconds. Note that the runtime performances of the pDPA on such
SNP array datasets have been confirmed by Hocking et al. (2013).

Journal de la Société Française de Statistique, Vol. 156 No. 4 180-205
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



196 Rigaill

A B

C D

FIGURE 4. Runtimes as a function of n in log-scale. A: Mean runtimes in seconds of the segment neighbourhood
algorithm (black solid line) and pDPA (dotted, dashed, and dashed dotted line) for sequences of less than 81 920
data-points. The black dashed and crossed line is the runtime of the pDPA in the worst case scenario. Coloured dashed
and dotted lines correspond to sequences simulated with or without sine or block waves plus an additional normal
(red), Cauchy (green) or uniform noise (blue) (see appendix C). B: Same as A for sequences of less than 2.6 million
data-points. C: Boxplot of runtimes (in seconds) of the pDPA to process simulated sequences of size n = 2621440. D:
Runtimes (in seconds) of the pDPA to process the sequences of the GSE17359 dataset from data-point 1 to t.

Number of intervals We also directly assess the efficiency of the pruning by counting the
number of intervals stored by the pDPA at every time step of the algorithm. Figure 5-A, B and C
show, for sequences with a constant or sine wave signal plus an additional gaussian noise and for
sequences of the GSE17359 project, the limited number of intervals stored by the pDPA. Indeed,
for all these sequences we observed less than 50 intervals. If there was no pruning we would
expect at least n = 1.8 million and at worst 2n−1 intervals (see subsection 5.1).

Journal de la Société Française de Statistique, Vol. 156 No. 4 180-205
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



A pruned dynamic programming algorithm to recover the best segmentations with 1 to Kmax change-points. 197

A B

C

FIGURE 5. Maximum number of intervals stored by the pDPA at each point of the sequence for K = 1. A: For 100
sequences of 1.8 106 points simulated with a constant signal plus an additional normal noise of variance 1. B: For 100
sequences of 1.8 106 points simulated with a sine wave signal plus an additional normal noise of variance 1. C: For
the 18 profiles of length 1.8. 106 of the GSE17359 dataset.

6. Conclusion

This paper presented the pDPA that recovers exactly the best segmentations with 1 to Kmax

change-points of an n point sequence w.r.t a loss function. This algorithm is based on a functional
representation of the cost of segmentations. For loss functions with a unidimensional parameter
per segment the worst case complexity is in O(Kmaxn2), thus the pDPA is at worst equivalent to
segment neighbourhood algorithms. For a special loss function it is proven that the pDPA allows
to prune the set of candidate change-points efficiently even when there are no change-points in
the signal. Finally, in the case of the quadratic loss, it was shown empirically that the pDPA has a
small runtime compared to segment neighbourhood algorithms.

Future work Here we theoretically proved and empirically assessed that functional pruning
is efficient under a restrictive set of assumptions. It would be interesting to more generally
characterise what are the conditions for functional pruning to be efficient. In particular functional
pruning is theoretically possible for a p dimensional parameter. Recently, Maidstone et al. (2014)
proved that functional pruning prunes at least as much as inequality based pruning. Based on this,
it follows that if the conditions of Theorem 3.2 of Killick et al. (2012) are met then functional
pruning with optimal partitioning (Fpop) is efficient. However whether functional pruning is on
average efficient when p is large and the number of change-points is fixed is to our knowledge an
open question.

Another question is how to implement functional pruning in the multidimensional case. Indeed
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this would require an efficient way to represent and update the set of parameter values for which
a particular change is optimal. To the best of our knowledge these sets do not have particularly
simple properties and are not necessarily easy to handle, except maybe for some special loss
functions such as the `∞ loss.
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Appendix A: Bound on the number of intervals

In this section, we study a special class of functions that we denote B and demonstrate theorem 8.
A direct application of this theorem shows that if there are t candidate last change-points, then
the pDPA need to store at most 2t−1 intervals. We used this theorem in section 4 to prove the
worst-case complexity of the pDPA.

A.1. B functions

Definition A.1.1. Let Bn denote the set of all functions B : R→ R such that

∀ µ ∈ R, B(µ) = min{t ∈ {1...n}} {uB,t +
n+1

∑
j=t+1

fB, j(µ)}

where all uB,t are real numbers and all fB, j are
unimodal functions of µ 4 and any ∑ j fB, j(µ) is also unimodal . Note that Bn ⊂Bn+1. Let B

=
⋃

Bn.

4 Here by unimodal we mean functions such that for any c in R the set {x| f (x)≤ c} is an interval.
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If the loss function γ(yi,µ) and any ∑i γ(yi,µ) are unimodal in µ , C̃ost
K
1:t(µ) is part of Bt−1

because we have: C̃ost
K
1:t(µ) = min

τ<t
{C̃K

1:t,τ(µ)}.

Definition A.1.2. For any B ∈Bn and A a subset of {1 . . .n} we define the function BA as

∀ µ, BA(µ) = min{t ∈ A} {uB,t +
n+1

∑
j=t+1

fB, j(µ)}

Property 7. BA ∈Bcard(A)

It is easily shown for A = {1 . . .n}\{i} with i ∈ {1 . . .n} and thus by induction it is true for
any A.

Definition A.1.3. The rank of a function B ∈B is R(B) = min{n ∈ N∗ |B ∈Bn}

A.2. Decomposition in intervals and order of B

Definition A.2.1. Let I be a partition of R in a finite set of intervals I = {I j}{ j∈{1...k}}. I is a
k-decomposition of a function B ∈ B if

∀ I j, ∃ i, ∀x ∈ I j Bi(x) = B(x)

The set of all B functions with a k-decomposition is denoted Bk. Similarly the set of all Bn

functions with a k-decomposition is denoted Bk
n.

Definition A.2.2. The order O(B) of a B function is min{k ∈ N∗|B ∈ Bk }

Théorème 8. For all B ∈B, we have O(B)≤ 2×R(B)−1.

Proof We demonstrate this theorem by induction. It is true if R(B)≤ 1. Assume it is true for
any B with R(B)≤ n. Let B ∈B with R(B) = n+1. We have:

∀µ ∈ R, B(µ) = min{B{1...n}(µ), B{n+1}(µ)}
B(µ) = min{C(µ), uB,n+1}+ fB,n+2(µ),

where C ∈Bn:

C(µ) = min
t
{uB,t +

n+1

∑
j=t+1

fB, j(µ)}

Let I =
⋃

j∈{1...k} I j be the smallest set of intervals such that:

∀ I j ∈ I , ∀ µ ∈ I j uB,n+1 > C(µ)

Let Ak be the subset of {1 . . .n} defined as {i | ∃ x ∈ Ik C{i}(x)< uB,n+1}.
As R(B) = n+1 and as for all i in {1 . . .n}C{i} is unimodal, there exists a unique j such that

i∈ A j and therefore ∑
k
j=1 card(A j) = n. In each interval Ik, we have C(µ) =CAk(µ). By induction,

O(CAk)≤ 2× card(Ak)−1. Overall, for any B with R(B) = n+1, we have:

O(B)≤ ∑
k
j=1 O(CAk)+(k+1)≤ 2

k

∑
j=1

card(Ak)+1≤ 2n+1≤ 2R(B)−1 �
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Appendix B: Lower bound on the probability that S 1
1:n,τ is empty

Model We consider the negative log-likelihood loss of a continuous uniform distribution defined
on [0,µ]. The loss function is:

γ(yi,µ) = log(µ) if µ ≥ Yi

γ(yi,µ) = ∞ otherwise

This loss function is unimodal and any sum of γ(Yi,µ) is also unimodal. Indeed, for any t ≥ τ ≥ 1
we have:

t

∑
τ+1

γ(Yi,µ) = (t− τ) log(µ) if µ ≥ ŷτ,t

t

∑
τ+1

γ(Yi,µ) = ∞ otherwise

We define ŷτ:t = maxi∈{τ...t−1}{yi}. We have

Cost0
1:t = min

µ∈R+
∗
{

t−1

∑
1

γ(Yi,µ)}= (t−1) log(ŷ1:t).

Finally note that the loss is continuous to the right and as explained in the footnote page 189 we
can further restrict τK

1:t to the set of τ such that S1:t,τ is not restricted to a single value.

Proof Using equation 12 we get that for any t greater than 2 we have:

S 1
1:t+1,t ⊂ {µ | Cost0

1:t ≤ C̃1
1:t,t(µ)} (14)

= ]0,yt−1]∪ [ŷ1:t .

(
ŷ1:t

ŷ1:t−1

)t−1

,+∞[, (15)

(16)

with
(

ŷ1:t
ŷ1:t−1

)t−1
≥ 1. There are two cases in which it can be shown that S 1

1:n,t is empty or restricted
to a single value and thus can be discarded.

Case 1 : If yt−1 < yt < ŷ1:t we have that ŷ1:t+1 = ŷ1:t = ŷ1:t−1. Thus we have

S 1
1:t+1,t ⊂ ]0,yt−1]∪ [ŷ1:t ,+∞[,

{µ | C̃1
1:t+1,t(µ) ≤ Cost0

1:t+1}= [yt , ŷ1:t+1].

and using equation 11 from property 3 that:

S 1
1:t+2,t ⊂ (]0,yt−1]∪ [ŷ1:t ,+∞[)∩ [yt , ŷ1:t ] = {yt}

and by induction we get S 1
1:n,t ⊂ {yt}.
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Case 2 : If yt < yt−1 < ŷt:n we have ŷ1:t+1 = ŷ1:t and we get using equation 11:

S 1
1:t+2,t ⊂

(
]0,yt−1]∪ [ŷ1:t .

(
ŷ1:t

ŷ1:t−1

)t−1
,+∞[

) ⋂
[yt ,
(

ŷ1:t+1.
ŷ1:t+1
ŷ1:t

)t
]

⊂ [yt ,yt−1].

Now we also have:

{µ | C̃1
1:n,t(µ) ≤ Cost0

1:n}=

[
ŷt:n,

(
ŷ1:n.

ŷ1:n

ŷ1:t

) t−1
n−t
]

Using equation 11 we get that S 1
1:n,t ⊂ [yt ,yt−1]∩{µ | C̃1

1:n,t(µ)≤ Cost0
1:n}= /0, as yt < ŷt:n.

Let us now compute the probability of these two events.
All Yi are independent, they have the same density f and continuous distribution F , thus the

distribution of Ŷ1:t is F t−1 and P(Ŷ1:t < x) = P(Ŷ1,t ≤ x) = F t−1(x). As Yt is independent of Ŷ1:t
we get that P(Ŷ1:t < Yt:t+1) =

∫
R2 f (x)F(x)P(Ŷ1:t < x)dx =

∫
R2 f (x)F(x)tdx = 2

t+1 .
Using this, we see that case 1 happens with probability:

P(Yt−1 < Yt < Ŷ1:t) = P(Yt−1 ≤ Yt ≤ Ŷ1:t−1) =
1
2
(1− 2

t
).

and case 2 happens with probability:

P(Yt < Yt−1 < Yt:n) = P(Yt ≤ Yt−1 ≤ Yt+1:n) =
1
2
(1− 2

n− t
).

Furthermore case 1 and case 2 are disjoint events. Thus the probability that the two occur is the
sum 1− 2

t −
2

n−t . Thus the probability that the change-point t has not been discarded at step n is
lower than 2

t +
2

n−t . So taking the expectation and summing across all t smaller than n, we recover
that the expected number of non discarded candidate change-points is in O(log(n)). �

Appendix C: R code to assess the runtime of pDPA on simulated data

Here we provide the R code we used to assess the performances of the pDPA. The code of the
pDPA is in C++.

First here is a function to simulate different type of signals.

#### simple simulation function
funSimu_ <- function(n, noise="norm", signal="flat"){
### signal
if(signal == "flat"){
x <- numeric(n)
}
if(signal == "sin"){## sin
x <- 2*sin(1:n/100)
}
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if(signal == "block"){## 10 blocks
nb=5
x <- rep(rep(c(0,2), nb), each=n/(2*nb))[1:n]
}
if(signal == "sinblock"){## 10 blocks + sin
nb=5
x <- rep(rep(c(0,2), nb), each=n/(2*nb))[1:n] + 2*sin(1:n/100)
}
if(signal == "linear"){
x <- 1:n
}

### noise
if(noise == "none") ### do nothing
if(noise == "norm") x <- x + rnorm(n)
if(noise == "Cauchy") x <- x +rcauchy(n)
if(noise == "unif") x <- x+ runif(n,0, 1) -0.5
return(x)
}

Second, here is a simple function to record the runtime of the algorithm.

simpleStat <- function(x){c(mean(x), sd(x), range(x))}
#### simple function to test the runtimes for various n
testRunTime <- function(Kmax = 50, ns=c(100, 200), rep=5,
funSimu=rnorm, noise, signal){
rTime <- list()
for(n in ns){
cat("Size:", n , ", Repetition 1/", rep, "\n")
for(j in 1:rep){
x <- funSimu(n, noise=noise, signal=signal)
rTime[[length(rTime)+1]] <- c("pDPA", n, j,
system.time(res_p <- cghseg:::segmeanCO(x, Kmax=Kmax))[3])
}
}
### formating the runtimes
dTime <- data.frame(matrix(unlist(rTime), ncol=4, byrow=TRUE))
colnames(dTime) <- c("Algo", "n", "rep", "time")
dTime$time <- as.numeric(as.vector(dTime$time))
dTime$n <- as.numeric(as.vector(dTime$n))
mTime <- aggregate(dTime$time, by=list(dTime$Algo, dTime$n),
FUN= simpleStat, simplify=TRUE )
mTime <- cbind(mTime[, 1:2], mTime[, 3][, 1:4])
colnames(mTime) <- c("Algo", "n", "mean", "sd", "min", "max")
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mTime$signal <- signal
mTime$noise <- noise
mTime <- mTime[order(mTime$n), ]
return(mTime)
}

Here is a code to run the algorithm for different types of signal (constant, sinusoid, block),
various types of noise (gaussian, uniform and Cauchy) and different values of n.

install.packages("cghseg")
require(cghseg)

### 20 000 +
Kmax=40
ns <- 40* 2^(1:16)
respDPA_l <- list()

for(signal in c("flat", "sin", "block", "sinblock")){
print(paste("###", signal))
for(noise in c("norm", "Cauchy", "unif")){
print(noise)
respDPA_l[[length(respDPA_l)+1]] <- testRunTime(Kmax = Kmax, ns=ns, rep=5,
funSimu=funSimu_, noise=noise, signal=signal)
}}
save(respDPA_l, file="respDPA_l.Rdata", compress=TRUE)

Here is a code to run the algorithm in the worst case scenario, Yi = i.

Kmax=40
ns <- 40* 2^(1:10)
respDPA_w <- list()

respDPA_w <- list()
for(signal in c("linear")){
print(paste("###", signal))
for(noise in c("none")){
print(noise)
respDPA_w[[length(respDPA_w)+1]] <- testRunTime(Kmax = Kmax, ns=ns, rep=5,
funSimu=funSimu_, noise=noise, signal=signal)
}}
save(respDPA_w, file="respDPA_w.Rdata", compress=TRUE)
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Appendix D: R code to assess the runtime of the pDPA on the GSE17359 data set

Here we provide the R code we used to assess the performance of the pDPA on the data from the
GSE17359 data set.

dat <- read.table("GSE17359_affy_snp_ratios_matrix.txt", header=TRUE, sep="\t")
require(cghseg)
ie <- which(apply(is.na(dat), 1, sum) == 0)
dat <- dat[ie,]
ns <- c(40* 2^(1:15), nrow(dat))
Kmax = 40
rTime <- list()
for(iSample in 2:ncol(dat)){
print(iSample)
for(n in ns){
x <- dat[1:n, iSample]
rTime[[length(rTime)+1]] <- c("pDPA", n, iSample,
system.time(res_p <- cghseg:::segmeanCO(x, Kmax=Kmax))[3])
}
}

dTime <- data.frame(matrix(unlist(rTime), ncol=4, byrow=TRUE))
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